Y
Empir Software Eng (2019) 24:417-443 @ CrossMark
https://doi.org/10.1007/s10664-018-9621-x

Shorter identifier names take longer to comprehend

Johannes C. Hofmeister! - Janet Siegmund’ -
Daniel V. Holt?

Published online: 26 April 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Developers spend the majority of their time reading code, a process in which
identifier names play a key role. Although many identifier naming styles exist, they often
lack an empirical basis and it is not clear whether short or long identifier names facili-
tate comprehension. In this paper, we investigate the effect of different identifier naming
styles (single letters, abbreviations, and words) on program comprehension. We conducted
an experimental study with 72 professional C# developers who had to locate defects in
source code snippets. We used a within-subjects design, such that each developer worked
with all three versions of identifier naming styles, and we measured the time it took them to
find a defect. We found that word identifiers led to a 19% increase in speed to find defects
compared to meaningless single letters and abbreviations, but we did not find a difference
between letters and abbreviations. The results of our study suggest that code is more dif-
ficult to comprehend when it contains only letters and abbreviations as identifier names.
Words as identifier names facilitate program comprehension and may help to save costs and
improve software quality.

Communicated by: Andrian Marcus and Gabriele Bavota

This article extends a previous conference paper presented at the 24th International Conference on
Software Analysis, Evolution and Reengineering (Hofmeister et al. 2017). See the end of Section 1 for
details.

P< Johannes C. Hofmeister
johannes.hofmeister @uni-passau.de

Janet Siegmund
siegmunj @ fim.uni-passau.de

Daniel V. Holt
daniel.holt@psychologie.uni-heidelberg.de

University of Passau, Innstrasse 33, 94032 Passau, Germany

Heidelberg University, Hauptstrasse 47-51, 69117 Heidelberg, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9621-x&domain=pdf
mailto: johannes.hofmeister@uni-passau.de
mailto: siegmunj@fim.uni-passau.de
mailto: daniel.holt@psychologie.uni-heidelberg.de

418 Empir Software Eng (2019) 24:417-443

Keywords Identifier names - Program comprehension - Professional C# developers -
Psychology - Defect detection - Software quality

1 Introduction

Identifier names are important for program comprehension. Their relevance has been dis-
cussed for more than 30 years now, for example, by Brooks (1983), and Soloway and Ehrlich
(1984), who explained that they serve as key beacons to program plans, which activate
higher level knowledge about the program and facilitate program comprehension.

Identifiers make up large parts of source code. For example, Deissenboeck and Pizka
found that 33% of all tokens of the code of Eclipse 3.1.1 were identifiers which accounted
for 72% of all characters in the code (Deissenboeck and Pizka 2006). In principle, devel-
opers are free to choose identifier names at their own discretion, which can lead to varying
results depending on experience, skill, and mood (Sneed 1996). In most modern program-
ming languages, identifier names are limited only by few syntactic constraints (e.g., they are
restricted to alphanumeric characters), and the concrete word can be chosen almost arbitrar-
ily (i.e., as long as the used string is not a reserved keyword). As a result, developers might
be inclined to use single letters as identifier names, for example, to save typing effort.

When the chosen identifier names are meaningless, developers are most likely slower
in comprehending the program’s functionality, especially when they are unfamiliar with
the code (Soloway and Ehrlich 1984). To alleviate this well-known problem, communities
of many programming languages promote style guides, and companies establish specific
naming conventions, all with the goal to improve understandability and maintainability of
source code.

Unfortunately, style guides and conventions address only superficial features of identi-
fier names. For example, most style guides prominently encourage the use of a particular
separation style (i.e., camelCase or under_score) for compound identifier names. However,
semantic properties are often left unmentioned or are limited to the type of word (e.g.,
classes should have nouns as names; MSDN 2016). Furthermore, conventions often lack
a sound empirical basis (Tichy 1998). Thus, it is unclear how important the influence of
identifier naming on comprehensibility and maintainability really is. Understanding the dif-
ferent aspects of identifier naming can help to choose a particular naming style that supports
program comprehension, which in turn can help to improve productivity, enhance software
quality, and reduce cost.

In practice, programmers do not just use random strings as identifier names but they
usually name identifiers after a thing or purpose. An identifier is not only a syntactic element
but also a symbol that associates a concept from the problem domain with an entity in the
code. For example, naming a class Person will associate the concept of a person with its
class-representation in the code.

Ideally, an identifier name designates a concept from the problem domain, but it does
not have to. For example, when a class is named DataInfoContainer, but it rep-
resents a customer of a shopping site, it becomes difficult to deduce that it carries a
person’s information, because the name is unrelated to the concept (i.e., that it contains
data of a customer). This problem has been addressed by other authors. For example, Deis-
senboeck and Pizka classified bad identifier names along the dimensions of correctness
and consistency (Deissenboeck and Pizka 2006). From this viewpoint, an identifier named
DataInfoContainer isincorrect, because its name is neither a subordinate nor superor-
dinate name of the designated concept person. Deissenboeck and Pizka’s work provides an

@ Springer

Empir Software Eng (2019) 24:417-443 419

excellent meta-linguistic framework to discuss the issue, but does not evaluate empirically
how inconsistent or incorrect identifier names affect developers.

In this paper, we describe an experimental study in which we quantified the impact of
length and semantics of identifier names on program comprehension. To this end, we invited
professional software developers to find defects in code that followed different identifier
naming conventions (single letters, abbreviations, and words).

We make two contributions in this paper:

— Empirical evidence that full words as identifier names positively influence comprehen-
sibility and maintainability of source code

— Areplication package of our experiment and data to help other researchers validate and
extend our results.!

This article extends a previous conference paper that was presented at the 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER; Hofmeis-
ter et al. 2017). For the present publication we added an analysis of the participants’
movement of visual focus in Section 5.3 along with a corresponding discussion. The data
used for the additional analysis had been obtained during the original experiment but the
analysis was omitted for brevity in Hofmeister et al. (2017).

In the following section, we explain why both single letters and words can in principle
have a positive effect on program comprehension. In Section 3, we derive and explain our
research hypotheses. Section 4 describes the experimental setup. We report our findings in
Section 5 and discuss our results in Section 6. We address threats to validity in Section 7.

2 Word-length and semantics

In this paper, we focus on two main aspects of identifier names, length and semantics. An
identifier name’s length refers to the number of letters in the word used. We use the term
semantics to refer to the meaning of words in the linguistic sense, rather than a token’s
semantics in the context of a programming languages, for example, the behavior of the ++
operator.

On the one hand, developers might optimize their code for brevity and choose short
identifier names, because they want to reduce typing effort or because an algorithm is imple-
mented close to a mathematical equation. Single letters are the shortest possible identifier
names and abbreviations are also common, for example, configuration can be short-
ened to config, or cfg. On the other hand, identifiers should convey the concept they
represent as clearly as possible (Anquetil and Lethbridge 1998), which is best achieved by
using words that represent the concept (e.g., a customer is best represented by an identifier
named customer, not data). Words are longer than abbreviations, but their meaning is
clearer. Optimizing for a very short or very meaningful identifier naming style should not be
left to chance or personal preference, but is ideally based on empirical results with a focus
on human developers.

Psychological research has long been studying the readability and comprehensibility of
natural-language texts, and we can find results supporting the use of both short strings and
full words as identifier names. On the one hand, very short identifier names, such as abbre-
viations and letters, require less cognitive capacity as predicted by the word-length effect

Uhttp://brains-on-code.org/

@ Springer

http://brains-on-code.org/

420 Empir Software Eng (2019) 24:417-443

(Baddeley et al. 1975). This effect describes that lists of short strings are easier to remem-
ber than lists of long strings. Thus, developers’ performance could be positively affected
by very short identifier names because more items fit into working memory, which helps
developers to keep a better overview of the code.

On the other hand, further findings indicate that length affects the cognitive processing
of text. Longer strings take longer to pronounce (Balota and Chumbley 1985) and have a
higher naming latency (i.e., are uttered with delay) than shorter strings (Weekes 1997). This
affects non-words, such as arbitrary strings or nonexistent words (e.g., “awek”, “enemen-
emoo”), as well as low-frequency words (e.g., “penultimate”, or “hypochondriasis”), but
not common words (e.g., “awake”, “hat”), which is called the word-frequency effect. Stud-
ies that controlled for the ease of articulation showed that not the process of articulation, but
rather the required synthesis of the string’s phonetics is responsible for the delay (Weekes
1997).

The Dual Route Cascade Model (DRC; Coltheart et al. 2001) explains these findings:
words that are common in natural language (e.g., “awake”, “hat”) are stored in a mental
lexicon (i.e., a dictionary that maps concept to read or spoken words). When they are per-
ceived they can be accessed via the lexical route (i.e., they activate a concept or meaning
from the mental lexicon). Words that do not exist in this mental lexicon cannot be imme-
diately accessed, because their phonetics have to be synthesized on the fly, activating the
phonetic-graphemic route, a process that is serial in its nature and therefore depends on
word length.

When comprehending source code, working memory plays a crucial role, because devel-
opers have to work with several programming constructs (e.g., variables and methods) in
parallel. Human working-memory is limited,> and a word’s semantics can help to relieve
cognitive resources through a process called chunking (Baddeley et al. 1975) in which items
are regrouped to more meaningful units.

Additionally, a word’s semantics influence how adjacent words are processed, an effect
called semantic priming (Collins and Loftus 1975). This effect may play a role in discov-
ering inconsistencies. When code is too abstract, it might become more difficult to detect
semantic defects, as illustrated in Listings 1 and 2:

Listing 1 A login function using def v(u, p):
letter identifier names ul = d.u()
pl = d.p()
return u == ul and p == ul
Listing 2 The same function def login(username, password) :
using word identifier names user = db.username ()
pass = db.password()
return username == user and password == user

The codes are equivalent in their structure; only the identifier names have changed. Both
codes are syntactically valid, but the inconsistency is (arguably) easier to detect in Listing 2,
when more concrete contextual semantics are present. Since Listing 1 uses only abstract

2Miller (1994) originally argued for a capacity limit of about 7 + 2 items, while newer research shows that
core working memory capacity is more likely limited to 3 to 5 items (Cowan 2001).

@ Springer

Empir Software Eng (2019) 24:417-443 421

identifier names, it is difficult to detect the semantic defect. However, altering the code
snippet as in Listing 1 reveals that the wrong comparison is made (password against
user). Thus, meaningful, full word identifier names activate context semantics, which
allow developers to evaluate code against its purpose.

To summarize, brevity and semantics of identifier names seem to contradict each other
regarding their effect on program comprehension, and it is unclear from which effect
developers could benefit more.

3 Hypotheses

In this study, we address the following research question:

How do identifier name length and semantics affect developers’ performance during
program comprehension?

If program comprehension benefits most from an identifier name’s semantics, then com-
prehension of code using words as identifier names, such as customer or request,
should be faster than code using abbreviations (e.g., cst or rgs) or unrelated single letters
(e.g., a or b). If an identifier name’s length is in fact more important for comprehension
than its semantics, then shorter but less meaningful identifier names, (e.g., a or rgs instead
of request) should make code faster to understand than code using words.

This question has been investigated by a related study by Lawrie et al. (2006), who,
focusing on the effect of identifier length, suggest that multi-word identifiers and abbrevi-
ations are easier to comprehend than identifiers truncated to a single letter. Lawrie et al.
(2006) measured program comprehension by asking participants to describe the purpose of
presented functions, which where later rated on a scale from O to 5, with 5 indicating a cor-
rect understanding. The authors found a statistically significant effect of identifier style for
3 out of 12 code snippets. They do not report a main effect of identifier style, but focus on
the interaction between code type and identifier naming style in their analysis. The present
work extends the experiment by Lawrie et al. (2006) using a different task (the speed to find
a bug) and introducing several methodological improvements described below.

Determining the impact of length is difficult, because different predictions can be drawn
from the aforementioned psychological effects. On the one hand, the processing of non-
words depends on their length. Thus, abbreviations, compared to single letters should
require an increased effort to process, as they are longer than single letters, which should
decrease program comprehension performance. On the other hand, the residual semantic
properties of abbreviations might facilitate higher cognitive processing (i.e., ease of lexical
access, semantic priming) and therefore, abbreviations should lead to faster comprehen-
sion than code with unrelated single letters as identifier names. Still, it can be expected
that the meaning of words is accessed lexically, so abbreviations should still be slower to
comprehend than full words.

We reasoned that identifier names’ semantic properties affect in-depth understanding of
code, rather than its shallow perceptual processing. Therefore, the performance of work-
ing with code without trying to comprehend it should not be positively influenced by the
presence of full words. However, it is possible that, on such a low level of processing, the
reduced amount of code leads to faster processing. When the meaning of an identifier is
irrelevant (e.g., to find a missing semicolon), then fewer characters imply less code to read
and thus could even improve the performance in such tasks.

In addition to the effect of identifier semantics on the fluency of cognitive processing, we
also expect an effect of identifier naming style on comprehension performance via simple

@ Springer

422 Empir Software Eng (2019) 24:417-443

forgetting. In contrast to words, unrelated single letters do not contain any semantic cue
as to what they designate (e.g., whether a represents a customer, a call center agent, a
counter, or yet something else). If during the course of reading a piece of source code
a developer forgets what a variable stands for, a single letter identifier name is of little
help. Instead, the meaning of the identifier needs to be reconstructed from the context, by
active remembering, or by reading explanatory comments, all of which take additional time.
We expect a similar effect for abbreviated identifier names, which also require mentally
reconstructing or remembering the abbreviated word. However, due to the cue function of
the abbreviation, the difference to full words may be less pronounced.

To answer our research question, we designed a controlled experiment, in which we
evaluated the following hypotheses:

RHsemantic: Words as identifier names lead to faster comprehension of source code
than abbreviations and unrelated single letters.
RHgyntax: Identifier naming style has no effect on locating syntactical errors

3.1 Independent variables

We tested comprehension performance for three conditions that represent different points on
the spectrum of length versus semantics as described above. Long and meaningful identifier
names, such as full words, lie at one end of the spectrum, meaningless single letters at the
other, while abbreviations fall in between. For brevity, we henceforth label these conditions
letters, abbreviations, and words.

— Letters are the shortest possible identifier names. We chose letters that were unrelated
to the identifier’s purpose in the code to eliminate any semantic content.

— Words carry more semantics but also have an increased length. We chose single word
identifier names that can be found in a dictionary and designate a single concept in the
program.

— Abbreviations form a compromise between these two. They were constructed from the
original word identifier names and are shorter but still contain semantic traces.

3.2 Dependent variables

We operationalized the performance of comprehension by measuring how long developers
investigated a snippet of code until they had found a defect. We assumed that a semantic
defect in code can be corrected only when it is understood, because developers cannot eval-
uate the consequences of their changes otherwise. We required developers to indicate when
they had found the defect to approximate the exact moment of comprehension.

As a control condition, we tested whether identifier naming style affects the performance
in tasks in which no deep understanding of the code is required. This allowed us to evalu-
ate whether our conditions interfered with program comprehension, or whether some other
process is being measured. To accomplish this, we measured how much time developers
needed to locate a syntax error. Syntax errors, such as missing brackets or semicolons, ren-
der the code invalid but require no deep understanding of its identifier names’ meanings to
be corrected.

In order to explore the process of reading source code, we furthermore employed a
restricted focus viewer (Jansen et al. 2003), which allowed us to record how much time
developers spent looking at different parts of the code. In line with the main research
hypotheses, we expected that non-word identifiers would slow down the reading process

@ Springer

Empir Software Eng (2019) 24:417-443 423

Table 1 Experiment overview

Goal Study the impact of identifier names on

program comprehension

Independent Variable Identifier naming style (word,
abbreviation, meaningless single letter)

Task (semantic defect, syntax error)

Task Identify semantic defect
Control Identify syntax error
Dependent Variables Time to find defect
Secondary Measures Visual attention, Correctness
Potential Confounding Factors Materials, Inter-individual

differences, Item order

Design Within-subjects

even in parts of the code that do not contain a defect. Related, we expected that particularly
the single-letter identifiers would lead to more frequent backward movements to the com-
ments section to refresh developers’ memory of what the letter identifier stands for. Again,
these effects should only be present when trying to find semantic defects, not for syntactic
defects.

4 Study design

We tested our hypotheses in a web-based experimental study. Participants were asked to
find and correct a defect in six snippets of code. We measured how much time they spent
on the task. The scope of our experiment was to investigate identifier naming styles for the
purpose of quantifying their effect on program comprehension with respect to participants’
comprehension speed in the context of C# development. An overview of the experiment
following the template provided by can be found in Table 1.

4.1 Participants

The sample consisted of 72 professional C# developers who were between 20 to 51 years
old, with a median of 35 years. Their overall programming experience ranged from 4 to
35 years, with a median of 14 years. Their median experience with C# was 8 years, rang-
ing from 2 to 15 years. We invited them to our experiment via online platforms, such as
Twitter and Xing. Additionally, we approached participants of German technology industry
conferences.

Overall, 221 people started to participate in the experiment and 135 completed it. The
records of 63 participants were removed after applying exclusion criteria to ensure high data
quality (see below). The remaining participants were randomly assigned to the experimental
sequences. The participants’ details are displayed in Table 2.

To obtain the data, we implemented a web application, which is available at the project’s
website. Since we conducted the experiment online we could not guarantee an undis-
turbed working environment. To reduce this threat to validity we removed participants who

@ Springer

424 Empir Software Eng (2019) 24:417-443

Table 2 Descriptive participant data

Category Percent
School Education 12 to 13 years 81%
10 years 11%
Other 8%
Higher Education Master’s 42%
Bachelor’s 18%
Vocational training 18%
No higher ed. 15%
Other 7%
Employment Status Employed 81%
Freelance 17%
Student 2%
Job Description Software Developer 51%
Consultant 12.5%
Software Engineer 12.5%
Project Manager 10%
Software Architect 8%
Other 6%

reported that they had encountered distractions or mentioned distracting circumstances in a
comment field (e.g., “my boss came in”) on the last page of the study.

To reduce further threats to validity, we controlled for other factors. For example, partici-
pants were required to have sufficient natural language skills to understand instructions and
code comments and had to have more than one year experience with C# in practical use.
They provided self-ratings of their language proficiency on a scale from 1 to 6 for German
and English. Since the code was written using English identifier names and the instructions
were given in German, the data of participants with ratings below 4 in either category were
excluded. We targeted professional developers and avoided selecting students; however, in
the final sample the records of two students remained. They stated appropriate experience
with C# to be considered professional developers.

Finally, on the last page of the study we asked participants whether they had worked on
the experimental tasks conscientiously, or whether they were just curious and wanted to take
a look. All exclusion criteria and number of affected records are listed in Table 3. When one
criterion applied to a participant, their whole dataset was removed and their trial data was
not used. For our results and analyses, we used only participants to whom these criteria did
not apply, and who provided a complete set of six trials.

@ Springer

Empir Software Eng (2019) 24:417-443 425

Table 3 Exclusion criteria

Criterion n
Language German (1 - 6) <4
Level English (1 - 6) <4
Programming C# Skill (1 -5) <4 24
Experience C# Experience (years) <1 8
Behavior Encountered distractions? Yes 17
Worked on task conscientiously? No 1
Attempts to succeed (per trial) > 3x 15
Freeze, AFK (no interaction) > 1 min 4
Too Slow (time per trial) > 10 min 14
Other Participated in pilot study? Yes 4
Participated before? Yes
Total (criteria not mutually exclusive) 63

4.2 Task

The participants’ task was to find one defect in a snippet of code. The task was repeated six
times: after they had worked on three snippets finding semantic defects, participants were
asked to work on three more snippets but to look for syntax errors now.

To gather coarse-grained data about participants’ visual focus, we used an implemen-
tation of the restricted focus viewer (Jansen et al. 2003), which also helped us to detect
distracted participants. Participants’ view on the code was limited to 7 lines at a time
(approximately one third of the complete snippet), but the frame could be shifted up and
down using the arrow keys to reveal different parts of the code (Fig. 1). We called this
feature the letterbox, because it mimics spying through the letter slit in a door or mailbox.

When participants had found the defect, they pressed the space bar. This keypress froze
the letterbox, and opened a dialog screen, in which the participants entered the line number
of the defect, a description, and a correction (Fig. 2). We measured how long participants
looked at the code until they indicated that they had found the defect. We subtracted the
time spent answering the dialog and only evaluated the time that participants interacted with
code. This way, we analyzed only the time required to comprehend the code. Participants
who had failed to find the defect in a snippet after three attempts were allowed to finish the
experiment, but their data were excluded.

We used the time required to find semantic defects as a measure of program compre-
hension. The response is easy to score for correctness and it has a well-defined time point,
allowing reaction time analyses. Furthermore, finding semantic defects requires that the
intentions behind the code (what should it do?) and the semantics of its operation (what does
it do?) are understood to give a correct response. Because the study was conducted online,
we ruled out think-aloud protocols. Locating defects is a common programming task, which
renders it a relevant target for studying program comprehension.

@ Springer

426 Empir Software Eng (2019) 24:417-443

07: public static Dictionary<char, int> a(string b)

08: {

09: Dictionary<char, int> ¢ = new Dictionary<char, int>();
10:

11: for (int d = @; d < b.Length; d++)

12: {

13: char e = b[d];

Fig. 1 The letterbox limited participants’ view to seven lines of code at once. They were able to shift the
view using the arrow keys

07: public static Dictionary<char, int> a(string b)

08: {

09: Dictionary<char, int> c = new Dictionary<char, int>();

10:

13 for (int d = 0; d < b.Length; d++)

12: {

13: char e = b[d];

Zeile Korrektur Beschreibung (optional)

Zuruck zum Code

Fig. 2 Participants were instructed to press space to indicate that they had found the defect. This fixated the
letterbox and opened a dialog

@ Springer

Empir Software Eng (2019) 24:417-443 427

1: // ConcatLists: Concatenates two lists of the same length
2: // start: collection of elements at the start
3: // end: collection of elements to append
4: // length: length
5: // result: result
6: // index: index
7: // first: first
8: // second: second
9:
10: public static int[] ConcatLists(int[] start, int[] end)
11: {
12: int length = start.Length;
13: var result = new int[length x 2];
14:
15: for (int index = 0; index < length; index++)
16: {
17: int first = start[index];
18: int second = end[index];
19:
20: result [index] = first;
21: result[index + 1] = second;
22: }
23: return result;
24: }

Listing 3 Snippet using words as identifier names

4.3 Materials

We initially created eleven new code snippets containing simple algorithms to ensure that
no participant had seen the materials before. The snippets needed to be simple enough to
be comprehensible in a reasonable time frame, but complex enough for defects to “hide”
in the code. Each snippet consisted of a self-contained static function with a length of 15
lines. Listing 3 shows an example. We limited the code to language features from C# 2.0,
such as loops, conditionals, and basic .NET API calls. We avoided more complex structures,
such as recursion, or specific APIs (e.g., Language-Integrated Query; LINQ), to avoid bias
due to extensive C# experience. Each snippet came in three versions, in which the identifier
names were changed to either words, abbreviations or meaningless single letters. Examples
are shown in Table 4. Each snippet had one version with a semantic defect and a one with
a syntax error. The errors were placed in similar locations in the code to avoid bias due to
different locations of the errors.

Each snippet was built with expressive word identifier names first. From this version, two
derived versions were generated by replacing the identifier names in an automated process.
Abbreviations were generated by keeping the first character of the original word identifier
name. Then the automated process removed all vowels and left the first two remaining con-
sonants in place (e.g., request became rgs). In a few cases, this caused the identifier
names to collide, which we resolved by replacing some identifiers with fixed alternatives.

Table 4 Examples of the different identifier naming styles used

Style Example Design

Word request, histogram Initial code

Abbreviation rgs, hst Derived from word, first letter and consonants,
avoided collisions

Letter a,b Chosen alphabetically

@ Springer

428 Empir Software Eng (2019) 24:417-443

Listing 4 Snippet using 1: // Cnc: Concatenates two lists of the same length
abbreviations as identifier names 2: // str: collection of elements at the start
3: // end: collection of elements to append
4: // len: length
5: // rsl: result
6: // idx: index
7: // frs: first
8: // scn: second
9:
10: public static int[] Cnc(int[] str, int[] end)
11: {
12: int len = str.Length;
13: var rsl = new int[len * 2];
14:
15: for (int idx = 0; idx < len; idx++)
16: {
17: int frs = str[idx];
18: int scn = end[idx];
19:
20: rsl[idx] = frs;
21: rsl[idx + 1] = scn;
22: }
23: return rsl;
24: }

Additionally, we chose to replace common identifier names with their conventional abbre-
viations, such as len for length, and min for minimum, because we did not want to
violate the participants’ expectations too much and maintain plausibility.

In the letter version, identifiers were named alphabetically, in the order of occurrence,
while ensuring the validity of the code. We decided on alphabetical replacement to guar-
antee that the identifiers did not resemble the original identifier names in any way. The
standard .NET API was left intact (e.g., identifiers such as List were not abbreviated).
Each function was commented on top. The first line contained an explanatory description
of the method’s desired functionality. The following lines documented the variables and, in
the abbreviation and letter versions, showed their original meaning.

We evaluated the snippets’ suitability in a pilot study. Participants were shown three
snippets with word identifier names and we measured the time until participants found a

Listing 5 Snippet using letters 1: // a: Concatenates two lists of the same length
as identifier names 2: // b: collection of elements at the start
3: // c: collection of elements to append
4: // d: length
5: // e: result
6: // f: index
7: // g: first
8: // h: second
9:
10: public static int[] a(int[] b, int[] c)
11: {
12: int d = b.Length;
13: var e = new int[d x 2];
14:
15: for (int £ = 0; £ < d; f++)
16: {
17: int g = b[f];
18: int h = c[f];
19:
20: e[f] = g;
21: elf + 1] = h;
22: }
23: return e;
24: }

@ Springer

Empir Software Eng (2019) 24:417-443 429

semantic defect. The data of the pilot study were not used to answer our research ques-
tion. We had recruited two different samples of participants online, but could not prevent
a slight overlap between the samples. Records of people who took part in the pilot study
were excluded. We removed five snippets after the pilot study, because the measured times
exposed too much variance (i.e., the difference between fast and slow participants was too
high), or because they where too difficult (i.e., all participants were comparatively slow).

Listings 3, 4, and 5 show three snippet versions, all of which show the same algorithm
that naively concatenates two lists. The defect resides in Line 21 and its correction could
be: result [index + length] = second;.

4.4 Procedure

Participants were invited to a public website where they found an introduction text, legal
information related to informed consent, and a privacy statement. From there, they entered
the experiment, starting with questions about their education, employment status, and
professional experience.

They continued with a tutorial that gradually familiarized them with the experiment.
After the tutorial, an overview of the upcoming task was presented. On the next screen,
participants were instructed to press the space bar to start the trial. The participants
inspected the code, searching for a defect. When they had found the defect, they pressed
the space bar again, opening the aforementioned correction dialog. After filling out the dia-
log, participants received feedback whether their answer was correct to motivate them to
continue.

After the experiment, we asked for some demographic data, and whether or not the
participants had been distracted during the experiment.

4.5 Design

The goal of our experiment was to quantify the effect of identifier naming styles on program
comprehension. To isolate the effect as much as possible, we controlled several factors that
could affect comprehension performance, namely the effects of inter-individual differences

Semantic Defects Syntax Errors
123 WAL 456 WAL
132 WLA 465 WLA
Order 213 AWL 546 AWL
- X + X
Easy - Difficult |2 3 1 ALW 56 4 ALW
312 LWA 645 LWA
321 LAW 654 LAW
456 WAL [[123 WAL
465 WLA 132 WLA
Order 546y AWL| L 213 fAWL
Difficult - Easy | 5 6 4 ALW 231 ALW
[[645 LwAl 312 LWA
65 4 CAW 321 LAW

Fig.3 We used a balanced design to control for learning effects and effects caused by our stimulus material.
Each block indicates a group of snippets. Group Easy contains snippets 1,2, and 3, Group Difficult contains
4,5, and 6. Snippets within each groups were permuted and multiplied with the permuted identifier style:
word (W), Abbreviation (A), Letter (L), resulting in 36 combinations per task. Each participant received a
random combination for each task (i.e., 6 trials in total) for example: 6L-4W-5A-1W-2A-3L

@ Springer

430 Empir Software Eng (2019) 24:417-443

between participants, the difficulty of the snippets, and order effects. This resulted in the
design illustrated in Fig. 3.

4.5.1 Inter-individual differences

To control for inter-individual differences, we used a within subjects-design, such that every
participant saw all realizations of the different identifier naming styles. This compensated
participants’ different skill levels, for example, that slow readers would be slower in every task.

4.5.2 Material effects

To reduce side-effects caused by our materials (e.g., a complex problem takes longer to com-
prehend, but not because of its identifier naming style), we grouped the snippets into two
sets of three snippets each, depending on their difficulty (Group Easy and Group Difficult)
as established in the pilot study. In the final experiment, half of the participants were shown
three snippets with semantic defects from Group Easy first, followed by three snippets
containing syntax errors from Group Difficult, vice versa for the other half of partici-
pants. Furthermore, we permuted the order of snippets within each group to counterbalance
snippet-specific difficulty and order effects.

4.5.3 Effects of condition order

To reduce the effects of condition order, which may lead to increased or decreased perfor-
mance over the course of the experiment, we also permuted the order of identifier naming
styles in each group. Table 5 shows an example trial for one participant, with Group Easy
consisting of Snippets 1, 2, and 3, Group Difficult consisting of Snippets 4, 5, and 6.

Combining and permuting these factors, we generated 72 different sequences of snippets
(3! identifier naming style x 3! snippet order x 2 difficulty order), which also defined the
sample size.

In summary, every participant saw:

— Three semantic defects first, then three syntax errors
— All identifier naming styles
— All six snippets, encountering each snippet only once

During the pilot study, we had observed that syntax errors where found much faster
than semantic defects. Thus, to prevent participants from being discouraged by the upcom-
ing amount of work and drop out of the experiment, we explained that the last three items

Table S Example trial sequence for one participant

Sequence Group Task Snippet Style

1 Difficult Semantic Defect 6 Letter

2 Difficult Semantic Defect 4 Word

3 Difficult Semantic Defect 5 Abbreviation
4 Easy Syntax Error 1 Word

5 Easy Syntax Error 2 Abbreviation
6 Easy Syntax Error 3 Letter

@ Springer

Empir Software Eng (2019) 24:417-443 431

Table 6 Duration of interaction with code by identifier naming style in m: ss (minutes, seconds)

Semantic Syntactic
Style Median IQR Median IQR
Word 1:24.48 1:12.78 0:39.42 0:49.00
Abbreviation 1:38.57 1:05.37 0:36.71 0:53.92
Letter 1:40.36 1:24.87 0:35.74 0:30.22

together (syntax errors) required about as much time as one of the previous items (seman-
tic defects). We explained that the total duration of the experiment was 20 to 30 minutes
altogether.

5 Results

To test our hypotheses, we analyzed the response time data of participants (i.e., the time
they viewed code until they pressed the space bar). In this section, we first present data
preparation and the descriptive statistics, and then the test of our hypotheses. For convenient
interpretation, tables and figures in this section show group statistics for each condition
across all participants. Our statistical tests rely on within-subjects comparisons to take into
account speed differences between participants.

5.1 Data preparation and descriptive statistics

Table 6 shows a summary of the raw reaction time data split by identifier naming styles. The
distribution of data is skewed, such that fast responses accumulate on the left and with a tail
of slow responses on the right side of the distribution, a phenomenon common for reaction
times (Ratcliff 1993). Under these circumstances common descriptive statistics, such as
mean and standard deviation, become difficult to interpret. In this case, the median as a
measure of central tendency and the interquartile range (IQR3) as a measure of dispersion
are more suitable (Whelan 2008).

The presence of outliers can reduce the power of experimental analyses. According to
(Ratcliff 1993, p. 510), outliers are “response times generated by processes that are not
the ones being studied”; for example, participants could have been distracted, or might
have lost attention. There are several ways to reduce the impact of outliers and retain the
power of statistical tools, including trimming, winsorizing, and transforming. Trimming
removes outlier data points above a certain cutoff threshold, winsorizing replaces them with
the threshold value, and transforming the data changes the data distribution (Ratcliff 1993;
Leonhart 2009).

We chose to transform the data using an inverse transformation, which represents a good
compromise between reducing the impact of outliers, data retention, and interpretability
(Ratcliff 1993). The transformed values express defects per minute rather than minutes per
defect, that is, the speed of finding defects. The data are displayed in Table 7. To ensure that
the normality requirement for parametric testing was sufficiently fulfilled, we monitored

3The I QR is defined as Q3 — Q1, where the slowest 25% of response times lie below Q1 (first quartile) and
the fastest 25% above Q3 (third quartile)

@ Springer

432 Empir Software Eng (2019) 24:417-443

Table 7 Response speed (defects per minute) during the semantic and syntax tasks by identifier naming style

Semantic Syntactic
Style M SD M SD
Word 0.78 0.42 1.76 1.13
Abbreviation 0.65 0.31 1.81 1.31
Letter 0.66 0.39 1.96 1.39

the absolute skewness value for all variables used in the statistical tests, which was less than
one in all cases.

5.2 Hypothesis testing

We calculated inferential statistics for semantic defects and syntax errors separately. Our
analysis focuses on the semantic task because the syntax task was mainly designed as
control condition. The critical significance level was set at « = .05 for all tests. As stan-
dardized effect sizes we report Cohen’s d; with a correction for correlated observations for
paired comparisons and generalized eta squared (ng) for analyses of variance (Cohen 1988;
Bakeman 2005).

5.2.1 Semantic defects

We tested the overall effect of identifier naming style on the speed of finding seman-
tic defects using an analysis of variance (ANOVA) with one within-subjects factor. As
expected, we observed an overall effect of identifier naming style, F (2, 142) = 4.46, p =
.01, n§ = .02. To locate the effect precisely, we followed up on this analysis with paired
comparisons. Semantic defects were found faster when using word identifiers compared to
both single letters, 7 (71) = 2.47, p = .02, d; = 0.31 and abbreviations, ¢ (71) = 2.47, p =

Semantic Defects Syntax Errors

0.90 2.4

0.85
2.2
0.80

075 20
0.70
0.65

0.60

Response Speed (defects / min)
Response Speed (defects / min)

Letter Abbreviation Word Letter Abbreviation Word
Identifier Naming Style Identifier Naming Style
(a) Participants detected semantic defects faster (b) Although there appears to be a small effect of
when code contained words as identifier names in identifier names on finding syntax errors it is not
comparison to single letters or abbreviations. statistically significant.

Fig. 4 Effect of identifier naming style on response speed. Vertical bars show 95% confidence intervals

@ Springer

Empir Software Eng (2019) 24:417-443 433

)\ Aol
H H I H Comment

Line Number
|||||||||T||||?|||||||||
i

20 | i St A s B AOI Defect
0 1 2 3 4 5 6

Time (minutes)

Fig. 5 Plot of a participant’s letterbox movements over time. The gray area in the plot indicates the seven
lines of code visible through the letterbox. The black line indicates the center of view. This particular partici-
pant spent 6 minutes and 55 seconds trying to find a semantic defect in a snippet with abbreviated identifiers
(see Listing 4). The participant frequently visits A O Ipefect and occasionally revisits A O Icomment

.02,d, = 0.34, see Fig. 4a.* There was no difference between abbreviations and single
letters, #(71) = 0.07, p = .94, d, = 0.01.

The difference between words and abbreviations or letters represent a small to medium-
sized effect according to Cohen (1988). Expressed as a relative speed advantage, the median
within-subjects improvement was 21% for word identifiers compared to single letter iden-
tifiers and 13% for word identifiers compared to abbreviations. When combining response
times for single letters and abbreviations, the relative speed advantage of word identifiers
was 19%.

5.2.2 Syntax errors

We did not find a significant effect of identifier naming styles on the detection of syntax
errors, as illustrated in Fig. 4b, F (2, 142) = 0.80, p = .45, n§ < .01. Considering that our
study has 80% statistical power to detect effect sizes as small as n> = .03, we interpret this
result as support for the assumption that identifier names have at most a negligible effect on
finding syntax errors.

5.3 Visual focus

As a proxy for the focus of participants’ visual attention during the task, we analyzed the
movements of the letterbox, which showed only seven lines of code at once while hiding all
other lines (see Fig. 1).

The letterbox had to be moved one line at a time using the cursor keys. To illustrate, Fig. 5
shows the letterbox movements of one participant over time. Participants could not scroll
the letterbox past the boundaries of the code displayed. Upon starting each task, the first
seven lines of the snippets were visible in the letterbox. We analyzed the letterbox position
in analogy to eye tracking data.

The code was split into three main areas of interest (AOI): A O Icomments A O Ipre-Defect>
and AO Ipefect- AO Icomment comprised all comment lines at the top of the snippet,

4The t-values of these two tests are by chance identical when rounded to two decimal places. The standardized
effect sizes differ due to the correction for correlated observations.

@ Springer

434 Empir Software Eng (2019) 24:417-443

o1: /

~

Histogram: Returns frequency counts of characters in a string for

8.5% creating a histogram.
02: // corpus: text corpus to analyse AOI
03: // frequencies: frequencies Comment

04: // index: index
05: // character: character

X
o
g Dictionary<char, int> frequencies = new Dictionary<char, int>(); ACI
E 4.2% Pre-Defect
T
2
[a]
AOI Defect
192 }
1.0% 20: return frequencies;
}

Fig. 6 Exemplary heat map of relative dwell times for each line in a particular snippet. Overall, participants
fixated the lines before the defect more often than the comments or the bottom of the snippet

A O Iprepefect comprised the lines of code before the defect becomes visible in the letter-
box, and A O Ipefect comprised the lines where the defect was visible in the letterbox. Each
letterbox position was attributed to the AOI that contained the center line of the letterbox.
As the lines below A O Ipefect Were few and received little consideration (1.27% of the total
time spent on the task), we removed them from the analysis, as well as the blank line sepa-
rating comments and actual code. Figure 6 illustrates the AOIs with a heat map showing the
average time spent on each line for this particular snippet.

For our analyses, we evaluated the AOIs’ dwell times, first-pass reading times (FPRT),
and AOI visits. The times spent within an AOI were summed as the AOI’s dwell time.
Each movement from an AOI to another was marked as a visit. FPRT represents the time
participants took to navigate the letterbox from entering the code section (after reading the
comments) until the defect first appeared in the letterbox.

Table 8 Total dwell times by AOI and identifier naming style in seconds

Semantic Syntactic
AOI Style Median IQR Median I10R
Comment Word 25.89 19.68 3.56 5.89
Abbreviation 27.61 18.36 4.80 8.20
Letter 28.12 26.70 4.22 6.86
Pre-Defect Word 30.07 29.68 21.45 27.05
Abbreviation 32.13 27.84 21.02 23.11
Letter 37.51 40.04 17.81 15.61
Defect Word 37.09 3541 16.33 15.74
Abbreviation 34.94 31.60 13.57 16.81
Letter 28.98 45.89 12.35 17.02

@ Springer

Empir Software Eng (2019) 24:417-443 435

As dwell times, FPRT, and the frequency of visits to AOIs were strongly right-skewed,
we applied a logarithmic transformation for inferential tests. For ease of interpretation,
descriptive statistics report untransformed values.

5.3.1 Dwell time

For a broad overview of the allocation of visual attention, we compared the total dwell time
(i.e., the total time spent in each AOI) for the different identifier styles and the two different
tasks using a full factorial repeated-measures ANOVA. The data are displayed in Table 8.
Dwell times considerably differed depending on AOI, Fao1(2, 142) = 93.43, p < .001,
mg = .13 and task type, Frs(1,71) = 273.57, p < .001, n; < .26. However, there
was no statistically significant interaction of identifier naming style and AOI in either task,
Fsem(4,284) = 1.34, p = .26, ng < .01, and Fsy,(4,284) =2.10, p = .08, n§ = .01, that
is, there was no evidence for an influence of identifier style at this relatively coarse level of
analysis.

5.3.2 First Pass Reading Time (FPRT)

We operationalized first pass reading time as the time it took participants to navigate the
letterbox from entering the actual code after the comments section (i.e., A O Ipre-Defect) tO
the position where defect first appeared in the letterbox (i.e., A O Ipefect). Some participants
briefly screened the whole code snippet before reading by quickly moving from top to
bottom. We therefore only considered passes that took at least five seconds.

Table 9 shows an increased first pass reading time for the single-letter identifier names
in the semantic task. The interaction term of a repeated-measures ANOVA with identifier
naming style and task type as independent variables supports a selective effect of identifier
naming style, depending task type, F(2, 142) = 4.45, p = .01, n§ = .01. A corresponding
simple effects analysis shows that, as predicted, there was a statistically significant effect in
the semantic condition, Fsenm(2, 142) = 7.60, p < .001, n§ = .05, but not in the syntactic

condition, Fsy,(4,142) =0.24, p = .79, n§ < .0l.
5.3.3 AOI visits

We expected that in the semantic task single letter identifier names and abbreviations would
force participants to revisit the comments section more frequently to refresh their memory of
what the identifier names denote. To test this hypothesis, we calculated how often each AOI
was visited by participants, that is, how often they entered an AOI (coming from a different
AOI) and stayed for at least one second, without moving the letterbox. We introduced this
constraint eliminate the effect of merely scrolling through an AOI. The number of visits

Table 9 First-pass reading times by identifier naming style in seconds

Semantic Syntactic
Style Median IQR Median IQR
Word 23.62 22.63 15.38 12.52
Abbreviation 27.45 25.79 16.54 14.75
Letter 35.50 28.62 16.97 11.95

@ Springer

436 Empir Software Eng (2019) 24:417-443

Table 10 AOI visit counts by AOI and identifier naming style

Semantic Syntactic
AOI Style Median IQOR Median IQOR
Comment Word 1.73 1.34 1.00 0.64
Abbreviation 1.93 1.37 1.09 0.67
Letter 2.19 2.14 1.05 0.58
Pre-Defect Word 2.29 1.97 1.24 1.08
Abbreviation 2.29 2.43 1.26 1.21
Letter 2.57 2.64 1.19 0.83
Defect Word 2.09 1.77 1.26 1.10
Abbreviation 2.00 1.72 1.19 1.02
Letter 1.98 2.29 1.15 0.81

are displayed in Table 10. The statistical analysis confirmed a significant interaction of
identifier naming style and task type for the number of visits to the comments section,
F(2,142) = 5.02, p = .008, n? = 0.02. A follow-up analysis showed that the effect was

clearly present in the semantic condition, Fsem (2, 142) = 9.13, p < .001, ng = 0.06, but
not in the syntactic condition, Fsyn(4, 142) = 2.73, p = .07, n§ = 0.02.

6 Discussion

To summarize the results, our data show that participants found semantic defects signif-
icantly faster when the code presented used normal words as identifier names compared
to both abbreviations and meaningless single letters. Furthermore, finding syntax errors
appears to be unaffected by identifier naming style. These results indicate that program com-
prehension benefits from explicit identifier names, as comprehension of code with words as
identifier names was 19% faster compared to abbreviations and letters.

Although the word-length effect predicts that people can keep short strings in memory
more easily, single letters and abbreviations did not lead to an improvement of comprehen-
sion speed. Instead, longer words seemed to facilitate comprehension, as semantic defects
were discovered faster when words were used as identifier names. Moreover, contrasting
the semantic task with the syntactic task shows that purely perceptual properties of iden-
tifier names, such as their length, are also insufficient to explain performance differences
when the task does not require semantic judgments. However, in this case the word identi-
fiers’ semantic content is not a benefit either. The observed differences in comprehension
performance are likely caused by the words’ semantic content, which facilitates forming an
appropriate mental model of how the code operates and generally relieves working memory.
This is supported by the fact that in the word condition participants scrolled less frequently
to the comments of the source code to retrieve the meaning of a variable. In other words,
word identifier names allow developers to access the meaning of a concept represented by
an identifier directly, which may allow them to reason about the code more easily.

@ Springer

Empir Software Eng (2019) 24:417-443 437

In the present study, the letterbox allowed us to investigate the process of reading code
to some extent. Although we found no effect of identifier naming style on overall dwell
time (i.e., how long participants spent reading particular parts of comments or code), our
analyses of visual focus revealed that naming style had an effect on how often participants
returned to the comments section and how long the first pass of reading the code took. Single
letter identifiers resulted in the slowest first-pass reading time and the highest number of
visits to the comments section. This further supports the assumption that code containing
single letter identifiers is read less fluently and leads to more frequent failures to recall the
meaning of identifiers.

Our data indicate that in line with RHsemantic, words as identifier names lead to faster
detection of semantic defects. When in-depth understanding was not required, as in the task
to find syntax errors, the identifier names did not make a difference, supporting RHgyntax-
Considering these results, arguments in favor of non-word identifiers seem questionable.
The disadvantage of increased typing effort of longer words seems to be outweighed by the
benefits of their stronger semantics, especially when considering that code is more often
read than written. In practice, this drawback could be diminished with appropriate tooling.
For example, modern IDEs provide auto-completion facilities, which already reduce typing
effort. In future studies, it would be interesting to quantify the relationship between typing
effort in modern IDEs and comprehensibility.

7 Threats to validity
7.1 Internal validity

We used only 53% of all completed data records, which could be interpreted as a sampling
bias, but this was in fact a result of our strict filtering rules that were applied to improve
the quality of our data by reducing the effect of nuisance factors unrelated to the goal of the
experiment (e.g., language barriers, distractions).

Program comprehension as a construct is difficult to measure. We had reasoned that code
can only be corrected when a person has fully understood how the code works and therefore
operationalized program comprehension using defect finding tasks. However, reading code
to understand it may not be the the same as reading code that needs to be fixed and thus
it is possible that our task carries some overhead. For example, identifying that something
“is a car” is arguably an easier task than to identify the reason why it will not start, but the
former process is required to enable the latter. Similarly, identifying that a code snippet sorts
an array is a different task than to find out the complexity of the algorithm, or whether or
not it contains a defective corner-case. Participants might have responded more quickly in a
different task (e.g., read until you feel you understood the code), but with the chosen design
we ensured that participants had understood the code by evaluating the correctness of their
responses.

Compared to a video-based eye-tracker, the letterbox method for measuring visual focus
has some limitations. It enforces sequential scrolling, thus slowing down the reading process
and requiring to scroll through the middle parts of the code when moving from top to bottom
or vice versa. This constraint does not distort the comparison between conditions, as it was
constant across conditions. However, it reduces the explanatory power of the visual focus
data, in particular, the uncorrected dwell-times, because every scrolling movement counts

@ Springer

438 Empir Software Eng (2019) 24:417-443

towards this measure. The AOI Visits were less influenced by this effect, because they
correct for scrolling.

7.2 External validity

For practical reasons we limited our sampling to a specific population, namely German pro-
fessional C# developers. While linguistic or cultural differences could have an effect, we
assume that professional software developers in different countries share many characteris-
tics. Furthermore, code and comments were written in English which should further enhance
the generalizability of findings. Only two participants identified as female in the initial raw
data, but their records were not included in the final dataset after applying exclusion crite-
ria. However, program comprehension is a complex cognitive activity and we expect that
professional education and experience would outweigh potential gender differences.

Our stimulus materials were limited to procedural, algorithmic problems and therefore
do not allow us to draw conclusions about the impact of identifier naming styles in com-
plex, object-oriented environments, where identifiers such as
AbstractSingletonProxyFactoryBean can be common. These very long identi-
fier names try to be explicit, but they might be too abstract to provide meaningful semantics
to facilitate program comprehension, thus hindering the performance of program compre-
hension. Although compound identifier names comprising more than one word may convey
meaningful details, we had disregarded such identifier names because they would have been
inappropriate in the scope of our code snippets. Furthermore, word identifiers can also be
rendered meaningless if they are unrelated to the purpose of the entities they designate. For
example, when loop variables are labeled superman and batman, both variables have a
distinct semantic content, but this content is unrelated to the designated purposes. Effects of
this type need to be investigated in following experiments.

We had used very short and meaningless single letters identifier names, but even single
letters can be considered meaningful under certain circumstances. For example, using 1 as
a running variable in a loop can be considered a widely accepted convention. Other conven-
tions and habits could positively affect program comprehension, such as domain-specific
identifier names that have been established as conventions in their specific domain. For
example, a system dealing with linear-algebra, such as a drawing engine, may commonly
use identifier names such as x, y, and z to denote Cartesian coordinates. Although these
letters are very short, their semantics are clear and using different identifiers other than x,
v, and z could even slow down programmers trying to comprehend the code.

For our experimental setup, we chose tasks that were relevant to developers’ daily work
(i.e., finding semantic defects), but in order to reach out to participants, these tasks were
performed online, rather than in an IDE, and thus might be regarded as artificial. Our web-
application might have slowed down comprehension performance by means of the restricted
focus viewer, and comprehension should be faster under normal circumstances. However,
because this impediment was present to all participants in all experimental conditions, it
should not have distorted the relative effects of different identifier naming styles.

Finally, it should be noted that modern, complex code bases can have millions of lines
of code. In our experiment, participants were 19% faster in comprehending 15 lines of code
with word identifier names. If this comprehension advantage scales up to larger code bases,
this could save hours or even weeks of time required to comprehend code. However, it is
difficult to predict this with certainty. It is possible that common abbreviations in a larger
code base are memorized quickly, and developers do not suffer a penalty during program
comprehension.

@ Springer

Empir Software Eng (2019) 24:417-443 439

8 Related work

Lawrie et al. (2006) performed a similar experiment in which participants read code with
letters, abbreviations, and words. They found that responses for identifier names using
abbreviations were similar to responses for normal words, whereas in our experiment they
were more similar to responses for letters. We attribute this difference to the strategies
used for building abbreviations. Lawrie et al. (2006) abbreviated longer composite identifier
names rather than single words (e.g., isPrimeNumber to isPriNum). Such abbrevia-
tions retain more similarity to the original identifier name compared to the identifiers used
in our study. We therefore see the results by Lawrie et al. (2006) in accordance with ours.

In a subsequent paper, Lawrie et al. found indications that identifier name length interacts
with working memory to such an extent that words and abbreviations are easier to identify
in recognition tasks than single letters (Lawrie et al. 2007). Again, this applies to the longer
abbreviations in their study. This further confirms our results that semantics are relevant for
the comprehension of source code and that purely perceptual explanations of differences in
comprehension performance are insufficient.

Although we found that semantic properties are more important for program com-
prehension than low-level perceptual properties of identifier names, the research on
identifier-splitting techniques shows that both aspects should be considered as complemen-
tary. Syntactic properties of identifier names may facilitate perceptual processes, whereas
semantic properties facilitate higher level cognitive processes. Both aspects should be
considered to write code that people can understand optimally.

The studies by Sharif and Maletic (2010) and Binkley et al. (2009) found that better
comprehension was achieved when participants were presented with code that was congru-
ent with their previous experiences. The study by Binkley et al. showed that participants
who were experienced with camelCase took less time to identify camelCase identi-
fiers compared to under_score identifiers. Aligning their own results with these findings,
Sharif and Maletic conclude that “with more experience (training), the effect of identifier
style on performance is reduced, but not eliminated” (Sharif and Maletic 2010, p. 203).
Thus, experience seems to play a role when determining relevant factors of program com-
prehension. Our data exhibit similar characteristics. We found that the observed effects (the
impact of identifier naming styles) reside in the middle and the tail of the distribution of
reaction time data. This indicates that experts (i.e., the fastest developers in our sample)
were less influenced by shorter or abbreviated identifier names than developers with average
performance.

Ceccato et al. (2014) analyzed different code-obfuscation techniques that intentionally
make code difficult to comprehend. They could show that renaming identifiers to single
characters is an effective obfuscation technique to hinder program comprehension, although
it does not render it impossible. These results underline the importance of good identifier
naming styles, as comprehending code seems to be easier when words are used and impeded
when letters are present.

Scalabrino et al. (2016) found that using textual properties of source code, including
semantic aspects, such as coherence and narrowness of identifier names, improve the pre-
diction of readability over and above using structural aspects such as line lengths, number
of identifiers, or number of parentheses. In the work of Scalabrino, as well as other code
readability studies (e.g., Buse and Weimer 2010; Posnett et al. 2011), readability is often
operationalized as participants’ subjective judgments whether or not a snippet is readable.
In contrast to subjective ratings such as these, our experiment employed response times as a
behavioral performance measure. Ideally, subjective and objective measures of readability

@ Springer

440 Empir Software Eng (2019) 24:417-443

will lead to converging results, but this relationship should be investigated further to clearly
establish the validity of either construct.

9 Conclusion

Given that maintenance and program comprehension play a crucial role in software
development (most likely more than typing code), it seems advisable to use explicit full-
word identifiers. Our results indicate that abbreviations and letters reduce a program’s
comprehensibility, and their presence might be an indicator for lower quality code.

We could show that shorter identifier names are not necessarily better for program com-
prehension. Semantics play an important role during comprehension in general, thus using
words as identifier names may facilitate the comprehension of computer programs. Devel-
opers should optimize their code to support cognitive processes dedicated to interpreting
word semantics by using explicit identifier names. Using longer identifier names is made
easy by code completion features of modern IDEs and additional typing effort is minimal.

To aid comprehension, appropriate rules for style guides should consider perceptual
and semantic properties and discourage the use of ad-hoc abbreviations and single letters.
Instead, they should encourage the use of explicit, clear identifier names given that they
wish to improve the quality of software and reduce its development and maintenance costs.

In future work, it would be interesting to investigate how longer, more complex identifier
names behave, for example, compound identifier names in larger programs. Furthermore,
it remains an open question to what extent the effect of identifier naming style depends on
general and domain specific programming experience. In general, we welcome replications
of the results presented to evaluate their robustness in different contexts. For this purpose,
we provide a replication package with all required materials on the project website.

Acknowledgements This work has been supported by the DFG grant SI 2045/2-1. Janet Siegmund’s work
is further funded by the Bavarian State Ministry of Education, Science and the Arts in the framework of the
Centre Digitisation.Bavaria (ZD.B).

Compliance with Ethical Standards This study was performed in accordance with the ethical standards
of the Department of Psychology, Heidelberg University, Germany.

Conflict of interests The authors declare that they have no conflict of interest.

References

Anquetil N, Lethbridge T (1998) Assessing the relevance of identifier names in a legacy software system. In:
Conf. centre for advanced studies on collaborative research, CASCON ’98. IBM Press, Toronto, pp 1-10

Baddeley AD, Thomson N, Buchanan M (1975) Word length and the structure of short-term memory. J
Verbal Learn Verbal Behav 14(6):575-589. https://doi.org/10.1016/S0022-5371(75)80045-4

Bakeman R (2005) Recommended effect size statistics for repeated measures designs. Behav Res Methods
37(3):379-384. https://doi.org/10.3758/BF03192707

Balota DA, Chumbley JI (1985) The locus of word-frequency effects in the pronunciation task: lexical access
and/or production? J] Mem Lang 24(1):89-106. https://doi.org/10.1016/0749-596X(85)90017-8

Binkley D, Davis M, Lawrie D, Morrell C (2009) To CamelCase or under_score. In: Proc. Int’]l conf. program
comprehension (ICPC), pp 158-167. https://doi.org/10.1109/ICPC.2009.5090039

Brooks R (1983) Towards a theory of the comprehension of computer programs. Intl J Man-Mach Stud
18(6):543-554. https://doi.org/10.1016/S0020-7373(83)80031-5

@ Springer

https://doi.org/10.1016/S0022-5371(75)80045-4
https://doi.org/10.3758/BF03192707
https://doi.org/10.1016/0749-596X(85)90017-8
https://doi.org/10.1109/ICPC.2009.5090039
https://doi.org/10.1016/S0020-7373(83)80031-5

Empir Software Eng (2019) 24:417-443 441

Buse RPL, Weimer WR (2010) Learning a metric for code readability. IEEE Trans Softw Eng (TSE)
36(4):546-558. https://doi.org/10.1109/TSE.2009.70

Ceccato M, Di Penta M, Falcarin P, Ricca F, Torchiano M, Tonella P (2014) A family of experiments to assess
the effectiveness and efficiency of source code obfuscation techniques. Empir Softw Eng 19:1040-1074

Cohen J (1988) Statistical power analysis for the behavioral sciences. Erlbaum, Hillsdale

Collins AM, Loftus EF (1975) A spreading-activation theory of semantic processing. Psychol Rev 82(6):407—
428. https://doi.org/10.1037/0033-295X.82.6.407

Coltheart M, Rastle K, Perry C, Langdon R, Ziegler J (2001) DRC: a dual route cascaded model of visual
word recognition and reading aloud. Psychol Rev 108(1):204-256

Cowan N (2001) The magical number 4 in short-term memory: a reconsideration of mental storage capacity.
Behav Brain Sci 24(1):87-185

Deissenboeck F, Pizka M (2006) Concise and consistent naming. Softw Qual Control 14(3):261-282.
https://doi.org/10.1007/s11219-006-9219-1

Hofmeister J, Siegmund J, Holt DV (2017) Shorter identifier names take longer to comprehend. In: 2017
IEEE 24th International conference on software analysis, evolution and reengineering (SANER), pp
217-227. https://doi.org/10.1109/SANER.2017.7884623

Jansen AR, Blackwell AF, Marriott K (2003) A tool for tracking visual attention: the restricted focus viewer.
Behav Res Methods Instrum Comput 35(1):57-69

Lawrie D, Morrell C, Feild H, Binkley D (2006) What’s in a name? A study of identifiers. In: Proc. Int’l
conf. program comprehension (ICPC), pp 3—12. https://doi.org/10.1109/ICPC.2006.51

Lawrie D, Morrell C, Feild H, Binkley D (2007) Effective identifier names for comprehension and memory.
Innov Syst Softw Eng 3(4):303-318. https://doi.org/10.1007/s11334-007-0031-2

Leonhart R (2009) Lehrbuch Statistik Einstieg und Vertiefung, 2nd edn. Hans Huber, Hogrefe AG, Bern

Miller GA (1994) The magical number seven, plus or minus two: some limits on our capacity for processing
information. Psychol Rev 101(2):343-352

MSDN (2016) Class naming guidelines [online]. available: https://msdn.microsoft.com/en-us/library/
4xhs4564(v=vs.71).aspx

Posnett D, Hindle A, Devanbu P (2011) A simpler model of software readability, ACM, New York

Ratcliff R (1993) Methods for dealing with reaction time outliers. Psychol Bull 114(3):510-532

Scalabrino S, Linares-Vasquez M, Poshyvanyk D, Oliveto R (2016) Improving code readability
models with textual features. In: Proc. Int’l conf. program comprehension (ICPC), pp 1-10.
https://doi.org/10.1109/ICPC.2016.7503707

Sharif B, Maletic JI (2010) An eye tracking study on camelcase and under_score identifier styles. In: Proc.
Int’l Conf. program comprehension (ICPC). Proc. Int’l Conf. Program Comprehension (ICPC). IEEE
Computer Society, Washington, DC, pp 196-205. https://doi.org/10.1109/ICPC.2010.41

Sneed H (1996) Object-oriented COBOL Recycling. In: Proceedings of the Third working conference on
reverse engineering, 1996, pp 169-178. https://doi.org/10.1109/WCRE.1996.558901

Soloway E, Ehrlich K (1984) Empirical studies of programming knowledge. IEEE Trans Softw Eng SE
10(5):595-609. https://doi.org/10.1109/TSE.1984.5010283

Tichy WF (1998) Should computer scientists experiment more? In: IEEE Computer

Weekes BS (1997) Difterential effects of number of letters on word and nonword naming latency. Q J Exper
Psychol Sec A 50(2):439-456. https://doi.org/10.1080/713755710

Whelan R (2008) Effective analysis of reaction time data. Psychol Record 58(3):475

@ Springer

https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1037/0033-295X.82.6.407
https://doi.org/10.1007/s11219-006-9219-1
https://doi.org/10.1109/SANER.2017.7884623
https://doi.org/10.1109/ICPC.2006.51
https://doi.org/10.1007/s11334-007-0031-2
https://msdn.microsoft.com/en-us/library/4xhs4564(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/4xhs4564(v=vs.71).aspx
https://doi.org/10.1109/ICPC.2016.7503707
https://doi.org/10.1109/ICPC.2010.41
https://doi.org/10.1109/WCRE.1996.558901
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1080/713755710

442 Empir Software Eng (2019) 24:417-443

AYN

Johannes C. Hofmeister works as a software developer and research associate at the University of Pas-
sau, Germany. His research focuses on how people express themselves in code and the cognitive processes
involved in program comprehension.

Janet Siegmund is currently working at the University of Passau, where she is leading the junior research
group PICCARD, funded by the Centre Digitisation.Bavaria. She received her Ph.D. from the University of
Magdeburg in 2012 and she holds two master’s degrees, one in Computer Science and one in Psychology.
In her research, she focuses on the human factor in software engineering, for example, when writing source
code.

@ Springer

Empir Software Eng (2019) 24:417-443 443

Daniel V. Holt is a lecturer in Theoretical and Cognitive Psychology at the Department of Psychology,
Heidelberg University, Germany. His research interests include executive functions, self-regulation and
programming from a problem solving perspective.

@ Springer

	Shorter identifier names take longer to comprehend
	Abstract
	Introduction
	Word-length and semantics
	Hypotheses
	Independent variables
	Dependent variables

	Study design
	Participants
	Task
	Materials
	Procedure
	Design
	Inter-individual differences
	Material effects
	Effects of condition order

	Results
	Data preparation and descriptive statistics
	Hypothesis testing
	Semantic defects
	Syntax errors

	Visual focus
	Dwell time
	First Pass Reading Time (FPRT)
	AOI visits

	Discussion
	Threats to validity
	Internal validity
	External validity

	Related work
	Conclusion
	Acknowledgements
	Compliance with Ethical Standards
	Conflict of interests
	References

