
Empir Software Eng
https://doi.org/10.1007/s10664-018-9605-x

Using frame semantics for classifying and summarizing
application store reviews

Nishant Jha1 ·Anas Mahmoud1

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Text mining techniques have been recently employed to classify and summa-
rize user reviews on mobile application stores. However, due to the inherently diverse and
unstructured nature of user-generated online textual data, text-based review mining tech-
niques often produce excessively complicated models that are prone to overfitting. In this
paper, we propose a novel approach, based on frame semantics, for app review mining.
Semantic frames help to generalize from raw text (individual words) to more abstract sce-
narios (contexts). This lower-dimensional representation of text is expected to enhance the
predictive capabilities of review mining techniques and reduce the chances of overfitting.
Specifically, our analysis in this paper is two-fold. First, we investigate the performance of
semantic frames in classifying informative user reviews into various categories of action-
able software maintenance requests. Second, we propose and evaluate the performance of
multiple summarization algorithms in generating concise and representative summaries of
informative reviews. Three different datasets of app store reviews, sampled from a broad
range of application domains, are used to conduct our experimental analysis. The results
show that semantic frames can enable an efficient and accurate review classification process.
However, in review summarization tasks, our results show that text-based summarization
generates more comprehensive summaries than frame-based summarization. Finally, we
introduces MARC 2.0, a review classification and summarization suite that implements the
algorithms investigated in our analysis.

Keywords Requirements elicitation · Application store · Classification · Summarization ·
FrameNet · Frame semantics

Communicated by: Paul Grünbacher and Anna Perini

� Anas Mahmoud
mahmoud@csc.lsu.edu

Nishant Jha
njha1@lsu.edu

1 Division of Computer Science and Engineering, Louisiana State University, Baton Rouge,
LA 70803, USA

(2018) 23:3734–3767

Published online: 23 March 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9605-x&domain=pdf
http://orcid.org/0000-0001-8353-5286
mailto:mahmoud@csc.lsu.edu
mailto:njha1@lsu.edu

1 Introduction

The rapid growth of the mobile industry in the past decade has led to a paradigm shift in the
way software is being produced and consumed (Petsas et al. 2013). As mobile technology is
becoming more accessible, more consumers are migrating to their smart phones and tablets
to handle their day-to-day computing activities. In response to this growth, mobile applica-
tion (app) stores (e.g., Google Play and the Apple App Store) have emerged as a new model
of online distribution platforms (Basole and Karla 2012). These stores have expanded in size
in the past 5 years to host millions of apps, offering end-users of software virtually unlim-
ited options to choose from. For instance, as of March 2017, the Apple App Store alone has
reported around 2.20 million active apps, growing by over 1000 apps per day.1

Similar to conventional online markets (e.g., Amazon and eBay), mobile app stores
enable their customers to share their app experience in the form of textual reviews and star
ratings. This unique channel of user feedback has created an unprecedented opportunity for
app developers to directly monitor the opinions of large and heterogeneous populations of
end-users of their software (Pagano and Maalej 2013). In fact, analyzing large datasets of
app store reviews has revealed that they contain a substantial amount of up-to-date technical
information. Such information can be leveraged by app developers to help them maintain
and sustain their apps in a highly-competitive and volatile market (Pagano andMaalej 2013).
An underlying tenet is that user involvement in the software production process is a major
contributing factor to software success (Bano and Zowghi 2015).

Realizing the technical and market value of app store feedback, a plethora of methods
and tools have been proposed in the literature to automatically capture and categorize infor-
mative user reviews (Carreńo and Winbladh 2013; Chen et al. 2014; Maalej and Nabil 2015;
Pagano andMaalej 2013; Villarroel et al. 2016). In general, app store mining techniques rely
on the textual attributes of user reviews to classify them into fine-grained software main-
tenance requests, including feature requests and bug reports. Such techniques range from
detecting the presence and absence of certain indicator terms (e.g., “crash”, “bug”), to more
computationally expensive methods that rely on text modeling and classification techniques
(Carreńo andWinbladh 2013; Guzman andMaalej 2014; Maalej and Nabil 2015; Panichella
et al. 2015). However, while these techniques have shown decent accuracy levels, they typ-
ically suffer from several drawbacks. For instance, users tend to express their reviews using
informal language, including colloquial terminologies and other neologisms. Such a wide
spectrum of words often results in complex text classification models, which in turn might
lead to overfitting problems. In particular, due to the rapid manner in which natural lan-
guage evolves online, a classifier trained using a vocabulary collected at a certain point in
time might not be able to accurately generalize for unseen-before reviews (McCallum and
Nigam 1998).

To address these challenges, in this paper, we propose a novel semantically aware
approach for mining and classifying user reviews on mobile app stores. Our approach is
based on the notion of semantic role labeling (SRL). The primary assumption behind SRL is
that words can be grouped into semantic classes, called frames. A semantic frame describes
an event that occurs in a sentence along with its participants (e.g., people and objects). The
goal is to capture the meaning of a sentence at a higher level of abstraction. More specif-
ically, by annotating words and phrases in the text with various frame elements (or roles),

1https://www.statista.com/topics/1729/app-stores/

Empir Software Eng (2018) 23:3734–3767 3735

https://www.statista.com/topics/1729/app-stores/

we can generalize from specific sentences to scenarios. Such annotations can be gener-
ated using the FrameNet project (Baker et al. 1998). FrameNet provides an online lexical
repository of semantic frames and their roles.

SRL and frame semantics have been successfully used in various text mining tasks, such
as predicting the stock market movement by analyzing the textual content of financial news
articles (Xie et al. 2013), extracting social networks from unstructured text (Agarwal et al.
2014), question answering tasks (Shen and Lapata 2007), and stance classification in politi-
cal debates (Hasa and Ng 2013). Following this line of research, in this paper, we investigate
the performance of frame semantics in supporting basic app store review mining algorithms.
Our objective is to describe a series of light-weight and accurate algorithms for identifying,
classifying, and summarizing informative user reviews into different groups of actionable
software maintenance requests. Our analysis is conducted using a dataset of app reviews that
is sampled from a broad range of application domains (Chen et al. 2014; Jha and Mahmoud
2017b; Maalej and Nabil 2015). Specifically, the work presented in this paper extends our
previous work in Jha and Mahmoud (2017b) as follows:

– Review summarization: Popular mobile apps, hosted at multiple app stores, often
generate thousands of informative reviews. Presenting such a large, and typically redun-
dant, amount of raw user reviews to developers can cause confusion. This emphasizes
the need for automated methods to identify and summarize the most pressing issues in
the reviews to enable a more effective data exploration process. To address this need,
we evaluate the performance of various text summarization algorithms in the context
of mobile app reviews. Our set of algorithms consists of Hybrid TF and Hybrid TF.IDF
(Inouye and Kalita 2011), SumBasic (Nenkova and Vanderwende 2005), and LexRank
(Erkan and Radev 2004). These algorithms (except for LexRank) were used in our pre-
vious work to summarize software-relevant tweets available on the Twitter feeds of
several popular software systems (Williams and Mahmoud 2017).

– Tool support: In Jha and Mahmoud (2017a) we introduced MARC, a Mobile App
Review Classifier that implemented our algorithms in Jha and Mahmoud (2017b). In
this extension, we introduceMARC 2.0, a new release ofMARC that is equipped with an
enhanced GUI, a summarization engine, and a more accurate and efficient classification
engine.

– Enhanced text and discussion: The content of the paper is significantly enhanced
by adding more thorough discussions of our proposed methods, experimental analysis,
related work, and threats to validity.

The remainder of this paper is organized as follows. Section 2 introduces the FrameNet
project and the notion of semantic frames. Section 3 describes our review classification
process. Section 4 describes and evaluates our review summarization algorithms. Section 5
presents MARC 2.0. Section 6 reviews seminal work related to our work in this paper.
Section 7 discusses the main threats to validity. Finally, Section 8 concludes the paper and
discusses prospects of future work.

2 Frame Semantics

Housed and maintained by the International Computer Science Institute in Berkeley, California,
the FrameNet project (Baker et al. 1998) provides a massive machine readable database
of manually annotated sentences based on the theory of Frame Semantics (Fillmore 1976).

Empir Software Eng (2018) 23:3734–37673736

Fig. 1 The semantic annotation of the sentence “John bought a car from Kristina in June.”

This theory states that the meanings of lexical items (predicates) are best defined with
respect to larger conceptual chunks, called Frames. Technically, the FrameNet2 project
works to identify significant frames in sentences, their frame elements, and lexical units. A
semantic frame (or simply frame) can be described as a schematic representation of a sit-
uation (events, actions) involving various elements. A frame element (FE) can be defined
as a participant entity or a semantic role in the action described by the frame. Lexical units
(LU) are basically the words that evoke the different frame elements. For instance, the frame
COMMERCE BUY describes a basic commercial transaction involving a buyer and a seller
exchanging money and goods. This frame has the core frame elements buyer (can be
evoked by lexical units such as buy) and goods. A core FE is an element that is necessary
for the frame to occur. The COMMERCE BUY frame also has several non-core FEs, such as
place, purpose, seller, and time.

Figure 1 shows the semantic annotation of the sentence “John bought a car from Kristina
in June.” under the semantic frame COMMERCE BUY. This sentence contains the frame
elements buyer, goods, seller, and time, evoked by the lexical units John, car,
Kristina, and June respectively. Another example is the sentence “He traveled to Germany
to buy a car”, shown in Table 1. This sentence is annotated under the semantic frames
TRAVEL, COMMERCE BUY, and VEHICLE. The TRAVEL semantic frame has the elements
traveler and goal, evoked by the words he and to Germany respectively. The COM-
MERCE BUY frame has the elements buyer and goods, evoked by the words he and car
respectively and the frame VEHICLE has the element vehicle, evoked by the word car.

This unique form of semantic annotation represents an invaluable source of knowledge
that can be exploited to support several text processing tasks. For example, the FrameNet
database has been used in tasks such as semantic classification of text (Fleischman et al.
2003), question answering (Sinha 2008) and information extraction (Moschitti et al. 2003).
Following this line of research, we utilize the FrameNet project to tackle the problem of
mining user reviews in app stores. Our expectation is that FrameNet tagging will enable a
deep understanding of the meaning of individual user reviews. This in turn should help to
generate more accurate app review mining algorithms. Consider, for example, the sentence
“I can’t see the pictures fix it please!!” extracted from a review of the photo-sharing app
Imgur. Tagging this sentence using FrameNet results in the following frames:

I [can’t]CAPABILITY [see]GRASP the [pictures]PHYSICAL ARTWORKS [fix]PREDICAMENT
it [please]STIMULUS FOCUS.

The key semantic frame in this example is PREDICAMENT, which refers to a situa-
tion where “An Experiencer is in an undesirable Situation, whose Cause may also be

2https://framenet.icsi.berkeley.edu/fndrupal/

Empir Software Eng (2018) 23:3734–3767 3737

https://framenet.icsi.berkeley.edu/fndrupal/

Table 1 A color-coded tabular
representation of the semantic
annotation of the sentence “He
traveled to Germany to buy a
car”

expressed”. This frame can also be evoked by other words such as problem, trouble, and
jam. In general, any situation of inconvenience might evoke this frame. From a classification
point of view, this frame represents a feature that can be used to predict bug reports.

Another example is the two review sentences “I wish you could add a functionality to
use this app with any POP3 mailboxes.” and “I wanted to be able to use Gmail with all
POP3 mailboxes.” extracted from two different reviews of the Gmail app. Both sentences
convey the same message, describing a feature request to support all POP3 mailboxes, but
with different terminologies. Tagging these two sentences using FrameNet generates the
following representations:

I [wish]DESIRING you [could]CAPABILITY [add]STATEMENT a functionality to
[use]USING this app with [any]QUANTITY POP3 mailboxes.

I [wanted]DESIRING to be [able]CAPABILITY to [use]USING Gmail with [all]QUANTITY
POP3 mailboxes.

In the first sentence, the words wish, could, add, use, and any evoke the frames
DESIRING, CAPABILITY, STATEMENT, USING, and QUANTITY respectively. In the second
sentence, the words wanted, able, use, and all evoke the frames DESIRING, CAPABIL-
ITY, USING, and QUANTITY respectively. This example shows how similar frames are
evoked by different words that share the same meaning in a specific context. For instance,
in the above two sentences, the words wish and wanted are two different words that share
the same meaning in the given context, and therefore, they both evoke the frame DESIR-
ING. Similarly, the words could and able evoke the semantic frame CAPABILITY in both
sentences.

This form of semantic abstraction is expected to enhance the predictive capabilities of
text classifiers. In particular, in text classification tasks, each individual word of the text
is treated as a separate classification feature, such that the input text is represented as an
unordered vector of its words. This approach, known as the Bag-of-Words (BOW) classi-
fication, relies on the presence or absence of certain indicator terms in the text to make
a decision. For instance, in the context of app review classification, words such as {bug,
crash, fix, problem, issue, defect, solve, trouble} tend to be associated with bug reporting
reviews, while words such as {add, please, would, hope, improve, miss, need, prefer, sug-
gest, want, wish} are typically associated with feature requests or user requirements (Maalej
and Nabil 2015). Such words are used by text classifiers to classify the input text under a
certain label. In contrast, the approach we present in this paper can be described as a Bag-
of-Frames, or BOF, approach. In particular, the frames generated for each review, rather
than its word, are used as classification features to represent the text (i.e., vector of frames).

Empir Software Eng (2018) 23:3734–37673738

Our assumption is that the BOF representation of the data will generate lower dimensional,
and thus, potentially more accurate models. In what follows, we examine the impact of
using semantic frames on two basic review mining tasks, including review classification and
summarization.

3 App Review Classification

Under this phase of our analysis, we examine the impact of using frame semantics on the
accuracy of text classifiers that are commonly used in app review classification tasks. In
what follows, we describe our experimental setup, including the dataset used to conduct our
analysis, the classification algorithms used to classify the data, and the measures used to
assess the performance of these algorithms under different classification configurations.

3.1 Experimental Dataset

Our ground-truth dataset of app reviews is compiled from three different datasets.3 Around
25% of our reviews were randomly4 sampled from the data collected by Maalej and Nabil
(Maalej and Nabil 2015) and 50% were sampled from Chen et al.’s dataset (Chen et al.
2014). The remaining 25% of reviews were collected locally from the iOS apps Cred-
itKarma, FitBit, and Gmail. Using such a diverse data enhances the internal and external
validity of our results by reducing any potential sampling bias, a problem that is commonly
known as the app sampling problem (Martin et al. 2015).

For our local dataset, the most recent user reviews of each app were extracted using the
RSS feed generator of the iOS app store. These reviews were manually classified by the
authors and an external judge into feature requests, bug reports, and otherwise. Majority
voting was used to determine the final class of each review. Furthermore, the data sampled
fromMaalej and Nabil (2015) and Chen et al. (2014) were re-examined by the researchers to
ensure that their classification was consistent with our classification scheme. For example,
the review “Just un install and reinstall Works Awesome now Love this app probably best
ever!” fromMaalej and Nabil (2015) was classified as a bug report based on its title (“Crash
and will not open FIX”). In our analysis, we did not consider the titles of the reviews.
Therefore, the classification of this review was changed to uninformative (i.e., otherwise).
In total, our classification disagreed with the original classification of the external datasets
in less than 3% of the total number of reviews.

In a few cases, some reviews were labeled differently by each judge and further discus-
sion among the judges did not lead to a clear-cut label. For instance, the review “love the
game a little hard to play on a not-so-fast wifi” was classified as a bug report by one judge,
a feature request by the second judge, and otherwise by the third judge. A discussion among
the judges did not lead to an agreement on the final label, thus the review was removed.
In total, 13 instances were discarded from our dataset. Table 2 summarizes the character-
istics of our dataset, including the number of bug reports, feature requests, and otherwise
instances collected from each source.

3Our dataset is publicly available at http://seel.cse.lsu.edu/data/emse18.zip
4Randomization in our analysis is implemented using the .NET Random class

Empir Software Eng (2018) 23:3734–3767 3739

http://seel.cse.lsu.edu/data/emse18.zip

Table 2 The collection of datasets used in our analysis

Source Sampled Discarded Bug. Feat. Otherwise Total

Internal data 700 3 168 65 464 697

Data from Maalej and Nabil (2015) 725 8 318 199 200 717

Data from Chen et al. (2014) 1500 2 854 537 107 1498

Total 2925 13 1340 801 771 2912

3.2 Classifiers

To classify our data, we use Support Vector Machines (SVM) and Naive Bayes (NB).
Both algorithms are commonly used in text classification research (Cai and Hofmann 2004;
Dumais and Chen 2000; Joachims 1998; Kim et al. 2006; Sebastiani 2002), and have been
reported to outperform other classifiers in short-text classification tasks (e.g., Twitter data
(Guzman et al. 2016; Williams and Mahmoud 2017), YouTube comments (Poché et al.
2017), and app user reviews (Guzman et al. 2015; Maalej and Nabil 2015; Panichella et al.
2015; Wang and Manning 2012)). In what follows, we describe these algorithms in greater
detail:

– Support Vector Machines (SVM): SVM is a supervised machine learning algorithm
that is used to recognize patterns in multidimensional data spaces (Burges 1998). SVM
tries to find optimal hyperplanes for linearly separable patterns in the data and then
maximizes the margin around the separating hyperplane. Technically, support vectors
are the critical elements of the training set that would change the position of the dividing
hyperplanes if removed. SVM classifies the data by mapping input vectors into an N-
dimensional space, and deciding in which side of the defined hyperplane the point
lies. Support Vector classifiers have been empirically shown to be effective in high
dimensional and sparse text classification tasks (Joachims 1998).

– Naive Bayes (NB): NB is a simple, yet efficient, linear probabilistic classifier that is
based on Bayes’ theorem (Langley et al. 1992). NB is based on the conditional indepen-
dence assumption which implies that the attribute values of the data are independent of
each other given the class. In the context of text classification, the features of the model
are the individual words of the text artifacts. Such data are typically represented using a
2-dimensional word x documentmatrix. The entry i,j in the matrix can be either a binary
value that indicates whether the document di contains the word wj or not (i.e. {0, 1}),
or the relative frequency of the word wj appearing in the document di (McCallum and
Nigam 1998).

3.3 Implementation and classification settings

In our analysis we use Weka,5 a data mining software that implements a wide variety of
machine learning and classification techniques. SVM is invoked through Weka’s SMO,
which implements John Platt’s sequential minimal optimization algorithm for training a
support vector classifier (Platt 1998). To evaluate our classifiers, we use 10-fold cross vali-
dation. This method of evaluation creates 10 partitions of the dataset such that each partition

5www.cs.waikato.ac.nz/∼ml/weka/

Empir Software Eng (2018) 23:3734–37673740

www.cs.waikato.ac.nz/~ml/weka/

has 90% of the instances as a training set and the remaining 10% as an evaluation set. The
evaluation sets are chosen such that their union is the entire dataset. The benefit of this tech-
nique is that the results exhibit significantly less variance than those of simpler techniques,
such as the holdout method (i.e., using 70% of the data for training and 30% for testing)
(Kohavi 1995).

To generate the BOF representation of our data (i.e. annotate the review sentences), we
use SEMAFOR6—a probabilistic frame semantic parser (Das et al. 2010). SEMAFOR auto-
matically processes English sentences and generates their semantic annotations in a special
XML format. We created a special parser to extract the semantic frames of each annotated
sentence from the XML output.

For the BOW analysis, we used the IteratedLovinsStemmer provided in Weka to
stem the reviews in our dataset (Lovins 1968). Stemming reduces words to their morpho-
logical roots. This leads to a reduction in the number of features (words) as only one base
form of the word is considered. Most common words (words that appear in all reviews)
along with the words that appear in only one review were removed from the data. These
words are highly unlikely to carry any generalizable information. English stop-words were
not removed from our data. This decision was based on the previous observation that some
of these words (e.g., would, should, will) can carry important distinctive information for fea-
ture request reviews (Maalej and Nabil 2015; Panichella et al. 2015). For instance, several
of these requests start with phrases such as “would you”, “could you please”, or “why don’t
you”. Therefore, removing such words might lead to a decline in the predictive capabilities
of the classifier.

Furthermore, in our analysis, we useMultinomial NB, which uses the normalized frequency
(TF) of words in their documents (McCallum and Nigam 1998). Multinomial NB is known
to be a more robust text classifier, consistently outperforming the binary feature model
(Multi-variate Bernoulli) in highly diverse real-world corpora (McCallum and Nigam 1998).

3.4 Evaluation

Recall, precision, and the F-score are used to evaluate the performance of the different
classification techniques used in our analysis. Recall is a measure of coverage. It represents
the ratio of correctly classified instances under a specific label to the number of instances in
the data space that actually belong to that label. Precision, on the other hand, is a measure
of accuracy. It represents the ratio of correctly classified instances under a specific label to
the total number of classified instances under that label. Formally, if A is the set of data
instances in the data space which belong to the label λ, and B is the set of data instances
that were assigned by the classifier to that label, then the recall (R) and the precision (P)
can be calculated as:

Rλ = |A ∩ B|
|A| (1)

Pλ = |A ∩ B|
|B| (2)

We also use the Fβ score to report our results. This measure represents the harmonic mean
of recall and precision, such that:

Fβ = (β2 + 1)PR

(β2P + R)
(3)

6www.cs.cmu.edu/∼ark/SEMAFOR/

Empir Software Eng (2018) 23:3734–3767 3741

www.cs.cmu.edu/~ark/SEMAFOR/

Table 3 The performance of NB and SVM using the BOF and the BOW representations of the data in Table 2

Bug reports Feature requests

Classifier p r F1 p r F1

BOF + NB 0.80 0.83 0.81 0.70 0.69 0.70

BOF + SVM 0.84 0.88 0.86 0.73 0.75 0.74

BOW + NB 0.81 0.77 0.79 0.71 0.73 0.72

BOW + SVM 0.78 0.93 0.85 0.83 0.69 0.75

Different values for β can be used depending on the preference of precision versus recall
(Berry 2017; Powers 2014). For instance, in tasks such as requirements traceability and
bug localization (Huffman-Hayes et al. 2006; Khatiwada et al. 2018), errors of omission
(false negatives) are harder to deal with than errors of commission (false positives). In such
tasks, the F2 score, which emphasizes recall over precision, is typically used. In our anal-
ysis, we use F1 (β = 1) since we assume that both types of retrieval errors (omission and
commission) have the same impact on effort saving. Our assumption is based on the fact
that automated support is needed whenever the number of reviews is relatively large (up to
thousands of reviews). Therefore, a low precision would force users to wade through many
uninformative reviews to find the correct answers that are buried in the output. On the other
hand, a low recall would force users to manually examine an even larger number of reviews
to look for concerns that were not retrieved at all.

3.5 Results and Discussion

The results of our classification process are shown in Table 3. Using the BOF representa-
tion, SVM managed to outperform NB, achieving Fbugs = 0.86 and Ff eat. = 0.74, while
NB achieved Fbugs = 0.81 and Ff eat. = 0.70. A similar behavior was observed under
the BOW representation; SVM managed to achieve Fbugs = 0.85 and Ff eat. = 0.75, in
comparison to NB which achieved Fbugs = 0.79 and Ff eat. = 0.72. In general, SVM
outperforms NB, achieving almost the same performance under the two different represen-
tations of the data. The variation in precision under the different settings can be attributed
to the precision-recall trade-off (a higher recall often leads to a larger number of false pos-
itives). The relatively better performance of SVM in comparison to NB can be attributed
to its overfitting avoidance tendency—an inherent behavior of margin maximization which
does not depend on the number of features (Brusilovsky et al. 2007). Therefore, it has the
potential to scale up to high-dimensional data spaces with sparse instances, given that the
right kernel is selected (Joachims 1998). Choosing a proper kernel function can signifi-
cantly affect the generalization and predictive capabilities of SVM (Steinwart 2001). In our
analysis, the best performance of the SVM+BOW classifier was achieved using the Nor-
malized Poly Kernel, while the SVM+BOF classifier hit a maximum using the Pearson VII
function-based universal kernel (Puk) with σ = 8 and ω = 1 (Üstün et al. 2006).

To assess the generative capabilities of our classifiers, we tested their performance on an
external set of reviews that was sampled from apps that were not included in our original
dataset (Google Chrome, Facebook, and Google Maps). We sampled different number of
reviews from each app to enhance the diversity of the data. Similar to the reviews in original
dataset (Table 2), the newly sampled reviews were classified manually by the authors and

Empir Software Eng (2018) 23:3734–37673742

Table 4 A test set of app reviews

Source Bug reports Feature requests Otherwise Total

Facebook 56 7 32 95

Google Maps 108 17 50 175

Google Chrome 125 26 89 240

Total 289 50 171 510

an external judge (See Section 3.1). Table 4 describes the final test dataset.7 Our main
objective is to test the ability of the generated classifiers to generalize over unseen-before
data, in other words, test for overfitting. In automated classification, overfitting refers to
a phenomenon where the classifier learns separate data instances (i.e., model the training
data), rather than learning general categories. Formally, the model M overfits the data if
there exists some other modelM’, such that,M has a smaller error over the training data than
M’. However, M’ has a smaller error than M over the entire distribution (Mitchell 1997).

To test for overfitting, the original models generated using the data in Table 2 were saved,
reloaded, and re-evaluated over the test set. The performance of our different classifiers on
the external test set is shown in Table 5. The results show that the BOF classifiers managed
to outperform the classifiers generated using the BOW representation. More specifically,
BOF+SVM achieved Fbugs = 0.96 and Ff eat. = 0.75. In contrast, the performance of
the BOW classifiers has drastically dropped over the set of feature requests in the test set
to Ff eat. = 0.54 for SVM and Ff eat. = 0.39 for NB, failing to match the performance
achieved on the original dataset.

In general, the results over the test dataset suggest that NB and SVM trained under the
BOW representation of the data suffered from overfitting. This behavior can be attributed
to the fact that the feature space (number of words) is typically very large (Joachims 1998).
A larger number of features causes the vector representation (BOW) of reviews to be very
sparse (only very few entries with non-zero weights). This in turn forces the classifier to
learn specific data instances rather than the general classification categories. The BOF rep-
resentation, on the other hand, seems to be overcoming this problem by raising the level
of abstraction from specific words to more abstract semantic representations. Reducing the
number of features that the classifier needs to consider decreases the chances of overfit-
ting and leads to better generalizations over unseen before data instances. For example,
Table 6 shows the most popular frames in our original dataset (Table 2). The BOW training
dataset did not have the word desire. As a result, the feature request “another window is
highly desired” in our BOW test set was incorrectly classified as uninformative (i.e., oth-
erwise). However, under the BOF representation, this review was correctly classified as a
feature request since the word desire evoked the frame DESIRING, which is one of the most
distinctive frames of feature request reviews.

A smaller number of features not only reduces the chances of overfitting, but also speeds
up the training process by reducing the computational requirements of the classifier. In our
analysis, the BOF representation required 10 s to build the classifier and 96 s for evaluation
using the 10-fold evaluation strategy, while the BOW representation required 32 s to build
the classifier and 293 s for evaluation. This can be explained based on the fact that only 552
unique frames were used to build the BOF model, while the BOW model was built using

7http://seel.cse.lsu.edu/data/emse18.zip

Empir Software Eng (2018) 23:3734–3767 3743

http://seel.cse.lsu.edu/data/emse18.zip

Table 5 The performance of the different classifiers over the test set (Table 4)

Bug reports Feature requests

Classifier p r F1 p r F1

BOF + NB 0.85 0.92 0.88 0.41 0.73 0.53

BOF + SVM 0.94 0.99 0.96 0.62 0.96 0.75

BOW + NB 0.84 0.71 0.77 0.28 0.62 0.39

BOW + SVM 0.78 0.97 0.86 0.45 0.68 0.54

1592 unique words. On average, the BOF representation of the data saves up to 60% of the
space and time requirements needed to build a model using the BOW representation.

It is important to point out that the semantic frames approach requires downloading the
FrameNet database locally. This database occupies around 500 megabytes of space. This
could be avoided by using the online semantic parser SEMAFOR.8 However, the online
service requires more time to generate the semantic representations of the reviews. In par-
ticular, each review needs a separate Web request. The returned Web page has to be parsed
to extract the semantic frame representation of the text. Figure 2 shows the time required to
extract the semantic representations of 10 reviews of length 3, 6, and 9 frames. The time is
measured over 5 runs to ensure the accuracy of the readings. This analysis is executed on

4 Review Summarization

In the first phase of our analysis, we were able to isolate useful user reviews with a high
level of accuracy. However, presenting such a large, and typically redundant, amount of
raw reviews to developers can cause confusion. This emphasizes the need for automated
methods to identify and summarize the most pressing issues in the technically informative
reviews to facilitate a more effective data exploration process (Sorbo et al. 2016). A sum-
mary can be described as a short and compact description that outlines the main themes
present in a text collection (Khabiri et al. 2011; Llewellyn et al. 2014). The objective of
review summarization is to assimilate the concerns of a large number of users in a few main
topics.

4.1 Automatic Summarization

The main task under this phase of our analysis can be described as a multi-document
summarization problem, where each user review is treated as a separate document. Multi-
document summarization techniques can be either extractive or abstractive. Abstractive
methods involve generating novel concise sentences, with a proper English narrative,
describing the overall content of the text collection. Extractive methods, on the other hand,
select specific sentences, or keywords, already present in the text as representatives of the
entire text collection.

a 2.80GHz CPU with 16.0GB of RAM at 50 Mbps internet speed.
Abstractive methods often include heavy lexical parsing and reasoning to paraphrase

novel sentences around extracted information (Hahn and Mani 2000). Therefore, they are

8http://demo.ark.cs.cmu.edu/parse

Empir Software Eng (2018) 23:3734–37673744

http://demo.ark.cs.cmu.edu/parse

Table 6 The most popular frames in our original dataset (Table 2) and their evoking words

Semantic frame Evoking words

TEMPORAL COLLOCATION When, now, current

CAPABILITY Can, cannot, able, unable, capable

DESIRING Eager, hoping, want, desire

PREDICAMENT Problem, error, fix, trouble

MEASURE DURATION Year, month, week, day, minute, time, awhile, endless

known to work for semantically rich and grammatically sound corpora with high controver-
siality, such as scientific documents and news article (Barzilay et al. 1999; Cheung 2008).
However, from a linguistic point of view, user reviews on application stores can be described
as pieces of short text. Short-text is a new type of text that has emerged recently in Natu-
ral Language Processing (NLP) research as a result of the explosive growth of micro-blogs
on social media (e.g., Tweets and YouTube and Facebook comments) and the urgent need
for effective methods to analyze such large amounts of limited textual data. Such texts are
known to be lexically and semantically restricted, and typically contain colloquial terms
(e.g., LOL, smh, idk) along with phonetic spellings and other neologisms (Squires 2010).
For this type of text, extractive methods have been found to be more effective in generating
concise summaries (Nichols et al. 2012).

The majority of extractive text summarization algorithms rely on the frequencies of
words as an indication of their perceived importance (Hahn and Mani 2000). Specifically,
the likelihood of words appearing in a human-generated summary is positively correlated
with their frequency (Khabiri et al. 2011). Formally, an extractive summarization process
can be described as follows: given a topic, or a phrase, M in a list of user reviews R, and
assuming the desired summary length is K , generate a set of representative reviews R′ with
a cardinality of K such that ∀ri ∈ R′,M ∈ ri and ∀ri , ∀rj ∈ R′, ri � rj . The condi-
tion ri � rj is enforced to ensure that the selected reviews to be included in the summary
provide sufficiently different information (i.e., are not redundant) (Inouye and Kalita 2011).

Extractive summaries can take the form of a word cloud. A word cloud can be described
as a visual representation of textual data in which important words are written (visualized)
in a larger font size. The importance of a word in the tag cloud can be simply correlated
to its frequency in the text. Figure 3 shows a word cloud generated for a set of reviews
sampled from the Alexa app. The cloud shows the 30 most frequent words in the reviews
after removing English stop-words.

Fig. 2 The time required to
generate the semantic
representations of different length
reviews (3, 6, and 9 frames)
using the online SEMAFOR
parser measured over 5 runs

Empir Software Eng (2018) 23:3734–3767 3745

Fig. 3 Examples of user concerns raised in the reviews of the Alexa app summarized using full review
summaries and a word cloud

While word clouds can capture the main concerns in the reviews, due to the lack of con-
text, it is often unclear what these concerns actually are. In contrast, full-sentence extractive
summaries have the advantage of preserving the context (Barker et al. 2016; Khabiri et al.
2011). For instance, Fig. 3 shows sample reviews related to two main issues raised in the
set of Alexa’s reviews. These concerns are a request for a search option and a report of a
white-screen bug. Extracting these full reviews gives developers a better idea of what the
main user concerns actually are.

Based on these observations, in our analysis, we employ several full-sentence extractive
summarization algorithms for review summarization. These algorithms have been heavily
used in short-text summarization tasks and have been shown to generate human-like sum-
maries (Erkan and Radev 2004; Inouye and Kalita 2011; Nenkova and Vanderwende 2005).
Furthermore, these algorithms are easy to understand and implement and are computation-
ally less expensive than other techniques such as topic modeling (Chen et al. 2014) or
cluster-based summarization (Villarroel et al. 2016). In detail, our summarization algorithms
can be described as follows:

– Hybrid Term Frequency (TF): Hybrid TF relies on the basic frequency of words to
determine the importance of a specific sentence (user review) to the collection. For-
mally, the weight of a word wi is computed as its frequency in the entire collection
of reviews (f wi) divided by the number of unique words in the collection (N). This
modification (i.e. hybrid) over classical single-document TF is necessary to capture
the concerns that are frequent over the entire collection (Inouye and Kalita 2011). The

Empir Software Eng (2018) 23:3734–37673746

probability of a review (rj) of length n words to appear in the summary is calculated as
the average of the weights of its individual words:

score(rj) = 1

n

n∑

i=1

f wi/N. (4)

– Hybrid TF.IDF: Hybrid TF.IDF is similar in concept to hybrid TF (Inouye and Kalita
2011). However, it accounts for the scarcity of words across all user reviews by using
the inverse document frequency (IDF) of words. IDF penalizes words that are too
frequent in the text. Formally, TF.IDF can be computed as:

T F.IDF = T F(wi) × log
|R|

|rj : wi ∈ rj ∧ rj ∈ R| (5)

where T F(wi) is the term frequency of the word wi in the entire collection, |R| is the
total number of reviews in the collection, and |rj : wi ∈ rj ∧ rj ∈ R| is the number of
reviews in R that contain the wordwi . The importance of a review can then be calculated
as the average TF.IDF score of its individual words. To control for redundancy, or the
chances of two very similar user review to be included in the summary, before adding
a top scoring review to the summary, the algorithm makes sure that the review does
not have a textual similarity above a certain threshold with any other reviews already
present in the summary. The textual similarity between two reviews ri and rj can be
calculated as the cosine of the angle between their vectors:

– SumBasic: Introduced by Nenkova and Vanderwende (2005), SumBasic uses the aver-
age term frequency (TF) of words in the text collection to determine their value.
However, the weight of individual words is updated after it is included in the summary
to minimize redundancy. This approach can be described as follows:

1. The probability of a word wi with a frequency of f wi in a corpus of size N words
is calculated as:

ρ(wi) = f wi/N (7)

2. The weight of a review rj of length n words is calculated as the average probability
of its words, given by:

score(rj) = 1

n

|n|∑

i=1

ρ(wi) (8)

3. The top scoring review is selected and added to the summary. To control for redun-
dancy, or to minimize the chances of selecting reviews describing the same topic
using the same high frequency words, the probability of each word in the selected
review is reduced by:

ρ(wi)new = ρ(wi) × ρ(wi) (9)

4. Repeat from 2 until the required length of the summary is met.

– LexRank: LexRank is a graph-based algorithm that is used to determine the most
important sentences in a given corpus. The algorithmworks by generating an undirected
graph of sentences in the collection (Erkan and Radev 2004). Individual sentences
(nodes) in the graph are connected using their cosine similarity. An n × n cosine-
similarity matrix is built for the graph. A threshold can be applied to the similarity

Empir Software Eng (2018) 23:3734–3767 3747

Table 7 Frequency, Hybrid TF, Hybrid TF.IDF, and Hybrid TF2 of the words in the sample review corpus

Word Frequency Hybrid TF Hybrid TF.IDF Hybrid TF2

keep 1 1/13 1 * log 4 = 0.6 0.006

crash 2 2/13 2 * log 2 = 0.6 0.024

delete 2 2/13 2 * log 2 = 0.6 0.024

picture 4 4/13 4 * log 1 = 0.0 0.095

see 1 1/13 1 * log 4 = 0.6 0.006

click 1 1/13 1 * log 4 = 0.6 0.006

view 2 2/13 2 * log 2 = 0.6 0.024

grid 1 1/13 1 * log 4 = 0.6 0.006

matrix to filter out links that are not so significant. Individual sentences in the graph
can then be ranked using the PageRank algorithm (Page et al. 1999). Formally, using
LexRank, the probability of a sentence to be included in the summary, or p(u), can be
described as follows:

where N is the total number of sentences in the document, d is the damping factor,
typically selected as 0.85 (Brin and Page 1998), and is the TF.IDF cosine
similarity between u and v (6). Using this formula, when computing LexRank for a
sentence, the LexRank scores of the linking sentences are multiplied by the weights of
the links, thus accounting for information subsumption among sentences (Erkan and
Radev 2004).

Example The following example demonstrates the operation of the different summariza-
tion algorithms using 4 reviews sampled from a picture sharing app. Twomain user concerns
are raised in these reviews. The first concern is a feature request (reviewsR2 andR4), asking
for a feature to display all pictures at once. The second concern is a bug report, describing
a problem of a sudden crash whenever a picture is deleted (reviews R1 and R3).

After removing English stop-words and applying stemming, a total of 13 keywords are
left to be considered by the summarization algorithms. Table 7 shows the frequency, Hybrid
TF, and Hybrid TF.IDF weights of these words. Assuming a summary of length 2 is to be
generated (only two reviews to be included in the summary), Hybrid TF first selects R3 as
it has the highest average Hybrid TF scores (Table 8). The algorithm then randomly picks
either R2 or R4 as they both rank second in the list.

Using Hybrid TF.IDF, R1 will be added to the summary first as it has the highest average
Hybrid TF.IDF score (Table 8). Before the algorithmmakes its second selection, it calculates
the textual similarity (6) between R1 and the other three reviews. R3 is the most similar

Empir Software Eng (2018) 23:3734–37673748

Table 8 Hybrid TF score, Hybrid TF.IDF score, SumBasic2 score (i.e., the score after the first iteration of
SumBasic), and LexRank score of our sample reviews

Review Hybrid TF Hybrid TF.IDF SumBasic2 LexRank

R1 0.17 0.45 0.06 0.09

R2 0.18 0.40 0.11 0.03

R3 0.21 0.40 – 0.09

R4 0.18 0.40 0.11 0.03

to R1 as they share three words (crash, picture, delete). Therefore, it is not included in the
summary. Both R2 and R4 share the same textual similarity with R1. The algorithm picks
one of them randomly.

Using SumBasic,R3 gets selected first to be included in the summary as it has the highest
average Hybrid TF score. After selection, the Hybrid TF weights of the words (crash, delete,
picture) get reduced by squaring them (9). Column 5 of Table 7 shows the Hybrid TF2

of these words. The weights of the individual reviews are now re-calculated. The results
are shown in column 4 of Table 8. Now both R2 and R4 are the top scoring reviews after
removing R3, so the algorithm randomly picks one of them to be included in the summary.

Using LexRank, the algorithm first calculates the similarity between each two sen-
tences using the TF.IDF cosine similarity (6). Figure 4 shows the resulting similarity
graph. The values between the nodes denote the intra-sentence cosine similarities. Note that
TF.IDF(picture) = 0 since it appears in all reviews. The LexRank scores for each sentence
is then computed using (10). Initial p(v) values are set to 0.25 and a damping factor of 0.85
is used. Assuming the algorithm started its random walk from R1, the LexRanks of the dif-
ferent reviews after the first iteration are shown in Table 8. The algorithm ends up selecting
R1 and R2 as they have the highest LexRanks.

4.2 Evaluation

The evaluation of summarization algorithms typically relies on the human judgment of the
quality of generated summaries (Lin and Hovy 2003). For example, multiple judges are
presented with different automated summaries of a specific text collection, and are then
asked to rank these summaries based on their quality. Another evaluation approach relies
on comparing the automatically-generated summaries with human-generated summaries
(ground-truth) (Khabiri et al. 2011). In our analysis, we adopt the latter approach.

To conduct our evaluation, we recruited 8 programmers to participate in our experiment,
including 4 graduate students in computer science and 4 industry professionals. Our sub-
jects have reported an average of 4.3 years of programming experience. The apps Alexa,

Fig. 4 The LexRank similarity
graph of the reviews R1, R2, R3,
and R4

Empir Software Eng (2018) 23:3734–3767 3749

WellsFargo, Equifax, LinkedIn, FB Messenger, and Dubsmash were selected to conduct our
experiment. For each app, we collected the most recent 500 reviews. The reviews were col-
lected during the first week of April, 2017. These reviews were then classified using the
BOF+SVM classifier. We then randomly sampled 100 informative reviews (classified as
either bug reports or feature requests) from each app. These reviews were then randomized
to create 4 different versions (same 100 reviews but different order). This step is necessary
to avoid any ranking bias (e.g., subjects would always favor reviews from the top of the
list). It is important to point out that, given that our classifier is only around 80% accurate,
a small portion of the sampled reviews did not contain any useful information (i.e., were
missclassified as informative).

Each of our subjects was then randomly assigned 3 different sets of reviews from three
different apps to summarize, such that, each randomized copy of each set of reviews from
each app is summarized by at least one subject. Formally, assuming our set of subjects is
{s1, s2, . . . , s8}, the list of apps is {a, b, c, d, e, f }, and for each app α, the list of 4 different
randomized sets of reviews is {α1, α2, α3, α4}, apps assignment to subjects can be described
as follows:

– s1 = {f4, a4, c2}
– s2 = {a1, d3, c4}
– s3 = {d1, f3, b4}
– s4 = {b3, c1, f2}
– s5 = {d2, a2, e4}
– s6 = {e3, b2, e1}
– s7 = {f1, d4, c3}
– s8 = {a3, e2, b1}
The main task of our subjects was to go through each set of reviews and identify 10 reviews
that they believed captured the most important concerns raised in the set. No time constraint
was enforced. However, most of our subjects responded within a two week period.

The various summarization algorithms proposed earlier were then used to automatically
summarize the set of 100 reviews sampled from each of the 6 apps included in our exper-
iment. These reviews were initially pre-processed by stemming and by removing English
stop-words. This step is necessary to generate more accurate summaries. For instance, com-
mon English words (e.g., the, could, they) or different forms of the same word (e.g., crash,
crashes, crashing) can affect the frequency calculations of the summarization algorithms.

To assess the effectiveness of our summarization algorithms, for each app, we calcu-
lated the average term overlap between the human-generated, or reference, summaries and
the various automatically generated summaries. This metric is based on ROUGE—a suite
of metrics designed for the automatic evaluation of summarization algorithms (Lin 2004).
Formally, the average recall of a summarization algorithm t can be calculated as:

Recallt = 1

|S|
|S|∑

i=1

match(t, si)

count (si)
(11)

where S is the number of reference summaries, match(t, si) is the number of terms that
appear in both the reference summary si and the summary generated by t , and count (si)

is the number of unique terms in the reference summary si . An automated summary that
contains a greater number of terms from the reference summary is considered more optimal

Empir Software Eng (2018) 23:3734–37673750

Fig. 5 The recall of the different summarization algorithms using the BOW approach measured at different
length summaries (10, 15, 20)

(Inouye and Kalita 2011; Lin 2004; Nenkova and Vanderwende 2005). In our analysis,
recall is measured over different length summaries (10, 15, and 20 reviews included in the
summary). The recall of the different summarization algorithms is shown in Fig. 5.

We further assessed the performance of the different summarization algorithms using the
BOF representation of the reviews. In particular, the semantic frame representation for each
review from each app was generated. These reviews were then summarized based on their
frame frequency (the frequency of the frames in the reviews is used rather than the frequency
of the words). After each algorithm has picked the top 10, 15, and 20 reviews to be included
in the summary, we regenerated the textual representations of these reviews and compared
them against the human-generated summaries. The recall of the different summarization
algorithms using the BOF approach is shown in Fig. 6.

Fig. 6 The recall of the different summarization algorithms using the BOF approach measured at different
length summaries (10, 15, 20)

Empir Software Eng (2018) 23:3734–3767 3751

4.3 Results and Discussion

We conducted a brief interview with our subjects at the end of the experiment to understand
their summarization behavior. Out of our 8 subjects, 3 indicated that they read the reviews
from the top of the list downward, selecting a review every time an issue appeared for a
second or a third time. The other 5 subjects indicated that they first went through the list of
reviews once or twice, identified the main (most frequent) concerns, then randomly selected
reviews that captured all these concerns. All subjects indicated that the frequency of an
issue was the deciding factor to whether to include that issue in the summary or not. In what
follows, we present and discuss our results in greater detail.

4.3.1 Summarization Results

Figures 5 and 6 show the performance of the different summarization algorithms using the
BOW and BOF representations of the data respectively. Furthermore, Table 9 shows the best
performing summarization algorithm, in terms of recall, for each app using the BOF and
BOW representations. Randomly generated summaries were used as an experimental base-
line to compare the performance of our algorithms. The random baseline is commonly used
to evaluate extractive-based summarization techniques (Inouye and Kalita 2011; Mackie
et al. 2014). Basically, if a random extraction of text generates more cohesive summaries
than a summarization algorithm then the algorithm is pretty much useless.

We conduct a two-way ANalysis Of Variance (ANOVA) to test if the difference in the
quality of summaries between the two representations of the data is statistically significant.
The data are normally distributed according to Kolmogorov-Smirnov test of normality (p =
0.200), thus ANOVA’s assumption of normality is met. Our first independent variable is
the representation of the data (BOW and BOF) and our second independent variable is the
summarization algorithm (Random, Hybrid TF, Hybrid TF.IDF, SumBasic, and LexRank).
The dependent variable is the performance (as measured by (11)) of the summarization
algorithms.

Assuming a significance level of α = 0.05, the results of our two-way ANOVA test show
that there is a significant difference in the performance between the different algorithms
(F = 21.58, p < 0.01). The results also show that the main effect of the data representation
(BOF vs. BOW) is significant (F = 6.37, p < 0.05). A significant interaction effect is
also detected between the representation of the data and the summarization algorithm (F =
4.92, p < 0.05). In particular, the summarization algorithms perform significantly better
under the BOW representation.

Table 9 The best performing summarization algorithm (recall) for each app under the BOW and BOF
representations of the data

App BOW BOF

Alexa TF.IDF (56%) LexRank (46%)

WellsFargo SumBasic (65%) SumBasic (52%)

Dubsmash SumBasic (69%) LexRank (64%)

Equifax TF.IDF (73%) LexRank (57%)

LinkedIn SumBasic (78%) TF.IDF (48%)

Messenger SumBasic (88%) SumBasic (55%)

Empir Software Eng (2018) 23:3734–37673752

Table 10 Comparing the performance of the different summarization algorithms using Tukey’s HSD Post-
Hoc analysis

Hybrid TF Hybrid TF.IDF SumBasic LexRank

Random p < 0.01 ↑ p < 0.01 ↑ p < 0.01 ↑ p < 0.01 ↑
Hybrid TF p = 0.10 ↑ p < 0.01 ↑ p = 0.84 ↑
Hybrid TF.IDF p = 0.76 ↑ p = 0.58 ↓
SumBasic p < 0.05 ↓

The arrows show the direction of difference in reference to the algorithm at first column

We further run a Tukey’s Honest Significant Difference (HSD) test to determine which
algorithms performed overall significantly better than others (Tukey 1949). Tukey’s HSD is
a Post-Hoc analysis that can be run after ANOVA to determine which specific group’s means
(compared with each other) are different. The test compares all possible pairs of means.
The results in Table 10 show that, regardless of the data representation, all algorithms have
significantly outperformed the random baseline. The results also show that SumBasic has
managed to significantly outperform Hybrid TF (p < 0.01) and LexRank (p < 0.05). Sum-
Basic has also outperformed Hybrid TF.IDF. However, the difference in the performance
between these two algorithms failed to reach significance (p = 0.758).

In general, under the BOW representation, SumBasic was the most successful in captur-
ing the concerns raised in the human-generated summaries, achieving an average recall of
71%. Hybrid TF.IDF was also competitive, achieving an average recall of 60%. The best
performance of Hybrid TF.IDF was achieved at 0.2 similarity threshold. Figure 7 shows
that the performance of Hybrid TF.IDF deteriorates at larger thresholds (i.e., more simi-
lar reviews are allowed into the summary). Meanwhile, Hybrid TF failed to compete with
the other algorithms, suggesting that redundancy control is important in order to achieve
comprehensive summaries. LexRank, while it managed to slightly (but not significantly)
outperform Hybrid TF (p = 0.836), could not match the performance of SumBasic and
Hybrid TF.IDF, achieving an average recall of 41%.

Fig. 7 The performance of
Hybrid TF.IDF at different
similarity (redundancy)
thresholds

Empir Software Eng (2018) 23:3734–3767 3753

4.3.2 Examples of Generated Summaries

To get a sense of the performance of the different summarization algorithms, we examine
their performance on the list of reviews sampled from the Alexa app. Figure 8 shows the
summaries (10 reviews each) generated by each of the summarization algorithms. Words
that indicate common user concerns are highlighted. Longer reviews are truncated to save
space. Manually examining the list of reviews for the Alexa app shows that the most frequent
concerns are bug reports of app freezing and crashing and a white screen problem, and
feature requests for a landscape mode, a search option, and an enhanced interface. Some
other, but less frequent, concerns include problems with pairing with other devices and
minor system setup problems.

Figure 8 shows that 7 out of the 10 reviews included in summary generated by Hybrid
TF contained valid user concerns. However, these concerns are redundant, describing only
the bugs of app crashing, freezing, and the white screen problem. At a similarity thresh-
old of 0.2, Hybrid TF.IDF, was more successful than Hybrid TF, with 6 out of the 10
reviews included in the summary contained user concerns. However, these concerns covered
a broader range of issues, including the bugs of system crashing, freezing, and the white
screen problem, and the requests for a landscape mode and a search option.

Using SumBasic, 7 out of the top 10 reviews included in the summary contained valid
user concerns. These concerns covered the bugs of crashing and freezing, the white screen
problem, the request for the search option and the landscape mode, as well as other interface
and usability issues. In the LexRank summary, 9 out of the 10 reviews contained technical
user feedback. However, while it managed to capture some of the less popular issues, such
as pairing with other devices and system setup problems, LexRank failed to capture major
user concerns such as the requests for a search option and a landscape mode.

In general, our example shows that SumBasic and Hybrid TF.IDF were able to generate
the most comprehensive summaries that captured the majority of the concerns our subjects
identified. However, the best performance of Hybrid TF.IDF was only achieved after an
exhaustive calibration of the redundancy control threshold. Hybrid TF was the least suc-
cessful, only capturing the concerns that were most frequent in the reviews. In general, the
words that are used to describe these concerns have the highest relative frequency. There-
fore, reviews including these words tend to have higher scores than reviews containing
other popular, but less frequent, concerns. LexRank was also less successful than SumBa-
sic and Hybrid TF.IDF, even though it managed to add more technically useful reviews to
the summary. This can be explained based on LexRank’s tendency to favor longer sentences
(Otterbacher et al. 2009). Longer sentences tend to be more central in the similarity graph
(Fig. 4) than shorter sentences. This can be attributed to the fact that, in addition to consid-
ering the value of a sentence to its neighbors, LexRank takes into account the importance
of the neighbors to that sentence. Therefore, longer sentences that have more words are val-
ued more than shorter sentences as they are strongly connected to more sentences in the
similarity graph.

4.3.3 BOF vs. BOW Summarization

Our results also show that the overall performance of the summarization algorithms has sig-
nificantly dropped under the BOF representation (F = 4.92, p < 0.05). In general, while

Empir Software Eng (2018) 23:3734–37673754

Fig. 8 The main user concerns detected in the 10 reviews included in the summaries generated by the
different summarization algorithms

Empir Software Eng (2018) 23:3734–3767 3755

using the BOF representation of the data had a positive impact on the classification accu-
racy, using this representation for extractive summarization seems to harm the performance.
These conflicting results can be explained based on the level of abstraction required by dif-
ferent data mining tasks. More specifically, in review classification, we are interested in the
general categories of the data, including whether a review describes a bug report or a feature
request. In contrast, in summarization tasks, we are interested in a lower level of abstrac-
tion, down to the specific user issue. In such scenarios, using frame semantics might lead to
information loss. The following three examples explain this problem:

(a) The semantic representation of the review “I can’t download my videos” has only the
frame CAPABILITY as words such as download and videos do not evoke any frames.

(b) Even though the two reviews “Can we get a gray filter?” and “Can we get a red font
pls?!” request two different features, both were regarded as one issue as they were
annotated under the same frames as follows:

[Can]CAPABILITY we [get]GETTING a [gray]COLOR filter?
[Can]CAPABILITY we [get]GETTING a [red]COLOR font pls?!

(c) In the following three reviews:

– “Landscape mode was taken away! Bad move”
– “App doesn’t work at all, just a blank white screen.”
– “I reset it and now it won’t do anything thing.”

A dominant frame such as INTENTIONALLY ACT that is evoked by the generic
words bad, doesn’t, won’t tend to be mistaken for a dominant issue, thus misleading
the summarization algorithm.

In summary, our results show that a simple frequency based summarization algorithm
with redundancy control can generate summaries that are aligned with the human judgment
to a large extent. The BOF representation, while can help in review classification, can lead
to a significant decline in the performance of summarization algorithms. Therefore, for
practical applications, a tool that relies on the BOF representation for classification and the
BOW representation for summarization is expected to generate the most accurate results.

5 Tool Support: MARC 2.0

We implemented the classification and summarization algorithms investigated in our anal-
ysis in MARC 2.0—an extension of our Mobile Application Review Classifier (MARC
1.0) prototype presented in Jha and Mahmoud (2017a). This implementation9 is provided to
demonstrate the computational feasibility of our algorithms, facilitate the replication of our
analysis, and ultimately, be used by app developers in their daily review mining tasks. The
following is a description of the main features of MARC 2.0.

9https://github.com/seelprojects/MARC-2.0

Empir Software Eng (2018) 23:3734–37673756

https://github.com/seelprojects/MARC-2.0

5.1 Data Collection

MARC 2.0 supports a data collection feature that enables users to download the most recent
reviews from the Apple App Store. Technically, MARC 2.0 uses iTunes IDs of apps to make
web requests to the App Store’s RSS feed. The generated JSON pages are then parsed by
a special-purpose parser to extract user reviews. App ID numbers can be obtained directly
from the URL of the app on iTunes. For example, Gmail’s ID number (422689480) can be
directly obtained directly from its iTunes page as follows:

https://itunes.apple.com/us/app/gmail-email-by-google
/id422689480?mt=8

Once the app ID number is provided, MARC 2.0 makes the following Web request:

https://itunes.apple.com/rss/customerreviews/page=1/
id=422689480/sortby=mostrecent/json

Extracted reviews are then displayed to the user on the home page of MARC 2.0.

5.2 Classification

The classification engine of MARC 2.0 currently supports Naive Bayes (NB) and Sup-
port Vector Machines (SVM). These two classifiers are implemented through Weka’s API.
This API converts the input reviews into a Weka compatible file format (.arff). The
filter StringToWordVector is used to generate the word x document matrix for the
reviews to be classified. MARC 2.0 uses a default training dataset of manually classified
reviews to train and test the underlying classification engine. This dataset is compiled from
the dataset used in our experimental analysis. Users can further provide their own training
datasets. To ensure flexibility, MARC 2.0 enables users to choose from multiple text pre-
processing settings, including stemming and stop-word removal. Stemming is implemented
using Weka’s IteratedLovinsStemmer (Lovins 1968) and stop-words are provided
in a separate configuration file that users can edit. Furthermore, MARC 2.0 enables users
to select a data representation (BOW vs. BOF) for classification. The BOF representation
is supported through a special purpose parser that reads and parses the XML file gener-
ated by the probabilistic frame semantic parser SEMAFOR (Das et al. 2010). Figure 2
shows the average time MARC 2.0 requires to generate the BOF representation of the input
reviews.

5.3 Summarization

MARC 2.0 provides users with an option to summarize classified user reviews. The summa-
rization engine of MARC 2.0 supports the various summarization algorithms evaluated in
our analysis (Hybrid TF, Hybrid TF.IDF, SumBasic, and LexRank). Users can select the size
of the summary (number of reviews to be included in the summary), as well as the thresh-
old for Hybrid TF.IDF. MARC 2.0 also enables users to generate word cloud summaries of
reviews. Users can switch back and forth between the two views.

Empir Software Eng (2018) 23:3734–3767 3757

5.4 Stop-Word Editor

MARC 2.0 provides users with a feature to edit their list of stop-words (add and remove
words). Our analysis has shown that the quality of the generated summaries can be severely
impacted by irrelevant words, or none English stop-words that do not provide any use-
ful information to app developers. For instance, app names tend to appear frequently in
their reviews, thus impacting the frequency calculations of the summarization algorithms.
Such words typically do not appear in generic lists of English stop-words. Therefore, it is
necessary to provide users with the ability to filter these words out.

6 Related Work

The research on app store review analysis has noticeably advanced in the past few years.
Numerous studies have been conducted on review classification, summarization, and pri-
oritization. A comprehensive survey of these studies is provided in Martin et al. (2017). In
this section, we selectively review and discuss important related work in this domain. Our
review also includes important work from the domain of mining social media platforms
(Twitter) for software user feedback.

6.1 Mining App Store Reviews for User Feedback

Iacob and Harrison (2013) introduced MARA, a tool for mining feature requests from app
store reviews. MARA identifies sentences expressing feature requests based on a set of
predefined linguistic rules. These rules were identified by analyzing keywords and linguis-
tic patterns associated with feature requests. MARA was evaluated using a sample of 480
reviews extracted from Google Play. The results showed that 23.3% of reviews represented
feature requests.

Carreńo and Winbladh (2013) applied topic modeling and sentiment analysis classifica-
tion to identify user comments relevant to requirement changes. Specifically, the authors
processed user comments to extract the main topics mentioned as well as some sentences
representative of those topics. Evaluating the proposed approach over three datasets of man-
ually classified user reviews showed promising performance levels in terms of accuracy and
effort-saving.

Guzman and Maalej (2014) proposed an automated approach to help developers filter,
aggregate, and analyze app reviews. The proposed approach uses a collocation finding algo-
rithm to extract any fine-grained requirements mentioned in the review. These requirements
are grouped into more meaningful high-level features using topic modeling. The authors
used over 32,210 reviews extracted from 7 iOS and Android apps to conduct their analysis.
The results showed that the proposed approach managed to successfully capture and group
the most common feature requests in the reviews.

Chen et al. (2014) presented AR-Miner, a computational framework that helps develop-
ers to identify the most informative user app reviews. Uninformative reviews were initially
filtered out using Expectation Maximization for Naive Bayes—a semi supervised text
classification algorithm. The remaining reviews were then analyzed and categorized into
different groups using topic modeling (Blei et al. 2003). These groups were ranked by a
review ranking scheme based on their potential information value. The proposed approach
was evaluated on a manually classified dataset of app reviews collected from 4 popular

Empir Software Eng (2018) 23:3734–37673758

Android apps. The results showed high accuracy levels in terms of precision, recall, and the
quality of the ranking.

Panichella et al. (2015) proposed a supervised approach for classifying mobile app
reviews into several categories of technical feedback (e.g., bug reports and feature requests).
The authors extracted a set of linguistic features from each review, including the most
important words, the main sentiment of the review, and any linguistic patterns that repre-
sented potential maintenance requests. Different types of classifiers were then trained using
various combinations of these features. The results showed that Decision Trees (Quinlan
1986), trained over recurrent linguistic patterns and sentiment scores, achieved the best
performance in terms of precision and recall.

Maalej and Nabil (2015) introduced several probabilistic techniques for classifying app
reviews into bug reports, feature requests, user experiences, and ratings. The authors experimented
with several binary and multi-class classifiers, including Naive Bayes, Decision Trees, and
Maximum Entropy. A dataset of 4400 manually labeled reviews from Google Play and the
Apple App Store was used to evaluate the performance of these different classifiers. The
results showed that binary classifiers (Naive Bayes) were more accurate for predicting the
review type than multi-class classifiers. The results also revealed that review features, such
as star-rating, tense, sentiment scores, and length, as well as text analysis techniques, such
as stemming and lemmatization, enhanced the accuracy of the classification.

Khalid et al. (2015) conducted an analytical study of user reviews with the main objec-
tive of helping developers to better anticipate and prioritize possible user complaints. The
authors manually examined and classified thousands of app reviews from 20 iOS apps
focusing on one and two star reviews. The analysis uncovered 12 types of common users
complaints, with functional errors being the most frequent complaints.

Mcllroy et al. (2016) analyzed the multi-labeled nature of user reviews in popular app
stores. A qualitative analysis of the data showed that a substantial amount (30%) of user
reviews raised more than one issue type (feature requests, functional complaints, and privacy
issues). The authors experimented with several classification and multi-labeling techniques
to automatically assign multiple labels to reviews. The results showed that a combination of
Pruned Sets with threshold extension (PSt) (Read et al. 2008) and SVM achieved the best
performance.

Villarroel et al. (2016) introduced CLAP (Crowd Listener for releAse Planning). CLAP
categorizes and prioritizes user reviews to aid in release planning. Technically, the authors
used DBSCAN (Ester et al. 1996), a density-based algorithm for discovering clusters of
related reviews. Random Forests algorithm was used to label each cluster as high or low pri-
ority based on factors such as the size of the cluster, its average review rating, and hardware
devices mentioned in its reviews. CLAP was evaluated in industrial settings and using expert
judgment. The results showed that CLAP can accurately categorize and cluster reviews and
make meaningful release planning recommendations.

Ciurumelea et al. (2017) proposed a taxonomy to analyze reviews and codes of mobile
apps for better release planning. The authors defined mobile specific categories of user
reviews that can be highly relevant for developers during software maintenance (e.g.,
compatibility, usage, resources, pricing, and complaints). A prototype that uses Machine
Learning (ML) and Information Retrieval (IR) techniques was then introduced to classify
reviews and recommend source code files that are likely to be modified to handle issues
raised in the reviews. The proposed approach was evaluated using 39 open source apps from
Google Play. The results showed that the proposed approach can organize reviews according
to the predefined taxonomy with a decent level of accuracy.

Empir Software Eng (2018) 23:3734–3767 3759

Groen et al. (2017) studied mining user quality concerns (non-functional requirements)
from app reviews. By tagging online reviews, the authors found that users mainly expressed
usability and reliability concerns, focusing on aspects such as operability, adaptability, fault
tolerance, and interoperability. The authors further proposed a set of linguistic patterns to
automatically capture usability concerns in user reviews. Evaluating these patterns using
a large dataset of reviews showed that they can be used to identify statements about user
quality concerns with high precision. However, very low recall levels were reported.

Johann et al. (2017) identified 18 part-of-speech patterns (e.g., verb-noun-noun) and
5 sentence patterns (e.g., enumerations and conjunctions) that are frequently used in review
text to refer to app features. The main advantage of using such patterns over classification algo-
rithms, such as SVM and NB, is that no large training and configuration data are required.
The proposed approach was evaluated using reviews extracted from 10 different apps.
The results showed that linguistic patterns outperformed other models that relied on more
computationally expensive techniques, such as sentiment analysis and topic modeling.

In summary, our review shows that classical text classification techniques (SVM and
NB) are frequently used to categorize app user reviews. In some cases, linguistic patterns
are used as a direct and unsupervised approach for capturing user technical requests (Groen
et al. 2017; Ha and Wagner 2013; Johann et al. 2017; Panichella et al. 2015). Such meth-
ods rely on mining recurrent syntactic patterns from reviews, such as “[someone] should
try to [verb]”. Our work in this paper can be perceived as a combination of these two
approaches. In particular, reviews are first translated into their linguistic frame representa-
tion. These representations are then classified using algorithms such as SVM and NB. The
advantage of using semantic frames over linguistic patterns stems from the fact that prepar-
ing a complete list of patterns can be a laborious and time-consuming process. In particular,
researchers have to manually mine hundreds of reviews to capture and isolate such patterns
(Iacob and Harrison 2013). Consequently, this approach tends to achieve very low recall
levels in comparison to text classification algorithms such as SVM and NB (Groen et al.
2017; Panichella et al. 2015). The semantic frames approach, however, rely on a database
of more than 200,000 total annotation sets,10 thus accounting for more linguistic structures
that might emerge in the reviews.

In terms of summarization, our literature review shows that the majority of existing
work relies on topic modeling techniques, such as Latent Dirichlet Allocation (LDA) (Blei
et al. 2003), to create clusters of topically-related reviews (Carreńo and Winbladh 2013;
Chen et al. 2014; Guzman and Maalej 2014). However, most state-of-the-art topic model-
ing techniques require an exhaustive calibration of several parameters in order to generate
meaningful results (Blei et al. 2003). Furthermore, generated topics are often not trivial to
interpret and rationalize, and going through a large number of topics (100-200) can be an
exhaustive and error-prone process (Carreńo and Winbladh 2013). Other clustering tech-
niques (e.g., DBSCAN) also require setting the values of several parameters a priori in order
to produce meaningful clusters (Ciurumelea et al. 2017). This level of operational complex-
ity limits the practicality of any tools built on top of these techniques (Lo et al. 2015). In
our analysis, we avoid this complexity by using frequency-based summarization techniques.
These techniques require no calibration from the user and have very low computational
complexity in comparison to topic modeling and clustering techniques, thus, can be easily
integrated into practical working prototypes.

10https://framenet.icsi.berkeley.edu/fndrupal/current status

Empir Software Eng (2018) 23:3734–37673760

https://framenet.icsi.berkeley.edu/fndrupal/current_status

6.2 Mining Twitter Feeds for Software User Feedback

Twitter enables large populations of end-users of software to publicly share their experi-
ences and concerns about software systems in the form of micro-blogs. Similar to user
feedback available on app stores, Twitter data can be collected and classified to help soft-
ware developers infer users’ needs, detect bugs in their code, and plan for future releases
of their systems. For instance, in our previous work (Williams and Mahmoud 2017), we
examined Twitter as a source of useful user technical feedback that software developers can
benefit from. Our analysis was conducted using 4,000 tweets collected from the Twitter
feeds of 10 software systems. Our results revealed that around 50% of collected tweets con-
tained actionable maintenance requests. The results also showed that text classifiers, such
as SVM and NB, can be very effective in capturing and categorizing technically informative
tweets. We further evaluated the performance of Hybrid TF, Hybrid TF.IDF, and SumBasic,
in summarizing software-related tweets. Our results showed that, similar to our findings in
this paper, SumBasic was able to achieve the highest agreement with our human-generated
summaries.

Guzman et al. (2016), the authors manually analyzed and classified a sample of 1,000
tweets to determine the usage characteristics and content of software-relevant tweets. The
analysis showed that software tweets contained useful information for different groups of
technical and non-technical stakeholders. The authors also used automated classification to
identify tweets relevant for the technical stakeholders. The results showed that SVM slightly
outperformed Decision Trees in isolating useful tweets. In a more recent work, Guzman
et al. (2017) presented ALERTme, an approach to automatically classify, group, and rank
tweets about software applications. The authors used Multinomial NB to classify tweets
with software improvement requests. Topic modeling was then used to group semantically
related tweets. Topically-related groups of tweets were then ranked based on their perceived
importance using a weighted function of various attributes. ALERTme was evaluated using
68,108 tweets collected from the Twitter feeds of multiple software applications. The results
showed decent accuracy levels. The results also showed that Twitter could be an important
source for information relevant to software evolution, including end-user requirements.

Nayebi et al. (2017) analyzed the Twitter feeds and software reviews of 70 mobile
apps. The authors used NB to automatically classify their data into bug reports and feature
requests. Topic modeling (LDA) was then used to generate groups of related concerns. The
results showed that Twitter can provide complementary information to support mobile app
development, with around 22% more feature requests and 13% more bug reports found on
Twitter only.

In general, the converging evidence indicates that Twitter can be leveraged as another
complementary channel of communication which app developers can exploit for technical
feedback. Technically, the analysis suggests that tweets share several semantic and lexical
attributes with user reviews. Therefore, classification (e.g., NB and SVM) and summariza-
tion (e.g., LDA and SumBasic) techniques that have been proven effective in app store
review analysis can be adapted to Twitter data if certain limitations are addressed. For
instance, Twitter messages are inherently shorter than user reviews. This might negatively
impact the effectiveness of data intensive methods such as LDA. However, this issue can be
addressed by using techniques such as assisted LDA which groups multiple tweets in order
to produce longer text (Mehrotra et al. 2013). Furthermore, Twitter feeds often contain a
higher percentage of irrelevant information and spam (Wang 2010). This might impact the
accuracy of data classification and summarization techniques. To address this issue, spam
filtering (McCord and Chuah 2011) and smart data collection techniques could be used to

Empir Software Eng (2018) 23:3734–3767 3761

filter out such irrelevant data (e.g., only considering tweets that are directly addressed to the
Twitter accounts of software systems) (Williams and Mahmoud 2017).

7 Threats to Validity

The analysis presented in this paper has several limitations. In what follows, we describe
the potential internal, external, and construct validity threats of our study along with our
mitigation strategies.

7.1 Internal Validity

Internal validity refers to the confounding factors that might affect the causal relations estab-
lished in the experiment (Dean and Voss 1999). A potential threat to the internal validity of
our study is the fact that human judgment was used to prepare our ground-truth dataset. Fur-
thermore, human experts were used to generate our reference summaries. This might result
in an experimental bias as humans tend to be subjective in their judgment. However, it is
not uncommon in text classification tasks to use humans to manually classify the data. Sim-
ilarly, evaluating machine-generated summaries against human-generated summaries is a
standard evaluation procedure. Ultimately, humans are the intended users of the summaries,
thus they are the best judge of their quality and cohesion. While the subjectivity and bias
threats of using humans are inevitable, they can be partially mitigated by using multiple
judges to classify and summarize the data. In our analysis, the data were classified by 3
different judges and summarized by 8 different experts with different levels of expertise.

A threat might stem from the fact that 4 of the human experts used to summarize our
data were graduate students. However, we believe that the impact of this threat was minimal
as all of our graduate student subjects have reported some sort of industrial experience
(average 2 years). In fact, existing evidence in experimental-based software engineering
research suggests that the differences between industrial professionals and graduate students
are negligible (Runeson 2003).

7.2 External Validity

Threats to external validity impact the generalizability of the results (Dean and Voss 1999).
In particular, the results of our experiment might not generalize beyond our specific exper-
imental settings. A potential threat to our external validity stems from the dataset used in
our classification and summarization experiments. In particular, our dataset is limited in
size and was generated from a limited number of apps. To mitigate this threat, we compiled
our dataset from several sources, including two external datasets that have been used before
in the literature and a local dataset that was collected by us. We also made sure that our
reviews were selected from a diverse set of apps, extending over a broad range of application
domains.

7.3 Construct Validity

Construct validity is the degree to which the various performance measures accurately cap-
ture the concepts they purport to measure (Dean and Voss 1999). In our experiment, there
were minimal threats to construct validity as the standard performance measures (Recall,
Precision, and F1), which are extensively used in related research, were used to assess the

Empir Software Eng (2018) 23:3734–37673762

performance of our classification techniques. We further used a metric that is based on
ROUGE—a benchmark suite of metrics designed for the automatic evaluation of summaries
(Lin 2004)—to evaluate our different extractive summarization algorithms. We believe
that these measures sufficiently quantified the different aspects of performance we were
interested in.

8 Conclusions and Future Work

User reviews on mobile application stores represent a rich source of technical information
for app developers. Such information can be mined to enable an adaptive and responsive
release planning process. Following this line of research, we investigated the performance
of a novel semantically aware approach for classifying and summarizing user reviews on
app stores. The proposed approach relies on semantic role labeling. In particular, individual
user review sentences are extracted and annotated to identify the semantic roles played by
the words that appear in each sentence. Such roles, known as semantic frames, capture the
underlying meaning of the review. The main assumption is that relying on the meaning of
the text enhances the predictive capabilities of data mining algorithms.

To conduct our analysis, an experimental dataset of user reviews was compiled from
multiple sources (Chen et al. 2014; Maalej and Nabil 2015; Jha and Mahmoud 2017b).
Individual reviews were semantically annotated using FrameNet. Annotated sentences, rep-
resented as Bags-of-Frames (BOF), were then classified using Naive Bayes (NB) and
Support Vector Machines (SVM). The results showed that the Bag-of-Frames (BOF)
approach achieved competitive results in comparison to the Bag-of-Words (BOW) approach.
However, classifiers trained using the BOF representation of text were able to generalize
better over a test set of never-seen before reviews, suggesting that the BOW classification
models suffered from overfitting. The main advantage of the BOF approach over the BOW
approach stems from the drastic reduction in the number of features required for classifi-
cation. A smaller number of features (frames vs. words) can produce lower dimensional
models, thus can make more accurate predictions.

To facilitate a more effective data exploration process, technically informative user
reviews were then summarized using multiple summarization algorithms (hybrid TF, hybrid
TF.IDF, SumBasic, and LexRank). These algorithms are known for their simplicity and
effectiveness in the context of social media data. A human experiment, using 8 program-
mers, was conducted to assess the performance of these algorithms. Specifically, review
summaries generated by the different summarization algorithms were compared to human
generated summaries. The results showed that SumBasic, a frequency based summariza-
tion algorithm with redundancy control, was able to generate summaries that were aligned
with the human judgment to a large extent. The results also showed that using the semantic
representation (BOF) of the reviews can lead to information loss, thus generating less repre-
sentative summaries. Finally, the line of research in this paper has opened several research
directions to be pursued in our future work, including:

– Analysis: In our future work, other data classification and summarization algorithms
will be investigated. Our objective is to identify combinations of these algorithms that
can achieve high accuracy levels while maintaining moderate computational and space
complexities.

– User studies: Multiple user studies will be conducted in order to evaluate the usage
aspects of our proposed methods and tools as well as compare their performance against

Empir Software Eng (2018) 23:3734–3767 3763

other existing app review classification and summarization tools (e.g. AR-Miner (Chen
et al. 2014)).

– App Market Analysis: A major part of our future work will be focused on utilizing
our findings to support innovation and survival in the app market. This goal will be
achieved by integrating other sources of user feedback (e.g., Twitter (Guzman et al.
2016; Williams and Mahmoud 2017)) with app store reviews to enable a comprehen-
sive understanding of users’ expectations and needs and predict the impact of feature
updates on app user acquisition and retention rates.

Acknowledgments This work was supported in part by the Louisiana Board of Regents Research
Competitiveness Subprogram (LA BoR-RCS), contract number: LEQSF(2015-18)-RD-A-07.

References

Agarwal A, Balasubramanian S, Kotalwar A, Zheng J, Rambow O (2014) Frame semantic tree kernels
for social network extraction from text. In: Conference of the European chapter of the association for
computational linguistics, pp 211–219

Baker C, Fillmore C, Lowe J (1998) The Berkeley Framenet project. In: International conference on
computational linguistics, pp 86–90

Bano M, Zowghi D (2015) A systematic review on the relationship between user involvement and system
success. Inf Softw Technol 58:148–169

Barker E, Paramita M, Funk A, Kurtic E, Aker A, Foster J, Hepple M, Gaizauskas R (2016) What’s the issue
here?: task-based evaluation of reader comment summarization systems. In: International conference on
language resources and evaluation, pp 23–28

Barzilay R, McKeown K, ElhadadM (1999) Information fusion in the context of multi-document summariza-
tion. In: Annual meeting of the association for computational linguistics on computational linguistics,
pp 550–557

Basole R, Karla J (2012) Value transformation in the mobile service ecosystem: a study of app store
emergence and growth. Service Science 4(1):24–41

Berry D (2017) Evaluation of tools for hairy requirements and software engineering tasks. In: International
requirements engineering conference workshops, pp 284–291

Blei D, Ng A, Jordan M (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022
Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Computer Networks

and ISDN Systems 30(1–7):107–117
Brusilovsky P, Kobsa A, Nejdl W (2007) The adaptive web: methods and strategies of web personalization.

Springer, Berlin, pp 335–336
Burges C (1998) A tutorial on Support Vector Machines for pattern recognition. Data Min Knowl Disc

2(2):121–167
Cai L, Hofmann T (2004) Hierarchical document categorization with support vector machines. In: Interna-

tional conference on information and knowledge management, pp 78–87
Carreńo G, Winbladh K (2013) Analysis of user comments: an approach for software requirements evolution.

In: International conference on software engineering, pp 582–591
Chen N, Lin J, Hoi S, Xiao X, Zhang B (2014) AR-Miner: mining informative reviews for developers from

mobile app marketplace. In: International conference on software engineering, pp 767–778
Cheung J (2008) Comparing abstractive and extractive summarization of evaluative text: controversiality

and content selection. B. Sc. (Hons.) Thesis in The Department of Computer Science of the Faculty of
Science, University of British Columbia

Ciurumelea A, Schaufelbühl A, Panichella S, Gall H (2017) Analyzing reviews and code of mobile apps for
better release planning. In: International conference on software analysis, evolution and reengineering,
pp 91–102

Das D, Schneider N, Chen D, Smith N (2010) SEMAFOR 1.0: a probabilistic frame-semantic parser. Tech.
rep., Report number: CMU-LTI-10-001, Carnegie Mellon University

Dean A, Voss D (1999) Design and analysis of experiments. Springer, Berlin
Dumais S, Chen H (2000) Hierarchical classification of Web content. In: ACM international conference on

research and development in information retrieval, pp 256–263

Empir Software Eng (2018) 23:3734–37673764

Erkan G, Radev D (2004) Lexrank: graph-based lexical centrality as salience in text summarization. J Artif
Intell Res 22(1):457–479

Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial
databases with noise. In: International conference on knowledge discovery and data mining, pp 226–231

Fillmore C (1976) Frame semantics and the nature of language. In: Annals of the New York academy of
sciences: conference on the origin and development of language and speech, pp 20–32

FleischmanM, Kwon N, Hovy E (2003) Maximum entropy models for FrameNet classification. In: Empirical
methods in natural language processing, pp 49–56

Groen E, Kopczyǹska S, Hauer M, Krafft T, Doerr J (2017) Users: the hidden software product quality
experts?: a study on how app users report quality aspects in online reviews. In: International requirements
engineering conference, pp 80–89

Guzman E,MaalejW (2014) How do users like this feature? A fine grained sentiment analysis of app reviews.
In: Requirements engineering conference, pp 153–162

Guzman E, El-Haliby M, Bruegge B (2015) Ensemble methods for app review classification: an approach
for software evolution. In: International conference on automated software engineering, pp 771–776

Guzman E, Alkadhi R, Seyff N (2016) A needle in a haystack: what do Twitter users say about software? In:
International requirements engineering conference, pp 96–105

Guzman E, Ibrahim M, Glinz M (2017) A little bird told me: mining tweets for requirements and software
evolution. In: International requirements engineering conference, pp 11–20

Ha E,Wagner D (2013) Do Android users write about electric sheep? Examining consumer reviews in Google
Play. In: Consumer communications and networking conference, pp 149–157

Hahn U, Mani I (2000) The challenges of automatic summarization. Computer 33(11):29–36
Hasa K, Ng V (2013) Frame semantics for stance classification. In: Computational natural language learning,

pp 124–132
Huffman-Hayes J, Dekhtyar A, Sundaram S (2006) Advancing candidate link generation for requirements

tracing: the study of methods. IEEE Trans Softw Eng 32(1):4–19
Iacob C, Harrison R (2013) Retrieving and analyzing mobile apps feature requests from online reviews. In:

Mining software repositories, pp 41–44
Inouye D, Kalita J (2011) Comparing Twitter summarization algorithms for multiple post summaries. In:

International conference on social computing and international conference on privacy, security, risk and
trust, pp 298–306

Jha N, Mahmoud A (2017a) MARC: a mobile application review classifier. In: Requirements engineering:
foundation for software quality: workshops, pp 1–6

Jha N, Mahmoud A (2017b) Mining user requirements from application store reviews using frame semantics.
In: Requirements engineering: foundation for software quality, pp 1–15

Joachims T (1998) Text categorization with Support Vector Machines: learning with many relevant features.
In: European conference on machine learning, pp 137–142

Johann T, Stanik C, Alizadeh A, Maalej W (2017) Safe: a simple approach for feature extraction from app
descriptions and app reviews. In: International requirements engineering conference, pp 21–31

Khabiri E, Caverlee J, Hsu C (2011) Summarizing user-contributed comments. In: International AAAI
conference on Weblogs and social media, pp 534–537

Khalid H, Shihab E, Nagappan M, Hassan A (2015) What do mobile app users complain about? IEEE Softw
32(3):70–77

Khatiwada S, Tushev M, Mahmoud A (2018) Just enough semantics: an information theoretic approach for
ir-based software bug localization. Inf Softw Technol 93:45–57

Kim S, Han K, Rim H, Myaeng S (2006) Some effective techniques for Naive Bayes text classification. IEEE
Trans Knowl Data Eng 18(11):1457–1466

Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In:
International joint conference on artificial intelligence, pp 1137–1143

Langley P, Iba W, Thompson K (1992) An analysis of Bayesian classifiers. In: National conference on
artificial intelligence, pp 223–228

Lin C (2004) ROUGE: a package for automatic evaluation of summaries. In: Workshop on text summariza-
tion branches out, pp 74–81

Lin C, Hovy E (2003) Automatic evaluation of summaries using n-gram co-occurrence statistics. In: Confer-
ence of the North American chapter of the association for computational linguistics on human language
technology, pp 71–78

Llewellyn C, Grover C, Oberlander J (2014) Summarizing newspaper comments. In: International conference
on Weblogs and social media, pp 599–602

Lo D, Nagappan N, Zimmermann T (2015) How practitioners perceive the relevance of software engineering
research. In: Joint meeting on foundations of software engineering, pp 415–425

Empir Software Eng (2018) 23:3734–3767 3765

Lovins J (1968) Development of a stemming algorithm. Mechanical Translation and Computational
Linguistics 11:22–31

Maalej W, Nabil H (2015) Bug report, feature request, or simply praise? On automatically classifying app
reviews. In: Requirements engineering conference, pp 116–125

Mackie S, McCreadie R, Macdonald C, Ounis I (2014) Comparing algorithms for microblog summarisa-
tion. In: Information access evaluation. Multilinguality, multimodality, and interaction: 5th international
conference of the CLEF initiative, pp 153–159

Martin W, Harman M, Jia Y, Sarro F, Zhang Y (2015) The app sampling problem for app store mining. In:
Working conference on mining software repositories, pp 123–133

Martin W, Sarro F, Jia Y, Zhang Y, Harman M (2017) A survey of app store analysis for software
engineering. IEEE Trans Softw Eng 43(9):817–847

McCallum A, Nigam K (1998) A comparison of event models for Naive Bayes text classification. In: AAAI
workshop on learning for text categorization, pp 41–48

McCord M, Chuah M (2011) Spam detection on Twitter using traditional classifiers. In: international
conference on Autonomic and trusted computing, pp 175–186

Mcllroy S, Ali N, Khalid H, Hassan A (2016) Analyzing and automatically labelling the types of user issues
that are raised in mobile app reviews. Empir Softw Eng 21(3):1067–1106

Mehrotra R, Sanner S, Buntine W, Xie L (2013) Improving LDA topic models for microblogs via tweet
pooling and automatic labeling. In: International ACM SIGIR conference on research and development
in information retrieval, pp 889–892

Mitchell T (1997) Machine learning. McGraw-Hill, New York
Moschitti A, Morarescu P, Harabagiu S (2003) Open domain information extraction via automatic semantic

labeling. In: The Florida artificial intelligence research society conference, pp 397–401
Nayebi M, Cho H, Farrahi H, Ruhe G (2017) App store mining is not enough. In: International conference

on software engineering companion, pp 152–154
Nenkova A, Vanderwende L (2005) The impact of frequency on summarization. Tech. rep., Report number:

MSR-TR-2005-101, Microsoft Research, Redmond, Washington
Nichols J, Mahmud J, Drews C (2012) Summarizing sporting events using Twitter. In: ACM international

conference on intelligent user interfaces, pp 189–198
Otterbacher J, Erkan G, Radev D (2009) Biased lexrank: passage retrieval using random walks with question-

based priors. Inf Process Manag 45(1):42–54
Pagano D, Maalej W (2013) User feedback in the AppStore: an empirical study. In: Requirements

engineering conference, pp 125–134
Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the Web.

Tech. rep., Stanford University, Stanford
Panichella S, Di Sorbo A, Guzman E, Visaggio C, Canfora G, Gall H (2015) How can I improve my

app? Classifying user reviews for software maintenance and evolution. In: International conference on
software maintenance and evolution, pp 281–290

Petsas T, Papadogiannakis A, Polychronakis M, Markatos E, Karagiannis T (2013) Rise of the planet of
the apps: a systematic study of the mobile app ecosystem. In: Conference on internet measurement
conference, pp 277–290

Platt J (1998) Fast training of Support Vector Machines using sequential minimal optimization. In:
Schoelkopf B, Burges C, Smola A (eds) Advances in Kernel methods - Support Vector learning. MIT
Press, pp 185–208

Poché E, Jha N, Williams G, Staten J, Vesper M, Mahmoud A (2017) Analyzing user comments on YouTube
coding tutorial videos. In: International conference on program comprehension, pp 196–206

Powers D (2014) What the f-measure doesn’t measure. Tech. rep., Report number: KIT-14-001 School of
Computer Science, Engineering and Mathematics, Flinders University

Quinlan J (1986) Induction of decision trees. Mach Learn 1(1):81–106
Read J, Pfahringer B, Holmes G (2008) Multi-label classification using ensembles of pruned sets. In: IEEE

international conference on data mining, pp 995–1000
Runeson P (2003) Using students as experimental subjects—an analysis of graduate and freshmen PSP

student data. In: Empirical assessment in software engineering, pp 95–102
Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv 34(1):1–47
Shen D, Lapata M (2007) Using semantic roles to improve question answering. In: Joint conference on empirical

methods in natural language processing and computational natural language learning, pp 12–21
Sinha S (2008) Answering questions about complex events. PhD thesis, Berkeley, CA, USA
Sorbo A, Panichella S, Alexandru C, Shimagaki J, Visaggio C, Canfora G, Gall H (2016) What would users

change in my app? Summarizing app reviews for recommending software changes. In: International
symposium on foundations of software engineering, pp 499–510

Empir Software Eng (2018) 23:3734–37673766

Squires L (2010) Enregistering internet language. Lang Soc 39(4):457–492
Steinwart I (2001) On the influence of the kernel on the consistency of Support Vector Machines. J Mach

Learn Res 2:67–93
Tukey J (1949) Comparing individual means in the analysis of variance. Biometrics 5(2):99–114
Üstün B, Melssen W, Buydens L (2006) Facilitating the application of support vector regression by using a

universal Pearson VII function based kernel. Chemometr Intell Lab Syst 81:29–40
Villarroel L, Bavota G, Russo B, Oliveto R, Di Penta M (2016) Release planning of mobile apps based on

user reviews. In: International conference on software engineering, pp 14–24
Wang A (2010) Don’t follow me: spam detection in Twitter. In: International conference on security and

cryptography, pp 1–10
Wang S, Manning C (2012) Baselines and bigrams: simple, good sentiment and topic classification. In:

Annual meeting of the association for computational linguistics, pp 90–94
Williams G, Mahmoud A (2017) Mining Twitter feeds for software user requirements. In: IEEE international

requirements engineering conference, pp 1–10
Xie B, Passonneau R, Wu L, Creamer G (2013) Semantic frames to predict stock price movement. In: Annual

meeting of the association for computational linguistics, pp 873–883

Nishant Jha received the B.S. degree in Computer Science and Engineering in 2014 from Southeastern
Louisiana University. He is currently a PhD candidate of Computer Science and Engineering at Louisiana
State University. His main research interests include requirements engineering, application (app) store
analysis, data mining, and software tooling.

AnasMahmoud received the M.S. and PhD degrees in Computer Science and Engineering in 2009 and 2014
from Mississippi State University. He is currently an assistant professor of Computer Science and Engineer-
ing at Louisiana State University. His research interests include requirements engineering, application (app)
store analysis, software evolution, program comprehension, natural language analysis of software, program
refactoring, and information foraging.

Empir Software Eng (2018) 23:3734–3767 3767

	Using frame semantics for classifying and summarizing application store reviews
	Abstract
	Introduction
	Frame Semantics
	App Review Classification
	Experimental Dataset
	Classifiers
	Implementation and classification settings
	Evaluation
	Results and Discussion

	Review Summarization
	Automatic Summarization
	Example

	Evaluation
	Results and Discussion
	Summarization Results
	Examples of Generated Summaries
	BOF vs. BOW Summarization

	Tool Support: MARC 2.0
	Data Collection
	Classification
	Summarization
	Stop-Word Editor

	Related Work
	Mining App Store Reviews for User Feedback
	Mining Twitter Feeds for Software User Feedback

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusions and Future Work
	Acknowledgments
	References

