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Abstract
Modern Code Review (MCR) plays a key role in software quality practices. In MCR pro-
cess, a new patch (i.e., a set of code changes) is encouraged to be examined by reviewers in
order to identify weaknesses in source code prior to an integration into main software repos-
itories. To mitigate the risk of having future defects, prior work suggests that MCR should
be performed with sufficient review participation. Indeed, recent work shows that a low
number of participated reviewers is associated with poor software quality. However, there
is a likely case that a new patch still suffers from poor review participation even though
reviewers were invited. Hence, in this paper, we set out to investigate the factors that are
associated with the participation decision of an invited reviewer. Through a case study of
230,090 patches spread across the Android, LibreOffice, OpenStack and Qt systems, we
find that (1) 16%-66% of patches have at least one invited reviewer who did not respond to
the review invitation; (2) human factors play an important role in predicting whether or not
an invited reviewer will participate in a review; (3) a review participation rate of an invited
reviewers and code authoring experience of an invited reviewer are highly associated with
the participation decision of an invited reviewer. These results can help practitioners better
understand about how human factors associate with the participation decision of reviewers
and serve as guidelines for inviting reviewers, leading to a better inviting decision and a
better reviewer participation.
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1 Introduction

Code review is one of the well-known software quality practices in software development
process (Huizinga and Kolawa 2007, p. 260). The main motivation of code review is to early
identify defects in source code before a software product is released (Ackerman et al. 1989;
Bacchelli and Bird 2013). Traditionally, code review is a formal and well-documented code
inspection process which is performed by well-allocated team members (Fagan 1976).

Nowadays, many modern software development teams tend to adopt a light-weight
variant of code review called Modern Code Review (MCR) (Beller et al. 2014). Broadly
speaking, for every new patch (i.e., a set of code changes), a patch author invites a set of
reviewers (i.e., team members) to examine the patch prior to an integration into main soft-
ware repositories. MCR tends to focus on collaboration among team members to achieve
high quality of software products. Such practices of MCR also provide additional benefits
to team members such as knowledge transfer and increasing team awareness (Bacchelli and
Bird 2013).

However, the lightweight variant of MCR are prone to lower review participation than the
formal code review due to its informal nature. Instead of carefully assigning reviewers like
the formal code review (Fagan 1976, 1986), reviewers of MCR can decide whether or not to
participate a review. Hence, the review participation becomes one of the main challenges in
MCR process. Several studies find that a number of participated reviewers has an impact on
software quality and code review timeliness (Bavota and Russo 2015; McIntosh et al. 2014;
Bettenburg et al. 2015). Moreover, Kononenko et al. (2015) find that the number of invited
reviewers have a statistically significant impact on review bugginess.

Finding reviewers in geographically-distributed software development teams can be dif-
ficult (Thongtanunam et al. 2015b). Several studies propose an approach to help patch
authors find reviewers who will participate in a review. The common intuition of the prior
work is that a reviewer familiars with the code on the patch is more likely to give a better
review than others (Balachandran 2013; Thongtanunam et al. 2015b; Xia et al. 2015; Yu et
al. 2014; Zanjani et al. 2016).

In addition to finding reviewers, recent work finds that a patch author should prepare
a small size of a patch, provide a descriptive subject, and explain change log message
to increase the likelihood of receiving review participation (Thongtanunam et al. 2016a).
While prior studies have explored several technical factors (i.e., reviewer experience and
patch characteristics) that share a link to review participation, no prior study confirms a link
between the human factors and the participation decision of a reviewer.

In this paper, we analyze descriptive statistics of reviewers who did not respond to the
review invitation to understand the current practices of the participation decision of review-
ers. To better understand the signals that can relate to the participation decision of a reviewer,
we construct statistical models that predict the participation decision of reviewers (i.e.,
whether or not an invited reviewer will participate in a review) using the nonlinear logis-
tic regression modeling technique. The nonlinear logistic regression modeling technique
allows us not only to predict an outcome of interest, but also to explore the relationships
between independent variables and dependent variable (Harrell 2002). In particular, we con-
struct two prediction models for each studied dataset. One is our proposed model that uses
human factors, reviewer experience, and patch characteristics. The other one is the baseline
model that uses only reviewer experience and patch characteristics. Through a case study
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of 230,090 patches spread across the Android, LibreOffice, OpenStack and Qt systems, we
address the followings research questions:

(RQ1) How often do patches suffer from the unresponded review invitations?
We find that 16%-66% of patches have at least one invited reviewer who did not
respond to the review invitation. Moreover, the number of invited reviewers shares
a positive correlation with the number of reviewers who did not respond to the
review invitation.

(RQ2) Can human factors help determining the likelihood of the participation deci-
sion of reviewers?
Our proposed prediction models, which include human factors, achieve an AUC
value of 0.82-0.89, a Brier score of 0.06-0.13, a precision of 0.68-0.78, a recall
of 0.24-0.73, and an F-measure of 0.35-0.75. Moreover, we find that including
human factors to the baseline models, that use only reviewer experience and patch
characteristics, increases their F-measure by 17%-1,800%. These results suggest
that human factors play an important role in determining the likelihood of the
participation decision of reviewers.

(RQ3) What are the factors mostly associated with participation decision?
We find that in addition to reviewer experience, human factors (e.g., the review par-
ticipation rate of an invited reviewer) are also highly associated with the likelihood
that an invited reviewer will participate in a review.

Our results lead us to conclude that patches undergoing MCR process often suffer from
the unresponded review invitations. Human factors of invited reviewers play a crucial role
in the participation decision. Both technical and human factors should be considered when
determining the likelihood that an invited reviewer will participate in a review. In addition
to the experience of invited reviewers, these findings highlight the need of considering the
human factors before inviting reviewers in order to increase review participation.

1.1 Paper Organization

The remainder of this paper is organized as follows. Section 2 situates our three research
questions with respect to the related works. Section 3 describes MCR process. Section 4
describes our case study design, while Section 5 presents the results with respect to our
three research questions. Section 6 presents our survey study. Section 7 discusses our find-
ings. Section 8 discloses the threats to the validity of our study. Finally, Section 9 draws
conclusions.

2 Background and Research Questions

To create and deliver high quality software products, software development processes
require a strong collaboration among software developers (Whitehead 2007). However, a
collaboration is challenging, especially for the geographically-distributed teams like Open
Source Software (OSS) projects (Lanubile et al. 2010). Hahn et al. (2008) also report that
one of the common reasons for the failure in OSS projects is the poor collaborations in
software development teams.

Code review is one of the software development processes that require an intensive
collaboration among software developers. Code review is a code examination process to
improve software quality (Huizinga and Kolawa 2007, p. 260). Specifically, the main
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motivations of code review are to find and remove software defects early in the develop-
ment cycle (Bacchelli and Bird 2013). In addition, several studies also find that code review
can improve software security (McGraw 2004; Edmundson et al. 2013), reduce code com-
plexity, increase code readability, and reduce a risk of inducing bug fixes (Bavota and Russo
2015).

Code review can be performed through either formal or lightweight processes (Huizinga
and Kolawa 2007, p. 260). The formal code review process involves well-defined steps
which are carried out by face-to-face meeting (Fagan 1976). Moreover, before beginning the
code review process, documents and participants for the meeting are carefully prepared. On
the other hand, the lightweight code review process, also known as Modern Code Review
(MCR), is less formal. The process does not require a face-to-face meeting. Instead, MCR
is perform through online tools such as Gerrit,1 Review Board,2 and Crucible.3 Such a pro-
cess facilitates collaboration in teams, especially for the geographically-distributed software
projects (Meyer 2008). Nowadays, MCR has been widely used in many software devel-
opment organizations such as Android Open Source Project,4 Eclipse Foundation,5 and
Mozilla.6

Despite the ease of performing code review of MCR, participation becomes a challenge
since developers can decide whether or not to participate a review. For example, Rigby and
Storey (2011) report that a reviewer may not participate in a review of a patch since it is not
in the reviewer interest. Prior work also reports that participation in MCR is associated with
the quality of the code review process (Kononenko et al. 2015).

Several studies have investigated the impact that poor review participation can have
on software quality and code review process. Bavota and Russo (2015) find that a patch
with lower review participation has a higher chance of inducing bug fixes. McIntosh et al.
(2014) find that the lack of review participation has a negative impact on software qual-
ity. More specifically, they find that the more often that the components are reviewed with
low reviewer participation, the more post-release defects the components contain. Thong-
tanunam et al. (2015a) find that a file that involves fewer reviewers when undergoes code
review is more likely to be found defective later on. In addition to the software quality,
Bettenburg et al. (2015) find that the overall review time and the delay of receiving first feed-
back increase when the ratio of reviewers to patch authors in the project decreases. While
several studies have uncovered the impact of review participation, little is known about how
often poor review participation occurs in MCR process. Moreover, understanding the cur-
rent practices of reviewer participation would help teams to increase an awareness of the
poor review participation as well as to better manage the code review process. Hence, we
perform an exploratory study to investigate how often do reviewers decide to not respond to
the review invitation and we set out to address the following research question:

RQ1: How often do patches suffer from the unresponded review invitations?
To help patch authors find the most knowledgeable reviewer to better review the patch,

several studies propose an approach to recommend reviewers who will participate in
a review. Balachandran (2013) proposes an algorithm which uses a change history of

1https://www.gerritcodereview.com/
2https://www.reviewboard.org/
3https://www.atlassian.com/software/crucible/
4https://android-review.googlesource.com/
5https://git.eclipse.org/
6https://reviewboard.mozilla.org/

https://www.gerritcodereview.com/
https://www.reviewboard.org/
https://www.atlassian.com/software/crucible/
https://android-review.googlesource.com/
https://git.eclipse.org/
https://reviewboard.mozilla.org/
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source code in lines that reviewers have reviewed in the past. Yu et al. (2014) compute a
reviewer expertise and common interests between patch authors and reviewers using tex-
tual semantic of pull requests and comment network between patch authors and reviewers
in GitHub. Thongtanunam et al. (2015b) propose REVFINDER which computes the file
path similarity between a new patch and prior patches that reviewers have reviewed. Xia
et al. (2015) propose TIE which is based on the textual content of the patch, file path,
and patch submit time. Zanjani et al. (2016) propose CHREV which uses the historical
contributions of reviewers. One common intuition of these studies is that a patch author
should invite reviewers based on the past experience. In other words, a reviewer is more
likely to review if the reviewer is familiar with that area of code in the patch.

While the reviewer related experience is known to link with review participation (Bal-
achandran 2013; Thongtanunam et al. 2015b; Xia et al. 2015; Yu et al. 2014; Zanjani et al.
2016), others factors may also associate with the review participation. Rigby and Storey
(2011) find through interviews that time, priorities and interest of the invited review-
ers are the main reasons why they do not participate in a broadcast based peer review.
Recently, Thongtanunam et al. (2016a) have investigated whether technical factors like
patch characteristics can lead to poor review participation. However, little is known
whether non-technical factors like human factors can be associated with the participation
decision of reviewers. To explore the impact human factors on the review participation
and help patch authors in inviting reviewers, we set out to address the following research
question:

RQ2: Can human factors help determining the likelihood of the participation
decision of reviewers?

Having investigated the extent of how often patches suffer from the poor review par-
ticipation and the importance of human factors, a better understanding of the factors
associated with participation decision would help software development teams to develop
better strategies for the code review process. For example, software development teams
can create a guideline, especially for new developers, on best practices in inviting review-
ers and getting reviewed, because not receiving a response and learning the process are
reported to be the barriers for new developers (Steinmacher et al. 2015; Lee et al. 2017).
Several studies have investigated the impact of factors that are recorded during the code
review process. Baysal et al. (2013) find that organizational and personal factors can
have an impact on the review timeliness and the likelihood that a patch will be accepted.
Rigby et al. (2014) find that the number of reviewers and the size of the patches can have
an impact on the review timeliness and effectiveness. Bosu and Carver (2014) find that
patch author reputation can have an impact on the first feedback interval, review interval,
and patch acceptance rate. Armstrong et al. (2017) find that code review medium (i.e.,
broadcast or unicast based peer review) can have an impact on the review effectiveness
and quality. Hence, to better understand the impact that human factors, reviewer expe-
rience, and patch characteristics can have on the participation decision of reviewers, we
address the following question:

RQ3: What are the factors mostly associated with participation decision?

3 Modern Code Review

Modern Code Review (MCR) is a lightweight variant of code inspection process that is often
supported by tools. MCR has been widely adopted by many software development orga-
nizations (Rigby et al. 2012). Main purposes of MCR include detecting and fixing defects
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Fig. 1 The overview of MCR process

earlier in the software development cycle (Bacchelli and Bird 2013). Figure 1 provides an
overview of MCR process, which is based on Gerrit code review. Gerrit7 is a web-based
code review tool that tightly integrates with Git version control system. Below, we describe
the MCR process of our studied systems.

(1) Submit a patch. When a patch author (i.e., a developer) makes a new patch, i.e., a set
of code changes, the new patch is examined prior to an integration to the main software
repositories. Hence, the patch author uploads the new patch to Gerrit.

(2) Invite reviewers. A patch author invites reviewers through Gerrit. Then, Gerrit will
notify the invited reviewers by email and add the review task to the reviewing list.
Reviewers can decide to respond or not respond to the review invitation.

(3) Review the patch. The invited reviewers can respond to the review invitation by
inspecting the patch and providing feedback in a comment section. To indicate whether
the patch should be integrated into main software repositories, the reviewers can also
provide a review score ranging from +2 to -2. A review score of +1 indicates that the
reviewers agree with the patch, however, they need a confirmation from other reviewers.
A review score of +2 indicates that the patch can be integrated into the main software
repositories. Similarly, a review score of -1 indicates that the reviewers prefer a revision
of the patch before an integration into the main software repositories. A review score of
-2 indicates that the patch requires a major revision.

(4) Address reviewer feedback. Once the reviewers have reported potential problems,
the patch author revises the patch according to the reviewers’ feedback. Then, the revised
patch is submitted to the Gerrit system in order to be re-inspected by the reviewers. Thus,
creating a feedback cycle.

(5) Merge approved patch to the main software repositories. Once the review of the
patch has reached a decision and the patch receives a review score of +2, the patch is

7https://www.gerritcodereview.com/

https://www.gerritcodereview.com/
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integrated into main software repositories and marked as merged in Gerrit. The patch
is marked as abandoned if the reviewers evaluate that patch does not meet a sufficient
quality level or require too much rework.

4 Case Study Design

In this section, we describe the studied systems, data preparation, and analysis approaches.
Figure 2 provides an overview of our case study design.

4.1 Studied Systems

To address our research questions, we select large software systems that actively use mod-
ern code review. Since we will analyze the participation decision of reviewers, we need to
ensure that the review participation is mainly recorded in the code review tools. Therefore,
we select to study the code review process of Android, LibreOffice, OpenStack, and Qt
systems since these systems have a large number of patches that have been recorded in the

Fig. 2 An overview of our case study design



980 Empirical Software Engineering (2019) 24:973–1016

Table 1 Summary of the studied
datasets Android LibreOffice OpenStack Qt

Start Time 10/2008 3/2012 7/2011 5/2011

End Time 12/2014 11/2016 12/2014 12/2014

Duration 6 Years 4 Years 3 Years 4 Years

#Patches 36,771 18,716 108,788 65,815

Avg. #Patches/Years 6,129 4,679 36,263 16,454

#Reviewers 2,049 410 3,734 1,238

#Patch Authors 1,428 557 3,249 1,011

code review tool (see Table 1). Android8 is an open source mobile operating system devel-
oped by Google. LibreOffice9 is an open source office suite developed by The Document
Foundation. OpenStack10 is an open source cloud operating system started by Rackspace
Hosting and NASA and currently managed by the OpenStack Foundation. Qt11 is an open
source cross-platform application framework developed by The Qt Company.

For Android, OpenStack, and Qt systems, we use review datasets of Hamasaki et al.
(2013) which are often used in prior studies (McIntosh et al. 2014; Thongtanunam et al.
2015b). For LibreOffice system, we use a review dataset of Yang et al. (2016a). The datasets
include patch information, review discussion, and developer information. To retrieve a com-
plete list of invited reviewers and review scoring information, we use REST API that is
provided by Gerrit.12 Table 1 provides a statistical summary of the review datasets.

4.2 Data Preparation (DP)

Before performing an empirical study, we prepare the studied datasets. Figure 2 shows an
overview of our data preparation approach which consists of three main steps: (DP1) select
relevant patches, (DP2) identify the participation decision of reviewers, and (DP3) compute
studied metrics. We describe each step below.

(DP1) Select Relevant Patches In this study, we only study patches that have been masked
as either merged or abandoned. We exclude patches with the open status from
the studied datasets because the participation decision of reviewers of the merged and
abandoned patches have been made and there is a less likely case that the invited
reviewers continue to participate the reviews.

Furthermore, we remove patches that have only the patch author who is in the list of
invited reviewers apart from automated checking systems (i.e., self-reviewed patches) since
such kind of patches intuitively do not have participated reviewers. We classify a patch
where its description contains “merge branch” or “merge” as VCS bookkeeping activities
(e.g., branch-merging patches) and remove them since these patches are involved with prior
patches that were already reviewed. Moreover, we observe that on average, 44%-78% of
these VCS bookkeeping patches are self-reviewed patches.

8https://source.android.com/
9https://www.libreoffice.org/
10https://www.openstack.org/
11https://www.qt.io/
12https://gerrit-review.googlesource.com/Documentation/rest-api.html/

https://source.android.com/
https://www.libreoffice.org/
https://www.openstack.org/
https://www.qt.io/
https://gerrit-review.googlesource.com/Documentation/rest-api.html/
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(DP2) Identify the Participation Decision of Reviewers Before identifying the participa-
tion decision of reviewers, we remove the accounts of automated checking systems (e.g.,
Jenkins CI or sanity checks) from the list of invited reviewers, since these systems will
automatically run a check on every patch. We identify the accounts of automated check-
ing systems of Android system as suggested by Mukadam et al. (2013). We use an account
list of automated checking systems of OpenStack and Qt systems, which is provided by a
prior study (Thongtanunam et al. 2016a). We identify an account list of automated check-
ing systems of LibreOffice based on comments that are posted to patches. In particular, we
manually identify an account that repeatedly posts messages that contain “Build Started” or
“Build Failed” keywords since these keywords indicate the process status of the automated
checking systems.

Once we remove the accounts of automated checking systems, we identify the partic-
ipation decision of reviewers. We identify an invited reviewer who did not participate in
the review by providing neither a review score nor comments as a reviewer who did not
respond to the review invitation. We identify the remaining invited reviewers as a reviewer
who responded to the review invitation. Figure 3 shows an example of identifying partici-
pation decision of invited reviewers, where a patch author (i.e., A) invites 3 reviewers (i.e.,
reviewers R1, R2, and R3). In this example, reviewer R2 is identified as a reviewer who
did not respond to the review invitation as reviewer R2 did not provide a review score nor
feedback. Reviewers R1 and R3 are identified as a reviewer who responded to the invitation
since they provide a review score.

(DP3) Compute Studied Metrics To understand the impact of human factors on the par-
ticipation decision of reviewers, we extract 12 metrics from the datasets. The metrics are
grouped along 3 dimensions; i.e., human factors, reviewer experience, and patch character-
istics. Table 2 describes the conjecture and rationale of each metric. Below, we describe the
calculation of our metrics.

Fig. 3 An example of identifying participation decision of reviewers
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Table 2 The studied metrics

Metric Conjecture Rationale

1 Human Factors Dimension

1.1 Review Workload

Number of Concurrent
Reviews

The more concurrent review
tasks the invited reviewer has,
the more likely that the invited
reviewer will not respond to a
new review invitation

A reviewer who is burdened
with large number of review
tasks may not have time to
review a new patch.

Number of Remaining
Reviews

The more remaining review
tasks the invited reviewer has,
the more likely the invited
reviewer will not respond to a
new review invitation.

1.2 Social Interaction

Familiarity between the
Invited Reviewer and
the Patch Author

The invited reviewer is more
likely to respond to a new
review invitation if the reviewer
reviewed the prior patches of
the patch author before.

A reviewer may prefer to review
patches of the patch author who
the invited reviewer knows.

Median Number of
Comments

The more comments that the
invited reviewer had provided
in the past, the more likely
that the invited reviewer will
respond to a new review invita-
tion.

A large number of comments
that the reviewer has provided
in the past may indicate that the
reviewer is active in the system.

Review Participation Rate A reviewer with a high rate
of review participation is more
likely to respond to review
invitation.

A high rate of review partic-
ipation may indicate that the
reviewer is active in the sys-
tem.

Number of Received
Review Invitations

A reviewer who received many
review invitations is more likely
to respond to a review invita-
tion.

Such a reviewer may be an
expert who is widely known by
the patch authors.

Core Member Status A core reviewer is more likely
to respond to a new review
invitation

Core reviewers may be more
active than non-core reviewers
(Vasilescu et al. 2014). It is
also possible that most of the
activities may be carried out
by a group of core reviewers
(Goeminne and Mens 2011).

2 Reviewer Experience Dimension

Reviewer Code Authoring
Experience

The invited reviewer is more
likely to respond to a new
review invitation of a patch that
the reviewer has related author-
ing experience.

A reviewer may prefer to
review new patches that the
reviewer has related experi-
ence (Liang and Mizuno 2011;
Thongtanunam et al. 2015b;
Xia et al. 2015).

Reviewer Reviewing
Experience

The invited reviewer is more
likely to respond to a new
review invitation of a patch that
the reviewer has related review-
ing experience.



Empirical Software Engineering (2019) 24:973–1016 983

Table 2 (continued)

Metric Conjecture Rationale

3 Patch Characteristics Dimension

Patch Size A patch with small code
changes is more likely to get a
review.

Some initial qualitative evi-
dences indicate that small
patches are easier to review
than large patches (Mishra
and Sureka 2014; Rigby et al.
2014).

Patch Author Code Authoring
Experience

The invited reviewer is likely
to respond to a new review
invitation if the patch author is
an experienced developer.

An experienced patch author
may widely known for his/her
capability which encourage
reviewers to work with (Bosu
and Carver 2014).

Patch Author Reviewing
Experience

The invited reviewer is likely
to respond to a new review
invitation if the patch author is
an experienced reviewer.

Human Factors Dimension Human factors dimension measures reviewer related envi-
ronment and reviewer past activities. Human factors dimension is divided into two
sub-dimensions:

Review Workload Review workload measures review workload of an invited reviewer
at the time when the invited reviewer received a new review invitation. Number of
Concurrent Reviews counts how many patches that an invited reviewer was reviewing
at the time when the studied patch is created. We consider an invited reviewer was
reviewing a patch when the invited reviewer had provided a review score or comments
to that patch. We also count only patches that have not reached a final decision (i.e.,
have not been marked as merged or abandoned) at the time when the studied
patch is created. Figure 4 shows an example of counting the number of concurrent
reviews where reviewers A and B were an invited reviewer of the studied Patch #1.

Fig. 4 An example of how to count the number of concurrent reviews and the number of remaining reviews
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In this example, the number of concurrent reviews of reviewer A is 2 (i.e., Patches
#2, and #3). However, reviewer B does not have any concurrent reviews since he did
not participate in Patches #2 and #3. Furthermore, in the example, Patch #4 will not
be considered for reviewers A and B since Patch #4 was created after the studied
patch. Number of Remaining Reviews counts the number of patches where an invited
reviewer was invited, yet the invited reviewer did not participate in at the time when
the studied patch is created. Similar to the number of concurrent reviews, we count
only patches that were created before the studied patch but had not reached a final
decision at the time when the studied patch is created. Using the same example in
Fig. 4, reviewer A has no remaining review while reviewer B has 2 remaining reviews
(i.e., Patches #2, and #3).

Social Interaction Social interaction measures past activities that an invited reviewer
had involved with patch authors or prior patches. Familiarity between the Invited
Reviewer and the Patch Author counts the number of prior patches that an invited
reviewer had reviewed for the patch author. Median Number of Comments measures a
median number of messages that an invited reviewer had posted on prior patches that
impact the same subsystem as the studied patch. Review Participation Rate measures
a proportion of prior patches that impact the same subsystem as the studied patch and
an invited reviewer responded to the review invitation. More specifically, we measure
the review participation rate of an invited as described below:

Review Participation Rate = #Responded review invitations

#Received review invitations
(1)

Number of Received Review Invitations counts the number of prior patches that an
invited reviewer had received a review invitation. Core Member Status is identified
based on the permission to approve or abandon a patch (i.e., providing a review score
of +2 or -2).13 The core member status is assigned as TRUE if a reviewer has provided
a review score of +2 or -2 to prior patches, FALSE otherwise. In this work, we only
consider an approver role as a core member. A reviewer with a verifier role may also
has a core member status, however this verifying task is often performed by automatic
tools (e.g., Continuous Integration tools) (McIntosh et al. 2014).

Reviewer Experience Dimension Reviewer experience dimension measures the related
experience that an invited reviewer has on a patch. Reviewer Code Authoring Experience
measures how many prior patches that an invited reviewer had authored. To measure the
code authoring experience, we first measure code authoring experience for each module
that is impacted by the studied patch using a calculation of a(D,M)

C(M)
(Bird et al. 2011),

where a(D, M) is the number of prior patches that the invited reviewer D had made to
module M . C(M) is the total number of prior patches that were made to M . Then, we cal-
culate an average of the code authoring experience of these impacted modules. Reviewer
Reviewing Experience measures how many prior patches that an invited reviewer had
reviewed. To measure the reviewing experience, we first measure reviewing experience

for each module that is impacted by the studied patch using a calculation of
∑r(D,M)

k=1
1

R(k)

C(M)

(Thongtanunam et al. 2016b), where r(D, M) is the number of prior patches made to
module M which the invited reviewer D had reviewed. R(k) is the total number of
reviewers who reviewed patch k. C(M) is the total number of prior patches that were

13https://gerrit-review.googlesource.com/Documentation/access-control.html#examples developer

https://gerrit-review.googlesource.com/Documentation/access-control.html#examples_developer
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made to M . Finally, we calculate an average of the reviewing experience of the studied
in these impacted modules.

Patch Characteristics Dimension Patch characteristic dimension measures characteris-
tics of the studied patch. Patch Size counts how many lines of code that were changed in
the studied patch. Patch Author Code Authoring Experience measures how many prior
patches that the patch author had authored. To measure the code authoring experience,
we use the same calculation as we use for the reviewer code authoring experience. Patch
Author Reviewing Experience measures how many prior patches that the patch author
has reviewed. To measure the reviewing experience, we use the same calculation as we
use for the reviewer reviewing experience.

4.3 Model Construction (MC)

We construct nonlinear logistic regression models to determine the likelihood that an invited
reviewer will participate in a review. The nonlinear logistic regression model is a logistic
regression model that provides more flexible curve-fitting methods than a linear logis-
tic regression model. We adopt the model construction approach of Harrell (2002), which
enables a more accurate and robust fit of the dataset than the linear logistic regression model
construction approach, while carefully considering the potential for overfitting. We use the
studied metrics as independent variables. The dependent variable is assigned as the value
of TRUE if an invited reviewer responded to the review invitation, and FALSE otherwise.
Figure 2 provides an overview of our model construction approach which consists of three
main steps. We describe each step below.

(MC1) Remove Highly-Correlated and Redundant Independent Variables. Using highly
correlated or redundant independent variables in regression models can create distorted and
exaggerated relationships between the independent variables and the dependent variable,
which lead to spurious conclusions (Mason and Perreault 1991; Tantithamthavorn et al.
2016). To analyze the correlation between the independent variables, we perform Spearman
rank correlation tests (ρ) (Spearman 1904). Then, we construct a hierarchical overview of
the correlation using the variable clustering analysis technique (Sarle 1990). For a cluster
of highly correlated variables, we select only one variable as a representative variable for
that cluster. Suggested by Hinkle et al. (1998), Spearman correlation coefficient values (ρ)
greater than 0.7 are considered as strong correlations. Therefore, we use a threshold of
|ρ| > 0.7, which is also used in prior studies (Thongtanunam et al. 2016a; McIntosh et al.
2016). We repeat this process until the Spearman correlation coefficient values of all clusters
are less than 0.7.

After the correlation analysis, we also perform a redundancy analysis to check whether
the surviving variables provide a unique signal or not (Harrell 2015b, p. 80). We use the
redun function in the Hmisc package (Harrell 2015a) to detect redundant variables and
remove them from our models.

(MC2) Construct Nonlinear Logistic Regression Models. To construct a nonlinear logistic
regression model with a low risk of overfitting, we need to consider degrees of freedom that
can be allocated to the model. A model that uses degrees of freedom more than a dataset
can support can be overfit to that dataset (Harrell 2002). Therefore, we estimate a budget for
degrees of freedom using a calculation of min(T ,F )

15 (Harrell 2002), where T is the number of
instances where the dependent variable is TRUE, and F is the number of instances where the
dependent variable is FALSE. The total allocated degrees of freedom should never exceed
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the budgeted degrees of freedom. Once we have budgeted degrees of freedom, we allocate
the degrees of freedom to the independent variables that survive from our correlation and
redundancy analysis.

To model nonlinear relationships, we allocate degrees of freedom to an independent
variable. Similar to prior work (McIntosh et al. 2016), the degree of freedom is allocated
based on Spearman multiple ρ2 value, which indicates the potential of sharing a nonlin-
ear relationship between an independent and a dependent variable. The larger the Spearman
multiple ρ2 value is, the higher potential of sharing a nonlinear relationship. We use the
spearman2 function in the rms R package (Harrell 2015c) to calculate the Spearman
multiple ρ2 value for each independent variable. Then, we manually identify a group of
independent variables based on their Spearman multiple ρ2 values. Although there may be
a large number of budgeted degrees of freedom, we only allocate three to five degrees of
freedom to a group with the high Spearman multiple ρ2 value and allocate one degree of
freedom (i.e., a linear fit) to a group with a low Spearman multiple ρ2 values. This is because
allocating too many degrees of freedom may lead a model to overfit, which will exag-
gerate spurious relationships between an independent variable and the dependent variable
(McIntosh et al. 2016).

Once we have removed highly-correlated and redundant variables and allocated degrees
of freedom to the surviving variables, we construct a nonlinear logistic regression model.
Similar to prior work (Thongtanunam et al. 2016a; McIntosh et al. 2016), we use restricted
cubic splines (also called natural splines) to fit the data using the allocated degrees of free-
dom. We use the restricted cubic splines because the smooth characteristic of cubic splines
fits highly curved functions better than a linear splines (Harrell 2002, p. 20). In addition,
the restricted cubic splines also behave better than the unrestricted cubic splines in the tails
of functions, i.e., before the first change in direction of functions and after the last change
in direction of functions.

4.4 Model Analysis (MA)

We analyze nonlinear logistic regression models to determine the performance of the mod-
els, and to quantitatively understand the relationship between the independent variables and
the participation decision of an invited reviewer. Figure 2 provides an overview of our model
analysis approach which consists of three main steps. We describe each step below.

(MA1) Evaluate theModels. We evaluate the performance of our models using Area Under
the receiver operating Curve (AUC) (Hanley and McNeil 1982) and Brier score (Brier
1950). AUC and Brier score are threshold-independent measures, i.e., the measurement
does not rely on the probability threshold (e.g., 0.5) (Tantithamthavorn and Hassan 2018).
Moreover, AUC and Brier score are robust to the data where the distribution of a dependent
variable is skewed (Fawcett 2006). Nonetheless, we also measure precision, recall, and F-
measure which are commonly used in software engineering literature (Elish and Elish 2008;
Foo et al. 2015; Tantithamthavorn et al. 2015; Zimmermann et al. 2005). Below, we describe
each of the performance measures:

– AUC value measures how well a model can discriminate between two groups of the
dependent variables (i.e., a reviewer who will respond to a review invitation and who
will not). An AUC value of 1 indicates a perfect discrimination ability while an AUC
value of 0.5 indicates that the discrimination ability of the model is not better than
random guessing.
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– Brier score measures the error of the predicted probability of the model. A Brier score
of 0.25 indicates that the accuracy of the model is not better than random guessing. The
lower the Brier score is, the less error the predicted probability of the model is. The
Brier score is calculated as described below:

Brier score = 1

N

N∑

i=1

(predicted probabilityi − actual outcomei )
2 (2)

where N is the total number of instances. The actual outcome is 1 if the dependent vari-
able of instance i is TRUE (i.e., an invited reviewer responded to the review invitation)
and 0 otherwise.

– Precision measures the correctness of a prediction model in predicting whether invited
reviewers will respond to the review invitation. More specifically, precision is a ratio of
the correctly predicted instances where our models predict that invited reviewers will
respond to the review invitation.

– Recall measures the completeness of a prediction model in predicting whether invited
reviewers will respond to the review invitation. More specifically, recall is a ratio of
the correctly predicted instances that invited reviewers had responded to the review
invitation.

– F-measure is the weighted harmonic mean of precision and recall. It is a measure that
indicates the balance between precision and recall. The F-measure value ranges from
0 to 1. The higher the F-measure value is, the better overall prediction performance of
the model is. F-measure is calculated as described below:

F-measure = 2 × precision × recall

precision + recall
(3)

To validate our results, we use the out-of-sample bootstrap validation technique (Efron
1983). The key intuition of the out-of-sample bootstrap is that the relationship between the
studied dataset and the theoretical population from which it is derived is asymptotically
equivalent to the relationship between the bootstrap samples and the studied dataset (Efron
1983). Tantithamthavorn et al. (2017b) also find that for logistic regression models, the
out-of-sample bootstrap validation approach is the least biased model validation technique
(i.e., has the least difference between the performance estimates and the model performance
on unseen data) compared to other commonly-used validation techniques like K-fold cross
validation. Moreover, the out-of-sample bootstrap validation approach also produces more
stable performance estimates (i.e., there is little change in performance estimates when
repeating the experiments).

The out-of-sample bootstrap consists of three steps. First, we randomly draw a bootstrap
sample with replacement from the original dataset. A bootstrap sample has the same size
as the original dataset. Then, we construct a prediction model using the bootstrap sample.
Finally, we test and measure the performance of the bootstrap model using the instances that
are not in the bootstrap sample. We repeat this process with 1,000 iterations and compute
an average of each performance measure.

(MA2) Estimate the Power of Explanatory. To identify the most influential factors that
can have on the participation decision of an invited reviewer, we estimate the explanatory
power that each independent variable can contribute to the fit of the model. To do so, similar
to prior work (Thongtanunam et al. 2016a; McIntosh et al. 2016), we measure the Wald
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statistics (Wald χ2) and its statistical significance (p-value) using the anova function in
the rms R package (Harrell 2015c). Since the independent variables that are allocated more
than one degrees of freedom, are represented with several model terms, we use the Wald
statistics to jointly test a set of model terms for each independent variable. The larger the
Wald χ2 of a variable is, the larger the explanatory power that the variable contributes to the
model.

In addition, to determine ranks of the explanatory power of the variables, we use the
Scott-Knott Effect Size Difference (ESD) test (Tantithamthavorn et al. 2017b). The Scott-
Knott ESD test is an enhanced variant of the Scott-Knott test. The Scott-Knott ESD test is
more appropriate for our datasets since it will mitigate the skewness of an input dataset and
merge any two statistically distinct groups that have a negligible effect size into one group.
To do so, we construct our model using a bootstrap sample (i.e., a dataset that is randomly
sampled with replacement from the original dataset). Then, we estimate Wald χ2 of the
bootstrap model. We repeat this process for 1,000 bootstrap samples. Finally, we use the
sk esd function in the ScottKnottESD R package (Tantithamthavorn et al. 2017b) to
cluster the distribution of Wald χ2 of the 1,000 bootstrap models into statistically distinct
ranks.

(MA3) Examine the Relationships Between the Variables and the Participation Decision.
The power of explanatory and the Scott-Knott ESD test provide (1) the magnitudes of the
impact of each independent variable on model performance; and (2) the rank of the power of
explanatory of the independent variables. However, they do not provide direction or shape
of the relationship between independent variable and the likelihood that an invited reviewer
will participate in a review. To further observe the direction of the relationship between the
independent variable and the likelihood, we use the Predict function in the rms R pack-
age (Harrell 2015c) to plot the likelihood against the particular variable, while controlling
for the other variables at their median values.

In addition, to quantify the impact that each independent variable can have on the like-
lihood that an invited reviewer will participate in a review, we estimate the partial effect of
the independent variables using odds ratio (Harrell 2002, p. 220). Odds ratio indicates the
change to the likelihood when there is a change in the value of the independent variable.
A positive odds ratio indicates an increasing relationship while a negative odds ratio indi-
cates a decreasing relationship. A large odds ratio indicates a large partial effect that the
independent variable has on the likelihood.

5 Case Study Results

In this section, we present the results of our case study according to our three research
questions.

5.1 (RQ1) How often do Patches Suffer from the Unresponded Review Invitations?

5.1.1 Approach

To address the RQ1, we analyze descriptive statistics of the number of reviewers who did not
respond to the review invitation of patches. In particular, we count how many patches that
have reviewers who did not respond to the review invitation. Furthermore, we investigate
whether or not inviting many reviewers can decrease a chance of having an invited reviewer
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who did not respond to the review invitation. To do so, we first plot the number of invited
reviewers against the number of reviewers who did not respond to the review invitation in a
patch using hexbin plots (Carr et al. 1987). We also use Kendall rank correlation coefficient
(τ ) to measure the correlation between the number of invited reviewers and the number of
reviewers who did not respond to the review invitation. Instead of using the commonly-used
Spearman rank correlation (Spearman 1904), we use Kendall rank correlation in order to
provide a more robust and more interpretable correlation (Newson 2002; Croux and Dehon
2010). The Kendall’s τ is considered as trivial for |τ | < 0.1, small for 0.1 ≤ |τ | < 0.3,
medium for 0.3 ≤ |τ | < 0.5, and large for 0.5 ≤ |τ | ≤ 1 (Cohen 1992). A positive value
of Kendall’s τ indicates an increasing relationship between the variables while a negative
value indicates a decreasing relationship between the variables. A value of zero indicates an
absence of a relationship.

5.1.2 Results

Observation 1 — 16%-66% of the patches have at least one invited reviewer who did
not respond to the review invitation. We find that 24,367 of 36,771 (66%) patches in
the Android dataset, 3,039 of 18,716 (16%) patches in the LibreOffice dataset, 24,589 of
108,788 (23%) patches in the OpenStack dataset, and 30,630 of 65,815 (47%) patches in
the Qt dataset are not responded to by at least one invited reviewer. These results suggest
that when a patch author invites reviewers for a new patch, there is a high chance (especially
in the Android and Qt datasets) that one of the invited reviewers will not respond to the
review invitation. Moreover, 1,343 of 3,039 (44%) patches in the LibreOffice dataset that
were not responded to by an invited reviewer do not have any invited reviewers participated
in. We also observe 19%, 4% and 5% of such patches in the Android, OpenStack and Qt
datasets.

We also find that on average, there are one (LibreOffice, Qt and OpenStack datasets)
to two (Android dataset) invited reviewers who did not respond to the review invitation.
Figure 5 shows the distributions of reviewers who did not respond to the review invitation
in a patch using a violin plot. We use a violin plot to summarize the distributions in vertical
curves. Since the number of reviewers can vary among patches, we analyze the proportion of
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Fig. 5 The distributions of proportion of reviewers who did not respond to the review invitation in a patch
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reviewers who did not respond to the review invitation in a patch instead of the actual num-
ber of reviewers. The wider the violin plot is, the more patches that have the corresponding
proportion of reviewers who did not respond to the review invitation are. We observe that
at the median, 33%(OpenStack)-67%(Android) of the invited reviewers did not respond to
the review invitation. We also observe that at the median of the Android dataset (i.e., where
patches have 67% of invited reviewers who did not respond to the review invitation), patch
authors often invited three reviewers and two of them did not respond to the review invi-
tation. At the median of the LibreOffice dataset, patch authors often invited two reviewers
and one of them did not respond to the review invitation. At the median of the OpenStack
dataset, patch authors often invited three reviewers and one of them did not respond to the
review invitation. At the median of the Qt dataset, patch authors often invited two reviewers
and one of them did not respond to the review invitation.

Observation 2 — The Number of Invited Reviewers Shares an Increasing Relationship
with the Number of Reviewers who did not Respond to the Review Invitation. Figure 6
shows the number of invited reviewers against the number of reviewers who did not
respond to the review invitation using hexbin plots (Carr et al. 1987). Hexbin plots are
scatter plots that represent several data points with hexagon-shaped bins. The darker the
shade of the hexagon, the more data points that fall within the bin. We also draw a line with
95% confidence interval (the gray area) over the plot in order to observe the correlation. We
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Fig. 6 The hexbin plots of the number of invited reviewers against the number of reviewers who did not
respond to the review invitation. The gray area shows the 95% confidence interval
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only observe the plots where the gray area is narrow, since a wide gray area indicates the
lack of data points. Figure 6 shows that the more invited reviewers the patch has, the more
reviewers who did not respond to the patch. We also find that the Kendall rank correlation
coefficient τ is +0.719 (large) in the Android dataset, +0.544 (large) in the LibreOf-
fice dataset, +0.344 (medium) in the OpenStack dataset, and +0.671 (large) in the Qt
dataset.

A large number of patches (i.e., 16%-66%) have at least one invited reviewer who
did not respond to the review invitation. Moreover, the results suggest that if patch
authors invite more reviewers, the chance of having a non-responding reviewer
tends to increase.
(Observations 1-2).

5.2 (RQ2) Can Human Factors help Determining the Likelihood of the Participation
Decision of Reviewers?

The results of RQ1 suggest that if patch authors invite more reviewers, the chance of hav-
ing a non-responding reviewer tends to increase. In other words, the approach of inviting
more reviewers to increase review participation is becoming less efficient as the number of
invited reviewers is increasing. Therefore, instead of inviting more reviewers, a better under-
standing of factors playing a role in this process can be of help to patch authors. To better
understand the factors that can have an impact on the participation decision of reviewers,
we construct a prediction model to determine the likelihood of the participation decision of
reviewers (i.e., whether an invited reviewer will participate in a review). Unlike the prior
studies that mainly use reviewer experience and patch characteristics (Balachandran 2013;
Yu et al. 2014; Thongtanunam et al. 2015b; Xia et al. 2015; Zanjani et al. 2016), we use
human factors, reviewer experience, and patch characteristics to construct our prediction
models. Below, we describe our approach to address our RQ2, then present our results and
observations.

5.2.1 Approach

To address our RQ2, for each dataset, we construct two nonlinear logistic regression mod-
els to predict whether or not an invited reviewer will participate in the review. One is our
proposed model that includes human factors and another model is the baseline model that
does not include human factors. In particular, we use all metrics listed in Table 2 as indepen-
dent variables for our proposed model. For the baseline model, we use only metrics in the
reviewer experience and patch characteristics dimensions as independent variables. For each

Table 3 Summary of instances
of the studied datasets #TRUE instances #FALSE instances

Android 77,720 (59%) 54,411 (41%)

LibreOffice 25,905 (88%) 3,572 (12%)

OpenStack 421,927 (90%) 44,593 (10%)

Qt 155,367 (77%) 47,196 (23%)
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patch, both proposed and baseline models predict the outcome for each invited reviewer, i.e.,
TRUE if an invited reviewer responded to the review invitation, and FALSE otherwise. In
total, we use the datasets of 132,131 (Android), 29,477 (LibreOffice), 466,520 (OpenStack),
and 202,563 (Qt) instances for this RQ. Table 3 shows the number of TRUE and FALSE
instances of each studied dataset. Then, we construct our prediction models according to
our model construction approach (see Section 4.3), which we discuss each step below.

(MC1) Remove Highly-Correlated and Redundant Independent Variables. We remove
independent variables that are highly correlated with one another based on the variable
clustering analysis. For example, Fig. 7 shows the hierarchical clustering of variables of
the OpenStack dataset. We find that the number of remaining reviews and the number of
concurrent reviews are highly correlated, i.e., a Spearman’s |ρ| value is greater than 0.7.
Therefore, we choose the number of concurrent reviews as a representative variable of this
cluster because the number of concurrent reviews is a more straightforward metric of review
workload than the number of remaining reviews (i.e., a large number of concurrent reviews
indicate that the invited reviewer has been already involved in many patches and may not
be able to review the new patch). We perform the variable clustering analysis again, and we
find that none of the surviving variables are highly correlated. We perform a similar process
for Android and Qt datasets. However, none of the independent variables in the Android,
LibreOffice and Qt datasets have a Spearman’s |ρ| value greater than 0.7. Hence, we use all
of the metrics for the Android, LibreOffice and Qt datasets.

We also check for the redundant variables. However, we find that there are no surviving
variables that have a fit with an R2 greater than 0.9 for all four datasets. Hence, we use all
the surviving independent variables to construct the models.

(MC2) Construct Nonlinear Logistic Regression Model. Before we construct a model, we
estimate a budget for degrees of freedom. Table 4 shows the budgeted degrees of freedom
for each dataset. Then, we allocate degrees of freedom to the independent variables. For
example, Fig. 8 shows Spearman multiple ρ2 of each independent variable for the Android
dataset. Figure 8 shows that the review participation rate has the largest Spearman multiple
ρ2 value. The reviewer code authoring experience, the median number of comments, the
reviewer reviewing experience, and the number of concurrent reviews have medium multi-
ple ρ2 value. The other variables have small Spearman multiple ρ2 values. Thus, we allocate

Patch_Author_Reviewing_Experience

Familiarity_between_the_Invited_Reviewer_and_the_Patch_Author

Patch_Author_Code_Authoring_Experience

Reviewer_Code_Authoring_Experience

Reviewer_Reviewing_Experience

Median_Number_of_Comments

Patch_Size

Review_Participation_Rate

Core_Member_Status

Number_of_Received_Review_Invitations

Number_of_Remaining_Reviews

Number_of_Concurrent_Reviews

0.8 0.6 0.4 0.2 0.0

Spearman ρ

Fig. 7 Hierarchical clustering of independent variables of the OpenStack dataset
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Table 4 Summary of the degrees of freedom. The metrics in the human factors dimension are only included
in our proposed models

Android LibreOffice OpenStack Qt

Budgeted Degrees of
Freedom

3,627 238 2,972 3,146

Spent Degrees of
Freedom

17 17 12 15

Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear

Human Factors Dimension

Number of Concurrent
Reviews

2 1 2 1 1 — 1 —

Number of Remaining
Reviews

1 — 3 2 † 1 —

Familiarity between
Invited Reviewer
and Patch Author

1 — 1 — 1 — 2 1

Median Number of
Comments

2 1 1 — 1 — 1 —

Review Participation
Rate

2 1 2 1 2 1 2 1

Number of Received
Review Invitations

1 — 1 — 1 — 1 —

Core Member Status 1 — 1 — 1 — 1 —

Review Experience Dimension

Reviewer Code Author-
ing Experience

2 1 1 — 1 — 2 1

Reviewer Reviewing
Experience

2 1 2 1 1 — 1 —

Patch Characteristics Dimension

Patch Size 1 — 1 — 1 — 1 —

Patch Author Code
Authoring Experience

1 — 1 — 1 — 1 —

Patch Author Review-
ing Experience

1 — 1 — 1 — 1 —

†This variable is removed during the variable clustering analysis
—Nonlinear degrees of freedom are not allocated

three degrees of freedom to the review participation rate and the variables that have medium
multiple ρ2 value. We allocate one degree of freedom to the other variables. We perform
the similar process for the OpenStack and Qt datasets. Table 4 shows the number of degrees
of freedom that we allocate to each independent variable. Finally, we construct the models
using the allocated degrees of freedom. The final allocated degrees of freedom are decided
by the restricted cubic splines according to the compatibility of the independent variable
values. For example, although we allocate three degrees of freedom to a variable, it is possi-
ble that the restricted cubic splines will allocate only one degree of freedom to the variable
if the variable values cannot support to have a change in the direction of its function.
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Review_Participation_Rate
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Median_Number_of_Comments

Reviewer_Reviewing_Experience

Number_of_Concurrent_Reviews

Familiarity_between_the_Invited_Reviewer_and_the_Patch_Author

Number_of_Remaining_Reviews

Core_Member_Status

Patch_Author_Reviewing_Experience

Patch_Author_Code_Authoring_Experience

Patch_Size

Number_of_Received_Review_Invitations

N  df
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Fig. 8 Dotplot of the Spearman multiple ρ2 of each independent variable of the Android dataset. The higher
the Spearman multiple ρ2 is, the more potential the variable has.

5.2.2 Results

Observation 3 — Our Proposed Models that Include Human Factors Achieve an AUC
Value of 0.82-0.89, a Brier Score of 0.06-0.13, a Precision of 0.68-0.78, a Recall of
0.24-0.73, and an F-measure of 0.35-0.75. Table 5 shows an average of performance
measures of our proposed models. Our proposed models achieve an average AUC value
of 0.82(Qt)-0.89(Android) and a Brier score of 0.06(OpenStack)-0.13(Android and Qt).
Moreover, our proposed models achieve a precision of 0.68(Qt)-0.78(Android), a recall of
0.24(LibreOffice)-0.73(Android), and an F-measure of 0.35(LibreOffice)-0.75(Android).
The LibreOffice, OpenStack and Qt models achieve a relatively low recall (i.e., 0.24, 0.25
and 0.35 respectively), indicating that the completeness of the identification of our pro-
posed models for the LibreOffice, OpenStack and Qt datasets is relatively low. One possible
explanation is the imbalanced data. We observe that the Android dataset tends to have the
balanced number of instances with TRUE (59%) and FALSE (41%). On the other hand, the
LibreOffice, Qt and OpenStack datasets tend to have the imbalanced number of instances
(i.e., the majority of instances are 88%, 90% and 77% for the LibreOffice, OpenStack and
Qt datasets, respectively). We further discuss the improvement of recall of our prediction
models in Section 8.1.

Observation 4 — AUC Increases by 10%-39%, Brier Score Decreases by 11%-33%, and
F-measure Increases by 17%-1,800% when we Include Human Factors into the Models
Table 5 shows that the baseline models (i.e., the models that do not include human fac-
tors) achieve an average AUC value of 0.62(OpenStack)-0.78(LibreOffice), a Brier score
of 0.09(LibreOffice and Qt)-0.19(Android), a precision of 0.60(Qt)-0.77(LibreOffice), a
recall of 0.01(OpenStack and Qt)-0.67(Android), and an F-measure of 0.02(OpenStack)-
0.64(Android). We measure the performance improvement between our proposed models
and the baseline models using a calculation of

Pproposed−Pbaseline

Pbaseline
, where P is the value of

performance measures. Table 5 shows the performance improvement for all of our five per-
formance measures. We observe that AUC increases by 10%-39%, Brier score decreases
by 11%-33%, and F-measure increases by 17%-1,800%. These results indicate that includ-
ing human factors into the prediction models of review participation decision increases the
performance.
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Although we find a small decrease in precision for the LibreOffice and OpenStack
datasets (9% and 3%, respectively), we find a large increase in recall (243% and 2,400%,
respectively). The F-measure (which combines precision and recall measures) shows that
our proposed models outperform the baseline models with an increase of 169% for the
LibreOffice dataset and 1,800% for the OpenStack dataset.

In addition, we observe that the baseline models perform poorly for the LibreOffice,
OpenStack and Qt datasets. Therefore, we further investigate this result by quantifying the
difference between the distributions of each independent variable when the dependent vari-
able is TRUE and FALSE using Cliff’s Delta (Cliff 1993, 1996). A negligible difference
between the distributions of the independent variable indicates that the variable does not
provide a unique signal to the prediction model. We find that, in the LibreOffice dataset,
all variables of the patch characteristics dimension have a negligible differences while the
variables of the reviewer experience dimension have negligible to medium differences. On
the other hand, the variables of the human factors dimension such as review participation
rate have small to large differences between their distributions. We also find similar results
in the OpenStack and Qt datasets.

The results suggest that including human factors into the prediction models of
review participation decision increases the performance. Thus, leading to a more
accurate description of this process.

5.3 (RQ3) What are the Factors Mostly Associated with Participation Decision?

Our RQ2 results show that including human factors into a prediction model can increase
the ability to determine the likelihood of the participation decision. Hence, in this RQ, we
quantitatively understand the relationship between each factor in our proposed models and
the likelihood that an invited reviewer will participate in a review. Below, we describe our
approach to address our RQ3, then present our results and observations.

5.3.1 Approach

To address our RQ3, we analyze our prediction models according to our model analysis
approach (see Section 4.4).

5.3.2 Results

Table 6 shows the explanatory power of each independent variable. The Overall column
shows the proportion of the Wald χ2 of the entire model fit that is attributed to that inde-
pendent variable. The Nonlinear column shows the proportion of the Wald χ2 of the entire
model fit that is attributed to the nonlinear component of that independent variable. The
larger the proportion of the Wald χ2 is, the larger the explanatory power that a particu-
lar independent variable contributes to the model. Furthermore, Table 6 shows that 4 of 13
independent variables to which we allocated nonlinear degrees of freedom, receive a sig-
nificant boost to the explanatory power from the nonlinear component. This result indicates
that the nonlinear modeling improves the fit of our models and provides a more precise rela-
tionship between the independent variables and the likelihood that an invited reviewer will
participate in a review. Thus, future research should consider this approach as well.
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Table 6 The explanatory power of the independent variables, grouped into statistically distinct ranks by
Scott-Knott ESD tests, and the partial effect that our independent variables have on the likelihood that a
reviewer will participate in a review

Rank Variable Proportion of χ2

Overall Nonlinear Shifted Value Odds Ratio

Android

1 Review Participation Rate 73%* 1%* 41%→89% 1,047%↑
2 Reviewer Code Authoring Experience 15%* 0%* 0→0.19 55%↑
3 Patch Author Reviewing Experience 5%* — 0→0.02 − 4%↓
4 Reviewer Reviewing Experience 2%* 0%◦ 0→0.002 1%↑
5 Number of Remaining Reviews 2%* — 2→16 − 10%↓
6 Number of Received Review Invitations 1%* — 11→348 − 11%↓
7 Number of Concurrent Reviews 0%* 0%* 3→21 20%↑
8 Patch Author Code Authoring Experience 0%* — 0.13→0.93 − 15%↓
9 Core Member Status 0%* — 0→1 13%↑
10 Familiarity between the Invited

Reviewer and the Patch Author
0%* — 0→6 − 1%↓

11 Median Number of Comments 0%◦ 0%◦ 1→2 3%↑
12 Patch Size 0%◦ — 7→178 0%

LibreOffice

1 Reviewer Reviewing Experience 29%* 2%* 0→0.315 756%↑
2 Review Participation Rate 25%* 5%* 87%→96% 134%↑
3 Number of Remaining Reviews 18%* 3%* 0→2 − 57%↓
4 Patch Author Reviewing Experience 11%* — 0→1 − 94%↓
5 Number of Concurrent Reviews 7%* 2%* 2→12 106%↑
6 Reviewer Code Authoring Experience 6%* — 0→0.05 9%↑
7 Patch Author Code Authoring Experience 2%* — 0.12→0.97 − 30%↓
8 Number of Received Review Invitations 1%* — 90→997 − 13%↓
9 Familiarity between the Invited

Reviewer and the Patch Author
1%◦ — 0→11 8%↑

10 Median Number of Comments 0%◦ — 0→28 436%↑
11 Core Member Status 0%◦ — 0→1 11%↑
11 Patch Size 0%◦ — 12→230 0%

OpenStack

1 Review Participation Rate 93%* 14%* 91%→100% 7,657%↑
2 Reviewer Code Authoring Experience 3%* — 0→0.08 17%↑
3 Patch Author Reviewing Experience 2%* — 0→1 − 90%↓
4 Patch Author Code Authoring Experience 1%* — 0.02→0.3 − 8%↓
5 Reviewer Reviewing Experience 0%* — 0→1 393%↑
6 Median Number of Comments 0%* — 1→2 3%↑
7 Familiarity between the Invited

Reviewer and the Patch Author
0%* — 0→6 2%↑

8 Number of Concurrent Reviews 0%◦ — 12→103 − 1%↓
9 Core Member Status 0%◦ — 0→1 − 4%↓
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Table 6 (continued)

Rank Variable Proportion of χ2

Overall Nonlinear Shifted Value Odds Ratio

10 Number of Received Review Invitations 0%◦ — 19→382 0%

11 Patch Size 0%◦ — 13→489 0%

Qt

1 Review Participation Rate 60%* 7%* 74%→92% 173%↑
2 Reviewer Code Authoring Experience 22%* 1%* 0→0.25 145%↑
3 Number of Remaining Reviews 5%* — 1→9 − 21%↓
4 Familiarity between Invited

Reviewer and Patch Author
5%* 5%* 0→12 − 31%↓

5 Number of Concurrent Reviews 4%* — 8→39 21%↑
6 Reviewer Reviewing Experience 1%* — 0→0.006 1%↑
6 Patch Author Reviewing Experience 1%* — 0→0.004 − 1%↓
7 Core Member Status 1%* — 0→1 31%↑
8 Number of Received Review Invitations 1%* — 59→850 − 8%↓
9 Patch Author Code Authoring Experience 0%◦ — 0.07→0.6 4%↑
10 Patch Size 0%◦ — 4→70 0%

10 Median Number of Comments 0%◦ — 0→88 − 63%↓

Statistical significant: * p<0.001 in more than 90% of the bootstrap samples; ◦ otherwise
— Nonlinear degrees of freedom are not allocated

Table 6 also shows the estimated partial effect of each independent variable that can
have on the likelihood that an invited reviewer will participate in a review. The Odds Ratio
column shows the partial effect based on the shifted value of the variable that is shown in the
Shifted Value column. The Shifted Value column shows an inter-quartile range of the variable
values, which is used to estimate the partial effect shown in the Odds Ratio column. Odds
ratio is the difference in the likelihood that an invited reviewer will participate in a review
when the corresponding variable value shifts from the first quartile to the third quartile of
the data. A positive odds ratio indicates that that independent variable has a positive impact
on the likelihood, while a negative odds ratio indicates the negative impact.

Observation 5 — Review Participation Rate Shares an Increasing Nonlinear Relation-
ship with the Likelihood that an Invited Reviewer will Participate in a Review Table 6
shows that the review participation rate of an invited reviewer accounts for the largest pro-
portion of Wald χ2 in three of our four models, suggesting that the review participation rate
is mostly associated with the participation decision in the three studied systems.

Figure 9a shows the direction of the relationship between the review participation rate of
an invited reviewer and the likelihood that an invited reviewer will participate in a review in
the Android model. We also observe the similar relationship in the LibreOffice, OpenStack
and Qt models. Table 6 shows that when the review participation rate increases from 41%
to 89% in Android model, the likelihood increases by 1077%. Similarly, when the review
participation rate increases from 87% to 96%, 91% to 100% and 74% to 92% in the Libre-
Office, OpenStack and Qt models respectively, the likelihood increases by 134%, 8,537%
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Fig. 9 The direction of the nonlinear relationships between the independent variable and the likelihood that
an invited reviewer will participate in a review. The light grey area shows the 95% confidence interval

and 165%. These results suggest that the active reviewers with high participation rate are
more likely to respond to a new review invitation than the reviewers who have a lower par-
ticipation rate. Practitioners may simply use the participation rate as an indicator for the
future participation decision of a reviewer without constructing a prediction model. How-
ever, our models also show that other factors (e.g., code authoring experience, familiarity
between the reviewer and the patch author) also play a role. Hence, a prediction model may
help practitioners to better select a reviewer while considering those factors.

Observation 6— Code Authoring Experience of an Invited Reviewer Shares an Increas-
ing Relationship with the Likelihood that an Invited Reviewer will Participate in a
Review Table 6 shows that the code authoring experience of an invited reviewer accounts
for the second largest proportion of Wald χ2 in three of our four models, suggesting that
the code authoring experience of an invited reviewer is second mostly associated with the
participation decision in the three studied systems.

Figure 9a shows the direction of the relationship between the code authoring experi-
ence of an invited reviewer and the likelihood that an invited reviewer will participate in a
review in the Qt model. Table 6 also shows that when the authoring experience of an invited
reviewer increases from 0 to 0.19 in the Android model, the likelihood increases by 53%.
Similarly, when the authoring experience of an invited reviewer increases from 0 to 0.05, 0
to 0.08 and 0 to 0.25 in LibreOffice, OpenStack and Qt models respectively, the likelihood
increases by 9%, 16% and 146%. These results indicate that an invited reviewer who has
more authoring experience on the modules that are impacted by a patch is more likely to
participate that patch.

To further understand the relationships corresponding to a core member status of a
reviewer, we construct two more models for each studied dataset. One is the prediction
model that includes only instances where the core member status is TRUE (i.e., a reviewer
is a core member). The other prediction model that includes only instances where the core
member status is FALSE (i.e., a reviewer is a non-core member). Figure 10 shows the
direction of the relationships between the code authoring experience of an invited reviewer
and the likelihood that an invited reviewer will participate in a review corresponding to
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Fig. 10 The direction of the relationships between the code authoring experience of an invited reviewer and
the likelihood that an invited reviewer will participate in a review corresponding to core member status. The
light grey area shows the 95% confidence interval

the core member status. We observe that the differences in the likelihood to participate
of core reviewers and non-core reviewers are small (i.e., 1%-10%). These results suggest
that a core member status of invited reviewers has a weak relationship with the partici-
pation decision. Instead, inviting reviewers that have related experience with the modules
that are impacted by the patch results in a higher likelihood that they will participate in the
review.

Table 6 shows that a core member status of an invited reviewer is ranked ninth for the
Android & OpenStack models, eleventh for the LibreOffice model and seventh for the
Qt model. In particular, the Wald χ2 of the core member status of an invited reviewer is
statistically significant in the Android and Qt models. These results suggest that the core
member status share a weak relationship to the participation decision of a reviewer. These
results also highlight that despite the privilege of providing approval review of core review-
ers, every reviewer shares a similar responsibility in reviewing a patch.

The review participation rate is the most influential factor on the participation
decision of an invited reviewer. In addition, the code authoring experience of an
invited reviewer is also an influential factor on the participation decision of an
invited reviewer (Observations 5-6).
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6 Practitioner Survey

To better gain insights into the review participation decision, we additionally conduct an
online survey with the Android, OpenStack, and Qt developers. The survey questions consist
of four parts:14

1. The respondent’s demographic background,
2. Reviewer selection practices (i.e., how do patch authors select a reviewer for a patch),
3. Review participation decisions (i.e., what is the most likely reason that reviewers did

not respond to the review invitation), and
4. Opinion on our study results (i.e., whether the respondents agree with our six empirical

observations)

For our survey, we select the Android, Qt, and OpenStack developers with the following
criteria: (1) developers who have been committed or commented patches in the last 365
days, (2) developers who were invited for a review more than 50 patches, and (3) developers
who did not respond to more than 20% of the review invitations. We then sent out our survey
questions to 130 Android developers, 98 OpenStack developers, and 110 Qt developers via
emails. We describe our approach of retrieving the developer email addresses in a replication
package.15

The survey was open for three weeks (from November 6 to November 26, 2017). We
received 26 responses (8% of the 333 emails). We now present our survey results, which are
grouped into four parts.

6.1 Survey Response Overview

24 of 26 respondents (92%) are both a reviewer and a patch author. There are 18 respondents
who have contributed to the studied system for more than four years, while the other 6
respondents have contributed for more than two years. 25 respondents are a patch author
where 40% of them submitted less than 5 patches per month, 32% of the patch authors
submitted 5 to 15 patches per month, and 28% of the patch authors submitted 16 to 30
patches per month. 25 respondents are a reviewer where 64% of them responded to more
than 50% of the review invitations, while 24% of them responded to 11% to 25% of the
review invitations. In addition, 15 of the 25 reviewer respondents (60%) are a core reviewer.
Since our studied datasets contain 7,496 unique developers across three software systems,
our survey results have a margin of error of ±19.19% at the 95% confidence level.

6.2 Reviewer Selection Practices

Figure 11 shows the survey responses of how a patch author select a reviewer for a patch.
18 respondents who are a patch author report that they select a reviewer who committed
or reviewed prior patches that impact the same module as their patches. 15 of the 25 patch
authors also select a reviewer who often reviewed their patches in the past. In addition, 6 of
the 25 patch authors report that they select a reviewer who is known to be very responsive.
This result is consistent with our rationale for the participation rate metric, i.e., a high rate
of review participation may indicate that the reviewer is active in the system (see Table 2).

14We provide a full list of questions online at https://goo.gl/forms/Du48JXAsbBhKSeSx2.
15https://github.com/sruangwan/replication-human-factors-code-review/

https://goo.gl/forms/Du48JXAsbBhKSeSx2
https://github.com/sruangwan/replication-human-factors-code-review/
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Fig. 11 Survey Responses: How do patch authors select a reviewer for a patch

Moreover, our results in Table 6 also show that the participation rate is mostly associated
with the likelihood that an invited reviewer will participate in a review. Nevertheless, the
survey responses show that the respondents tend to consider several factors in addition to
the participation rate metric. Hence, we believe that using a prediction model with a holistic
view of several factors would help patch authors to better select a reviewer rather than using
the past experience of the patch authors.

6.3 Review Participation Decisions

Figure 12 shows the survey responses of what is the most likely reason that reviewers did
not respond to the review invitation. 19 of the 25 respondents who are reviewers reported
that they did not respond to a review invitation because they were not familiar with the
modules impacted by the patch. This result complements the intuition of the prior work
that a reviewer who is familiar with the code in a patch is more likely to give a better
review than others (Balachandran 2013; Yu et al. 2014; Thongtanunam et al. 2015b; Xia
et al. 2015; Zanjani et al. 2016). This result is also consistent with our Observation 6 that
the reviewer code authoring experience is highly associated with the participation decision.
Moreover, 8 of the 25 reviewers also report that they did not respond to the review invitation
because they received too many review invitations. This result is consistent with our results
in Table 6 where the number of remaining reviews shares a significant relationship with the
participation decision.
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Fig. 12 Survey Responses: What is the most likely reason to not respond to the review invitation
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6.4 Opinion on Study Results

Figure 13 shows the survey responses of whether the respondents agree with our empiri-
cal observations. 19 of the 26 respondents agree that patches often have at least one invited
reviewer who does not respond to the review invitation (i.e., Observation 1). 19 of the 26
respondents also agree that the number of unresponded review invitations increases as a
patch author invites more reviewers (i.e., Observation 2). These results suggest that the
respondents agree with our findings that patches often suffer from unresponded review
invitations.

While Fig. 11 shows that 6 of the 25 patch authors consider the responsiveness when
selecting a reviewer, Fig. 13 shows that most of the respondents (25 of the 26 respondents)
agree with our Observation 5 that a reviewer who often reviewed patches in the past (i.e.,
the review participation rate) is more likely to respond to a review invitation. 15 of the 26
respondents also agree that a reviewer who has fewer review invitations in queue is more
likely to respond to a review invitation. Furthermore, 23 of the 26 respondents agree that
a reviewer who is familiar with the patch author is more likely to respond to a review
invitation. These results suggest that the respondents agree that our uncovered human factors
and social interaction are important in determining whether or not a reviewer will participate
a review.

All of the respondents also agree with our Observation 6 that a reviewer who has related
experience to the modules impacted by a patch is more likely to respond to a review invita-
tion. This result suggests that the respondents agree that experience of reviewers is one of
the important factors of the participation decision.

In addition, we asked an open-ended question for opinion on unresponded review invi-
tations. Several patch authors acknowledged that reviewers did not respond because they
are busy. This finding is consistent with a survey study of Lee et al. (2017) who find that
many of the one-time patch authors acknowledged that the unresponsiveness of reviewers is
in part due to the amount of workload. One of the respondents also raised a concern on the
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Fig. 13 Survey responses: Whether respondents agree with the empirical observations of our work
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unresponded review invitations: “... Anyhow, I feel people should take reviewer responsibil-
ities quite seriously, even if reviewing other people patches is not that much fun.”. Another
respondent also shared an opinion that reviewer participation should be investigated: “... I
think there’s an interesting social dynamic in how some people shy away from +2’s in such
a setup, and am wondering how to change that.”. These responses support our motivation
that a better understanding of the factors associated with participation decision would help
software development teams to develop better strategies for the code review process.

7 Discussion

In this section, we further discuss our findings and provide a practical suggestion.

7.1 The Participation Decision of Reviewers

Observation 1 shows that 16%-66% of patches have at least one reviewer who did not
respond to the review invitation, indicating that patches often have reviewers who did not
respond to the review invitation. Observation 2 shows that the number of invited reviewers
shares an increasing relationship with the number of reviewers who did not respond to the
review invitation. These results suggest that the more reviewers were invited to a patch, the
more likely that the invited reviewers will not respond to the review invitation. One pos-
sible reason is the tragedy of commons, where an invited reviewer did not review a patch
since there were many invited reviewers and the patch still has a chance to get reviewed
by other invited reviewers (Hardin 1968). Another possible scenario is broadcasting review
invitations (Rigby and Storey 2011). The invited reviewers did not respond to the review
invitation since other reviewers who have similar expertise already reviewed the patch. Fur-
thermore, Kononenko et al. (2015) find that the number of invited reviewers is associated
with the number of defects. Therefore, a patch author should not invite many reviewers.

7.2 Human Factors

Observations 3 and 4 show that human factors increase the performance of our models
that predict whether or not an invited reviewer will participate in a review. These results
suggest that in addition to experience and technical factors, patch authors should understand
that human-related factors can have an impact on the participation decision of reviewers.
As the approach of inviting more reviewers to increase review participation is becoming
less efficient when the number of invited reviewers is increasing, a better understanding of
factors playing a role in code review process can be helpful.

Observation 5 shows that the review participation rate of an invited reviewer accounts for
the most influential factor on the participation decision of reviewers. More specifically, the
review participation rate shares an increasing nonlinear relationship with the likelihood that
an invited reviewer will participate in a review. This finding suggests that an active reviewer
who has been actively responded to a review in the past is more likely to respond to the
review invitation.

In addition to the review participation rate, other human factors also share a strong
relationship with the likelihood that an invited reviewer will participate in a review. For
example, Table 6 shows that the familiarity between the invited reviewer and the patch
author is ranked tenth, ninth, seventh, and fourth by explanatory power in the Android,
LibreOffice, OpenStack, and Qt models respectively. Furthermore, the familiarity between
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the invited reviewer and the patch author is also statistically significant in three of four stud-
ied systems. This result arrives at the similar finding of Kononenko et al. (2016), who find
that the relationship or trust between a reviewer and patch author can have an impact on the
review outcome.

Moreover, the reviewer workload (i.e., the number of concurrent reviews and the num-
ber of remaining reviews) shares a statistically significant relationship with the likelihood.
In particular, the number of concurrent reviews is ranked seventh, fifth, eighth, and fifth
by explanatory power in the Android, LibreOffice, OpenStack, and Qt models respectively,
while the number of remaining reviews is ranked fifth, third and third in the Android, Libre-
Office, and Qt models respectively. This result also complements to the findings of Baysal
et al. (2013), who find that the review queue of reviewers has an impact on the review
timeliness and the review outcome.

7.3 Technical Factors

Observation 6 shows that the code authoring experience of an invited reviewer accounts for
the second most influential factor on the participation decision of reviewers. More specifi-
cally, the code authoring experience of an invited reviewer shares an increasing relationship
with the likelihood that an invited reviewer will participate in a review. Although the code
authoring experience does not contribute as large explanatory power (χ2) as the review par-
ticipation rate, the code authoring experience does contribute a relatively large contribution
in the Android and Qt models. The result is consistent with the intuition of prior work (Bal-
achandran 2013; Yu et al. 2014; Thongtanunam et al. 2015b; Xia et al. 2015), i.e., a reviewer
is more likely to participate in a review of the patch if the reviewer has related experience
with the patch.

Thongtanunam et al. (2016a) find that patch size shares a relationship with the likelihood
that a patch will suffer from poor review participation. However, Table 6 shows that patch
size has an insignificant impact on the likelihood that an invited reviewer will participate
in a review. This finding suggests that although patch size impacts a patch whether or not
it will suffer from poor review participation, patch size has a very small impact on the
participation decision of an individual reviewer. We think the reason is there are other factors
that reviewers consider when they decide to participate in a review. For example, a reviewer
may not participate in a review even though the patch size is small (i.e., easy to review)
because the reviewer has no related experience with the modules that are impacted by the
patch.

Furthermore, we find that the code authoring experience of patch author and the review-
ing experience of patch author share a relationship with the likelihood that an invited
reviewer will participate in a review. In other words, the experience can also indicate the
reputation of a patch author, i.e., the more patches the author made to the system, the more
well-known the author is. Bosu and Carver (2014) have shown that patch authors with high
reputation (i.e., core developers) tend to receive quicker first feedback on their patches than
patch authors with the lower reputation (i.e., peripheral developers). These findings suggest
that reviewers are more likely to participate in a patch that is made by the patch author with
high experience.

7.4 Practical Suggestions and Recommendations for FutureWork

We construct a prediction model that leverages human factors, experience, and technical
factors to predict whether or not an invited reviewer will participate in a review. Our results
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show that human factors should be considered in addition to technical and experience fac-
tors when inviting reviewers. Practitioners may simply use a single metric (e.g., the reviewer
experience, the review participation rate) as an indicator for the future participation. How-
ever, our results show that considering a single metric may not be sufficient in a prediction
since other metrics also share a significant relationship to the participation decision of an
invited reviewer. For example, one might count the number of commits to identify reviewers,
however those reviewers may not respond to the review invitation due to a high workload.
Similarly, a reviewer who has a high review participation rate but has little reviewing or
authoring experience on the modified modules is less likely to respond the review invitation.
Moreover, solely considering a single metric when inviting reviewers may lead them to be
overwhelmed by review invitations. Therefore, a prediction model that has a holistic view
of both technical and human factors would help patch authors to better select a reviewer
than simply using a single metric.

Furthermore, our results show that human factors (e.g., review workload and familiarity
between reviewers and patch authors) share a significant relationship with the participation
decision of an invited reviewer. This finding could complement a reviewer recommenda-
tion approach of the prior work (Balachandran 2013; Yu et al. 2014; Thongtanunam et al.
2015b; Xia et al. 2015; Zanjani et al. 2016). In other words, future work of reviewer
recommendation should consider human factors in order to better find a reviewer.

To demonstrate how our prediction models can help practitioners, we use our models that
include human factors to estimate the likelihood that the invited reviewers will respond to
the review invitation. We then measure the top-k accuracy (k = 1, 2, 3), i.e., a proportion of
patches where an invited reviewer, who has the highest participation likelihood estimated by
our models, will respond to the review invitation. Table 7 shows the top-k accuracy of our
models where the top-k accuracy is ranging from 0.91 to 1. These results indicate that our
models can accurately recommend reviewers who will participate in a review. One possible
usage scenario is that a patch author (or a reviewer recommendation tool) first lists the
potential reviewers, then invites only the reviewers who are more likely to respond to the
review invitation based on the estimation of our models.

Another benefit of using our models is to reduce the number of review invitations. Reduc-
ing the number of review invitations may help practitioners increase review quality since
Kononenko et al. (2015) report that the number of invited reviewers is associated with the
review bugginess. To demonstrate this benefit, we measure a proportion of unresponded
review invitations that are predicted by our models. We find that 3% (LibreOffice and Open-
Stack) to 31% (Android) of the review invitations are predicted as unresponded review
invitations by our models, implying that these 3% to 31% of review invitations are not nec-
essary to be made since reviewers are less likely to respond the review invitations. The
negative predictive value (i.e., #Correctly predicted as unresponded review invitations

#Predicted as unresponded review invitations ) of our models is
also relatively high (66% to 75%), indicating that our models accurately identify the unre-
sponded review invitations. Based on this analysis, the number of review invitations can be
reduced by 3% to 31% if a patch author did not invite reviewers as suggested by our models.

Table 7 Top-k accuracy
(k = 1, 2, 3) of our prediction
models

Top-k accuracy Android LibreOffice OpenStack Qt

Top-1 0.91 0.98 0.99 0.95

Top-2 0.95 0.99 1.00 0.99

Top-3 0.95 0.99 1.00 1.00
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7.5 Differences Between OSS Communities

Our observations 1 and 2 show that patches in the LibreOffice and OpenStack datasets tend
to less suffer from the non-responding reviewers than the other two studied datasets. In par-
ticular, the LibreOffice and OpenStack datasets have less percentage of patches that have at
least one invited reviewer who did not respond to the review invitation than the other two
datasets. Additionally, the correlation between the number of invited reviewers and the num-
ber of reviewers who did not respond to the review invitation is the lowest in the OpenStack
dataset, while it is the second lowest in the LibreOffice dataset. One possible explanation
for the different results between the systems is the activeness of reviewers in the systems.
Figure 14 shows the distribution of participation rate of reviewers. At the median, the Libre-
Office reviewers typically respond to 90% of patches that they were invited. Similarly, the
OpenStack reviewers typically respond to 92% of patches that they were invited. However,
the Android and Qt reviewers typically respond to 60% and 78% of patches, respectively.
This result indicates that the LibreOffice and OpenStack systems tend to have more active
reviewers than the other systems.

In addition to the activeness, prior work also finds that developers in OpenStack have the
highest closeness centrality while developers in Android have the lowest closeness centrality
(Yang et al. 2016b). The closeness centrality can be positively associated to the closeness of
the people in the community (Freeman 1978). Therefore, having a strong community can
potentially be the reason that makes OpenStack system less suffer from the non-responding
reviewers.

The diversity of participating organizations in the software systems may also play a role
in the participation decision of reviewers. To investigate this, we determine an organization
of developers in the studied systems using the domain name in developer email addresses.
We then count the number of developers of each organization. We find that there are 202,
123, 689, and 349 organizations participating in Android, LibreOffice, OpenStack, and Qt,
respectively. Figure 15 shows a proportion of organizations in each studied system. We
observe that developers from Google is the majority (25%) in the Android system. Simi-
larly, the number of developers in the leading teams of Qt, which are from Nokia, Digia,
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Fig. 14 The distributions of participation rate of reviewers
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Fig. 15 A pie chart of the proportion of organizations participating in each studied system. The dark grey
slices are the proportion of developers in the leading teams

and The Qt Company, accounts for 22%.16,17 On the other hand, although the OpenStack
project was led by Rackspace, the number of developers from Rackspace accounts for only
5%.18 Moreover, OpenStack is known to be supported by more than 500 companies as of
2018.19 The number of developers in the leading team of LibreOffice accounts for only 3%.
Furthermore, LibreOffice defines its software as a community-driven and developed soft-
ware.20 These results suggest that the developers in LibreOffice and OpenStack are more
diverse than Android and Qt, implying that LibreOffice and OpenStack datasets tend to less
suffer from the non-responding reviewers may be in part due to the diversity of developers.

16https://www.theguardian.com/technology/2012/aug/09/nokia-sells-qt-software-business/
17https://www.zdnet.com/article/qt-hot-potato-spun-out-from-digia-into-fourth-home/
18https://www.openstack.org/blog/?p=1
19https://www.openstack.org/foundation/companies/
20https://www.libreoffice.org/about-us/who-are-we/

https://www.theguardian.com/technology/2012/aug/09/nokia-sells-qt-software-business/
https://www.zdnet.com/article/qt-hot-potato-spun-out-from-digia-into-fourth-home/
https://www.openstack.org/blog/?p=1
https://www.openstack.org/foundation/companies/
https://www.libreoffice.org/about-us/who-are-we/
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8 Threats to Validity

We now discuss the threats to validity of our study.

8.1 Construct Validity

We compute our studied metrics at the creation time of patches. Unfortunately, the Gerrit
code review tool does not record when the author invites a reviewer. Hence, we must rely on this
heuristic and assume that all reviewers are invited at the same time as the creation time of
patches. Be able to analyze the exact time reviewers were invited will allow us to analyze the
code review practices while aware of the time component. For example, a patch author invites
two reviewers at the creation time of a patch, but only one of them responds to the invitation.
To increase the review participation, the patch author then invites two more reviewers.

We measure workload of an invited reviewer based on a heuristic that the invited reviewer
will review the patch from the creation time until the patch reaches a final decision. How-
ever, there are likely cases where reviewers only review a patch for a part of this time frame.
Unfortunately, the Gerrit code review tool does not record the time that reviewers actually
spent reviewing a patch. Therefore, we must also rely on this heuristic (see the calculation of
review workload metrics in Section 4). Be able to analyze the time frame that each reviewer
truly spend reviewing will enable more accurate values of review workload metrics.

We assume that once a reviewer became a core member (i.e., a reviewer had provided a
review score of +2 or -2 in the past), the core member status will not be reverted back to a
non-core member status. However, van Wesel et al. (2017) find that the core member status
may be reverted back to a non-core member status based on the reviewing activities in the
past. To address this possible threat, we check the voting range that was actually permitted
for reviewers in each patch of the Android dataset using Gerrit REST API.21 In other words,
if a reviewer that had a permission to vote a review score of +2 or -2 for a patch, that
reviewer should have a core member status during the review of that patch. Based on this
ground-truth data, our heuristic (i.e., observing the provided review scores) can correctly
identify the core member status for 75% of instances in the Android dataset. Unfortunately,
such voting permission information is not publicly available in the LibreOffice, OpenStack,
and Qt systems. Based on the result of the Android dataset, we believe that we can rely on
our heuristic to identify a core member status. Nevertheless, a more accurate approach of
identifying a core member status may further strengthen our findings.

The prediction models of LibreOffice, OpenStack and Qt achieve a relative low recall
compare to the Android model. One technique that could improve the recall of our mod-
els is rebalancing the data. However, in addition to model performance, another goal of
this study is to examine the signals that can relate to the review participation decision of a
reviewer. Tantithamthavorn et al. (2017a) point out that rebalancing techniques have a neg-
ative impact on the interpretation of regression models. Therefore, in this study, we build
our models to fit the original data rather than rebalancing data in order to truly understand
the relationship between the studied factors and the participation decision of a reviewer.
Nevertheless, we examine the recall of our models after rebalancing the data using random
over-sampling examples (ROSE) technique (Menardi and Torelli 2014). We find that the
recall value increases by 0.55, 0.34 and 0.40 points for the LibreOffice, OpenStack and Qt
models, respectively.

21https://gerrit-review.googlesource.com/Documentation/rest-api-changes.html#approval-info

https://gerrit-review.googlesource.com/Documentation/rest-api-changes.html#approval-info
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8.2 External Validity

We perform a study on four open source software systems that use the Gerrit code review
tool, which may limit the generalizability of our results. Additionally, we find that there
is a possibility that the same metric performs differently for different systems (e.g., the
reviewing experience of an invited reviewer). However, the goal of this study is not to define
a wide range theory that holds true for every project. Instead, our key contribution of this
study is to show that in some settings of code review process, the human factors can play
an important role. Nonetheless, we facilitate future work with a replication package of R
scripts.22 Future work should expand the study to include other software systems and code
review tools to establish the validity of our findings in other contexts.

8.3 Internal Validity

We identify whether or not an invited reviewer participated in a review of a patch using
a review score and comments that are posted in the patch. However, it is possible that
the invited reviewers perform code review through other communication media such as in-
person discussion (Bacchelli and Bird 2013; Guzzi et al. 2013), a group IRC (Shihab et al.
2009) or a mailing list (Rigby et al. 2008). Since we identify the participation decision based
on comments and review score, performing code review outside of the platform may lead
to an inaccurate participation decision. Nonetheless, we perform our study on the systems
that actively perform a code review on the Gerrit code review tool, which should capture
the majority of the code review activity.

We assume that reviewers are invited at the beginning of the code review process. How-
ever, it is possible that reviewers were invited at different points in time. For example,
a patch author invites one reviewer but that reviewer did not respond. Then, the patch
author invites other reviewers. Unfortunately, the Gerrit system does not record time when
each reviewer was invited. Therefore, we have to rely on this assumption. A real-time data
collection may help future work to better understand the reviewer invitation process.

There is a chance that software development policies confound our findings. For
example, the relationship of code authoring experience (i.e., code ownership) and the par-
ticipation decision may be affected by a policy that patches have to be approved by a core
reviewer who usually has high experience. We control this concern by including a reviewer
status (i.e., core or non-core reviewer) to our studied metrics. Our results show that the
reviewer status does not have much impact on the participation decision, suggesting that
this requirement policy does not impact the participation decision. Another example is that
LibreOffice and OpenStack systems tend to have more active reviewers than the other sys-
tems. However, we cannot find any special policy of LibreOffice and OpenStack systems
that potentially causes this outcome.

9 Conclusions

The flexibility of Modern Code Review (MCR) process allows reviewers to decide whether
or not to participate in a review. Such a practice becomes one of the main challenges of
MCR process. Despite the impact of poor review participation that several studies have

22https://github.com/sruangwan/replication-human-factors-code-review/

https://github.com/sruangwan/replication-human-factors-code-review/
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found (Bavota and Russo 2015; McIntosh et al. 2014; Bettenburg et al. 2015), little is known
about the current practices of reviewer participation. Moreover, the factors (especially the
human factors) that can influence the participation decision of reviewers remain largely
unexplored. In this paper, we analyze descriptive statistics of the number of reviewers who
did not respond to the review invitation of patches. We then construct prediction models
to determine the likelihood of the participation decision of reviewers, and to understand
the factors that influence the participation decision. Through a case study of the Android,
LibreOffice, OpenStack, and Qt systems, we empirical study 230,090 patches, we make the
following observations:

– A large number of patches (i.e., 16%-66%) have at least one invited reviewer who did
not respond to the review invitation. Moreover, the number of invited reviewers has a
medium to large correlation with the number of reviewers who did not respond to the
review invitation (Observations 1-2).

– Our prediction models that include human factors outperform the baseline models with
an AUC value of 0.82-0.89, a Brier score of 0.06-0.13, a precision of 0.68-0.78, a recall
of 0.24-0.73, and an F-measure of 0.35-0.75. These results suggest that human factors
play an important role in determining the likelihood of the participation decision of
reviewers. (Observations 3-4).

– The review participation rate of an invited reviewers shares a strong increasing rela-
tionship with the likelihood that an invited reviewer will participate in a review.
Additionally, the code authoring experience of an invited reviewer also shares an
increasing relationship with the likelihood (Observations 5-6).

We believe that our results and observations shed the light of understanding the current
practices of reviewer participation which may lead to poor review participation. Our results
also highlight the importance of human factors which have an impact on the participation
decision of reviewers. Patch authors should take human factors into the consideration when
inviting reviewers for a new patch because it may increase the likelihood that an invited
reviewer will participate in a review. To facilitate future work, we provide a replication
package of R scripts online.23

Acknowledgments This research was partially supported by JSPS KAKENHI Grant Number 16J02861
and 17H00731, and Support Center for Advanced Telecommunications (SCAT) Technology Research, Foun-
dation. We would also like to thank Dr. Chakkrit Tantithamthavorn for his insightful comments and the survey
participants for their time.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Ackerman AF, Buchwald LS, Lewski FH (1989) Software inspections: an effective verification process.
IEEE Softw 6(3):31–36

Armstrong F, Khomh F, Adams B (2017) Broadcast vs. unicast review technology: does it matter? In: Pro-
ceedings of the 10th international conference on software testing, verification and validation (ICST), pp
219–229

23https://github.com/sruangwan/replication-human-factors-code-review/

https://github.com/sruangwan/replication-human-factors-code-review/


1012 Empirical Software Engineering (2019) 24:973–1016

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. In: Proceedings
of the 35th international conference on software engineering (ICSE), pp 712–721

Balachandran V (2013) Reducing human effort and improving quality in peer code reviews using automatic
static analysis and reviewer recommendation. In: Proceedings of the 35th international conference on
software engineering (ICSE), pp 931–940

Bavota G, Russo B (2015) Four eyes are better than two: on the impact of code reviews on software quality.
In: Proceedings of the 31st international conference on software maintenance and evolution (ICSME),
pp 81–90

Baysal O, Kononenko O, Holmes R, Godfrey MW (2013) The influence of non-technical factors on code
review. In: Proceedings of the 20th working conference on reverse engineering (WCRE), pp 122–131

Beller M, Bacchelli A, Zaidman A, Juergens E (2014) Modern code reviews in open-source projects: which
problems do they fix? In: Proceedings of the 11th working conference on mining software repositories
(MSR), pp 202–211

Bettenburg N, Hassan AE, Adams B, German DM (2015) Management of community contributions - A
case study on the Android and Linux software ecosystems. Empirical Software Engineering (EMSE)
20(1):252–289

Bird C, Nagappan N, Murphy B, Gall H, Devanbu P (2011) Don’t touch my code!: examining the effects
of ownership on software quality. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
european conference on foundations of software engineering (ESEC/FSE), pp 4–14

Bosu A, Carver JC (2014) Impact of developer reputation on code review outcomes in oss projects: an empir-
ical investigation. In: Proceedings of the 8th international symposium on empirical software engineering
and measurement (ESEM), pp 33:1–33:10

Brier GW (1950) Verification of forecasts expressed in terms of probability. Mon Weather Rev 78(1):1–3
Carr DB, Littlefield RJ, Nichloson WL, Littlefield JS (1987) Scatterplot matrix techniques for large N.

Journal of the American Statistical Association (JASA) 82(398):424–436
Cliff N (1993) Dominance statistics: ordinal analyses to answer ordinal questions. Multivar Behav Res

114(3):494–509
Cliff N (1996) Answering ordinal questions with ordinal data using ordinal statistics. Multivar Behav Res

31(3):331–350
Cohen J (1992) Statistical power analysis. Curr Dir Psychol Sci 1(3):98–101
Croux C, Dehon C (2010) Influence functions of the Spearman and Kendall correlation measures. Statistical

Methods &, Applications (SMA) 19(4):497–515
Edmundson A, Holtkamp B, Rivera E, Finifter M, Mettler A, Wagner D (2013) An empirical study on the

effectiveness of security code review. In: Proceedings of the 5th international conference on engineering
secure software and systems (ESSoS), pp 197–212

Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of
the American Statistical Association (JASA) 78(382):316–331

Elish KO, Elish MO (2008) Predicting defect-prone software modules using support vector machines. J Syst
Softw 81(5):649–660

Fagan ME (1976) Design and code inspections to reduce errors in program development. IBM Syst J
15(3):182–211

Fagan ME (1986) Advances in software inspections. Transactions on Software Engineering (TSE) 12(7):744–
751

Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874
Foo KC, Jiang ZMJ, Adams B, Hassan AE, Zou Y, Flora P (2015) An industrial case study on the auto-

mated detection of performance regressions in heterogeneous environments. In: Proceedings of the 37th
international conference on software engineering (ICSE), pp 159–168

Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Networks 1(3):215–239
Goeminne M, Mens T (2011) Evidence for the pareto principle in open source software activity. In: Pro-

ceedings of the 1st international workshop on model driven software maintenance (MDSM) and 5th
international workshop on software quality and maintainability (SQM), pp 74–82

Guzzi A, Bacchelli A, Lanza M, Pinzger M, van Deursen A (2013) Communication in open source soft-
ware development mailing lists. In: Proceedings of the 10th working conference on mining software
repositories (MSR), pp 277–286

Hahn J, Moon JY, Zhang C (2008) Emergence of new project teams from open source software developer
networks: impact of prior collaboration ties. Inf Syst Res 19(3):369–391

Hamasaki K, Kula RG, Yoshida N, Cruz AEC, Fujiwara K, Iida H (2013) Who does what during a code
review? Datasets of OSS peer review repositories. In: Proceedings of the 10th working conference on
mining software repositories (MSR), pp 49–52



Empirical Software Engineering (2019) 24:973–1016 1013

Hanley J, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC)
curve. Radiology 143(4):29–36

Hardin G (1968) The tragedy of the commons. Science 162(3859):1243–1248
Harrell FE Jr (2002) Regression modeling strategies, 1st edn. Springer
Harrell FE Jr (2015a) Hmisc: Harrell Miscellaneous. http://CRAN.R-project.org/package=Hmisc
Harrell FE Jr (2015b) Regression modeling strategies, 2nd edn. Springer
Harrell FE Jr (2015c) rms: Regression Modeling Strategies. http://CRAN.R-project.org/package=rms
Hinkle DE, Wiersma W, Jurs SG (1998) Applied statistics for the behavioral sciences, 4th edn. Houghton

Mifflin Boston
Huizinga D, Kolawa A (2007) Automated defect prevention: best practices in software management. Wiley
Kononenko O, Baysal O, Guerrouj L, Cao Y, Godfrey MW (2015) Investigating code review quality:

do people and participation matter? In: Proceedings of the 31st international conference on software
maintenance and evolution (ICSME), pp 111–120

Kononenko O, Baysal O, Godfrey MW (2016) Code review quality: how developers see it. In: Proceedings
of the 38th international conference on software engineering (ICSE), pp 1028–1038

Lanubile F, Ebert C, Prikladnicki R, Vizcaı́no A (2010) Collaboration tools for global software engineering.
Software 27(2):52–55

Lee A, Carver JC, Bosu A (2017) Understanding the impressions, motivations, and barriers of one time
code contributors to FLOSS projects: a survey. In: Proceedings of the 39th international conference on
software engineering (ICSE), pp 187–197

Liang J, Mizuno O (2011) Analyzing involvements of reviewers through mining a code review repos-
itory. In: Proceedings of the 21st international workshop on software measurement and the 6th
international conference on software process and product measurement (IWSM-Mensura), pp 126–
132

Mason CH, Perreault WD Jr (1991) Collinearity, power, and interpretation of multiple regression analysis.
Journal of Marketing Research (JMR) 28(3):268–280

McGraw G (2004) Software security. Security & Privacy 2(2):80–83
McIntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code review coverage and code review

participation on software quality: a case study of the Qt, VTK, and ITK projects. In: Proceedings of the
11th working conference on mining software repositories (MSR), pp 192–201

McIntosh S, Kamei Y, Adams B, Hassan AE (2016) An empirical study of the impact of modern code review
practices on software quality. Empirical Software Engineering (EMSE) 21(5):2146–2189

Menardi G, Torelli N (2014) Training and assessing classification rules with imbalanced data. Data Min
Knowl Disc 28(1):92–122

Meyer B (2008) Design and code reviews in the age of the internet. Commun ACM 51(9):66–71
Mishra R, Sureka A (2014) Mining peer code review system for computing effort and contribution metrics

for patch reviewers. In: Proceedings of the 4th workshop on mining unstructured data (MUD), pp 11–15
Mukadam M, Bird C, Rigby PC (2013) Gerrit software code review data from android. In: Proceedings of

the 10th working conference on mining software repositories (MSR), pp 45–48
Newson R (2002) Parameters behind “non-parametric” statistics: Kendall’s tau, Somers’ D and median

differences. Stata J 2(1):45–64. (20)
Rigby PC, Storey MA (2011) Understanding broadcast based peer review on open source software projects.

In: Proceedings of the 33rd international conference on software engineering (ICSE), pp 541–550
Rigby PC, German DM, Storey MA (2008) Open source software peer review practices: a case study of the

apache server. In: Proceedings of the 30th international conference on software engineering (ICSE), pp
541–550

Rigby PC, Cleary B, Painchaud F, Storey MA, German DM (2012) Open source peer review – lessons and
recommendations for closed source. IEEE Software

Rigby PC, German DM, Cowen L, Storey MA (2014) Peer review on open-source software projects: param-
eters, statistical models, and theory. Transactions on Software Engineering and Methodology (TOSEM)
23(4):35:1–35:33

Sarle W (1990) The VARCLUS procedure, 4th edn. SAS Institute, Inc
Shihab E, Jiang ZM, Hassan AE (2009) Studying the use of developer IRC meetings in open source projects.

In: Proceedings of the 25th international conference on software maintenance (ICSM), pp 147–156
Spearman C (1904) The proof and measurement of association between two things. The American Journal

of Psychology (AJP) 15(1):72–101
Steinmacher I, Conte T, Gerosa MA, Redmiles D (2015) Social barriers faced by newcomers placing their

first contribution in open source software projects. In: Proceedings of the 18th ACM conference on
computer supported cooperative work & social computing (CSCW), pp 1379–1392

http://CRAN.R-project.org/package=Hmisc
http://CRAN.R-project.org/package=rms


1014 Empirical Software Engineering (2019) 24:973–1016

Tantithamthavorn C, Hassan AE (2018) An experience report on defect modelling in practice: pitfalls and
challenges. In: Proceedings of the 40th international conference on software engineering: software
engineering in practice (ICSE-SEIP), pp 286–295

Tantithamthavorn C, McIntosh S, Hassan AE, Ihara A, Matsumoto K (2015) The impact of mislabelling on
the performance and interpretation of defect prediction models. In: Proceedings of the 37th international
conference on software engineering (ICSE), pp 812–823

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016) Comments on “Researcher bias: the
use of machine learning in software defect prediction”. Transactions on Software Engineering (TSE)
42(11):1092–1094

Tantithamthavorn C, Hassan AE, Matsumoto K (2017a) The impact of class rebalancing techniques on the
performance and interpretation of defect prediction models. Under Review at Transactions on Software
Engineering (TSE)

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017b) An empirical comparison of model
validation techniques for defect prediction models. Transactions on Software Engineering (TSE)
43(1):1–18

Thongtanunam P, McIntosh S, Hassan AE, Iida H (2015a) Investigating code review practices in defective
files: an empirical study of the Qt system. In: Proceedings of the 12th working conference on mining
software repositories (MSR), pp 168–179

Thongtanunam P, Tantithamthavorn C, Kula RG, Yoshida N, Iida H, Matsumoto K (2015b) Who should
review my code? A file location-based code-reviewer recommendation approach for modern code
review. In: Proceedings of the the 22nd international conference on software analysis, evolution, and
reengineering (SANER), pp 141–150

Thongtanunam P, McIntosh S, Hassan AE, Iida H (2016a) Review participation in modern code review: an
empirical study of the Android, Qt, and OpenStack projects. Empirical Software Engineering (EMSE)
22(2):768–817

Thongtanunam P, McIntosh S, Hassan AE, Iida H (2016b) Revisiting code ownership and its relationship
with software quality in the scope of modern code review. In: Proceedings of the 38th international
conference on software engineering (ICSE), pp 1039–1050

Vasilescu B, Serebrenik A, Devanbu P, Filkov V (2014) How social Q&A sites are changing knowledge
sharing in open source software communities. In: Proceedings of the 17th ACM conference on computer
supported cooperative work & social computing (CSCW), pp 342–354

van Wesel P, Lin B, Robles G, Serebrenik A (2017) Reviewing career paths of the openstack developers. In:
Proceedings of the 33rd international conference on software maintenance and evolution (ICSME), pp
544–548

Whitehead J (2007) Collaboration in software engineering: a Roadmap. In: Proceedings of the 2007 future
of software engineering (FOSE), pp 214–225

Xia X, Lo D, Wang X, Yang X (2015) Who should review this change?: putting text and file location analyses
together for more accurate recommendations. In: Proceedings of the 31st international conference on
software maintenance and evolution (ICSME), pp 261–270

Yang X, Kula RG, Yoshida N, Iida H (2016a) Mining the modern code review repositories: a dataset of
people, process and product. In: Proceedings of the 13th international conference on mining software
repositories (MSR), pp 460–463

Yang X, Yoshida N, Kula RG, Iida H (2016b) Peer review social network (peRSon) in open source projects.
Transactions on Information and Systems E99.D(3):661–670

Yu Y, Wang H, Yin G, Ling CX (2014) Reviewer recommender of pull-requests in GitHub. In: Proceed-
ings of the 30th international conference on software maintenance and evolution (ICSME), pp 610–
613

Zanjani MB, Kagdi H, Bird C (2016) Automatically recommending peer reviewers in modern code review.
Transactions on Software Engineering (TSE) 42(6):530–543

Zimmermann T, Zeller A, Weissgerber P, Diehl S (2005) Mining version histories to guide software changes.
Transactions on Software Engineering (TSE) 31(6):429–445



Empirical Software Engineering (2019) 24:973–1016 1015

Shade Ruangwan is a PhD student in the Software Engineering Lab-
oratory at the Nara Institute of Science and Technology, Japan. His
current research interests include empirical software engineering and
mining software repositories. His work involves conducting empiri-
cal studies on historical data captured during software development.
He aims to understand and improve software development practices.

Patanamon Thongtanunam is a lecturer at the School of Comput-
ing and Information System, the University of Melbourne, Australia.
Prior to that, she was a lecturer at the School of Computer Science, the
University of Adelaide, a research fellow of Japan Society for the Pro-
motion of Science (JSPS). She received PhD in Information Science
from Nara Institute of Science and Technology, Japan. Her research
interests include empirical software engineering, mining software
repositories, software quality, and human aspect. Her research has
been published at top-tier software engineering venues like Interna-
tional Conference on Software Engineering (ICSE) and Journal of
Empirical Software Engineering (EMSE). More about Patanamon
and her work is available online at http://patanamon.com.

Akinori Ihara is a lecturer at Wakayama University in Japan, where
he has been directing Social Software Engineering Laboratory (Soc-
SEL) since 2018. He received the B.E. degree (2007) in Science and
Technology from Ryukoku University, and the M.E. degree (2009)
and Ph.D. degree (2012) in Information Science from Nara Institute
of Science and Technology. He was a visiting researcher in 2014 at
Software Analysis & Intelligence Lab (SAIL), School of Comput-
ing, Queen’s University. His research interests include social software
engineering and open source software engineering in general, and
software maintenance, software evolution, and software integration.
his work has been published at premier venues like ICSE, ESEM,
MSR, ICSME, and OSS, as well as in major journals like EMSE and
IST. He is currently one of steering committee members of the Inter-
national Workshop on Empirical Software Engineering in Practice
(IWESEP).

http://patanamon.com


1016 Empirical Software Engineering (2019) 24:973–1016

Kenichi Matsumoto is a professor in the Graduate School of Science
and Technology at Nara Institute Science and Technology, Japan. His
research interests include software measurement and software pro-
cess. Matsumoto has a Ph.D. in information and computer sciences
from Osaka University. He is a senior member of IEEE, and a member
of the IEICE, and the IPSJ. Contact him at matumoto@is.naist.jp.

matumoto@is.naist.jp

	The impact of human factors on the participation decision of reviewers in modern code review
	Abstract
	Abstract
	Introduction
	Paper Organization

	Background and Research Questions
	Modern Code Review
	Case Study Design
	Studied Systems
	Data Preparation (DP)
	(DP1) Select Relevant Patches
	(DP2) Identify the Participation Decision of Reviewers
	(DP3) Compute Studied Metrics


	Model Construction (MC)
	(MC1) Remove Highly-Correlated and Redundant Independent Variables.
	(MC2) Construct Nonlinear Logistic Regression Models.


	Model Analysis (MA)
	(MA1) Evaluate the Models.
	(MA2) Estimate the Power of Explanatory.
	(MA3) Examine the Relationships Between the Variables and the Participation Decision.



	Case Study Results
	(RQ1) How often do Patches Suffer from the Unresponded Review Invitations?
	Approach
	Results
	Observation 1 — 16%-66% of the patches have at least one invited reviewer who did not respond to the review invitation.
	Observation 2 — The Number of Invited Reviewers Shares an Increasing Relationship with the Number of Reviewers who did not Respond to the Review Invitation.


	(RQ2) Can Human Factors help Determining the Likelihood of the Participation Decision of Reviewers?
	Approach
	(MC1) Remove Highly-Correlated and Redundant Independent Variables.
	(MC2) Construct Nonlinear Logistic Regression Model.

	Results
	Observation 3 — Our Proposed Models that Include Human Factors Achieve an AUC Value of 0.82-0.89, a Brier Score of 0.06-0.13, a Precision of 0.68-0.78, a Recall of 0.24-0.73, and an F-measure of 0.35-0.75.
	Observation 4 — AUC Increases by 10%-39%, Brier Score Decreases by 11%-33%, and F-measure Increases by 17%-1,800% when we Include Human Factors into the Models


	(RQ3) What are the Factors Mostly Associated with Participation Decision?
	Approach
	Results
	Observation 5 — Review Participation Rate Shares an Increasing Nonlinear Relationship with the Likelihood that an Invited Reviewer will Participate in a Review
	Observation 6 — Code Authoring Experience of an Invited Reviewer Shares an Increasing Relationship with the Likelihood that an Invited Reviewer will Participate in a Review



	Practitioner Survey
	Survey Response Overview
	Reviewer Selection Practices
	Review Participation Decisions
	Opinion on Study Results

	Discussion
	The Participation Decision of Reviewers
	Human Factors
	Technical Factors
	Practical Suggestions and Recommendations for Future Work
	Differences Between OSS Communities

	Threats to Validity
	Construct Validity
	External Validity
	Internal Validity

	Conclusions
	References


