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Abstract In the railway safety-critical domain requirements documents have to abide to
strict quality criteria. Rule-based natural language processing (NLP) techniques have been
developed to automatically identify quality defects in natural language requirements. How-
ever, the literature is lacking empirical studies on the application of these techniques in
industrial settings. Our goal is to investigate to which extent NLP can be practically applied
to detect defects in the requirements documents of a railway signalling manufacturer. To
address this goal, we first identified a set of typical defects classes, and, for each class,
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an engineer of the company implemented a set of defect-detection patterns by means of
the GATE tool for text processing. After a preliminary analysis, we applied the patterns
to a large set of 1866 requirements previously annotated for defects. The output of the
patterns was further inspected by two domain experts to check the false positive cases. Addi-
tional discard-patterns were defined to automatically remove these cases. Finally, SREE,
a tool that searches for typically ambiguous terms, was applied to the requirements. The
experiments show that SREE and our patterns may play complementary roles in the detec-
tion of requirements defects. This is one of the first works in which defect detection NLP
techniques are applied on a very large set of industrial requirements annotated by domain
experts. We contribute with a comparison between traditional manual techniques used in
industry for requirements analysis, and analysis performed with NLP. Our experience shows
that several discrepancies can be observed between the two approaches. The analysis of the
discrepancies offers hints to improve the capabilities of NLP techniques with company spe-
cific solutions, and suggests that also company practices need to be modified to effectively
exploit NLP tools.

Keywords Natural language processing · Requirements engineering · Natural language
requirements · Requirements analysis · Defect detection · Ambiguity · Precision · Recall ·
Industrial case study · Railway

1 Introduction

The CENELEC norms provide standards for the development of railway safety-critical
systems in Europe. The CENELEC EN 50128:2011, specific for software, asks require-
ments documents for railway systems to be complete, clear, precise, unequivocal, verifiable,
testable, maintainable, and feasible – clause 7.2.4.4 of the norm (CENELEC 2011). To
ensure that these quality attributes are met, companies developing railway products have a
Verification Engineer (VE) who reviews for defects any requirements document produced
along the development process.

This review activity is time consuming and error prone, and an automated review assis-
tant might help VEs in their task. As well known, requirements are normally edited in
natural language (NL) (Mich et al. 2004; Kassab et al. 2014), and the railway domain makes
no exception. Several natural language processing (NLP) approaches have been developed
to assist requirements review. Part of this work focusses on the identification of typical
defective terms and constructions (Fabbrini et al. 2001; Berry et al. 2003; Gnesi et al. 2005;
Gleich et al. 2010; Tjong and Berry 2013; Arora et al. 2015; Femmer et al. 2017), while
other focus on artificial intelligence techniques (Chantree et al. 2006; Yang et al. 2011; Fer-
rari and Gnesi 2012). However, the literature is lacking large-scale case studies concerning
industrial applications of NLP approaches for defect detection (Femmer et al. 2017).

This paper aims at filling this research gap, by providing the experience done within a
collaboration between a world-leading railway signalling company, the University of Flo-
rence, and ISTI-CNR to investigate the feasibility of using NLP for defect identification in
the requirements documents of the company. In this experience, a professional VE of the
company developed a set of NLP-based defect detection patterns by means of the GATE tool
(General Architecture for Text Engineering) for text analysis (Cunningham 2002). The VE
applied the patterns on a dataset of 241 requirements, previously annotated for defects by
the VE. A recall of 88.33% and a precision of 64.24% were obtained. Given these encour-
aging results, the patterns were applied on a larger dataset of 1866 requirements, previously
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annotated by another VE of the company. This time, the performance was poorer, with a
recall of 85.39%, and a disappointing precision of 5.81%. The requirements were inspected
by two VEs, to analyse the false positive cases that led to the observed value of precision.
This analysis showed that many true linguistics defects were not considered in the ini-
tial annotation. After marking these defects as true positive cases, the precision increased
to 77.37%. To further improve the performance, a set of discard patterns were defined to
eliminate systematic false positive cases. The final precision value achieved was 83.16%.
After this activity, experiments were performed with SREE (Tjong and Berry 2013), a tool
for defect detection in requirements, which searches for typically defective terms. SREE
allowed the detection of defects that were not identified by means of our patterns, although
at the cost of lower precision. Further analysis showed that SREE and our patterns may play
complementary roles in defect detection.

This experience, which involved three professional VEs and a large-scale experimenta-
tion on 1866 requirements, shows that NLP technologies can be used to develop in-house
tools for defect identification. Furthermore, the internal development of the tools can
enable the VEs of the company to tune the tools to account for part of the discrepan-
cies that occur between manual reviews and automated ones. This work is an extension
of a previous conference paper (Rosadini et al. 2017). With respect to the original paper,
the current work provides an improved structure, according to the guidelines of Runeson
et al. (2012) for reporting case studies in software engineering, and adds the follow-
ing relevant contributions: (a) a thorough discussion of the false positive cases of the
large-scale study on the 1866 requirements dataset; (b) the introduction of discard pat-
terns to reduce the false positive cases, and increase the precision of the approach; (c)
an experience in which the SREE tool for term-based defect detection is applied on the
requirements.

The remainder of the paper is structured as follows. Section 2 summarises related works.
In Section 3 we describe the patterns for defect detection used in the study. In Section 4,
we present our research methodology and the case study design. In Section 5, the execution
of the case study is described, while Section 6 presents the results. Section 8 highlights the
lessons learned, and Section 9 provides final remarks, with implications for practice and
future research.

2 Related works

NLP techniques have been largely applied to automate several requirements engineer-
ing tasks, including model synthesis (Robeer et al. 2016), classification of requirements
into functional/non-functional categories (Casamayor et al. 2012), classification of online
product reviews (Maalej and Nabil 2015), traceability (Sultanov and Hayes 2013; Cleland-
Huang et al. 2010), detection of equivalent requirements (Falessi et al. 2013), completeness
evaluation (Ferrari et al. 2014), information extraction (Gacitua et al. 2010; Quirchmayr
et al. 2017; Lian et al. 2016), ambiguity detection (Tjong and Berry 2013; Berry et al. 2003),
and its generalisation, defect detection. Since in this paper we focus on defect detection,
we will discuss related works in this field. Techniques developed to address the problem
of defects in written requirements can be broadly partitioned into two sets. The first set
of techniques suggests to use constrained NL or formal/semi-formal languages to prevent
or limit defects. The second set of techniques starts from unconstrained NL and generally
aims at detecting defects, either by means of manual verification, or by means of automated
tools.
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2.1 Preventing and limiting defects

In the literature, several strategies were defined to prevent defects by means of con-
strained natural languages (Mavin et al. 2009; Pohl and Rupp 2011) or (semi-)formal
approaches (Mich 1996; Ambriola and Gervasi 2006; Kof 2010; Gervasi and Zowghi 2005).

Concerning the use of constrained natural languages, the EARS (Mavin et al. 2009)
and the Rupp’s template (Pohl and Rupp 2011) are well known constrained formats for
editing requirements. Arora et al. (2015) defined an approach to check the conformance of
requirements to these templates. Although the adoption of constrained natural languages
is not widespread in industry, recent studies have shown that templates can be proficiently
used by domain experts (Mavin et al. 2016). On the other hand, templates can limit the
amount of requirements defects at the syntactic level, but linguistic defects may still be
present at the lexical, semantic and pragmatic levels. Addressing these defects requires other
techniques (Arora et al. 2015).

Among the works on (semi-)formal approaches, one of the earlier contributions with
a focus on defect prevention is the tool LOLITA (Mich 1996), which implements an
approach for translating NL requirements into object-oriented models. Similarly, Circe-
Cico (Ambriola and Gervasi 2006), starts from NL requirements to generate models to
support requirements analysis. Zowghi et al. (2001) and Gervasi and Zowghi (2005) suggest
logic as a tool to identify and analyse inconsistency in requirements from multiple stake-
holders. More specifically, they propose a tool, named CARL, that automatically translates
NL into logic and then uses theorem proving and model checking to detect inconsistency in
the requirements. The works of Kof aim to semi-automatically formalise NL requirements
into message sequence charts (Kof 2008) and automata (Kof 2009). More recently, Yue et al.
(2015) proposed a method and a tool, called aToucan, to automatically generate a UML
software analysis model from textual, functional requirements specifications expressed in
the form of use cases. A systematic study of defects in use case specifications expressed in
restricted NL is presented by Zhang et al. (2016).

The idea behind the works on (semi-)formal approaches is that the formalisation pro-
cess may help in identifying requirements defects, since errors in requirements would lead
to inconsistencies or omissions in models, and, due to the more formal nature of models,
defects are easier to detect in models than in textual requirements. However, through an
analysis of two empirical studies, Kamsties (2005) concludes that formalization does not
help to eliminate defects from informal requirements documents. Indeed, during the for-
malization process the analyst makes implicit assumptions, transforming defects into errors.
Therefore, even when formal modelling is applied, other techniques for defect defection
shall be used as a complement.

2.2 Detecting defects

Approaches for defect detection can be categorised into manual approaches and automated
ones, mostly based on NLP. Early and successful techniques for manual requirements
inspection were provided by Fagan (1976) and Shull et al. (2000). Inspection checklists were
developed, among others, by Anda and Sjøberg (2002) and by Kamsties et al. (2001), while
a survey on the topic of requirements inspection was published by Aurum et al. (2002).

Automated NLP approaches for defect detection can be be categorised into those that use
rule-based techniques (Wilson et al. 1997; Berry et al. 2003; Gnesi et al. 2005; Gleich et al.
2010; Tjong and Berry 2013; Arora et al. 2015; Femmer et al. 2017) and those that leverage
artificial intelligence techniques (Chantree et al. 2006; Yang et al. 2011; Ferrari and Gnesi
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2012). Our contribution falls into the first category, which collects all the works in which
defects are identified based on linguistic patterns.

The Ambiguity Handbook of Berry et al. (2003) includes one of the most influential clas-
sification of ambiguity-related defects in requirements, and provides a large set of examples
of typically dangerous words and constructions. Wilson et al. (1997) define a quality model
composed of quality attributes and quality indicators, and develop an automatic tool (called
ARM: Automated Requirement Measurement) to perform the analysis against the quality
model aiming to detect defects and to collect metrics. The tool was applied to industrial
requirements from NASA (Rosenberg et al. 1998). Gnesi et al. (2005) present QuARS, a tool
for defect detection based on a quality model developed by the authors. Similarly, Gleich
et al. (2010) implemented a grep-like, pattern-based technique to detect defects, supported
by statistical NLP techniques such as POS tagging. Kiyavitskaya et al. (2008) propose a
two-step approach to identify ambiguities in NL requirements. In the first step, a tool applies
a set of ambiguity measures to the requirements, in order to identify potentially ambiguous
sentences. In the second step, a (manually simulated) tool shows the specific parts that are
potentially ambiguous in the set of sentences identified. Tjong and Berry (2013) developed
SREE, a tool that identifies defects based on a pre-defined list of dangerous terms. Arora
et al. (2015) use patterns of linguistic defects as the other works, and, in addition, checks
the conformance of the requirements to a given template.

Among the works that use artificial intelligence techniques, Chantree et al. (2006) present
a technique that helps requirements analysts to identify so-called innocuous ambiguities,
i.e., linguistic ambiguities that have a single reading in practice. The focus of this work is
on coordination ambiguities (i.e., due to the usage of coordinating conjunctions), and a set
of heuristics, developed according to a data-set built by human assessors, is presented to
discriminate between innocuous and nocuous ambiguities. This approach was extended for
anaphoric ambiguities (i.e., due to the usage of pronouns) by Yang et al. (2011). Finally, Fer-
rari and Gnesi (2012) propose a graph-based technique to detect pragmatic ambiguities
(i.e., ambiguities that depend on the context) in NL requirements defined for a specific
application domain.

All these works, and in particular the ones employing rule-based techniques, were used
as fundamental references to define the defect detection patterns of our study. On the other
hand, all the listed works provide limited validation in real industrial contexts, as noted also
by Femmer et al. (2017). Large data-sets annotated by experts were considered by Falessi
et al. (2013). However, their focus is solely on redundancy defects (i.e., equivalent require-
ments), detected by means of information retrieval techniques. The task of finding couples
of equivalent requirements is radically different from the one we are dealing with in our
study, in which multiple linguistic defects occurring in single requirements are considered.
To our knowledge, the more general industrial work on defect detection is the one presented
by Femmer et al. (2017), who experimented their tool named Smella on several datasets
provided by three companies. Although domain experts were interviewed to assess the
effectiveness of the tool, analysis of the results was performed by two researchers. Another
industrial case study on defect detection was presented by Wilmink and Bockisch (2017).
Two datasets of 293 requirements in total were used as a benchmark, and term-based defect
detection techniques were employed to detect ambiguities. The results were reviewed by
domain experts.

Our work contributes to the recent literature on the industrial application of defect
detection NLP techniques (Femmer et al. 2017; Wilmink and Bockisch 2017). Compared
to the other studies, in our work the techniques are implemented, tailored, and validated
by domain experts. Furthermore, this is the first work that shows how rule-based NLP
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patterns for defect detection can be incrementally tuned to the needs of a company, to
address the systematic – and domain-dependent – false positive cases typically raised by
these techniques.

3 A rule-based approach to predict defects

In this section, we first give a background on the NLP technologies used in the study (Sec-
tion 3.1). Then, we describe the NLP-patterns used (Section 3.2), and the discard patterns
developed to address systematic false positive cases (Section 3.3). Finally, we also describe
the tool SREE from Tjong and Berry (2013), and we outline how the tool was used in our
study (Section 3.4).

3.1 NLP technologies

In this section, we list the natural language processing (NLP) technologies included in the
tool GATE (Cunningham 2002) that was adopted to define the patterns:

– Tokenization: this technology partitions a document into separate tokens, e.g., words,
numbers, spaces, and punctuation.

– Part-of-Speech (POS) Tagging: this technology associates to each token a Part-of-
Speech, e.g., noun (NN), verb (VB), adjective (JJ), etc. Common POS taggers are
statistical in nature, i.e., they are trained to predict the POS of a token based on a
manually annotated corpus.

– Shallow Parsing: this technology identifies noun phrases (NP) – in this case we speak
about Noun Chunking – and verb phrases (VP) – in this case we speak about Verb
Chunking – in sentences. For example, given the sentence Messages are received by the
system, a shallow parser identifies {Messages, the system} as NP, and {are received} as
VP.

– Gazetteer: this technology searches for occurrences of terms defined in a list of terms.
In our case, we used it to check the presence of vague terms.

– JAPE Rules: this technology allows defining rules (i.e., high-level regular expres-
sions) over tokens and other elements in a text (Cunningham 2002). A rule identifies
sequences of elements that match the rule. Rules are expressed in the intuitive JAPE
grammar, which is similar to regular expressions. JAPE rules can be rather long to
report. In this paper, for the sake of space, to describe JAPE rules we will use a more
concise and intuitive pseudo-code inspired to the JAPE grammar. In JAPE, and in our
rules, the symbols reported in Table 1 are used.

Furthermore, when we use a term in capital letters, this indicates a form of
macro that identifies terms of the specific type, e.g., NUMBER identifies numbers,
while ELSE identifies the term else in its various orthographic forms. Although
these macros differ in terms of semantics, we expect that the reader can infer their
meaning.

3.2 Patterns for defect detection

This section lists the classes of language defects considered, together with the patterns (i.e.,
JAPE rules) defined to identify them. Patterns are defined in terms of sequences of tokens to
be matched within a requirement. Hence, the output produced by one pattern when applied
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Table 1 Symbols used in the JAPE grammar

Expression Meaning

< expr1 > | < expr2 > < expr1 > OR < expr2 >

< expr1 >, < expr2 > < expr1 > AND < expr2 >

! < expr > NOT < expr >

< expr > + One or more elements matching < expr >

< expr > ∗ Zero or more elements matching < expr >

< expr >? Zero or one element matching < expr >

to a requirement is zero or n requirement fragments (i.e., contiguous sequences of tokens in
the requirement) that match the pattern.

In Table 2 we report the patterns in a compact version. The JAPE implementation of the
patterns, together with the discard-patterns that will be introduced in Section 3.3, is available
in our public repository.1 Below, we describe the defect classes addressed by each pattern.

– Anaphoric ambiguity Anaphora occurs in a text whenever a pronoun (e.g., he, it,
that, this, which, etc.) refers to a previous part of the text. The referred part of the text
is normally called antecedent. An anaphoric ambiguity occurs if the text offers more
than one antecedent options (Yang et al. 2011), either in the same sentence (e.g., The
system shall send a message to the receiver, and it provides an acknowledge message
- it = system or receiver?) or in previous sentences. The potential antecedents for the
pronouns are noun phrases (NP), which can be detected by means of a shallow parser.
The pattern PANA matches any sequence of two or more noun phrases (NP), followed
by zero or one sentence separators (Split), followed by a personal pronoun (PP), or
other types of pronouns (PR*).

– Coordination ambiguity Coordination ambiguity occurs when the use of coordinating
conjunctions (e.g., and or or) leads to multiple potential interpretations of a sen-
tence (Chantree et al. 2006). Two types of coordination ambiguity are considered here.
The first type includes sentences in which more than one coordinating conjunction is
used in the same sentence (e.g., There is a 90◦ phase shift between sensor 1 and sen-
sor 2 and sensor 3 shall have a 45◦ phase shift). The second type includes sentences in
which a coordinating conjunction is used with a modifier (e.g., Structured approaches
and platforms – Structured can refer to approaches only, or also to platforms). Two pat-
terns were defined, one for each type. PCO1 matches exactly two occurrences (notation
“[2]”) of one or more Tokens followed by a coordinating conjunction. PCO2 matches
cases in which an adjective (JJ) precedes a couple of singular (NN) or plural nouns
(NNS), joined by and or or.

– Vague terms Vagueness occurs whenever a sentence admits borderline cases, i.e., cases
in which the truth value of the sentence cannot be decided (Berry et al. 2003). Vague-
ness is associated with the usage of terms without a precise semantics, such as minimal,
as much as possible, later, taking into account, based on, appropriate, etc. In our con-
text, we use the list of 446 vague terms provided by the QuARS tool (Gnesi et al. 2005).
The list includes single-word and multi-word terms that were collected as source of
vagueness in requirements. PV AG matches any term included in the set Vague of vague
terms.

1https://github.com/ISTI-FMT/QUARS plus plus.
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Table 2 Pattern adopted for each defect class

Defect Class Pattern

Anaphoric ambiguity PANA = (NP)(NP)+ (Split)[0,1] (Token.POS == PP | Token.POS =∼ PR*)

Coordination ambiguityPCO1 = ((Token)+ (Token.string == AND | OR)) [2] PCO2 = (Token.POS == JJ)

(Token.POS == NN | NNS) (Token.string == AND | OR) (Token.POS == NN | NNS)

Vague terms PV AG = (Token.string ∈ Vague)

Modal adverbs PADV = (Token.POS == RB | RBR), (Token.string =∼ ”[.]*ly$”)

Passive voice PPV = (AUXVERB)(NOT)?(Token.POS == RB | RBR)? (Token.POS ==VBN)

Excessive length PLEN = Sentence.len > 60

Missing condition PMC = (IF)(Token, !Token.kind == punctuation)*

(Token.kind == punctuation)(!(ELSE | OTHERWISE))

Missing unit PMU1 = (NUMBER)((Token)[0, 1](NUMBER))?(!MEASUREMENT)

of measurement PMU2 = (NUMBER)((Token)[0, 1](NUMBER))?(!PERCENT)

Missing reference PMR = (Token.string == “Ref”)(Token.string == “.”) (SpaceToken)?(NUMBER)

Undefined term PUT = (Token.kind == word, Token.orth == mixedCaps)

– Modal adverbs Modal adverbs (e.g., positively, permanently, clearly) are modifiers
that express a quality associated to a predicate. As noted by Gleich et al. (2010), adverbs
are discouraged in requirements as potential source of ambiguity. We noticed that, in
the requirements of the company, most of the adverbs causing ambiguity were modal
adverbs ending with the suffix -ly. For this reason, PADV matches adverbs in normal
form (RB) or in comparative form (RBR) that terminate ($ indicates string termination)
with -ly.

– Passive voice The use of passive voice is a defect of clarity in requirements, and
can lead to ambiguous interpretations in those cases in which the passive verb is not
followed by the subject that performs the action expressed by the verb (e.g., The
system shall be shut down – by which actor?). Passive voice detection is also consid-
ered by Gleich et al. (2010) and by Femmer et al. (2014). To identify passive voice
expressions, PPV matches auxiliary verbs followed by a verb in past participle (VBN),
possibly with negations and adverbs.

– Excessive length Longer sentences are typically harder to process than short sen-
tences, and can be source of unclarity. It was chosen to identify all the sentences that
are longer than 60 tokens. Although this is a rather weak threshold – for generic English
texts, Cutts (1996) recommends not to exceed 40 tokens –, we considered this value
appropriate for the length of the sentences in her domain.

– Missing condition To be considered complete, each requirement expressing a condition
through the if clause, shall have a corresponding else or otherwise clause. PMC checks
whether an if clause is followed by an else/otherwise clause in the same sentence.

– Missing unit of measurement Each number is required to have an associated unit of
measurement, unless the number represents a reference (see below). Hence, the patterns
check whether a number has an associated unit, or a percentage value associated to it.

– Missing reference This defect occurs when a reference that appears in the text in the
form Ref. <X> does not appear in the list of references of the requirements document.
To detect this defect we leverage the pattern PMR to extract references in the text, and
then – through Java code not reported here – we check whether each number found
appears in the list of references.
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– Undefined term This pattern searches all the terms that follow the textual form used in
the company for defining glossary terms (e.g., restrictiveAspect), which are expressed
in camelCase format (i.e, mixedcap orthography). As for the missing reference case,
we leverage the PUT pattern to search for terms expressed in camelCase, and then we
automatically search the glossary to check whether the term is present or not.

The defect classes associated to the patterns can be related to part of the broad quality
criteria specified by the CENELEC norms, and reported in Section 1. Furthermore, they
can be related to the different levels of language to which the defect belong, namely lexical,
syntactic, semantic and pragmatic – see, e.g., Berry et al. (2003) for a discussion in the
context of NL requirements. They can also be related to the level of detection, which, in
our case, is either lexical or syntactic. Table 3 reports these relationships, using a structure
similar to the one adopted by Gleich et al. (2010).

3.3 Discard patterns

A set of patterns was defined along the case study based on an analysis of the false positive
cases produced by the defect detection patterns (see Section 6.3.2).

For the sake of clarity, we refer to these additional patterns as discard patterns. Each
discard pattern is associated to one defect class. The defect class is the one whose patterns
generate the systematic false positive cases. The discard patterns, adapted from the JAPE
rules reported in our repository, are reported in Table 4, and briefly described below.

– Anaphoric ambiguity: the pattern DANA detects the pronoun within the expression
it shall be possible. The notation IT SHALL BE POSSIBLE indicates another utility
pattern that matches the expressions it shall be possible, it may be possible and it should
be possible, in their orthographic variants, and possibly including other terms within the
pattern (e.g., it should also be possible). The JAPE notation “within” indicates that the
first argument is completely included in the second argument. Each ambiguity detected
through the pattern PANA is discarded when it includes DANA.

– Vague terms: the pattern DV AG1 matches all the tokens in which the terms sound and
light are used as nouns, according to the annotations of the POS Tagger. The JAPE
notation “(?i)” indicates that all orthographic variants of the string shall be matched.
Instead, the pattern DV AG2 matches the term possible when used within the pattern

Table 3 Patterns associated to the different CENELEC criteria, and to the different levels of language

Defect Class Criterion Lev. of Language Detection

Anaphoric ambiguity Unequivocal Syntactic, Semantic, Pragmatic Syntactic

Coordination ambiguity Unequivocal Syntactic, Semantic Syntactic

Vague terms Precise Pragmatic Lexical

Modal adverbs Precise Pragmatic Syntactic

Passive voice Clear Semantic, Pragmatic Syntactic

Excessive length Clear Semantic, Pragmatic Lexical

Missing condition Complete Semantic, Pragmatic Syntactic

Missing unit of measurement Complete Semantic, Pragmatic Lexical

Missing reference Complete Semantic, Pragmatic Lexical

Undefined term Complete Semantic, Pragmatic Lexical
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Table 4 Discard patterns

Defect Class Discard Pattern

Anaphoric ambiguityDANA = ((Token.POS == PP | Token.POS = PR*) within IT SHALL BE POSSIBLE)

Vague terms DV AG1 = (PV AG, Token.string ==∼ “(?i)sound” | “(?i)light”,

Token.POS == NN | NNS)

DV AG2 = (PV AG within IT SHALL BE POSSIBLE)

DV AG3 = (PV AG within StophPhrasesV ague)

Modal adverbs DADV1 = (Token.string ==∼ “(?i)manually” | “(?i)automatically”)

DADV2 = (PADV within INFORMATION PURPOSES ONLY)

Undefined term DUT = (PUT contains KnownAcronym)

IT SHALL BE POSSIBLE. DV AG3 matches any vague term included in the list of
stop phrases StopPhrasesV ague, which collects the set of domain specific terms that
include vague terms (e.g., distant signalling distance, near miss), according to our anal-
ysis of the false positive cases. Each vague term detected through PV AG is discarded
when it includes DV AG1 , DV AG2 or DV AG3 .

– Modal Adverbs: the pattern DADV1 matches the terms manually and automatically.
Instead, DADV2 matches the term only within the expression information purposes only.
Each modal adverb detected through PADV is discarded when it includes DADV1 or
DADV2 .

– Undefined term: the pattern DUT matches any unknown term annotation (PUT ) that
contains a known acronym, i.e., a term included in the list KnownAcronym. Any PUT

annotation is discarded when it includes DUT .

3.4 SREE patterns

The tool SREE (Tjong and Berry 2013) is a defect detection tool for NL requirements that
is oriented to achieve 100% recall for the defects in its scope, even at the cost of lower
precision.

SREE leverages a set of dictionaries of typically defective terms (single and multi-word).
A requirement that includes a term that matches one of the terms of the dictionaries is
returned by SREE as a potentially defective requirement. Furthermore, the matched term
is also returned. The key feature of SREE resides in searching only for lexical matches,
without leveraging POS Taggers or other statistical tools that may, in principle, decrease the
recall. The approach is analogous to the one adopted in our work for the pattern for Vague
terms (see Section 3.2).

SREE employs ten dictionaries, and each dictionary is associated to a defect class.
The defect classes, together with representative examples of the terms included – called
indicators by Tjong and Berry (2013) – are:

– Continuance: as follows, below, following, in addition, in particular, etc.;
– Coordinator: and, and/or, or;
– Directive: e.g., etc. , figure, for example, i.e., note, table.
– Incomplete: TBA, TBD, as a minimum, as defined, as specified, etc.;
– Optional: as desired, at last, either, eventually, if appropriate, in case of, if necessary,

etc.;
– Plural: contains a list of 11,287 plural nouns, each ending in “s”;
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– Pronoun: anyone, he, her, this, they, which, whom, yourself, etc.;
– Quantifier: all, any, few, little, many, much, several, some;
– Vague: ( ), [], as far as, as required, eventually, mutually-agreed, etc.;
– Weak: can, could, may, might, ought to, preferred, should, will, would.

The complete list of terms for each dictionary, with the exception of the plural class,
can be found in the work of Tjong and Berry (2013). For the plural class, the authors of
the current paper contacted Daniel M. Berry, who kindly provided the list. In our study
we adopted the dictionaries of SREE. Specifically, each SREE dictionary was imported in
GATE as a separate Gazetteer. In our evaluation we apply all the SREE dictionaries, with
the exception of the dictionary of the weak class, since this class was initially excluded from
the analysis.

SREE-reduced A subset of SREE was also adopted in our case study. The selection,
which we call SREE-reduced, is composed of the terms that are specific to SREE, and are
not considered in our patterns. In particular, pronouns are sources of anaphoric ambigui-
ties, and are considered in our PANA pattern. Furthermore, the coordinators and and or are
sources of coordination ambiguities and are considered in our PCO1 and PCO2 , while the
expression and/or was considered in our list Vague of vague terms. Finally, also part of the
terms included in the different SREE dictionaries are included in our Vague list. Therefore,
SREE-reduced is composed of the dictionaries of SREE but excluding: (a) the dictionaries
of the coordinator, pronoun and weak class; (b) all the terms in the other dictionaries that
were already part of the Vague list.

4 Research methodology and case study design

The experience presented in this paper shares the typical characteristics of case study
research, in that the phenomenon under study is analysed within its natural context – i.e.,
a railway company –, and the boundary between the context and the phenomenon are
not clearly evident, and cannot be fully controlled (Yin 2013). It also includes iterative
and improving aspects that are closer to action research (Baskerville and Wood-Harper
1996), and technology transfer (Gorschek et al. 2006). Overall, our empirical design can be
regarded as an exploratory and iterative case study. Its design largely follows the guidelines
of Runeson et al. (2012), adapted to the iterative context of our experience. Specifically,
in our study, each iteration follows a template reference structure, which includes research
question (RQ) definition, data collection procedures, and data analysis procedures. Each
iteration is based on specific RQs, and its results are used as triggers to define additional
RQs to be answered in the next iteration. In the following, we first outline the RQs produced,
and then we describe the template structure adopted in each iteration.

4.1 Research objective and research questions

The research objective of this study is as follows:

Research Objective: Understand to which extent NLP technologies can be used by a
railway company to detect defects in NL requirements.

The research objective can be decomposed into the following RQs. Each RQ will be
associated to one or more iterations of the case study. It should be noticed that the RQs
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have been generated along with the case study iterations, and were not already defined at
the beginning of the study.

– RQ1: What is the accuracy of the NLP patterns for defect detection?
We want to provide a quantitative measure of the effectiveness of the patterns in

identifying requirements defects. The assumption is that the higher the measures of
accuracy, the more effective are the patterns. To this end, we want to compare the results
of the application of the patterns with the defects identified by domain experts, i.e.,
VEs. The accuracy is measured in terms of precision and recall. The former indicates
how many of the defects identified by a tool are considered as defects by VEs. The
latter indicates how many of the defects identified by VEs are actually identified by a
tool. Precise definitions will be given in Section 4.3, and will consider single defects –
i.e., requirements fragments that are considered defective according to a specific defect
class – and defective requirements – i.e., requirements that include at least one defective
fragment.

– RQ2: Which are the cases of inaccuracy of the NLP patterns for defect detection?
We want to provide a qualitative analysis of the effectiveness of the patterns. More

specifically, we want to understand which are the specific cases in which the patterns
fail in identifying defects. This is done in terms of (a) defects identified by VEs that are
not detected by the patterns, i.e., false negative cases – which impact on recall; and (b)
in terms of defects that are detected by the patterns, but are not considered as defects
by the VEs, i.e., false positive cases – which impact on precision.

– RQ3: What is the precision of NLP patterns for defect detection when comple-
mented with discard patterns?

This question was generated after answering RQ2. Indeed, it was observed that
the defect detection patterns generate systematic false positive cases, which could be
addressed with discard patterns. The application of discard patterns is expected to
increase the precision of the overall approach, and this question aims at quantitatively
evaluating to which extent the precision can be increased.

– RQ4: Can a third-party tool identify additional defects?
We want to understand whether the usage of an additional tool can allow us to

address false negative cases, and to identify additional defects not considered in the
patterns. To this end, we apply the dictionaries of SREE, a tool specifically designed
to achieve 100% recall on the defects considered. To answer this broad question, we
decompose it into the following sub-questions.

– RQ4.1: What is the accuracy of SREE with respect to the NLP patterns
for defect detection complemented with discard patterns?

We first want to understand whether SREE identifies defective require-
ments identified by the VEs, and not identified by the patterns – i.e., false
negatives. By answering this question, we provide a quantitative evaluation
of the accuracy of SREE in identifying defective requirements, in terms of
recall and precision. The comparison with the patterns is useful to understand
whether SREE and the patterns can be considered as complementary tools.

– RQ4.2: What is the precision of SREE for the defects in its scope?
This question was generated after answering RQ4.1, and noticing that

SREE generates a large number of false positive requirements. This suggested
that SREE may be less precise than the patterns also at the level of single
defects. So, we wanted to further assess the precision of SREE for the defects
in its scope.
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– RQ4.3: Which additional defects can be identified with SREE?
This question was generated after answering RQ4.1. Indeed, we considered

that some of the false positive requirements issued by SREE could include
specific defects not considered by the patterns. Therefore, the goal was to
understand whether novel categories of defects can be identified with SREE.

– RQ4.4: Which are the false positive cases for SREE?
This question was generated after answering RQ4.1, and as a qualitative

complement to RQ4.2, to check which are the typical sources of false positives
at the level of defects.

4.2 Case and subjects selection

The selection of the case study is triggered by the involved company, and by its need to
support VEs in their task of requirements review with automated tools. Specifically, the
company, represented by the 5th author, contacted two research institutions, namely ISTI-
CNR, represented by the 7th author, and University of Florence, represented by the 6th

author. To experiment the feasibility of using defect detection NLP techniques, the company
allocated one VE (VE1, 3rd author) dedicated to the task, ISTI-CNR provided an Expert in
defect detection through NLP (NLP-E, 1st author), and the University of Florence provided
a second VE (VE2, 2nd author), who worked at the company as VE, before moving to
academia, inside a collaborative PhD program. A third VE, (VE3, 4th author) had already
conducted within the company a quality review of parts of the datasets considered in the
study. The characteristics of the involved subjects will be described in Section 5.1.

4.3 Data collection and analysis procedures

To collect and analyse the data necessary to answer the RQs, each iteration followed a tem-
plate structure. The template structure of the iterations is depicted in Fig. 1. The template is
composed of eight tasks, which are further grouped into three main phases, namely Prepa-
ration, Data Collection, and Data Analysis. The phases are designed to ensure a minimal
intervention of NLP-E in the execution of the case study. Specifically, the contribution of
NLP-E was limited to the Preparation and Data Analysis phases. The Data Collection phase
was carried out by the VEs involved in the specific iterations.

Preparation The preparation phase consists of two tasks, described below.

– Research Questions: RQs are defined, which are going to be answered by the iteration.
If in the previous iteration, the RQs are considered to require another iteration to be
answered, the previous RQs are kept. Furthermore, in this phase, a specific instance of
the template is chosen so that this is appropriate to answer the questions. In particular,
the phases of the template that will be performed are selected – not all the phases are
required for each iteration. This phase is led by NLP-E, in collaboration with the VE
involved in the iteration.

– Patterns Definition: patterns are defined and implemented to support defect detection.
The patterns will be employed in the iteration. In this phase, we consider the definition
of defect detection patterns, the definition of discard patterns, and also the implemen-
tation of the patterns that support the dictionaries of SREE. If the patterns are defined
in previous iterations, this phase is not performed. This phase is led by the VE involved
in the iteration, under the guidance of NLP-E.
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Fig. 1 Template structure adopted in the iterations of the case-study

Data collection procedure Data are collected according to the following tasks. All the
tasks are performed by the VEs involved in the iterations.

– Dataset Selection: a requirements dataset is selected, to which we apply the patterns.
– Dataset Annotation: the dataset is manually annotated for defects by one or more VEs.

Annotations may have been performed also before the current study, as for Large-scale
Study - 1st Iteration, see Section 5.4. In this case, for the sake of structure and clarity
of the presentation, we consider the annotation as it would be performed during this
task. If the annotations come from a previous iteration, this phase is not performed.
The output of this phase is a set of requirements which are annotated as accepted, if
they do not contain defects, or rejected, if they contain at least one defect. Further-
more, depending on the iteration considered, annotations associated to specific defects
are also provided. More specifically, the annotation was performed as follows. Given a
requirement, this was labelled as accepted if it appeared to fulfill the criteria normally
adopted by the company. These criteria are derived from the more general guidelines
provided by the CENELEC EN 50128:2011 norm (CENELEC 2011), and considering
also the IEEE Std 1233-1998 as a reference (IEEE 1998).2 In particular, a require-
ment was labeled as accepted if it was: (a) feasible: what is required is physically and
technologically possible, can be done with available resources and is not against laws
and regulations; (b) testable: can be demonstrated through repeatable tests or is at least
verifiable through inspection; (c) complete: stand-alone, no missing references, unde-
fined terms, to-be-defined parts, or missing conditions; (d) clear and unambiguous; (e)
uniquely identifiable; (f) consistent: no internal contradiction and no contradiction with
other requirements. The requirement was labeled as rejected in case it did not fulfill

2The standard is currently replaced by ISO/IEC/IEEE 29148:2011 (ISO 2011).
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one of the criteria. In case the requirement was marked as rejected for criterion (c) or
criterion (d), the VE involved stated whether the rejection was due to one or more lin-
guistic defect classes associated to the patterns listed in Section 3.2. In this case, the
VE involved labelled as def ective(i) each requirement fragment that included the i-th
defect.

– Patterns Application: the patterns are applied on the annotated dataset, and potentially
defective requirements are produced as output.

– Output Annotation: the output of the patterns is annotated for defects by one or more
VE. In each iteration, this task is considered as mutually exclusive with the Dataset
Annotation task. Indeed this task is mainly oriented to assess the precision of the output
of the patterns, and has been introduced when doubts were raised about the quality
of the original annotations, or whenever further assessment was required. This task is
performed as follows. For each requirement fragment labelled as defective according
to pattern i, each VE annotated the fragment as def ective(i), if the VE considered the
defect as a true defect.3 Overall, if a fragment was annotated as def ective(i) by at
least one VE, the fragment was marked as def ective(i) in the annotated set used for
the evaluation.

Data analysis procedure Data analysis is performed according to the following tasks.

– Quantitative Evaluation: the accuracy of the patterns in detecting defects is evaluated.
In particular, we compare the annotations performed by the VEs with the annotations
performed by the patterns. Specifically, we evaluate the values of precision and recall of
the patterns with respect to the annotations performed. Evaluation measures for single
defects and for entire requirements are provided, and defined as follows.

– Evaluation Measures by Defect: To measure the effectiveness of the patterns,
we first provide a set of measures that focus on single defective fragments
identified by the patterns. Given the pattern associated to the i-th defect,
we consider the amount of true positive tpD as the number of requirements
fragments labeled as def ective(i) and correctly identified by the pattern;
the amount of false positive fpD as the number of requirements fragments
wrongly identified as defective by the pattern; the amount of false negative
f nD as the number of requirements fragments labeled as def ective(i) that
are not discovered by the pattern. Based on these definitions, we define the
measure of precision (pD) and recall (rD) as:

pD = tpD

tpD + fpD
rD = tpD

tpD + f nD

The precision pD is negatively influenced by the amount of defects wrongly
identified (fpD). The recall rD is negatively influenced by the amount of
undetected defects (f nD).

– Evaluation Measures by Requirement: to have a view of the effectiveness of
the patterns applied together, we provide a set of measures that focus on the

3In this context, we consider as a pattern i also a dictionary from SREE-reduced, as defined in Section 3.4
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number of requirements, instead of on the number of defective fragments.
Here, we consider the amount of true positive tpR as the number of require-
ments labeled as rejected for which at least one of the patterns correctly
identified a defective requirement fragment; the amount of false positive fpR

as the number of requirements wrongly identified as defective (i.e., at least
one of the patterns triggered a defect while the requirement was marked as
accepted); the amount of false negative f nR as the number of requirements
marked as rejected for which none of the patterns triggered a defect. The
measures of precision pR and recall rR are defined as for pD and rD , but
considering tpR , fpR , and f nR .

This task was performed by the VE involved in the iteration. The VE provided NLP-
E with the tables with the quantitative evaluation. Depending on the iteration, different
evaluation measures are used, among those listed above.

– Qualitative Evaluation: cases of inaccuracy of the patterns are evaluated and classi-
fied. In particular, the results produced by the patterns are inspected by the VEs, and
classes of inaccuracy cases are provided. This task was supported by NLP-E, who was
provided with representative examples for each class, and supported the VEs in refin-
ing the classes. The interaction was performed by means of on-line calls, and shared
documents.

4.4 Validity procedure

The validity procedure adopted aims to ensure the validity of the data used in the study, and
reported in this paper.

To ensure the validity of the annotations performed on the datasets during the Output
Annotation task, the annotation process is independently performed by two VEs. The inter-
rater agreement is computed by means of the Cohen’s Kappa (Landis and Koch 1977). In
case of disagreement, if at least one of the annotators considered a requirement as defec-
tive, the requirement was considered defective in the final set used during the analysis. This
validity procedure was not followed in the Pilot Study, due to its preliminary nature (Sec-
tion 5.3). Furthermore, it was not followed during the Dataset Annotation task. Specific
threats associated to this aspect are discussed in Section 7.

Second, we ensure the validity of the quantitative results reported, by replicating part of
the study. In particular, the Large Scale Study – 1st and 2nd Iterations, initially conducted
by VE1 were partially replicated by VE2. Discrepancies of the results were evaluated and
root causes of the discrepancies were assessed.

Third, to limit the researcher bias, the intervention of NLP-E was limited to the Prepa-
ration and Data Analysis phases, while Data Collection was entirely performed by the VE
involved in each iteration. NLP-E never had access to the datasets used, but solely to the
quantitative results produced, and to specific examples to be used to support the Qualitative
Analysis task, and to report the case.

5 Case study execution

This section describes the execution of the case study. We first describe the characteristics
of the case and the subjects involved, and then we describe the different iterations performed
in relation to the RQs.
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5.1 Case and subjects description

The company and its process The company produces signalling equipment for both
railway and urban transport applications. In order to efficiently produce such systems, the
company develops a set of different products aimed to provide generic functionalities; spe-
cific projects based on their product lines are then developed in order to satisfy customer’s
specific needs. These needs are usually expressed in requirements released by the cus-
tomer to the companies tendering for contract. The requirements are then elaborated and
refined by the company, without relying on standard editing guidelines. The company, for
both products and projects, applies the V-model for life-cycle management according to
the CENELEC standard (CENELEC 2011). As dictated by the standard, a requirements’
review activity is performed by the Validation Team, according to the criteria reported in
Section 4.3.

The subjects involved The subjects involved in the case are VE1, VE2 and VE3. The
background of the three VEs is as follows:

– VE1 has a 3-year working experience in requirements review, as well as testing and
validation;

– VE2 has a 2-year working experience in requirements review, as well as process metrics
and traceability;

– VE3 has a 10-year working experience in requirements review, and other tasks per-
formed in the Validation Team. VE3 has a strong expertise in contract requirements
review, and has an in-depth knowledge of the project associated to the dataset D-Large,
described later in this paragraph.

VE1, VE2 and VE3 belonged to different groups within the same company, but they were
subject to the same company practices. VE1 and VE2 voluntarily participated to the study.
VE3 participated to the study since the requirements reviewed by him before this work was
conceived (D-Large, see below) were used in the case study.

Datasets The datasets made available by the company for this research activity consist of:

– Pilot Dataset (D-Pilot): this dataset consists of 241 system requirements. This dataset
was randomly selected from the requirements documents of a wayside Automatic Train
Protection (ATP) system and an interlocking (IXL) system belonging to the same prod-
uct. ATP systems are embedded platforms that enforce the rules of signaling systems,
by adding an on-board automatic control over the speed limit allowed to trains along
the track. Instead, IXL systems controls the movement of trains in the railway yard, by
setting signal statuses, and moving railway switches. This dataset is composed by the
following requirements types: functional, architectural, interface and performance.

– Large-scale Dataset (D-Large): this dataset consists of 1866 requirements. The
requirements belong to a requirements document concerning a system-of-systems that
includes an interlocking system, an ATP, a CTC (Centralised Traffic Control) and an
Axle Counter. Interlocking and ATP systems have been briefly described above. CTC
systems monitor and dispatch trains. Axle Counters are embedded systems located
along the railway line, which detect the passing of a train between two points on a track.
They were originally written by the customer in international English language and
refined by the company. No particular glossary restrictions are applied and no guideline
was provided.
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Table 5 Outline of the different iterations performed

ID Iteration Name Nature RQs Patterns Dataset

0 Pilot Exploratory RQ1 RQ2 Def. Det. Patterns D-Pilot

1 Large-scale - 1st Exploratory RQ1 RQ2 Def. Det. Patterns D-Large

2 Large-scale - 2nd Explanatory RQ1 RQ2 Def. Det. Patterns D-Large

3 Large-scale - 3rd Improving RQ3 Def. Det. Patterns + Discard Patterns D-Large

4 Large-scale - 4th Improving RQ4.1 SREE D-Large

5 Large-scale - 5th Explanatory RQ4.2 RQ4.3 RQ4.4 SREE-reduced D-Large

This dataset is composed by the following requirements types: functional, architec-
tural, interface and ergonomical.

In all these datasets safety requirements are not included, since they are handled by
an independent safety assessment process, which produces separate safety requirements
documents.

5.2 Iterations

The execution of the case study consists in a set of iterations, which follow the template
structure outlined in Section 4. Each iteration is aimed at answering one or more RQs, and,
although the overall case study is exploratory, each iteration has a different flavour, which
range from exploratory, to explanatory and to improving. Furthermore, in each iteration,
different tasks of the template are performed. Tables 5 and 6 give an outline of the different
iterations. Overall, the case study consists of six iterations. The first one is a Pilot Study,
based on a preliminary requirements dataset (D-Pilot), while the others belong to the Large-
scale Study, based on a larger requirements dataset (D-Large). Table 5 shows the nature of
the iteration, the associated RQs, the patterns and dataset used. Iterations from 0 to 2 were
dedicated to investigate the accuracy of NLP patterns (RQ1, RQ2), with different levels of
insight. Iteration 3 was dedicated to improve the precision of the patterns (RQ3). Iteration 4
and 5 were focused on the application of the SREE dictionaries (RQ4.1-4). Table 6 shows
the tasks performed together with the subjects who participated to the task. The notation
VE1/VE2 indicates that the task, initially conducted by VE1, was replicated by VE2.

Here, we briefly summarise the rationale, execution and results of each iteration, with
reference – explicit or implicit – to Table 5 and 6. We do not provide all the justifications
for the content of the tables, since extensive details are given in the subsequent sections.

Table 6 Tasks performed and subjects involved in each iteration

ID Res. Quest. Pat. Def. Data. Sel. Data. Ann. Pat. App. Out. Ann. Quant. Eval. Qual. Eval.

0 VE1 NLP-E VE1 NLP-E VE1 VE1 VE1 – VE1 VE1 NLP-E

1 VE1 NLP-E – VE1 VE3 VE1/VE2 – VE1/VE2 VE1 NLP-E

2 VE1 NLP-E – – – – VE1 VE2 VE1/VE2 VE1/VE2 NLP-E

3 VE2 NLP-E VE2 NLP-E – – VE2 – VE2 –

4 VE2 NLP-E VE2 NLP-E – – VE2 – VE2 VE2 NLP-E

5 VE2 NLP-E VE2 NLP-E – – VE2 VE1 VE2 VE2 VE2 NLP-E
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– Pilot Study: this iteration was oriented to have a first understanding of the applicability
of NLP patterns for defect detection in the context of the company. To this end, the
defect detection patterns (Def. Det. Patterns in Table 5, reported in Section 3.2) were
defined by VE1 under the guidance of NLP-E, with the objective of maximizing recall,
as suggested by Berry et al. (2012). Then, they were applied by VE1 on a limited dataset
of the company, i.e., D-Pilot, which was previously annotated for defects by VE1. A
recall of 88.33% (rR) and a precision of 64.24% (pR) were obtained, and the recall rD

for single defects reached 100% for the majority of the patterns.
– Large Scale Study - 1st Iteration: given the encouraging result of the previous iteration,

the defect detection patterns were applied by VE1 on D-Large, annotated for defects by
VE3. The goal was now to understand whether the approach was applicable on a larger
set of requirements of the company, annotated by a subject who did not participate
to the definition of the patterns. Furthermore, the tasks named Patterns Application
and Quantitative Evaluation, originally performed by VE1, were replicated by VE2
(VE1/VE2 in Table 6), to confirm the validity of the produced data. In this iteration, the
results were acceptable in terms of recall (rR = 85.39%), but particularly poor in terms
of precision, with pR = 5.81%. A non-systematic Qualitative Evaluation performed
by VE1 suggested that many potential linguistic defects were ignored by VE3 in his
annotation, thus leading to the low value of precision observed.

– Large Scale Study - 2nd Iteration: this iteration aimed at systematically explaining
the poor results of the previous one. In particular, we were interested in understand-
ing whether the false positive cases produced according to the annotations of VE3
could be considered as true positives (i.e., defects), if an additional annotation was
performed with a focus on linguistic defects. Therefore, the output of the Pattern Appli-
cation task from the previous iteration was considered – as shown in Table 6, the tasks
from Patterns Definition to Patterns Application were not performed again. The Output
Annotation task was carried out by VE1 and VE2, and their agreement was assessed.
Quantitative Evaluation was performed by VE1, and then replicated by VE2. The preci-
sion obtained was pR = 77.37%, and the average precision at defect level – average of
pD for the different defects – was 72.81%. This confirmed the effectiveness of the pat-
terns for linguistic defects. The Qualitative Evaluation, also replicated, was supported
by NLP-E, and allowed the identification of classes of systematic false positive cases,
which could be potentially discarded with additional patterns.

– Large Scale Study - 3rd Iteration: based on the Qualitative Evaluation of the previ-
ous iteration, we wanted to understand to which extent the precision could be further
increased through additional patterns, designed to discard false positive cases (Discard
Patterns in Table 5, reported in Section 3.3). VE2 took the lead in this activity due
to other company-related commitments of VE1, and defined a set of discard patterns
under the guidance of NLP-E. With these patterns, the precision pR further increased
to 83.16%, and the average pD reached 81.36%.

– Large Scale Study - 4th Iteration: this iteration aimed at understanding whether the
defect-detection capabilities of the approach could be complemented with the usage of
an additional tool, namely SREE (see Section 3.4). To have a general, initial indication,
we considered the annotations performed by VE3 on D-Large (annotations already used
in Large Scale Study - 1st Iteration), and we checked whether SREE was able to iden-
tify requirements that were annotated as defective by VE3, but were not identified by
our patterns. To this end, the performance of SREE, in terms of pR and rR , were com-
pared with those of the defect detection patterns complemented with discard patterns.
VE2 performed all the tasks included in this iteration. The Quantitative Evaluation task
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showed that SREE achieved higher recall with respect to our patterns (rR = 96.63% vs
85.39%), but at the cost of lower precision (pR = 5.45% vs 6.24% – i.e., 351 additional
false positive requirements). SREE was therefore recognised as an appropriate com-
plement to our patterns, i.e., undetected defective requirements could be identified, but
further investigation was required to explain its poor performance in terms of precision.

– Large Scale Study - 5th Iteration: this iteration was driven by the low value of precision
obtained with SREE at the level of requirements, and was oriented to have a fine-
grained assessment of the performance of SREE. Specifically, we wanted to assess the
precision of SREE at the level of the single defects in its scope. VE2 used a subset
of the SREE dictionaries, i.e., SREE-reduced (see Section 3.4), including solely those
terms that were specific to SREE and were not already considered in our patterns. The
Output Annotation task was performed in parallel by VE1 and VE2 on the single defects
produced by SREE-reduced, and their agreement was assessed. Although the average
pD for the different defects resulted to be only 11.29%, the Qualitative Evaluation,
performed by VE2 and NLP-E, showed that several novel classes of defects discovered
were not considered by our patterns. This confirmed the complementary role of SREE
with respect to our patterns.

In the following sections, we report how each specific iteration was executed. The reader
should refer to Table 5 and Table 6 to have a structured summary of the information provided
in each section.

5.3 Pilot study

Figure 2 gives an outline of the iteration. The iteration involved NLP-E and VE1, and aimed
to address RQ1 and RQ2. In this iteration, all the tasks of the template are performed, with
the exception of Output Annotation. This iteration was exploratory, in that it aimed to assess
the accuracy of NLP patterns on a limited dataset of the company. The tasks performed are
as follows:

Fig. 2 Structure of the Pilot Study
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– Research Questions: RQ1 and RQ2 were defined in collaboration between NLP-E and
VE1. In this iteration, the underlying goal was to establish whether the patterns were
able to achieve a recall value close to 100%. As noted by Berry et al. (2012), defect
detection techniques shall favor recall over precision since the cost of undetected true
defects is much higher than the cost of manually discarding false positive cases.

– Patterns Definition: NLP-E considered that assessing the effectiveness of a domain-
generic tool for defect detection (e.g., QuARS, presented by Gnesi et al. 2005) would
have required a strong expertise in the domain of the requirements documents. In addi-
tion, he considered that, if the tool had provided too many false positive cases, e.g.,
innocuous ambiguities (Chantree et al. 2006), the company would not have considered
the tool as appropriate for its needs. Hence, it was decided to let VE1 develop the tool
in-house, with the support of NLP-E.

VE1 was initially required to study the papers of Berry et al. (2003), Gnesi et al.
(2005), Gleich et al. (2010), Tjong and Berry (2013) and Arora et al. (2015). Then,
she was required to perform the tutorials provided by GATE (General Architecture for
Text Engineering, see Cunningham 2002), which was the generic NLP tool selected to
be tailored to support defect detection. The tool was chosen since it was considered
sufficiently easy to use for an engineer, and sufficiently powerful for the task. After this
training, VE1 and NLP-E met to define the defect classes on which to focus. Priority
was given to those defect classes that were considered more relevant from the point of
view of VE1 – taking into account the defect classes provided by Berry et al. (2003),
and by the other papers she had studied – and whose identification was considered
feasible by NLP-E. VE1 autonomously implemented the patterns, under the supervision
of NLP-E.

The patterns developed are reported in Section 3.2.
– Dataset Selection: D-Pilot was selected by VE1 under the guidance of representatives

of the company.
– Dataset Annotation: the dataset was manually annotated by VE1. After this task, 120

requirements were marked as rejected, while 121 were marked as accepted.4

– Patterns Application: the task was then carried out using the support of GATE.
– Quantitative Evaluation: VE1 provided NLP-E with a table with the results of the

evaluation. The measures used are for defects, tpD , fpD , f nD , pD , rD , and for
requirements, tpR , fpR , f nR , pR , rR .

– Qualitative Evaluation: VE1 evaluated false positive and false negative cases, and pro-
vided representative examples. VE1 and NLP-E interacted so that NLP-E could tailor
the cases and examples for reporting.

5.4 Large-scale study - 1st iteration

Figure 3 gives an outline of the iteration. The iteration involved NLP-E, VE1, VE2 and
VE3. This iteration is still based on RQ1 and RQ2, in that it aims to further answer the
RQs with a case modification – in terms of dataset used and annotator –, and the nature of
the iteration is still exploratory. All the tasks, with the exception of Patterns Definition and
Output Annotation are performed. The patterns were the one used in the previous iteration.
To confirm the validity of the produced data, VE2 replicated part of the tasks. The parts

4The dataset appears balanced since VE1 continued to randomly select new requirements from the original
requirements considered, until a balanced number of accepted and rejected requirements was obtained.
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Fig. 3 Structure of the Large-scale Study – 1st Iteration

replicated by VE2 are represented in dashed line in Fig. 3. The tasks performed are as
follows.

– Research Questions: the research questions RQ1 and RQ2 were kept from the previous
task. The objective of this iteration was to perform an assessment of the patterns on a
larger requirements dataset of the company, previously validated by another VE (i.e,
VE3), to understand to which extent the approach could be applicable more widely
within the company.

– Dataset Selection:D-Large was selected by VE1, under the guidance of representatives
of the company.

– Dataset Annotation: the defects of the document were previously annotated by VE3,
following the criteria of the company already outlined in Section 4.3, and employed
by VE1 for the Pilot Study. Since this task was performed before this work was con-
ceived, the annotation of the defective fragments was not performed by VE3, who just
marked requirements as accepted or rejected, and described the reasons for rejection in
a specific requirements validation document. From the 1866 requirements, 1733 were
marked as accepted, while 93 were marked as rejected.

– Patterns Application: the task was initially carried out using the support of a tool
developed by VE1 on top of GATE to facilitate the analysis of the results. In the
replication, the task was performed by VE2, but using solely the support of GATE.

– Quantitative Evaluation: the measures adopted to evaluate the effectiveness of the pat-
terns in identifying defective requirements are tpR , fpR , f nR , pR and rR . Intuitively,
these measures indicate whether the application of the different patterns simultane-
ously allows the identification of requirements that were marked as rejected by VE3.
Since VE3 did not annotate fragments, for this analysis we do not consider evaluation
measures for the single defects as in the Pilot Study.

– Qualitative Evaluation: given the poor results obtained from the Quantitative Eval-
uation (see Section 6.2), especially in terms of precision, this task was performed by
VE1 as a non-systematic inspection of the false negative and false positive cases. The
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Fig. 4 Structure of the Large-scale Study – 2nd Iteration

inspection of the false positive cases was oriented to understand whether these cases
included defective requirements not initially annotated by VE3. This evaluation trig-
gered the Large-scale Study – 2nd Iteration, which aimed to more rigorously explain
the poor results.

5.5 Large-scale study - 2nd iteration

Figure 4 gives an outline of the iteration. The iteration involved NLP-E, VE1, VE2, and
was performed to provide a more informed answer to RQ1 and RQ2. The iteration has an
explanatory nature, in that its underlying goal was to explain whether the false positive
cases identified in the previous iteration could be considered as true positive cases, from the
point of view of more strict annotators. To confirm the validity of the produced data, VE2
replicated part of the tasks. The parts replicated by VE2 are represented in dashed line in
Fig. 4. The tasks performed are as follows.

– Research Questions: RQ1 and RQ2 were considered not sufficiently answered by the
previous iteration, and the iteration was designed to understand to which extent the low
value of precision observed was due to inaccuracies in the annotation process performed
by VE3.

– Output Annotation: a second annotation process was performed on the requirements
marked as defective by at least one of the patterns. In this annotation process, two VEs
(VE1 and VE2) independently annotated the output of the patterns. The agreement
between annotators was estimated with the Cohen’s Kappa, resulting in k = 0.82,
indicating an almost perfect agreement.5

5According to Landis and Koch (1977), the following qualitative measures are associated to the different
ranges of the Cohen’s Kappa: k < 0, no agreement; 0 ≤ k ≤ 0.20, slight; 0.21 ≤ k ≤ 0.40, fair; 0.41 ≤ k ≤
0.60, moderate; 0.61 ≤ k ≤ 0.80 substantial; and 0.81 ≤ k ≤ 1 almost perfect agreement.
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– Quantitative Evaluation: since in this analysis we focus solely on the output produced
by the patterns, we consider neither the amount of false negative cases, nor the measure
of recall. Hence, we consider tpD , fpD , pD , for each defect class i, and tpR , fpR , pR ,
as measures of the precision over requirements.

– Qualitative Evaluation: the task was performed by VE1 first, and was later reviewed
VE2, to give a first categorisation of the false positive cases. The categorisaiton was
refined by NLP-E based on the examples given by the VEs, with a particular focus
on systematic categories of false positives, which could be potentially discarded with
additional patterns.

5.6 Large-scale study - 3rd iteration

Figure 5 gives an outline of the iteration. This iteration involved NLP-E and VE2, was aimed
at answering RQ3, and had an improving nature. Indeed, the goal of this iteration was to
understand whether the performance of the patterns in terms of precision could be improved
with discard patterns. To implement the foreseen improvement of the patterns, VE2 was
actively involved in the activity. Indeed, at this stage, VE1 was committed to a mentoring
program within the company, to disseminate the best practices for requirements quality
learned throughout the experience. The task performed in this iteration are as follows.

– Research Questions: the Qualitative Analysis performed in the previous iteration
allowed NLP-E, VE1 and VE2 to observe that a set of systematic false positive cases
could be addressed with specific patterns designed to discard these cases (see Sec-
tion 6.3.2). Therefore RQ3 was defined, and the iteration was designed to define, apply
and evaluate the discard patterns in conjunction with the defect detection patterns.

– Patterns Definition: VE2 performed a self-training, analogous to the one performed
by VE1 (i.e., a study of the selected literature, and a tutorial on GATE) during the
Pilot Study. Afterwards, VE2 implemented the discard patterns, under the supervision
of NLP-E. The discard patterns are reported in Section 3.3.

Fig. 5 Structure of the Large-scale Study – 3rd Iteration
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– Patterns Application: the patterns were applied by means of GATE.
– Quantitative Evaluation: the evaluation was performed by VE2 considering the anno-

tations produced in the previous Output Annotation task. As in the previous iteration,
the evaluation measures used are tpD , fpD , pD , for each defect class i, and tpR , fpR ,
pR .

The Qualitative Evaluation was not performed, since the goal was only to assess whether
the discard patterns could improve the performance of the overall approach in terms of
precision.

5.7 Large-scale study – 4th iteration

Figure 6 gives an outline of the iteration. The iteration involved NLP-E and VE2, and aimed
to give an answer to RQ4.1. In the context of the case study, this analysis was performed to
understand whether the dictionaries of SREE could be used to identify additional require-
ments defects that could not be identified with our patterns. The nature of the iteration was
again improving, and consisted of the following tasks.

– Research Questions:
the iteration was designed to compare the defect detection capabilities of SREE

with respect to our patterns, and in particular, whether SREE actually allows to achieve
higher values of recall. Therefore, RQ4, and its first refinement, RQ4.1, were defined
by NLP-E and VE2.

– Patterns Definition: under the guidance of NLP-E, each SREE dictionary, as reported
in Section 3.4, was imported in GATE by VE2 as a separate Gazetteer. As mentioned, in
our evaluation we apply all the SREE dictionaries, with the exception of the dictionary
of the weak class (see Section 3.4).

– Patterns Application: the patterns implementing the SREE dictionaries were applied
by VE2 by means of GATE.

Fig. 6 Structure of the Large-scale Study – 4th Iteration
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– Quantitative Evaluation: the annotations considered for these requirements are those
of V3 only, from Large-scale Study – 1st Iteration. Indeed, in this phase, we are inter-
ested in understanding whether the dictionaries of SREE applied altogether are able to
detect defects, identified by VE3, that our patterns were not able to detect. To this end,
SREE is compared with our patterns according to the values of tpR , fpR , f nR , pR , rR .
The patterns considered include the defect-detection patterns, plus the discard patterns.

– Qualitative Evaluation: this task was performed by VE2 with the support of NLP-E
in a non systematic way, to observe defective requirements that could be detected by
SREE.

5.8 Large-scale study – 5th iteration

Figure 7 gives an outline of the iteration. The iteration involved NLP-E, VE1 and VE2, and
aimed to answer RQ4.2, RQ4.3 and RQ4.4. The iteration had an explanatory nature. Indeed,
from the previous iteration, a high amount of false positive requirements was returned by
SREE with respect to our patterns. This suggests that SREE may be less precise also at the
level of defects. On the other hand, these false positive requirements may conceal defects
that were not considered by VE3. Therefore, it was decided to evaluate the potential degree
of precision for the single defects identified by SREE. The tasks performed in this iteration
are as follows.

– Research Questions: NLP-E and VE2 considered that further investigation was
required to answer RQ4, and its refinement RQ4.2, 4.3 and 4.4 were defined. Specif-
ically, with RQ4.2 we wanted to assess which was the precision of SREE at the level
of single defects, since low precision was observed at the level of requirements, after
answering RQ4.1. Furthermore, we wanted to systematically study the specific defects
that could be detected with SREE, and that could not be detected with our patterns
(RQ4.3). With RQ4.4, we wanted to provide a qualitative evaluation of the false positive
cases at the level of single defects.

Fig. 7 Structure of the Large-scale Study – 5th Iteration
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– Patterns Definition: to evaluate the false positive cases issued by SREE at the level of
defects, a selection of the SREE dictionaries was adopted for the analysis, which we call
SREE-reduced (see Section 3.4). Indeed, we recall that, to address RQ4, this analysis
was oriented to understand to which extent the SREE dictionaries could complement
our patterns.

– Patterns Application: the patterns were applied by means of GATE.
– Output Annotation: a second annotation process was performed on the requirements

marked as defective by at least one of the patterns derived from the dictionaries of
SREE. VE1 and VE2 independently vetted the output derived from the application of
SREE-reduced, and decided whether the defects issued were true positive or false pos-
itive cases. For each SREE defect class associated to one SREE-reduced dictionary, all
the requirements labelled as defective according to the dictionary were considered. An
exception is the plural class, for which a sample of 50 requirements labelled as defec-
tive was randomly chosen. The annotator agreement was estimated with the Cohen’s
Kappa, resulting in k = 0.79, indicating substantial agreement.

– Quantitative Evaluation the values of tpD , fpD and pD were used for each single
defect class of SREE considered.

– Qualitative Evaluation: true positive and false positive cases were analysed and clas-
sified by VE2, under the supervision of NLP-E, for each dictionary of SREE-reduced.
True positives were analysed to answer RQ4.3, while false positives were analysed to
answer RQ4.4.

6 Results

6.1 RQ1, RQ2: pilot study

6.1.1 RQ1: what is the accuracy of the NLP patterns for defect detection?

In Table 7 we report the results of the different evaluation measures to establish the accuracy
of the patterns.

We see that, although the patterns for anaphoric ambiguity and coordination ambiguity
are both based on shallow parsing, which normally has a typical accuracy of 90-95% (Kang
et al. 2011), we achieve the objective of 100% recall. Similarly, for modal adverbs and pas-
sive voice, we achieve 100% recall, although these patterns employ POS tagging, which
has an accuracy around 97% (Manning 2011). Two of the patterns that employ only lexical-
based pattern matching, namely missing reference and undefined term, also achieve 100%
recall. Lower values of recall are instead achieved for the patterns associated to vague
terms (67.74%), excessive length (60.06%), missing unit of measurement (50%) and missing
condition (97.05%).

6.1.2 RQ2: which are the cases of inaccuracy of the NLP patterns for defect detection?

Vague terms By inspecting the ten false negative defects for vague terms, VE1 found that
they were all due to the absence of the quantifier some in the list of vague terms provided
by QuARS. Hence, requirements such as the following were not marked as defective by the
pattern: In case the boolean logic evaluates the permissive state, the system shall activate
some redundant output – which output shall be activated? VE1 resolved the problem by
simply adding the term some to the list of vague terms. Since also pD was particularly low
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Table 7 Results for single defects and requirements for the Pilot Study

Defect Class tpD fpD f nD pD rD

Anaphoric ambiguity 22 8 0 73.33% 100%

Coordination ambiguity 16 8 0 66.66% 100%

Vague terms 21 16 10 56.75% 67.74%

Modal adverbs 28 14 0 66.66% 100%

Passive voice 343 60 0 85.11% 100%

Excessive length 200 30 133 86.95% 60.06%

Missing condition 66 14 2 82.5% 97.05%

Missing unit of measurement 2 2 2 50% 50%

Missing reference 10 0 0 100% 100%

Undefined term 208 76 0 73.23% 100%

Requirements tpR fpR f nR pR rR

106 59 14 64.24% 88.33%

(56.75%), VE1 inspected the false positives and saw that they were due to domain-specific
terms, namely raw data, hard disk, short-circuit, logical or, logical and, green LED. These
terms were used to discard false positives in future analysis.

Excessive length By inspecting the false negative cases for excessive length, VE1 saw
that they were due to a limitation of the GATE Tokenizer. For nested bullet point lists, the
Tokenizer considers each item as a separate sentence. Hence, very long and deeply nested
bullet point lists were not considered as sentences of excessive length. However, VE1 also
argued that the length of a sentence, and the hard readability due to complex nested lists
are different kinds of defects. Hence, she decided not to change the pattern for excessive
length, and to consider the problem of nested lists as a defect that, at the moment, was left
uncovered.

Missing unit of measurement Concerning the two false negative cases for missing unit
of measurement, VE1 observed that these were due to the presence of ranges of numerical
values, e.g., [4,20], without the specification of the unit of measurement. To address these
cases, the pattern was adjusted.

Missing condition The two false negative cases for missing condition appeared to be due
to the presence of multiple if statements in the same sentence, with one else statement only,
as in the following case: If the initialization starts, if the board is plugged in and if the
operator has sent the running command the system shall start, else it shall go in failure
mode. For requirements as the one presented, it is difficult to understand which specific
if is covered by the else statement. Since the majority of missing condition defects were
identified (66 out of 68), and considering that a VE has to manually review the requirements
anyway, as required by the norm (CENELEC 2011), VE1 decided not to add additional rules
for this defect class. It could be noticed that the specific defect could be detected also with
techniques that check the readability of the text (Collins-Thompson 2014), an emerging
topic in requirements (Ferrari et al. 2017), which is however outside of the scope of this
paper.
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Table 8 Results for the Large-scale Study – 1st Iteration

tpR fpR f nR pR rR

76 1232 13 5.81% 85.39%

False negative requirements It is also useful to look at the values of false negative cases
f nR and recall rR for the requirements. These 14 false negative cases not only include
those already discussed, but also cases of defective requirements that could not be identi-
fied with our patterns – but which were annotated by VE1 following the guidelines of the
company. In particular, interesting cases are those in which we have inconsistent require-
ments (e.g., 1: The system shall accept only read access to file X; 2: The system shall accept
read and write access to file X.) that violate guideline (f), which asks requirements to be
consistent. Other cases are those for which we have problems of testability (guideline (b)),
as in the case of under-specified statements (e.g., The system shall go in error mode when
an internal asynchronism has been detected; asynchronism among which components?),
or incomplete statements (e.g., The system shall make available its internal status; through
which interface?). Finally, other cases are those associated to other defects of completeness
of the requirements document, as in the case of requirements for which it is expressed only
the best-case scenario, and not the worst-case (e.g., The system shall go at runtime state
from power off state in 3 minutes in the best case.; which is the requirement for the worst
case?).

Although some false negative cases were found, the evaluation of the patterns was con-
sidered successful in terms of recall by VE1. Hence, we decided to experiment the use of
the patterns on a larger requirements dataset.

6.2 RQ1, RQ2: large-scale study – 1st iteration

6.2.1 RQ1: what is the accuracy of the NLP patterns for defect detection?

In Table 9 we report6 the output of the patterns on the dataset in terms of defects identified
(D), and in terms of defective requirements (R) – the other columns of the table will be
discussed in Section 6.3.

We see that the majority of the defects are due to passive voice. This is in line with the
results of Femmer et al. (2014). The use of passive voice appears to be a sort of writing style
of these requirements, since 824 out of 1866 (44%) include this defect. However, the most
interesting – and disappointing – aspect comes from the evaluation presented in Table 8. The
number of false positive requirements is extremely high, and the precision is only 5.81%.
This value is comparable with the precision obtained through a random predictor (for which
pR = rR = 93/1866% = 5%, see Alvarez 2002). Hence, it appears not acceptable if the
tool needs to be used in a real-world setting. Furthermore, also the value of rR (85.39%) is
slightly lower if compared with the one obtained in our preliminary study, for which rR =
88.33%.

6The results presented in Tables 9 and 8 differ from those presented in our original conference paper.
When VE2 replicated the experiments performed by VE1, discrepancies in the results emerged. These were
traced back to the usage of a support tool, developed by VE1 on top of GATE, to ease the analysis of the
requirements. The tool introduced further manipulations, which led to incorrect numerical results. The results
presented in this paper are produced based solely on the analysis of the output of GATE, and are, to the best
of our knowledge, correct.
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6.2.2 RQ2: which are the cases of inaccuracy of the NLP patterns for defect detection?

In this iteration, we give general observations of false negative cases, which impact the value
of rR , and false positive cases, which impact on pR . Given the low value of pR observed, the
evaluation of false positives, and their classification was systematically performed during
Large-scale Study – 2nd Iteration (Section 6.3).

False negative cases As for the preliminary analysis, the false negative cases are due to
requirements that include defects that were not considered by any of the patterns, but that
violate one or more criteria adopted by the company. Interesting examples are requirements
that do not fulfill the criterion of testability (guideline (b)), as e.g., The system shall be
in continuous operation for 24 hours a day and 7 days a week; requirements that are not
feasible (guideline (a)), e.g., The core of the system shall use TCP/IP protocol in order to
communicate with peripheral boards – in this case, this requirement was considered not
feasible since the only communication protocol that was considered applicable was UDP;
requirements that include inconsistent statements (guideline (f)), e.g., The brake symbol
shall be able to show the following colors: Green when the brake is not active, Grey when
the brake is not active. Overall, these cases show that there is a variety of defects of semantic
nature that are hardly identifiable with the applied NLP techniques – which focus on lexical
and syntactic aspects –, and hence require a human expert to accurately assess them.

False positive cases VE1 inspected the output of the tool, and saw that part of the false
positive requirements were, in her opinion, actually defective. For example, the following
requirement marked as accepted, was evidently defective due to several vague terms (high-
lighted in bold): Depending on the technical or functional solution selected, there shall be
time parameters in the control system, that the Purchaser shall be able to adjust during
operation in order for the registration/deregistration to be made as effectively as possible.7

In other terms, her opinion was that VE3, when evaluating the requirements, actually toler-
ated several linguistic defects, and marked as rejected only those requirements that appeared
to include severe conceptual defects. When consulted by VE1, VE3 observed that he also
had an in-depth knowledge of the project of the requirements, which allowed him to disam-
biguate, or tolerate, certain defects. To assess how many of the false positive cases could be
considered as linguistic defects from the point of view of a more strict annotator that did not
have prior knowledge of the project, a second annotation process was performed to evaluate
the false positive cases (Large-scale Study – 2nd Iteration, Section 5.5).

6.3 RQ1, RQ2: large-scale study – 2nd iteration

6.3.1 RQ1: what is the accuracy of the NLP patterns for defect detection?

Table 9 reports the results of this phase. For each defect class, the precision reaches an
average value of 72.81% for what concerns the number of defects (average of different pD).
Overall pR resulting from the application of all the patterns together, raises from the 5.81%
of Table 8, to 77.37%.

7The requirement was not rejected since it was clarified by other subsequent requirements. This violates the
guideline (c) that require requirements to be stand-alone, but the defect was not considered crucial.
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Table 9 Results for the Large-scale Study – 2nd Iteration

Defect Class D R tpD fpD pD

Anaphoric ambiguity 391 342 198 193 50.64%

Coordination ambiguity 261 215 190 71 72.80%

Vague terms 857 580 392 465 45.74%

Modal adverbs 478 379 333 145 69.67%

Passive voice 1317 824 888 429 67.43%

Excessive length 13 13 13 0 100%

Missing condition 185 147 127 58 68.65%

Missing unit of measurement 0 0 0 0 –

Missing reference 2 1 2 0 100%

Undefined term 61 57 49 12 80.33%

Average 72.81%

Requirements tpR fpR pR

1012 296 77.37%

6.3.2 RQ2: which are the cases of inaccuracy of the NLP patterns for defect detection?

From the results presented in the previous section, there is still a significant amount of
false positive cases that should be noticed. Part of these cases are systematic, and they
can be discarded with additional patterns. Here we will discuss relevant examples of false
positive cases for each class, specifically focusing on the systematic cases, and mentioning
non-systematic ones when this is considered relevant.

Anaphoric ambiguity The majority of the false positive cases for anaphoric ambiguities
are due to the usage of the pronoun it in its impersonal form, especially in the expression It
shall be possible [...]. This expression, and its variants – it shall also be possible, it should
be possible, etc. – is often used as a preamble in the requirements of the company. These
cases are systematic sources of false positives, and appropriate patterns can be defined to
discard them.

The remaining, non-systematic cases, include situations in which the referent of the pro-
noun is disambiguated by the context, as in the following requirement:Trains that arrive on
the automatically controlled stretches shall continue to be directed to their correct destina-
tions. The pronoun their is clearly referred to the trains, but the pattern PANA recognises
two nouns (i.e., trains and stretches), to which the pronoun may refer. To detect these non-
systematic false positive cases, machine learning approaches, such as those applied by Yang
et al. (2011) should be applied.

Coordination ambiguity The false positive cases for coordination ambiguity, in line
with those identifyied by Chantree et al. (2006), are non-systematic cases, in which the
potentially ambiguous fragment is disambiguated by the context. For example, consider a
requirement such as: It shall be possible to print out the whole timetable or part of it, in
which the fragment in bold is detected by means of pattern PCO2 . In this requirement, it
is clear that the adjective whole refers solely to the noun timetable. Similarly, consider the
following requirement: A train can consist of one, two or three cars for services between
Station A and Station B, in which the fragment in bold is detected by means of pattern PCO1 .
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Also in this case, it is clear that the conjunctions and and or refer to their nearby terms.
However, these cases are non-systematic, and can hardly be detected by means of rule-based
patterns. Other heuristics, such as those presented by Chantree et al. (2006) should be used.

Vague terms A large number of false positive cases (465) is identified for this defect.
These cases can be partitioned into the following typical situations:

1. Lexical Ambiguity: the vague term is lexically ambiguous (Berry et al. 2003). For
example, the term light, considered as adjective, is vague, but when playing the role of
noun, as in the requirement Yellow Stop lights do not have to be monitored, is not vague.
Cases such as the one in this example can be systematically detected by applying POS
tagging, and considering a term as vague only if it plays the role of adjective. A similar
systematic case, which can be addressed with the same approach, is the case of the term
sound, as in the requirement fragment Blue arrows, and their associated sound, shall
not be presented to the driver [...];

2. Domain-specific Term: a vague word is part of a domain-specific multi-word term, as
for the term distant of the following example: The operator shall use “distant signalling
distance” to apply the brake. Another interesting case is the term near in the typical
railway expression near miss – indicating an unplanned event that has the potential to
cause, but does not actually result in human injury. To discard these cases, techniques
for multi-word term identification (Bonin et al. 2010) may be applied. Otherwise, a list
of stop phrases to be ignored can be defined based on the false positives identified. In
our case, this second option will be chosen.

3. Accepted Expressions: the term possible is used in the phrase It shall be possible
[...], considered an accepted requirement preamble within the company, as previously
mentioned.

4. Internal Clarification: the vague term is later clarified with the specification of numer-
ical quantities, as in the following fragment: [...] for a short stretch (maximum 3 meters)
on tramcars [...]. In this case, the term short is clarified by the phrase maximum 3
meters.

5. Domain Clarification: the vague term is clarified by the domain, as in the case of the
term adjacent in the following requirement: In the case of a train passing adjacent to
a level crossing, each train shall register its own priority. Physical adjacency among
elements in the railway line is a well defined concept in the domain. However, we found
also cases in which the term adjacent was considered vague, as in the fragment adjacent
track, in which it is not specified whether the referenced track is on the left-hand or on
the right-hand side.

The first three cases can be systematically detected. By contrast, the last two are hard
to be detected in a systematic manner. Indeed, although for case 4, patterns that check
numerical quantities nearby the vague term can be defined, but it is not sure how “nearby”
should be intended. In addition, these false positive cases are rather easy to discard, and, for
this reason, patterns will not be defined to address these cases.

Modal adverbs For modal adverbs the great majority of the false positive cases are due to
the usage of the terms manually and automatically. These terms are not considered defective
in the context of the requirements, since they are used to distinguish between the duties of
the system (automatically), and the duties of the operator (manually). The remaining false
positive cases are due to the usage of the term only. Consider the following requirement:
In case there are two coupled points the system shall select only the point with identifier
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equal to 1. Here, the term only is used to distinguish between multiple choices. Since the
term only, especially when misplaced, may be ambiguous, as noted by Berry et al. (2003),
the usage of this term cannot be regarded as a systematic source of false positives. An
exception in this sense is the occurrence of only in the fragment information purposes only,
an expression frequently used in the requirements. When only occurs in this fragment, it can
be considered as a systematic false positive case.

Passive voice For the false positive cases of this class, we can identify four typical
situations, listed below:

1. Irrelevant Actor: the actor performing the action is sometimes considered as not rele-
vant, as in the requirement: Air conditioning units are installed in some of the technical
equipment areas. This sentence provides information about a certain environment, and
the reader does not need to know who installed the air conditioning units. Similar cases
are those in which the passive voice is connected, or is disconnected are used;

2. Implicit Actor: the actor – often, the system or the operator – can be inferred from the
context, as in Error signals shall be displayed in the MMI above the speedometer (the
actor is the system), or The emergency brake restore shall be performed with the green
signal (the actor is the operator).

3. Explicit Actor: the actor is actually expressed, as the passive voice is used in con-
junction with prepositions (e.g., by, from), after which the actor is clarified, as in the
following example: All views shall be developed by the Supplier in consultation with
the Purchaser.

4. Intransitive Verb: the passive voice is used with intransitive verbs, such as the verb
log-in, e.g., if a workstation fails and the operator is still logged in [...];

The first two cases cannot be identified systematically. However, the latter two can be,
in principle, identified with appropriate patterns, which detect the prepositions by and from
in conjunction with passive voice (case 3), or which identify intransitive verbs (case 4).
However, since the number of these cases was considered negligible, VE2 decided not to
implement these patterns.

Missing condition False positives for this defect class occur when the term if is not used
to express a condition over the system behaviour. For example, the requirement The system
shall check if there is a train in the route does not require an else statement. In other cases,
the else condition is expressed in another requirement, e.g., 1: If the precondition satisfies
all initialization check the system shall set its internal state to running; 2: In case an ini-
tilization check fails, the system shall set its internal state to failure. These cases can hardly
be detected with patterns, and require the knowledge of the context to be disambiguated.

Undefined term The entirety of the false positive cases for undefined terms are due to the
identification of units of measures, or known acronyms in their plural forms, such as, e.g.,
kVA, dB, LEDs. A list of known unit of measurement and known acronyms can easily be
defined to discard these cases.

6.4 RQ3: large-scale study – 3rd iteration

RQ3: What is the precision of NLP patterns for defect detection when complemented with
discard patterns?
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Table 10 Results for the Large-scale Study – 3rd Iteration

Defect Class D R tpD fpD pD

Anaphoric ambiguity 270 251 198 72 73.33%

Coordination ambiguity 261 215 190 71 72.80%

Vague terms 555 384 392 163 70.63%

Modal adverbs 409 330 333 76 81.42%

Passive voice 1317 824 888 429 67.43%

Excessive length 13 13 13 0 100%

Missing condition 185 147 127 58 68.65%

Missing unit of measurement 0 0 0 0 –

Missing reference 2 1 2 0 100%

Undefined term 50 47 49 1 98%

Average 81.36%

Requirements tpR fpR pR

1012 205 83.16%

Table 10 reports the results obtained when applying the discard patterns. We notice a
substantial increase, in terms of pD . In particular, compared with the results of Table 9, pD

increases by 22.69% for anaphoric ambiguity, by 24.89% for vague terms, by 11.75% for
modal adverbs, and by 17.67% for undefined term. Overall, the average pD raises to 81.36%
(an increase of 8.55% with respect to Table 9), and also pR increases by a non negligible
5.79%. This increase of precision saves, in principle, a considerable amount of checks to
the VE, who has to vet a lower number of requirements. More specifically, if we look at the
values of fpR in Table 10 (296) and in Table 9 (205), we see that 91 requirements do not
have to be vetted after the introduction of the discard patterns.

As noticed in Section 6.3, the majority of the remaining false positive cases cannot be
systematically detected, and require the judgment of a human assessor. These types of sit-
uations can be potentially addressed through statistical techniques, as, e.g., Chantree et al.
(2006) and Yang et al. (2011). Typical examples have already been reported in Section 6.3.

6.5 RQ4.1: large-scale study – 4th iteration

RQ4.1: What is the accuracy of SREE with respect to the NLP patterns for defect detection
complemented with discard patterns?

Table 11 compares the performance of the SREE dictionaries and our patterns against the
annotations of VE3. From the table, we see that SREE outperforms our patterns by 11.24%
in terms of recall on the requirements originally annotated by VE3, and its precision is
0.79% lower. Hence, SREE dictionaries may contain terms that help to identify defective
requirements that were not detected through our patterns, and were therefore part of the

Table 11 Results for the Large-scale Study – 4th Iteration, SREE vs Patterns

Tool tpR fpR f nR pR rR

SREE 86 1492 3 5.45% 96.63%

Patterns 76 1141 13 6.24% 85.39%
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false negative cases issued. On the other hand, a 0.79% gap in terms of precision, implies
that 351 additional false positive requirements (fpR) are generated by SREE with respect
to our patterns.

Let us first analyse the false negative cases of our patterns that are detected through the
SREE dictionaries, and then we will investigate the issue of precision.

A representative example of the requirements detected through SREE, and not with our
patterns, is the following one: Normal and abnormal changes in the status of the Facility
shall warrant special treatment [...]. VE3 rejected the requirement, and stated that “Normal
and abnormal changes” are not defined and shall be agreed. SREE identifies this require-
ment as defective, since its dictionary for the vague class includes the term normal. On the
other hand, it is worth noticing that SREE dictionaries do not include the term abnormal,
which is also a defective term, according to the statements of VE3. A similar case is the fol-
lowing requirement: When the driver follows indications as to themaximum speed limit the
Facility shall not cause braking that produces jolty and uneven driving. The requirement
was marked as rejected by VE3, because it does not fulfill the criterion of testability (guide-
line (b)). This is due to the presence of the adjectives maximum, jolty and uneven. Here, the
SREE dictionaries correctly detects the vague term maximum, but do not detect the defec-
tive terms jolty and uneven. Hence, although including the SREE dictionaries in our patterns
can help to increase the recall, novel terms may be needed in the future to address other,
previously unseen, defects.

Another interesting aspect concerns other requirements that (a) are marked as defective
by SREE, (b) are marked as rejected by VE3, but for which (c) the cause of the rejection is
not the defect indicated by SREE. Exemplary cases are mostly related to the usage of plurals,
which have 3377 occurrences in 1250 requirements (see Table 12, discussed in Section 6.6).
An example is the following requirement: It shall be possible to turn trains at the intended
turning points without restriction. SREE identifies the source of the defect in the plural term
trains. However, VE3 marked the requirements as rejected because it violates the criterion
of testability (guideline (b)). This is due to the expression without restriction, which does
not allow the definition of a finite number of tests to verify the requirement.

Of course, there are entire defect classes considered by our patterns, which are not
detected by the dictionaries of SREE, such as passive voice, missing condition, missing ref-
erence, missing unit of measurement, etc. Given these observations, SREE dictionaries can
be considered as complementary to our patterns. Still, SREE and our patterns altogether are

Table 12 Results of the Large-scale Study – 5th Iteration

Defect Class D R tpD fpD pD

Continuance 181 155 41 140 22.65%

Directive 123 102 0 123 0%

Optional 102 92 26 76 25.49%

Incomplete 32 31 2 30 6.25%

Plural 3377 1250 6 125 4.58%

Quantifier 308 264 25 283 8.11%

Vague 931 665 111 820 11.92%

Average 11.29%

False positive evaluation for SREE-reduced dictionaries
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insufficient to detect all the potential defects, and should be complemented with additional
terms, as, e.g. jolty and uneven.

As mentioned, a high amount of false positive requirements was returned by SREE with
respect to our patterns. This suggests that SREE may be less precise also at the level of
defects. On the other hand, these false positive cases may conceal defects that were not
considered by VE3.

Therefore, it was decided to evaluate the potential degree of precision for the single
defects identified by SREE. An analysis of the false positive cases was performed at the
level of the single defects, similar to the one applied on the output of our patterns during
Large-scale Study – 2nd Iteration.

6.6 RQ4.2, RQ4.3, RQ4.4: large-scale study – 5th iteration

6.6.1 RQ4.2: what is the precision of SREE for the defects in its scope?

Table 12 reports the results of the analysis of the false positive defects. The average value of
pD is 11.29%, which indicates that a large amount of false positive cases are issued, which
is much lower, compared with the 81.36% obtained through our patterns (Section 6.5).8

6.6.2 RQ4.3, RQ4.4: which additional defects can be identified with SREE, and which
are the false positive cases?

Below, we provide an analysis of the true positive and false positive cases.

Continuance The continuance class includes terms that, when present, indicate a reference
between a statement and a previous one (e.g., in addition, in particular), or a subsequent
one (e.g., following, below). True positive cases occur when the referred statement is absent,
and, therefore, the requirement is incomplete. The number of these cases is not negligible,
and are all associated to the terms as follows and below. False negative cases occur anytime
the referred statement appear in the requirement. These cases occur especially when the
referent is a previous statement, and the terms in addition and in particular are used.

Directive The directive class includes terms that indicate the presence of a reference to an
element in the requirement (e.g., e.g., i.e.) or in the document (e.g., figure, table). As for the
continuance class, true positives may occur when the referred element is absent, while false
positive occur when the referred element is present. In the considered requirements, no true
positive case was identified.

Incomplete The incomplete class includes terms that may indicate a form of internal
incompleteness of the requirement (e.g., TBD, to be defined). The dictionary of this class
raises a limited number of defects (32). Indeed, expressions as, e.g., TBA, TBD do not occur
in the requirements, and the great majority of the false positive cases occur when the term
in addition is used – a term that is included also in the continuance class. Another typical
case of false positive is the following requirement fragment: [...] functions shall be per-
formed in a secure way, as defined in the CTC security requirements. Here, the requirement

8The value of pR that considers the analysis of the false positive cases for the SREE dictionaries cannot be
provided, since we analysed only a subset of the defects for the plurals class. However, the average value of
pD gives a clear indication of the precision of SREE at the level of defects.
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is not incomplete, since it refers to another document in which the required information is
available. Instead, the cases evaluated as true positives are similar to the following one: All
alarms [...] shall be shown in track plan views as specified above. Here, the problem is
with the term above, rather than with the term as specified, since the VEs could not find the
referred information in the document. However, the defect was considered a true positive by
the VEs, since the tagging of the term as specified allowed the identification of the defect.

Optional The optional class includes terms that indicate subjective optionality. Anytime
an expression such as if needed, if necessary, if appropriate occurred, this was marked as a
true positive case. Similarly, many true positive cases occur with the term either, as in the
requirement: A cable run shall be laid on either side of the track.

False positive cases occur when terms such as either, or neither, are used in the expres-
sions either [...] or , or neither [...] nor. Another typical, systematic false positive case
occurs with the usage of the term in case of, when this expresses a condition that depends
on actions that are external to the system, as in: In case of a restart of the system [...].

Plurals Plurals are ambiguous when they are used to describe a property of a set or sets,
and it is not clear if the property is that of each element or of the whole set (Berry and
Kamsties 2005), as in the requirement fragment [...] printers shall have a sound [...]. In the
considered sample of 50 defective requirements for the plurals class, cases such as this one
were extremely rare. A large amount of false positive cases was instead observed.

Typical false positive cases belong to two classes. The first class includes lexically
ambiguous verbs used in third person singular form, as, e.g., means, passes, leaves. The sec-
ond class includes cases in which the plural term indicates a set of objects or subjects, such
as trains, boards, tracks, operators, etc., and it is clear from the context that the requirement
refer to all the elements in the set, as in the following fragment: Control orders that are
executed by operators shall be registered [...]. Since the requirements are high-level system
requirements, the use of plurals in the form exemplified is rather common, and accepted by
the VEs.

Quantifier Quantifiers that express quantities in a vague form such as few, little, many,
are included in the quantifier class. The occurrence in the requirements of these vague terms
was always considered by the VEs as a true positive defect. False positive cases are due to
universal quantifiers, such as all or any. Indeed, although, as noted by Berry and Kamsties
(2005), these terms may be source of ambiguity (e.g., All lights have a switch – one switch
for each light, or a common switch?), in the considered requirements these terms are not
used in ambiguous forms. Instead, non ambiguous requirements fragments such as the fol-
lowing are common: [...] all equipped tramcars [...] shall be able to operate on all track
networks [...].

Vague The vague class includes additional terms with respect to the Vague dictionary of
our patterns. Part of these terms appear to be useful to identify extremely vague require-
ments that were not identified through our patterns. A representative example is the
following requirement, which includes two vague expressions: Communication shall as
far as possible be redundant, with separate cable runs, for the various communication
links. False positive cases are mainly due to the usage of terms such as also, and but,
which are rather frequent in the requirements, but are not considered sources of vagueness
by the VEs. Indeed, the presence of these terms sometimes indicates that a requirement
includes more than one statement, as in the fragment: the [...] system shall not be reused but
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shall be dismantled [...]. However, since the considered requirements are high-level system
requirements, the VEs accepted these situations.

6.6.3 General observations

From this analysis, we see that additional defects, which were not previously considered by
our VEs, are actually detected thanks to SREE. This confirms that SREE may play a com-
plementary role with respect to our patterns. On the other hand, the value of precision of
SREE, at the level of defects, is poorer than the precision of our patterns, i.e., a larger num-
ber of false positive cases is issued. However, this numerical difference should be considered
with care. Indeed, there are two main reasons that explain and justify this result:

1. SREE Philosophy: the philosophy of SREE, as we interpret it through its usage, is
to identify terms that, when present, may indicate that also a defect may be present.
If the defect is not present, it is easy for the analyst to vet the requirement. Represen-
tative examples in this sense are the terms in the continuance class: terms such as as
follows and below were judged as particularly useful by the VEs to detect incomplete
requirements, although their occurrence was not always associated to a defect. The VEs
said that vetting the false positive cases was straightforward for this class. Hence, the
low value of precision was sufficiently counter-balanced by the usefulness of the terms
included in the defect class.

2. Subset of SREE: a subset of SREE dictionaries was used, instead of the whole SREE.
Hence, the comparison cannot be considered complete. However, our goal in this case
study was not to identify the best tool for defect detection, but rather to investigate
whether additional defects could be found by means of the SREE dictionaries. This goal
also mitigates a potential annotators’ bias that may have occurred in the evaluation of
the false positives of SREE dictionaries. Although this bias cannot be totally eliminated
in the context of our case study, our patterns, as well as the SREE dictionaries, are
available for the research community, who can independently compare the different
strategies.

7 Threats to validity

In this section, we discuss threats to validity according to the structure recommended
by (Runeson et al. 2012).

Construct validity Objective and widely used metrics, i.e., precision and recall, were used
in this work to assess the accuracy of the adopted NLP technologies. To derive measures of
precision and recall, subjective evaluations were performed by VE1, VE2, and VE3 during
the Dataset Annotation and Output Annotation tasks. In the Pilot Study, only VE1 annotated
the dataset, and no countermeasure was taken to assess the validity of the annotation, given
the preliminary nature of the study. Similarly, in the Large-scale Study – 1st Iteration, only
VE3 annotated D-Large, and the same annotation was used for the Large-scale Study – 4th

Iteration. On the one hand, also in the real-world context of the company, requirements
review is performed by one subject, and the subjectivity threat can be considered as partially
mitigated by the realism of this annotation. On the other hand, the Output Annotation on D-
Large, was independently performed by VE1 and VE2, and the inter-rater agreement was
computed by means of the Cohen’s Kappa. The agreement resulted in k = 0.82 (almost
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perfect) for Large-scale Study – 2nd Iteration, and k = 0.79 for Large-scale Study – 5th

Iteration (substantial). Therefore, we believe that the threat is further mitigated by these
measures of agreement, at least for those requirements that were produced as output by the
NLP patterns. Therefore, construct validity threats are mitigated for Large-scale Study –
2nd, 3rd and 5th Iteration, while they are only partially mitigated for Pilot Study, and Large-
scale Study – 1st and 4th Iteration, in which only one subject was involved in the annotation
process.

Internal validity The main threats to the internal validity of the study are due to the per-
sonal objectives of the involved subjects, which may have had an impact on the results.
Indeed, the annotations performed by VE1 and VE2 in the tasks in which they were involved
may be biased by their need to show that the implemented patterns were successful, hence
annotating as defective also requirements that were not. In the case of the Pilot Study, this
threat is mitigated by the fact that the annotation was performed before applying the pat-
terns, and hence without exactly knowing their output. In the Large-scale Study iterations,
the threat is mitigated by (a) by the pragmatics of the case study, and (b) the independent
Output Annotation process performed. Indeed, since VE1 works as VE in the company, she
is also interested on improving her job, besides showing that the implemented technology is
effective. VE2 may be less keen to this type of integrity, since she is not part of the company
anymore. However, since the Output Annotation task was always performed independently
by the two VEs, we argue that this threat is sufficiently controlled. Furthermore, as noticed
in Section 6.6.3, since this threat cannot be totally mitigated, we share our patterns so that
other researchers can apply them to their contexts, and check their effectiveness. It should
be noted that the annotations of VE3 are not subject to this threat, since they were per-
formed before this work was conceived. Validity issues related to the discrepancies between
the annotations performed by VE3 compared to the ones of VE1 and V2, are discussed
in the External Validity paragraph, since we argue that the annotations represent different
contexts, from which different generalisation criteria may apply.

Another internal validity threat is associated to the tool-suite initially used by VE1 in
the Large-scale Study – 1st and 2nd Iterations, to compute the data for the case. Indeed,
she used an internally developed tool on top of GATE to produce the results. To mitigate
potentially unsound manipulation of the data by this prototype tool, part of Large-scale
Study – 1st and 2nd Iterations, were replicated by VE2, with the support of GATE only.
Discrepancies in the results were observed, and root causes were analysed. The rest of the
analysis were performed by means of GATE only. Since GATE is a widely used tool –
see the list of companies using GATE9 and, e.g., Arora et al. (2015) and Derczynski et al.
(2015), for relevant scientific works in which GATE was employed –, we believe that the
results produced with its support are correct.

External validity Our discussion on the external validity of the study is loosely based on
the principles of case-based generalisation proposed by (Wieringa and Daneva 2015), and of
similarity-based generalisation proposed by Ghaisas et al. (2013). Specifically, we describe
the main architectural aspects of our study, i.e., domain, requirements, subjects, that can
be considered as a term of comparison for other studies. In this way, other researchers and
practitioners can reason by analogy, and possibly profit from our results (Ghaisas et al.
2013).

9https://gate.ac.uk/commercial.html.
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– Domain: our study covers a company of a specific domain, i.e., the railway domain.
In Europe, railway companies have to follow the general guidelines of the CENELEC
norms (CENELEC 2011), and their work practices at process level can be considered
comparable. Furthermore, the railway domain is characterised by a limited number of
suppliers, who often deal with the same customers – i.e., the national or private railway
companies, who provide infrastructure, and services to passengers. This increases the
homogenisation of processes and, in part, requirements documents. While we cannot
generalise our results for any type of domain, we argue that similar results may be
obtained in other railway companies. On the other hand, the following limitations to
the external validity of our results shall be considered.

– Requirements: the requirements considered in the study have been selected by VE1,
with the support of the company, as benchmarks to represent typically defective require-
ments of the firm. VE1 and VE2 admits that, depending on the subjects involved in
the production of requirements, the documents may have different degrees of qual-
ity, and the documents belonging to the study are requirements of lower quality than
average. Furthermore, along the process, system requirements such as those anal-
ysed are normally refined into lower level requirements. Hence, the results produced
shall be considered representative for (a) system requirements, (b) requirements with
a poor degree of quality. Since the requirements concerns several types of railway sig-
nalling systems, they are sufficiently representative of the types of product developed
in railways.

– Subjects: Overall, three VEs were involved in this study. The sample is limited, but it
shall be considered that all the VEs are normally subject to the same company prac-
tices and process, and can therefore be considered representative VEs for the company.
Considering the characteristics of the railway domain mentioned above, they can be
considered, to a certain extent, also representative of VEs in railways. Discrepancies
were observed between the annotations performed by VE3 on D-Large during Large-
scale Study – 1st Iteration, and the annotations on the output of the patterns performed
by VE1 and VE2, during Large-scale Study – 2nd Iteration. In principle, the discrepan-
cies may be associated to the different degree of experience of the subjects. VE1 and
VE2 had 3 and 2 years experience, respectively, while VE3 had 10 years of experience.
We believe that the discrepancies observed are only partially associated to the experi-
ence. Instead, we believe that the discrepancies are due to the differences in terms of
contextual knowledge, and goals. VE3 had in in-depth knowledge of the project that
allowed him to disambiguate, or tolerate, certain defects, and focused on severe concep-
tual problems. Instead, VE1 and VE2 did not have any prior knowledge on the project,
and focused on linguistic aspects, given the research-based, exploratory nature of their
work.

For these reasons, the different iterations have different degrees of external validity
– notwithstanding the construct validity threats already discussed. Specifically, Pilot
Study, and Large-scale Study – 2nd, 3rd, and 5th Iterations can be considered representa-
tive for those cases in which the annotation is performed by VEs who do not have prior
knowledge of the project of the requirements, and focus on linguistics defects. Instead,
Large-scale Study – 2nd and 4th Iterations are representative for those cases in which
the annotation is performed by a VE who has an in-depth knowledge of the project, and
focuses on conceptual defects.

As mentioned, our results can be generalised to other domains only to a limited extent.
Our work focusses on a single railway company, and railway companies have a well-defined
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processes to follow, that is not shared by other context. The degree of rigour of the railway
process is comparable to the one employed in the avionic sector, in which the DO-178C
norm applies for software development (RTCA Inc. and EUROCAE 2012). However, the
products developed in railways and avionics are highly different, and use domain specific
terminology. Many of our patterns are domain independent, but, given the large variability of
NL, and of domain specific NLs, the generalisation of our results to other domains requires
further research.

Reliability The results provided are mainly quantitative, and we argue that a common
understanding on their meaning was achieved when the values of precision and recall had
to be computed. Concerning the qualitative data, these were provided by the VEs and were
refined with the support of NLP-E. We argue that this interaction increased the reliability of
the qualitative results.

8 Lessons learned

From the experience presented in this paper, a set of lessons learned were discussed among
the authors, and are reported below.

Domain-customisable NLP tools Our experience shows that NLP technologies are avail-
able for requirements analysts with limited NLP training, and that these technologies can be
proficiently used for the detection of several typical requirements defects. Rule-based NLP
patterns tend to generate large numbers of false positives (Chantree et al. 2006; Yang et al.
2011). If the results come from a tool that the requirements analyst cannot control, the ana-
lyst is likely to distrust the tool. Instead, if the analyst understands the inherent principles
of the tool – and implementing the tool is a proper way for understanding its principles –,
they can understand its weaknesses and use it at its best. Furthermore, it is also important
that domain experts develop the tools, since, to reduce the amount of false positive cases,
tailoring the patterns for the specific needs of the domain is required. If the VEs imple-
ment the patterns, they can customise them according to the language used in the domain,
as, e.g., to account for terms such as raw data, hard disk (Section 6.1), and phrases such as
it shall be possible (Section 6.3). The introduction of the discard patterns, to remove sys-
tematic false positive cases, allowed an increase of the average pD from 72.81% to 81.36%
(Section 6.3). It should be noticed that, if a company defines a set of patterns to be applied
for defect detection, a maintenance cost should be taken into account, since, as any software
tool, patterns may need to evolve. While for COTS tools the software house who develops
them takes care of their evolution, and maintenance costs, the railway company has to take
the burden of maintenance in case of internally developed tools.

Requirements language counts Looking at the large number of passive voice defects
in Large-scale Study – 2nd Iteration, it appeared that the use of passive voice was a form
of writing style. As a consequence, the patterns generated a large number of detected
defects (i.e., 1317). This tells us that, to effectively use NLP, one cannot simply implement
appropriate defect detection patterns: one should change also the language adopted in the
requirements, to make it more error free, so that the VE can focus on a smaller amount of
defects. For this reason, we argue that NLP tools should be first used by the requirements
editors, to limit the amount of poor writing style, and only afterwards by a VE. However,
this is not always practicable, especially in those cases in which requirements are produced
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by the customer, and assessed by the company who has to develop the product. As acknowl-
edged by the company, the requirements considered in this study are particularly rich in
defects, also with respect to other requirements of the company. However, it is worth not-
ing that, upon suggestion of NLP-E, and taking inspiration from the work of Terzakis and
Gregory (2016), VE1 is currently involved in a mentoring program within the company, to
educate the requirements authors towards the production of higher quality requirements.

Requirements level counts During the analysis of the false positive cases of SREE, a
large number of plurals (3377) was identified, which were tolerated in most of the cases.
Furthermore, also the presence of conjunctions such as also and but, which indicate non-
atomic requirements, was tolerated in these requirements. This was motivated by the level
of the requirements. The considered dataset was composed of high-level system require-
ments, for which, according to the VEs, a certain degree of generality can be accepted. These
requirements will be refined into lower-level technical requirements, for which a greater
degree of precision is expected. As we notice in a recent work (Ferrari et al. 2017), this sug-
gests that requirements at different degrees of abstractions may need different treatments.
More specifically, patterns to check presence of plurals, as well as also and but conjunc-
tions, may need to be applied for low-level requirements, while they do not need to be used
for high-level ones.

Validation criteria count Considering the Large-scale Study – 1st and 2nd Iterations, we
saw that a large part of the false positive cases encountered in the Large-scale Study – 1st

Iteration could be associated with a weaker validation performed by VE3, who did not focus
on linguistic defects, but more on severe conceptual defects, also given his in-depth knowl-
edge of the project. For this reason, the results obtained in terms of precision were extremely
poor. When changing criteria, pR varied from 5.81% to 77.37% (Section 6.3). Hence, to
perform an appropriate validation of rule-based NLP patterns, it is advisable to start from an
annotated dataset that has been defined knowing the classes of defects that will be checked
by the patterns, and specifically stating that the focus is on linguistic defects. Otherwise,
the results might be misleading. This observation might appear counter-intuitive, since we
suggest to adapt human operators to tools. However, when dealing with the complexity of
NL, we argue that the adaptation between humans and NLP tools should be bi-directional.

NLP is only a part of the answer In our large-scale study, several false negative cases
occurred, which can hardly be detected with NLP. These are examples of conceptual defects
that require a human with knowledge of the domain and of the specific project. In recent
years, NLP technologies have seen radical progress (Goth 2016). Linguistic tasks at the
semantic level, such as, e.g., question-answering, became possible. However, the prag-
matic nature of ambiguity (Ferrari et al. 2016), and the contextual knowledge needed to
understand a requirements document, make the problem of automatic defect detection in
requirements hardly solvable with current technologies. Therefore, NLP represents only a
part of the answer to defect detection, while the other part is represented by human analysts
with domain expertise. It should also be considered that relying on a tool for defect detec-
tion may also change company practices, in that a VE may rely too faithfully on the tool’s
output. This reasonable hypothesis requires further empirical investigation, but its potential
implications should be considered when introducing an automated tool to support practices
that are normally manually conducted.
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Statistical NLP vs Lexical Techniques Our patterns make use of POS tagging and
shallow parsing, which are statistical techniques that can hamper the objective of 100%
recall (Berry et al. 2012). However, in Section 6.1, we showed that 100% recall was
achieved for those patterns that used these techniques, while it was not achieved for the pat-
tern adopted for vague terms, which uses a lexical based approach. Hence, we argue that
the argument in favour of a“dumb” lexical-based defect detection approach instead of an
approach that leverages statistics-based techniques (Berry et al. 2012) should be partially
revised. If one wants to use lexical-based detection approaches, then one should use only
defect indicators belonging to closed word classes (e.g., pronouns, conjunctions). Instead,
if one uses open word classes (e.g., adjective, adverbs), the problems are not different from
those that might emerge with statistical techniques. As statistical techniques may fail, also
lists of dangerous adjectives and adverbs may fail, because they might not include words
that were not considered until they appear in the requirements (as e.g., the word some, as
noted in Section 6.1, or the words jolty and uneven, as noted in Section 6.5).

9 Conclusion, implications for practice and future research

This paper presents the experience of a railway signalling manufacturer in implementing a
set of NLP patterns to detect defects in NL requirements. A pilot study on 241 requirements
is presented, as well as a large-scale study on 1866 requirements. After a refinement of the
patterns, a precision of 83.16% and a recall of 85.39% are obtained. Recall can be increased
by using term-based defect detection tools such as SREE (Tjong and Berry 2013), although
at the cost of a lower precision. From this experience, we can derive a set of implications
for practice and directions for future research, which are summarised below.

Implication for practice Overall, the experience was considered extremely useful by the
company. In particular, VE1 says that, after studying the literature on defect identifica-
tion, and implementing the patterns, also her way of judging requirements defects became
stricter. This is also one of the reasons why requirements marked as accepted by VE3, were
afterwards rejected by VE1 and VE2. This implies that, while on the one hand tools have to
be adapted to company practices, also company practices can be modified by tools. In our
study, we also observed that an increase in the performance can be obtained by incremen-
tally tuning the patterns based both on the defects encountered in practice, and through the
inclusion of other defect-detection criteria from the research literature – in particular, the
SREE dictionaries. Therefore, regardless of the NLP technologies used to detect defects,
technologies need to be adapted to the specific language of the company, to be fruitfully
used.

It should also be observed that, based on the lessons learned from the current study, VE1
is now involved in a mentoring program within the company, oriented to teach requirements
authors how to write linguistically clear requirements. The idea is that editors should be
aware of linguistic defects, so that the work of VEs can focus on conceptual ones. In this
sense, we argue that, by working with NLP techniques for defect detection, one can have an
effect also in terms of organisational learning.

Another relevant implication for practice concerns the complementary role of NLP tech-
niques, and human analysis. We observed that part of the conceptual defects present in the
requirements could not be detected with the patterns, but some ignored linguistic defects
could be identified by the patterns. This suggests that, although human analysts cannot be
replaced, tools can help them to perform a better job.
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Future research Within the context of the industrial collaboration that made this paper
possible, our future work will go towards four main directions. (1) The first direction is to
understand to which extent the NLP patterns have to be tuned to analyse requirements at
different levels of abstractions, and to understand which patterns are appropriate for which
level. (2) The second direction is studying to which extent language errors – a defect not
considered here, but mentioned by Berry et al. (2003) – may impact on the quality of the
requirements. The VEs noticed that large part of the requirements considered were not
expressed in correct English, since they were written by Italian editors, who tended to use
Italian syntactic constructions. However, apparently, these language errors did not have an
impact on the subsequent phases of the process, since the readers of the requirements were
also Italian. (3) The third direction is to evaluate the cost of using NLP techniques for defect
detection, compared to the cost of manual review. Cost-based evaluation approaches suit-
able for our context have been recently discussed by Berry et al. (2017). (4) The fourth
direction is to leverage NLP technologies also for other tasks of the company, which are
dominated by NL. One particular task of interest is the support towards the automated gen-
eration of summary documents from multiple sources. Indeed, the railway process produces
a large amount of documents, which are often hard to navigate, and summary documents
can provide a substantial help in controlling the process itself.

The directions outlined come from the needs of the company, and from the interests of
the researchers involved in this case study. However, they can be considered by the research
community also as inspiration for future investigation in the field of applications of NLP
to requirements and technical documentation in general. An additional direction for future
research triggered by the current work, but that go beyond the collaboration with the con-
sidered company, includes the extension of our results to domains that are different from
railways, to assess to which extent the adaptation of NLP patterns to the language of a
company can lead to improved results in terms of defect detection accuracy.
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