
Empir Software Eng
https://doi.org/10.1007/s10664-017-9587-0

Finding better active learners for faster literature reviews

Zhe Yu1 ·Nicholas A. Kraft2 ·Tim Menzies1

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Literature reviews can be time-consuming and tedious to complete. By cata-
loging and refactoring three state-of-the-art active learning techniques from evidence-based
medicine and legal electronic discovery, this paper finds and implements FASTREAD,
a faster technique for studying a large corpus of documents, combining and parametriz-
ing the most efficient active learning algorithms. This paper assesses FASTREAD using
datasets generated from existing SE literature reviews (Hall, Wahono, Radjenović, Kitchen-
ham et al.). Compared to manual methods, FASTREAD lets researchers find 95% relevant
studies after reviewing an order of magnitude fewer papers. Compared to other state-of-
the-art automatic methods, FASTREAD reviews 20–50% fewer studies while finding same
number of relevant primary studies in a systematic literature review.

Keywords Active learning · Systematic literature review · Software engineering · Primary
study selection

Communicated by: Per Runeson

� Tim Menzies
tim.menzies@gmail.com

Zhe Yu
zyu9@ncsu.edu

Nicholas A. Kraft
nicholas.a.kraft@us.abb.com

1 Department of Computer Science, North Carolina State University, Raleigh, NC, USA

2 ABB Corporate Research, Raleigh, NC, USA

(2018) 23:3161–3186

Published online: 7 March 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9587-0&domain=pdf
http://orcid.org/0000-0002-5040-3196
mailto:tim.menzies@gmail.com
mailto:zyu9@ncsu.edu
mailto:nicholas.a.kraft@us.abb.com

1 Introduction

When conducting a literature review in software engineering, it is common practice
(Kitchenham and Brereton 2013) to conduct a primary study selection where a large num-
ber of potentially relevant papers, collected via some initial query (e.g. keyword search
in Google Scholar), are manually reviewed and assessed for relevance. To reduce the
effort associated with conducting such tedious and time-consuming linear manual reviews,
researchers in the fields of evidence-based medicine (Paynter et al. 2016; Wallace et al.
2010a, b) and electronic discovery (Cormack and Grossman 2014, 2015) have developed
active learning methods that can build an automatic classifier that prunes away irrelevant
papers using feedback from users.

In this paper we investigate whether there are any insights from that related work
that can reduce the effort associated with literature reviews in software engineering (SE).
Specifically, in this paper we:

– Review those active learning methods (Paynter et al. 2016; Wallace et al. 2010a, b;
Cormack and Grossman 2014, 2015) and find that in evidence-based medicine and legal
electronic discovery, there are three widely recognized state-of-the-art active learning
methods (Cormack and Grossman 2014; Wallace et al. 2010b; Miwa et al. 2014).

– Analyze those three active learning methods and find that they are each assembled from
lower-level techniques that address four questions: (1) when to start training, (2) which
study to query next, (3) whether to stop training, and (4) how to balance the training
data.

– Investigate 32 possible active learning approaches that represent different combinations
of lower-level techniques to address the four questions.

– Evaluate the 32 active learning approaches using SE data and the evaluation criteria
“work saved over sampling at 95% recall” (WSS@95) (Cohen 2011).

– Discover that one of those 32 active learning approaches, which we call FASTREAD,
reduces the effort required to find relevant papers the most.

Based on that work, the contributions and outcomes of this paper are:

1. A cautionary tale that verbatim reuse of data mining methods from other fields may
not produce the best results for SE. Specifically, we show that supposed state-of-the-art
methods from other fields do not work best on SE data.

2. A case study showing the value of refactoring and recombining data mining methods.
The FASTREAD tool recommended by this paper was constructed via such refactoring.

3. A demonstration that FASTREAD is a new highwater mark in reducing the effort
associated with primary study selection in SE literature reviews.

4. A open source workbench that allows for the fast evaluation of FASTREAD, or any
other technology assisted reading method. See https://github.com/fastread/src.

5. Four new data sets that enable extensive evaluation of FASTREAD or other methods.
The creation and distribution of these data sets is an important contribution, because
prior to this study, it was very difficult to obtain even one such data set.

The rest of this paper offers background notes on the problem of reading technical doc-
uments and on how that problem has been solved in other fields. We then refactor those
solution into 32 candidate solutions, which we asses using prominent published SE literature
reviews. Using that data, we ask and answer the following three research questions:

Empir Software Eng (2018) 23:3161–31863162

https://github.com/fastread/src

– RQ1: Can active learning techniques reduce effort in primary study selection? We
find that using FASTREAD, after reviewing a few hundred papers, it is possible to find
95% of the relevant papers found by a linear manual review of thousands of papers.

– RQ2: Should we just adopt the state-of-the-art treatments from other fields? Our
results show that better active learners for SE can be build by mixing and matching
methods from the state-of-the-art in other fields.

– RQ3: How much effort can FASTREAD, our new state-of-the-art method for pri-
mary study selection, save in an SLR? We show that FASTREAD can reduce more
than 40% of the effort associated with the primary selection study phase of a literature
review while retrieving 95% of the relevant studies.

2 Background

Systematic Literature Reviews (SLRs) are a well established and widely applied review
method in Software Engineering since Kitchenham, Dybå, and Jørgensen first adopted it to
support evidence-based software engineering in 2004 and 2005 (Kitchenham et al. 2004;
Dyba et al. 2005). Researchers can get a general idea of current activity in their field of
interests by reading the SLR studies. Furthermore, a deeper understanding of the topic may
be gained by conducting an SLR.

An increasing number of SLRs has been conducted since the proposal and revision of the
SLR guidelines in 2007 (Keele 2007). For example, there were 26 SLRs on IEEE Xplore
during the year of 2005 and that number has increased to 137, 199 for the years 2010,
2015 (respectively). Various scholars suggest that an SLR is required before any research
in Software Engineering is conducted (Keele 2007). While this is certainly a good advice,
currently an SLR is a large, time consuming and complex task (Hassler et al. 2016, 2014;
Carver et al. 2013; Bowes et al. 2012).

Cost reduction in SLRs is therefore an important topic and will benefit researchers in
software engineering community. Previously we have analyzed the costs of SLRs (Hassler
et al. 2014; Carver et al. 2013). As shown in Fig. 1, primary study selection, which is noted as
“selecting papers” in Fig. 1, is among the top three most difficult as well as time-consuming

0

5

10

15

20

25

30

35

40

45

50

Defining
Research
Question

Identifying
Keywords

Creating
Search
Strings

Searching
Databases

Selecting
Papers

Extracting
Data

Assessing
Quality

0

5

10

15

20

25

30

35

40

45

50

Defining
Research
Question

Identifying
Keywords

Creating
Strings
Search

Searching
Databases

Selecting
Papers

Extracting
Data

Assessing
Quality

Fig. 1 Data collected from surveys to SLR authors (Carver et al. 2013). Green, red, and blue show the most,
second most, and third most, respectively voted item

Empir Software Eng (2018) 23:3161–3186 3163

aspects in an SLR. Usually, reviewers need to evaluate thousands of studies trying to find
dozens of them that are relevant to the research questions based on their title, abstract, or full
text (Bowes et al. 2012). An extreme example of this is where reviewers sourced over 3000
studies, and only used 7 of them in their final review (Bezerra et al. 2009). In terms of actual
cost, Malheiros has documented that it requires 3 h for one reviewer to review 100 studies
(Malheiros et al. 2007). This implies that it is a month’s work for one graduate student to
review 3000 studies or three months’ work to review 9000 studies. The cost associated with
primary study selection has become a serious problem and will continue to grow in the near
future as the population of candidates for primary studies increases dramatically. In this
paper, we focus on reducing cost in primary study selection only. Our prioritization on the
cost reductions of primary study selection is not to discount the effort associated with other
parts of the SLR process. Indeed, one of our considerations is that there are already tools to
support other parts of the SLR process, as well as different techniques to facilitate primary
study selection. All these techniques (such as Quasi-Gold Standard based search (Zhang
et al. 2011a, b), visual text mining (Felizardo et al. 2010, 2012, 2014; Malheiros et al. 2007),
and snowballing (Wohlin 2014; Jalali and Wohlin 2012)) are compatible with works in this
paper and a better performance is expected when applied together. This leads to a direction
of future work in which the best setting to integrate different techniques will be explored.

There are three main aspects in primary study selection: (1) retrieving initial list of pri-
mary studies, (2) excluding irrelevant studies, (3) including missing studies. We focus on
excluding irrelevant studies because a) there already exists techniques and tools to facili-
tate (1) and (3) such as Snowballing (Jalali and Wohlin 2012) and StArt (Hernandes et al.
2012); b) the performance of excluding irrelevant studies can be evaluated using existing
SLR publications.

2.1 Related Work

2.1.1 Software Engineering Tools

In recent years, various tools have been developed to facilitate SLRs in the software engi-
neering community, as summarized in the associated SLRs (Marshall et al. 2014, 2015;
Marshall and Brereton 2013). These tools aim at providing support for protocol devel-
opment (Molléri and Benitti 2015; Fernández-Sáez et al. 2010; Hernandes et al. 2012),
automated search (Molléri and Benitti 2015; Hernandes et al. 2012), primary study selec-
tion (Molléri and Benitti 2015; Hernandes et al. 2012; Fernández-Sáez et al. 2010; Bowes
et al. 2012), quality assessment (Fernández-Sáez et al. 2010; Bowes et al. 2012; Molléri
and Benitti 2015), data extraction and validation (Molléri and Benitti 2015; Hernandes et al.
2012; Fernández-Sáez et al. 2010; Bowes et al. 2012), data synthesis (Molléri and Benitti
2015; Hernandes et al. 2012; Fernández-Sáez et al. 2010; Bowes et al. 2012), and report
write up (Molléri and Benitti 2015; Hernandes et al. 2012; Fernández-Sáez et al. 2010;
Bowes et al. 2012). It is extremely helpful to have a tool for managing the whole SLR pro-
cess. However, the support for primary study selection using these tools is limited (e.g., to
tasks such as assigning review jobs to multiple reviewers or to resolving disagreements).
Hence, we planned to introduce machine learning to assist primary study selection in SE
SLRs but before this paper is published, Ros et al. (2017) has achieved this in June 2017.
While Ros’17 (Ros et al. 2017) provided a wide range of techniques to support both search

Empir Software Eng (2018) 23:3161–31863164

and selection, it has several limitations such as (a) not comparing against state-of-the-art
techniques from other domains (which are approaches discussed later in Sections 2.1.2
and 2.1.3); (b) not considering any data balancing; (c) testing only on a single unpublished
dataset.

Visual text mining (VTM) is a technique especially explored in Software Engineering
community to support SLR. It is an unsupervised learning method which visualizes the
relationship between candidate studies and helps the reviewer to make quick decisions. Mal-
heiros et al. (2007) first applied VTM to support primary study selection in SLR. In their
small-scale experiment (100 candidate studies, 31 of which are “relevant”), VTM retrieves
around 90% of the “relevant” studies by spending about 30% as much time as manual
review. However, VTM requires some prior experience and knowledge of text mining and
visualization techniques to use (Bowes et al. 2012), and more case studies with large scale
are needed to validate their results.

Snowballing is another technique attracting much attention in SE SLR research. Given
the inherent relevance relationship between a study and its citations, it is of high probabil-
ity for the citations of (used in backward snowballing) and the studies cite (used in forward
snowballing) a known “relevant” study to also be “relevant” (Kitchenham et al. 2004). Jalali
and Wohlin (Jalali and Wohlin 2012; Wohlin 2014) applied backward snowballing to search
for primary studies in SE SLRs and found comparably good result as database search.
Felizardo et al. (2016) and Wohlin (2016) applied forward snowballing to update SE SLRs
and greatly reduced the number studies need to be reviewed comparing to a database search.
This paper does not use snowballing since, as mentioned by Wohlin (2014), snowballing
starts with an initial set of relevant papers. FASTREAD’s task is very different: we start
with zero relevant papers.

2.1.2 Legal Electronic Discovery Tools

Electronic Discovery (e-discovery) is a part of civil litigation where one party (the produc-
ing party), offers up materials which are pertinent to a legal case (Krishna et al. 2016). This
involves a review task where the producing party need to retrieve every “relevant” document
in their possession and turn them over to the requesting party. It is extremely important to
reduce the review cost in e-discovery since in a common case, the producing party will need
to retrieve thousands of “relevant” documents among millions of candidates. Technology-
assisted review (TAR) is the technique to facilitate the review process. The objective of TAR
is to find as many of the “relevant” documents in a collection as possible, with reasonable
cost (Grossman and Cormack 2013). Various machine learning algorithms have been stud-
ied in TAR. So far, in every controlled studies, continuous active learning (Cormack’14)
has outperformed others (Cormack and Grossman 2014, 2015), which makes it the state-of-
the-art method in legal electronic discovery. It has also been selected as a baseline method
in the total recall track of TREC 2015 (Roegiest et al. 2015). Details on continuous active
learning are provided in Section 3.

2.1.3 Evidence-Based Medicine Tools

Systematic literature reviews were first adopted from evidence-based medicine in 2004
(Kitchenham et al. 2004). To facilitate citation screening (primary study selection) in

Empir Software Eng (2018) 23:3161–3186 3165

systematic review, many groups of researchers have investigated different types of machine
learning algorithms and evaluation mechanisms (O’Mara-Eves et al. 2015; Paynter et al.
2016).

Cohen et al. first applied text mining techniques to support citation screening and devel-
oped several performance metrics (including WSS@95) for assessing the performance of
different techniques in 2006 (Cohen et al. 2006). While the great contribution of introducing
machine learning and text mining into citation screening as well as the proposed perfor-
mance metrics of Cohen has been widely acknowledged (O’Mara-Eves et al. 2015), most
of Cohen’s work focused on supervised learning which does not utilize unlabeled data and
relies on random sampling to obtain the sufficiently large training set (Cohen et al. 2006,
2010; Cohen 2011, 2006).

Wallace et al. conducted a series of studies with machine learning techniques, especially
active learning (Wallace et al. 2010a, b, 2011, 2012, 2013a, b; Nguyen et al. 2015). Wallace
first set up a baseline approach called “patient active learning” (Wallace’10) for machine
learning assisted citation screening (Wallace et al. 2010b). The performance of patient active
learning is good enough (nearly 100% of the “relevant” citations can be retrieved at half of
the conventional review cost) to convince systematic review conductors to adopt machine
learning assisted citation screening. Instead of improving this baseline method, Wallace then
focused on other aspects of machine learning assisted citation screening such as introducing
external expert knowledge (Wallace et al. 2010a), allocating review tasks to multiple experts
(Wallace et al. 2011) or to crowdsourcing workers (Nguyen et al. 2015), and building a tool
called abstrackr to provide overall support (Wallace et al. 2012). Wallace’s work on this
topic is of exemplary high-impact and his core algorithm (on simple expert screening), is
one of the most popular active learning techniques we have found in the evidence-based
medical literature. That said, this technique has not been updated since 2010 (Wallace et al.
2010b). In this paper we are focused on the core active learning algorithm for cost mini-
mization. Hence, we do not explore techniques such as Wallace’s use of multiple experts
(but in future work, we will explore this approach).

More recent work of Miwa et al. explored alternative data balancing and query strat-
egy in 2014 (Miwa et al. 2014) and proposed a new treatment of Certainty plus Weighting
(Miwa’14). Instead of uncertainty sampling in patient active learning (Wallace’10), Miwa
found that certainty sampling provides better results in clinical citation screening tasks.
Similar conclusion for data balancing method as weighting relevant examples was found
to be more effective than aggressive undersampling. Although not stated explicitly, Cer-
tainty plus Weighting keeps training until all “relevant” studies have been discovered,
which differs from the stopping criteria of Wallace’10. Aside from the core algorithm,
additional views from latent Dirichlet allocation (LDA) has been found to be potentially
useful.

Other work related to machine learning assisted citation screening do not utilize active
learning. Pure supervised learning requires a sufficiently large training set, which leads to
a huge review cost (Cohen et al. 2006; Adeva et al. 2014). Semi-supervised learning (Liu
et al. 2016) does not utilize the human reviewers’ feedback for updating the model, which
leads to a depreciated performance in a long run. As a result, the patient active learning
proposed by Wallace et al. (2010b) and the Certainty plus Weighting approach by Miwa
et al. (2014) are still considered to be the state-of-the-art method for citation screening in
the scenario with no external knowledge and equally expensive reviewers. Details on these
two approaches are provided in Section 3.

Empir Software Eng (2018) 23:3161–31863166

There are also existing tools to support study selection in systematic reviews, e.g.
Abstrakr1 (Wallace et al. 2012), EPPI-Reviewer2 (Thomas et al. 2010), Rayaan3 (Ouz-
zani et al. 2016). Useful features can be found in these tools such as a) Rayaan and
EPPI-Reviewer: incorporated keyword search in screening; b) Rayaan and EPPI-Reviewer:
deduplication; c) Rayaan and EPPI-Reviewer: define inclusion/exclusion criteria by terms;
d) Abstrakr: user defined tags; e) all three: assign review tasks to multiple reviewers; f) all
three: automatically extract data from PubMed. However, the active learning parts alone
in these tools are depreciated. Under the condition that no additional feature (search, tags,
define inclusion/exclusion terms) is used, we tried all three tools with one of our dataset–
Hall set (104 relevant in 8911 studies) and after reviewing 1000 studies, only 10 to 15
relevant ones were found, which was very close to a random sampling result without any
learning. Since none of these tools are open-source, we cannot tell whether active learn-
ing is applied or how/when it is applied in each tool. This motivates us to develop an open
source tool which focuses on active learning to support the primary study selection process.
Details about our tool are presented in Section 6.

3 Technical Details

As mentioned in Section 2.1, the existing state-of-the-art methods are Wallace’10 (Wal-
lace et al. 2010b) (patient active learning), Miwa’14 (Miwa et al. 2014) (Certainty plus
Weighting), and Cormack’14 (Cormack and Grossman 2014) (continuous active learning).
All three state-of-the-art methods share the following common techniques.

Support vector machines (SVM) are a well-known and widely used classification tech-
nique. The idea behind is to map input data to a high-dimension feature space and then
construct a linear decision plane in that feature space (Cortes and Vapnik 1995). Linear
SVM (Joachims 2006) has been proved to be a useful model in SE text mining (Krishna et al.
2016) and is applied in the state-of-the-art active learning methods of both evidence-based
medicine and electronic discovery (Miwa et al. 2014; Wallace et al. 2010b; Cormack and
Grossman 2014). One drawback of SVM is its poor interpretability as compared to classi-
fiers like decision trees. However, SVM still fits here since the model itself is not important
as long as it could provide a relative ranking of literature.

Active learning is a cost-aware machine learning algorithm where labels of training data
can be acquired with certain costs. The key idea behind active learning is that a machine
learning algorithm can perform better with less training if it is allowed to choose the data
from which it learns (Settles 2012). There are several scenarios active learning is applied
to, such as membership query synthesis, stream-based selective sampling, and pool-based
sampling (Settles 2010). There are also different query strategies of active learning, such as
uncertainty sampling, query-by-committee, expected model change, expected error reduc-
tion, variance reduction, and density-weighted methods (Settles 2010). Here, we briefly
introduce one scenario and two query strategies, which are used in our later experiments
and discussions.

1http://abstrackr.cebm.brown.edu
2http://eppi.ioe.ac.uk/cms/er4/
3http://rayyan.qcri.org/

Empir Software Eng (2018) 23:3161–3186 3167

http://abstrackr.cebm.brown.edu
http://eppi.ioe.ac.uk/cms/er4/
http://rayyan.qcri.org/

Figure 2 shows a simple demonstration of an SVM active-learner. For the sake of sim-
plicity, this demonstration assumes that the data has two features (shown in that figure as
the horizontal and vertical axis). In that figure, “O” is the minority class, “relevant” stud-
ies in SLR. “O”s in blue are studies already identified as “relevant” (included) by human
reviewers. “X” is the majority class, “irrelevant” studies in SLR. “X”s in red are studies
already identified as “irrelevant” (excluded) by human reviewers (note that in (c), some red
“X”s are removed from the training set by aggressive undersampling). Markers in gray are
the unlabeled studies (studies have not been reviewed yet), and black line is SVM decision
plane. In (b) Weighting balances the training data by putting more weight on the minor-
ity class examples. In (c), aggressive undersampling balances the training data by throwing
away majority class examples closest to the old decision plane in (a). When deciding which
studies to be reviewed next, uncertainty sampling returns the unlabeled examples closest to
the decision plane (U) while certainty sampling returns the unlabeled examples furthest to
the decision plane from the bottom-left side (C).

By analyzing the differences between the state-of-the-art methods, we identified the
following key components in solving the problem with active learning and linear SVM.

When to Start Training

– P stands for “patient”. As suggested by Wallace et al. (2010b), “hasty generation”,
which means start training with too few relevant examples, may lead to poor perfor-
mance. The algorithm keeps random sampling until a sufficient number of “relevant”
studies are retrieved. In our experiments, the sufficient number of “relevant” studies
retrieved is set to 5, which means when at least 5 “relevant” studies have been retrieved
by random sampling, the algorithm goes into next stage. Wallace’10 (Wallace et al.
2010b) and Miwa’14 (Miwa et al. 2014) use P for when to start training.

– H stands for “hasty”, which is the opposite of P. The algorithm starts training as
soon as ONE “relevant” study is retrieved, as suggested in Cormack’14 (Cormack and
Grossman 2014, 2015).

Which Document to Query Next

– U stands for “uncertainty sampling”. The algorithm utilizes uncertainty sampling to
build the classifier, where unlabeled examples closest to the SVM decision plane are

C

U

C

U

C

U

Fig. 2 Active learning with SVM and different data balancing techniques

Empir Software Eng (2018) 23:3161–31863168

sampled for query (U in Fig. 2). Wallace’10 (Wallace et al. 2010b) uses U for Query
strategy.

– C stands for “certainty sampling”. The algorithm utilizes certainty sampling to build
the classifier, where unlabeled examples furthest to the SVM decision plane and lie in
the “relevant” side are sampled for query (C in Fig. 2). Miwa’14 (Miwa et al. 2014) and
Cormack’14 (Cormack and Grossman 2014, 2015) use C for query strategy.

Whether to Stop Training (or not)

– S stands for “stop training”. The algorithm stops training once the classifier is stable. In
our experiments, the classifier is treated as stable once more than 30 “relevant” studies
have been retrieved as training examples. Wallace’10 (Wallace et al. 2010b) uses S for
whether to stop training.

– T stands for “continue training”. The algorithm never stops training as suggested in
Cormack’14 (Cormack and Grossman 2014) and Miwa’14 (Miwa et al. 2014). If query
strategy is U, algorithm switches to certainty sampling after classifier is stable but
training never stops.

How to Balance the Training Data

– N stands for “no data balancing”. The algorithm does not balance the training data
(demonstrated in Fig. 2a) as suggested by Cormack’14 (Cormack and Grossman 2014).

– A stands for “aggressive undersampling”. The algorithm utilizes aggressive undersam-
pling4 after classifier is stable, as suggested by Wallace’10 (Wallace et al. 2010b).

– W stands for “Weighting”. The algorithm utilizes Weighting5 for data balancing (before
and after the classifier is stable), as suggested by Miwa’14 (Miwa et al. 2014).

– M stands for “mixing of Weighting and aggressive undersampling”. Weighting is
applied before the classifier is stable while aggressive undersampling is applied after
the classifier is stable. This treatment comes from the observation that “Weighting” per-
forms better in early stages while “aggressive undersampling” performs better in later
stages.

By combining different approaches, we ended up with 32 possible treatments including the
state-of-the-art methods:

– The PUSA approach advocated by Wallace’10 (Wallace et al. 2010b).
– The PCTW approach advocated by Miwa’14 (Miwa et al. 2014).
– The HCTN approach advocated by Cormack’14 (Cormack and Grossman 2014).

4Aggressive undersampling throws away majority (irrelevant) training examples closest to SVM decision
plane until reaching the same number of minority (relevant) training examples. A demonstration is shown in
Fig. 2c.
5Weighting assigns different weight to each class, WR = 1/|LR |, WI = 1/|LI |, when training SVM. A
demonstration is shown in Fig. 2b. LR is defined in Fig. 3.

Empir Software Eng (2018) 23:3161–3186 3169

Fig. 3 Notations and problem description

Pseudo code for the 32 machine learning treatments are shown in Algorithm 1. Along with
the current standard procedure as a baseline approach:

– Linear Review: no machine learning, query studies in a random order.

All 32 machine learning treatments are tested and compared in Section 4.

Empir Software Eng (2018) 23:3161–31863170

4 Experiments

This section describes the experimental procedures that we used to evaluate the treatments
described in Section 3.

4.1 Performance Metrics

As shown in Fig. 3, the problem to be solved is multi-objective. The performance of each
algorithm is thus usually evaluated by its recall (|LR|/|R|) vs. studies reviewed (|L|) curve.

This performance metrics is suggested by Cormack et al. (Cormack and Grossman 2014,
2015) and best fits the objectives of excluding irrelevant studies problem. To enable a sta-
tistical analysis of the performances, the recall vs. studies reviewed curve is cut by a 0.95
recall line where studies reviewed (|L|) when reaching 0.95 recall (|LR| ≥ 0.95|R|) is

Empir Software Eng (2018) 23:3161–3186 3171

used to assess performances. The reason behind 0.95 recall is that a) 1.00 recall can never
be guaranteed by any text mining method unless all the candidate studies are reviewed;
b) 0.95 recall is usually considered acceptable in evidence-based medicine (Cohen 2011;
Cohen et al. 2006; O’Mara-Eves et al. 2015) despite the fact that there might still be
“relevant” studies missing (Shemilt et al. 2016). As a result, two metrics are used for
evaluation:

– X95 = min{|L| | |LR| ≥ 0.95|R|}.
– WSS@95 = 0.95 − X95/|P |.
Note that one algorithm is better than the other if its X95 is smaller or WSS@95 (Cohen
2011) is larger.

4.2 Datasets

Although a large number of SLRs are published every year, there is no dataset clearly
documenting the details in primary study selection. As a result, three datasets are created
reverse-engineering existing SLRs and being used in this study to simulate the process of
excluding irrelevant studies. The three datasets are named after the authors of their origi-
nal publication source– Wahono dataset from Wahono (2015), Hall dataset from Hall et al.
(2012), and Radjenović dataset from Radjenović et al. (2013).

For each of the datasets, the search string S and the final inclusion list F from the original
publication are used for the data collection. We retrieve the initial candidate collection E
from IEEE Xplore with the search string (slightly modified to meet the requirement of IEEE
Xplore). Then make a final list of inclusion R as R = F ∩ E. Here, for simplicity we only
extract candidate studies from IEEE Xplore. We will explore possibilities for efficiently
utilizing multiple data sources in the future work but in this paper, without loss of generality,
we only extract initial candidate list from single data source. In this way, we created three
datasets that reasonably resemble real SLR selection results assuming that any study outside
the final inclusion list F is irrelevant to the original SLRs. A summary of the created datasets
is presented in Table 1.

Apart from the three created datasets, one dataset (Kitchenham) is provided directly by
the author of Kitchenham et al. (2010) and includes two levels of relevance information.

Table 1 Descriptive statistics for experimental datasets

Datasets Generated Original

#Candidate |E| #Relevant |R| #Candidate #Relevant |F|

Wahono 7002 62 2117 72

Hall 8911 104 2073 136

Radjenović 6000 48 13126 106

Kitchenham 1704 44 (132) 1704 44 (132)

Our datasets are generated using information in the original SLR literature. Our candidate studies are
retrieved by applying similar if not the same the search string from original SLR literature and search in IEEE
Xplore. The set of our relevant studies is the intersection of the set of our candidate studies and the set of
final included studies in the original SLR literature. Kitchenham dataset is different as it is provided directly
by Kitchenham and it has two level of relevance labels– 132 relevant studies by title and abstract review and
within which, 44 relevant studies by content review

Empir Software Eng (2018) 23:3161–31863172

In general, only the “content relevant” labels are used in experiments for a fair comparison
with other datasets. Additionally, the “abstract relevant” labels are used for detailed review
cost analysis in RQ3. Summary of Kitchenham dataset is also presented in Table 1.

All the above datasets are available on-line at Seacraft, Zenodo.6

4.3 Simulation Studies

In the following, each experiment is a simulation of one specific treatment on one dataset.
More specifically, there is no human activity involved in these experiments, when asked for
a label, the true label in the dataset is queried instead of a human reviewer. As a result, each
experiment can be repeated with different random seed to capture variances and also makes
reproducing the experiments possible.

4.4 Controlled Variables

For the sake of a fair comparison, different treatments in Section 3 share an identical set of
controlled variables including preprocessing, featurization and classifier.

Each candidate study in the initial list is first tokenized by stop words removal after con-
catenating its title and abstract. After tokenization, the bag of words are featurized into a
term frequency vector. Then, reduce the dimensionality of the term frequency vector with to
keep only M = 4000 of the terms with highest tf-idf7 score and normalize the hashed matrix
by its L2 norm each row at last. TfidfVectorizer in scikit-learn is utilized for the above pre-
processing and featurization steps. Alternatives such as stemming, LDA (Blei et al. 2003),
paragraph vectors (Le and Mikolov 2014) require further exploration and are scheduled in
our future works. All 32 treatments use the same classifier– linear SVM from scikit-learn.

5 Results

All the following results were generated from 30 repeats simulations, using different random
number seeds from each simulation. As shown below, all our results are reported in terms
of medians (50th percentile) and iqrs ((75-25)th percentile).

RQ1: Can Active Learning Techniques Reduce Effort in Primary Study Selec-
tion? In Table 2, we tested 32 active learning treatments and linear review. According to
the results, most active learning treatments perform consistently better than linear review
(colored in blue) on all four datasets while four treatments (HCS*) can be even worse than
linear review. Interestingly these four treatments share same codes of HCS, which hastily
start training (H) with greedy query strategy (C) and give up the attempt to correct the model
short after (S). The problem of “hasty generation” is maximized in the setting of HCS and
thus leads to an even worse performance than linear review. In general, other active learn-
ing treatments can reduce review costs by allowing the reviewer to read fewer studies while

6https://doi.org/10.5281/zenodo.1162952
7For term t in document d, Tf idf (t, d) = wt

d ×
(

log |D|∑
d∈D sgn(wt

d)
+ 1

)
where wt

i is the term frequency of

term t in document d. For term t , Tf idf (t) = ∑
d∈D Tf idf (t, d) = ∑

d∈D wt
d ×

(
log |D|∑

d∈D sgn(wt
d)

+ 1
)

and is used for feature selection.

Empir Software Eng (2018) 23:3161–3186 3173

https://doi.org/10.5281/zenodo.1162952

Table 2 Scott-Knott analysis for number of studies reviewed/ work saved over sampling to reach 95% recall

59@SSW59X59@SSW59X

Rank Treatment Median IQR Median IQR Rank Treatment Median IQR Median IQR

llaHonohaW

1 HUTM 670 230 0.85 0.04 1 HUTW 340 90 0.91 0.01

1 HCTM 740 220 0.84 0.03 1 HUTA 340 130 0.91 0.02

2 HUTA 780 140 0.84 0.02 1 HUTM 350 120 0.91 0.01

2 HCTW 790 90 0.84 0.02 1 HCTW 370 60 0.91 0.01

2 HUTW 800 110 0.84 0.02 2 HUTN 370 90 0.91 0.01

2 HCTA 800 140 0.83 0.02 2 HCTM 380 100 0.91 0.01

3 PCTM 1150 450 0.78 0.07 2 HCTA 390 150 0.91 0.02

3 PUTM 1180 420 0.78 0.07 2 HCTN 410 80 0.90 0.01

3 PCTA 1190 340 0.78 0.05 3 HUSM 530 120 0.89 0.01

3 PUTA 1190 340 0.78 0.05 3 HUSW 560 250 0.89 0.03

3 PCTW 1210 350 0.78 0.06 3 PCTW 610 210 0.88 0.02

3 PUTW 1220 370 0.77 0.06 3 PUTW 610 220 0.88 0.03

4 HUSM 1410 400 0.75 0.06 4 HUSA 630 170 0.88 0.02

5 HUSA 1610 370 0.72 0.07 4 PCTN 650 220 0.88 0.03

6 PUSM 1810 370 0.69 0.06 4 PUTN 650 220 0.88 0.03

6 PUSA 1910 700 0.67 0.10 4 PUTM 670 220 0.87 0.03

7 HUSW 2220 400 0.63 0.06 4 PCTM 680 230 0.87 0.03

7 PUSW 2240 360 0.63 0.06 4 PCTA 700 210 0.87 0.03

8 HUTN 2700 40 0.56 0.01 4 PUTA 700 220 0.87 0.03

8 HCTN 2720 40 0.56 0.01 4 PUSW 740 230 0.87 0.03

8 PCSW 2860 1320 0.54 0.20 5 PUSM 770 240 0.86 0.03

8 PCSM 2860 1320 0.54 0.20 5 PUSA 880 270 0.85 0.04

8 PCTN 2850 1130 0.54 0.17 6 PCSW 1150 570 0.82 0.07

8 PUTN 2850 1130 0.54 0.17 6 PCSM 1150 570 0.82 0.07

9 PCSN 3020 1810 0.51 0.26 7 PCSN 1530 1050 0.78 0.13

9 PCSA 3020 1810 0.51 0.26 7 PCSA 1530 1050 0.78 0.13

10 HUSN 4320 110 0.33 0.03 7 PUSN 1550 1120 0.77 0.13

10 PUSN 4370 1290 0.32 0.19 7 HUSN 1800 1020 0.74 0.11

11 Linear 6650 0 0 0 8 HCSA 7470 5980 0.03 0.67

11 HCSA 6490 2760 0.01 0.39 8 HCSN 7470 5980 0.03 0.67

11 HCSN 6490 2760 0.01 0.39 8 linear 8464 0 0 0

11 HCSM 6490 3110 0.01 0.44 8 HCSM 8840 6060

11 HCSW 6490 3110 0.01 0.44 8 HCSW 8840 6060

0.04 0.68

0.04 0.68

Empir Software Eng (2018) 23:3161–31863174

Table 2 (continued)

Radjenovi´ mahnehctiKc

1 HUTM 680 180 0.83 0.03 1 HUSA 590 170 0.60 0.19

1 HCTM 780 130 0.82 0.02 1 HUTA 590 80 0.60 0.06

1 HCTA 790 180 0.82 0.03 1 HUSM 620 70 0.58 0.04

1 HUTA 800 180 0.82 0.03 1 HUTM 630 110 0.58 0.07

2 HUSA 890 310 0.80 0.06 1 PUSA 640 130 0.57 0.08

2 HUSM 890 270 0.80 0.05 1 HUSW 640 140 0.57 0.09

3 HUTW 960 80 0.79 0.02 2 HUTN 680 30 0.55 0.02

3 HCTW 980 60 0.79 0.01 2 HCTA 680 100 0.55 0.08

3 HUSW 1080 410 0.77 0.07 2 PUSM 680 90 0.55 0.06

4 PCTM 1150 270 0.76 0.05 2 HCTM 680 110 0.55 0.07

4 PUTM 1150 270 0.76 0.05 2 PCTM 690 90 0.54 0.06

5 HUTN 1250 100 0.74 0.02 2 PUTM 690 70 0.54 0.05

5 PCTA 1260 210 0.74 0.05 2 PUTA 710 110 0.53 0.08

5 PUTA 1260 210 0.74 0.05 2 HUTW 710 20 0.53 0.02

5 HCTN 1270 70 0.74 0.02 3 PUSW 720 110 0.52 0.08

5 PUSM 1250 400 0.74 0.07 3 PCTA 720 100 0.52 0.08

5 PUSW 1250 450 0.73 0.08 3 HCTN 730 60 0.52 0.04

5 PUTW 1350 310 0.72 0.06 3 HCTW 750 60 0.51 0.04

5 PCTW 1370 310 0.72 0.06 3 PUTN 750 80 0.51 0.05

5 PUSA 1400 490 0.71 0.09 4 PCTN 750 80 0.51 0.05

6 HUSN 1570 300 0.69 0.05 4 PUTW 780 70 0.49 0.04

6 PCTN 1600 360 0.68 0.06 4 PCTW 780 150 0.49 0.09

6 PUTN 1600 360 0.68 0.06 5 PUSN 800 140 0.47 0.09

7 PUSN 1890 320 0.64 0.06 5 HUSN 870 280 0.43 0.16

8 PCSW 2250 940 0.57 0.20 6 PCSW 990 330 0.35 0.19

8 PCSM 2250 940 0.57 0.20 6 PCSM 990 330 0.35 0.19

9 PCSN 2840 1680 0.47 0.31 6 PCSN 1050 370 0.32 0.24

9 PCSA 2840 1680 0.47 0.31 6 PCSA 1050 370 0.32 0.24

10 HCSA 5310 2140 0.07 0.36 7 linear 1615 0 0 0

10 HCSN 5310 2140 0.07 0.36 7 HCSA 1670 60

10 HCSM 5320 2200 0.02 0.37 7 HCSN 1670 60

10 HCSW 5320 2200 0.02 0.37 7 HCSM 1680 60

10 Linear 5700 0 0 0 7 HCSW 1680 60

0.04 0.04

0.04 0.04

0.04 0.04

0.04 0.04

Simulations are repeated for 30 times, medians (50th percentile) and iqrs ((75–25)th percentile) are presented.
Smaller/larger median value for X95/WSS@95 represents better performance while smaller iqr means bet-
ter stability. Treatments with same rank have no significant difference in performance while treatments of
smaller number in rank are significantly better than those of larger number in rank. The recommended treat-
ment FASTREAD is colored in green while the state-of-the-art treatments are colored in red and linear review
is colored in blue

still find 95% of the relevant ones. As for how much effort can be saved, RQ3 will answer
the question in details.

Based on the above, we say:

Empir Software Eng (2018) 23:3161–3186 3175

RQ2: Should we Just Adopt the State-of-the-Art Treatments from Other Fields?
Is it Possible to Build a Better One by Mixing and Matching from Those? In
Table 2, performance of the three state-of-the-art treatments are colored in red. On Wahono
datasets, Miwa’14 (PCTW) outperforms the other two treatments; while on Hall dataset,
Cormack’14 (HCTN) has the best performance; on Radjenović dataset, all three treatments
perform similarly; and on Kitchenham dataset, Wallace’10 (PUSA) outperforms the others.
Neither of the three state-of-the-art treatments consistently performs the best. This means
that adopting the state-of-the-art treatments will not produce best results. According to
Scott-Knott analysis, the performance of one treatment, HUTM (colored in green), con-
sistently stays in the top rank across all four datasets. Further, this treatment dramatically
out-performs all three state-of-the-art treatments by requiring 20-50% fewer studies to be
reviewed to reach 95% recall. We call this treatment FASTREAD. It executes as follows:

1. Randomly sample from unlabeled candidate studies until 1 “relevant” example
retrieved.

2. Then start training with weighting and query with uncertainty sampling, until 30
“relevant” examples retrieved.

3. Then train with aggressive undersampling and query with certainty sampling until
finished.

Hence, our answer to this research question is:

RQ3: How much Effort can FASTREAD Save in an SLR? In terms of the number
of studies reviewed, WSS@95 scores in Table 2 reflects how much FASTREAD can save.
Number of “relevant” studies (|R|) and the total number of candidate studies (|C|) affect
WSS@95 a lot, e.g. WSS@95=0.50 in Kitchenham dataset with |R| = 44, |C| = 1704 and
WSS@95=0.91 in Hall dataset with |R| = 104, |C| = 8911. Even the smallest number of
WSS@95=0.50 in Kitchenham dataset is a success in the reduction of number of studies
need to be reviewed comparing to the 5% recall lost.

The above performance metrics can be used for comparing the performance of different
algorithms. However, for a more realistic cost analysis, labeling/reviewing each study has
different costs. For each studies in L, its abstract and title has been reviewed, thus costs CA.
In addition, there exists a set LD ⊂ L, LR ⊂ LD where studies in LD have been reviewed
by their contents, thus cost an additional CD for each study. Table 3 shows how much
FASTREAD save over reviewing all candidate studies. Suppose CD = 9CA, following the
estimation that Shemilt made: 1 minute to screen a title-abstract record, 4 minutes to retrieve
a full-text study report, and 5 minutes to screen a full-text study report (Shemilt et al. 2016).

Empir Software Eng (2018) 23:3161–31863176

Table 3 How much can FASTREAD save?

Datasets # Studies reviewed Review cost # Missing relevant

Wahono 7002 − 670 = 6332 ≥ 6332CA + 4CD 4

Hall 8991 − 350 = 8641 ≥ 8641CA + 6CD 6

Radjenović 6000 − 680 = 5320 ≥ 5320CA + 3CD 3

Kitchenham 1704 − 630 = 1074 32CD + 1074CA 3

Numbers of reviewing every candidate study minus numbers of reviewing with FASTREAD. For example,
on Kitchenham dataset, FASTREAD reviews 944 fewer studies, which costs 32CD + 944CA less review
effort, while misses 3 “relevant” ones. Here CD is the cost to review a study by its content and CA is the cost
to review a study by its title and abstract

Then the reduction in review cost is (32CD +1074CA)/(132CD +1704CA) = 47.1%.8 On
other datasets, although we do not have the exact number of “abstract relevant” studies, we
can estimate the worst case review cost reduction9 with the numbers in Tables 1 and 3: a)
Wahono dataset: 1 − 670(CA + CD)/((670 + 4)CD + 7002CA) = 48.7%; b) Hall dataset:
1−360(CA+CD)/((360+6)CD+8991CA) = 70.7%; c) Radjenović dataset: 1−680(CA+
CD)/((680 + 3)CD + 6000CA) = 44.0%. Note that training time costs are negligibly small
(1 second for each round in average) compared to the review time CA because of the small
training size (less than 1000 examples before reaching 95% recall).

6 Tool Support

In order to implement FASTREAD, we developed a simple tool as shown in Fig. 4. This
software is freely available from SeaCraft Zenodo at https://doi.org/10.5281/zenodo.837861
and its Github repository at https://github.com/fastread/src.

Using FASTREAD, a review starts with A: selecting the input candidate study list from
workspace/data/ directory. The input CSV file must have the Document Title, Abstract,
Year, and PDF Link columns. The label column, which is the true label of the candidate
studies, is optional and is only used for testing. The output CSV file generated by the FAS-
TREAD tool has an additional code column, which is the reviewer-decided label for the
candidate study. The final inclusion list can be retrieved by extracting all the studies with
“yes” in the code column.

As shown by the annotations in Fig. 4, reviews using FASTREAD proceeds as follows:

8According to Table 1, reviewing all studies costs 132CD + 1704CA. In our simulations, in average
FASTREAD did 630 abstract reviews and 100 content reviews.
9In the worst case we assume that every study reviewed is “abstract relevant” and thus costs CD + CA to
review and there is no “abstract relevant” study left except for the 5% missing “content relevant” ones. E.g.
in Wahono dataset, FASTREAD reviews 670 studies among the 7002 candidate ones, it costs 670(CA +CD)

while reviewing all studies costs (670 + 4)CD + 7002CA.

Empir Software Eng (2018) 23:3161–3186 3177

https://doi.org/10.5281/zenodo.837861
https://github.com/fastread/src

A

B

G

E

C

D

F

H I

J

Fig. 4 Basic interface of the FASTREAD tool

B Randomly select 10 candidate studies for review.
C Read through the title and abstract (and click on the title and read the full text if

needed) of the candidate study.
D Decide whether this study should be coded as Relevant or Irrelevant then click Submit.
E Click the Next button to save codes. 10 more candidates are then selected.
F The review status will change every time new studies are coded by reviewer and the

Next button is hit. The status is shown in the format “Documents Coded: Number
of relevant studies found / Number of studies reviewed (Total number of candidate
studies).”

G1 Once 1 “relevant” study is coded, Random sampling moves to Uncertainty sampling.
G2 Once 30 “relevant” study is coded, Uncertainty sampling can change Certainty

sampling.
H Fig. H can be plotted by clicking the Plot button or checking Auto Plot (figure cached

in src/static/image/ directory).
I Once finished, coded studies can be exported into a CSV file in the workspace/coded/

directory.

Note that the Restart button (J) is only for testing and discards all codes.

7 Discussion

7.1 What is Missed?

Our results will show, with FASTREAD, 95% of the “relevant” studies can be retrieved by
reviewing a small portion (usually hundreds of studies) of long candidate study list. Given
that, it is wise to reflect on the 5% of papers not found by such an analysis. To this end, we
took one of our case studies and reflected on:

– The set of papers R that a human analyst declared to be “relevant” (as listed in their
reference list at the end of their paper).

Empir Software Eng (2018) 23:3161–31863178

– The tangentially relevant subset of those papers R1 ⊆ R that a human analyst explicitly
mentions, however briefly, in the body of their paper.

– The yet smaller subset of those papers R2 ⊆ R1 that a human analyst discusses,
at length, in the body of their report (and for our purposes “at length” is “more
that two lines”). We call these insightful papers. Clearly, FASTREAD should not be
recommended if our method always misses the insightful papers.

For our case studies, on 30 repeats of our methods, we found that R2 \ LR = ∅; i.e.
FASTREAD never missed an insightful paper. As for the tangentially relevant papers, FAS-
TREAD found all of those in 95% of the 30 repeats. Based on this analysis, we infer that
missing 5% of the papers is not a major impediment to using FASTREAD. Similar con-
clusion was derived by Shemilt et al. in 2016 (Shemilt et al. 2016). More interestingly, we
found that more than 90% of the missing studies come from a same set of size of 0.1|R|.
Which means some studies are more likely to be missed while most studies have never been
missed in 30 repeats. This may suggest that there are outliers in relevant studies, which are
not very important according to our case studies.

That said, if the SLR conductor does not want to miss any potential relevant study, they
need to review all the candidate studies with full cost. We are actively exploring possibilities
to mitigate or compensate the missing studies issue. For example, one technique is “diver-
sity sampling”; i.e. to explore unknown regions by sampling the least similar studies from
what have been reviewed before. Exploration and exploitation can be balanced by selection
different weight between diversity sampling and certainty/uncertainty sampling Note that
more exploration means fewer missing studies but higher review cost.

7.2 What About Domain Knowledge?

In our simulations, we assume that no initial seed training set is available thus a random
sampling is performed to collect the minimum training set. This assumption represents the
worst case while no external knowledge is available. We show in this work that the absence
of that domain knowledge is not a critical failing of the approach. On the other hand, such
domain knowledge usually exists in real world SLRs and will boost the performance of
FASTREAD if wisely used. For example, if one relevant example and one irrelevant exam-
ple are known in the very beginning, the random sampling step of FASTREAD is no longer
needed and thus leads to additional cost reduction. More details about how to wisely use
domain knowledge to boost FASTREAD will be explored further after this work. While we
have some preliminary results in that area, we have nothing definitive to report at this time.

7.3 What About Real Human Reviewers?

In our simulations, we assume that there is only one reviewer who never make mistakes. In
real world SLRs, there will be multiple reviewers who make some mistakes.

To handle this, FASTREAD could be changed to one central learner with multiple review
agents. Every agent reviews different studies and feedback his or her decisions to the central
learner. The central learner then trains on the feedback of every agent and assigns stud-
ies to each agent for review. Such schema will keep all the property of single reviewer
FASTREAD and performs similarly. In addition, there might be more intelligent way to allo-
cate review tasks based on the different performance of review agents (Wallace et al. 2011).

Second, consider those multiple reviewers now make mistakes. Candidate studies need to
be reviewed by multiple reviewers in case any of them makes mistakes. To explore this issue,

Empir Software Eng (2018) 23:3161–3186 3179

appropriate data need to be collected on how human reviewers make mistakes. Wallace et al.
addressed this issue in 2015 (Nguyen et al. 2015) by analyzing the best policy for allocating
review tasks to reviewers with different experience levels as well as difference costs. We
also plan to to address this issue in our future work.

7.4 What About Multiple Categories of Studies?

In our simulations, we assume that the target is binary classification. However, primary
study selection in real world SLRs might be a multi-label classification problem. For exam-
ple, an SLR with two research questions might go through a primary study selection while
each candidate is labeled as “relevant to RQ1”, “relevant to RQ2”, or “irrelevant” while the
first two labels can co-exist. The simplest solution for this is to run multiple FASTREAD
learners each learns on one label vs. others and each reviewer classify on one label only. In
this case, the multi-label classification problem can be divided into multiple FASTREAD
problems. Additional work such as ensemble learners can be explored in future works.

8 Threats to Validity

There are several validity threats to the design of this study (Feldt and Magazinius 2010).
Any conclusions made from this work must be considered with the following issues in mind:

Conclusion validity focuses on the significance of the treatment. To enhance the conclu-
sion validity of this work, we employed several statistical tests (Scott-Knott) to reduce the
changes of making spurious conclusions.

Internal validity measures how sure we can be that the treatment actually caused the
outcome. To enhance internal validity, we heavily constrained our experiments (see our
simulated results in strictly controlled environments as discussed in Section 4.4).

Construct validity focuses on the relation between the theory behind the experiment
and the observation. In this work, we evaluated our results via different treatments with
WSS@95 as stated in Section 4.1– note that those measures took us as close as we
can to computing cost reduction without “abstract relevant” information. That is, it fits
the objective of human-in-the-loop primary study selection as defined in the current
literature (Cormack and Grossman 2014, 2015). Increasing the number of different mea-
sures may increase construct validity so, in future work, we will further explore more
metrics.

External validity concerns how well the conclusion can be applied outside. All the con-
clusions in this study are drawn from the experiments running on three software engineering
SLR datasets created with information from Hall, Wahono, Radjenović et al. studies (Hall
et al. 2012; Wahono 2015; Radjenović et al. 2013) and one dataset provided by Kitchen-
ham et al. (2010). Therefore, such conclusions may not be applicable to datasets of different
scenarios, e.g., citation screening from evidence based medicine or TAR from e-discovery.
Such bias threatens any classification experiment. The best any researcher can do is to
document that bias then make available to the general research community all the mate-
rials used in a study (with the hope that other researchers will explore similar work on
different datasets). Existing active learning techniques in citation screening have been crit-
icized by Olorisade et al. for being not replicable (Olorisade et al. 2016, 2017). To this
end, we have published all our code at https://github.com/fastread/src and all our data at
https://doi.org/10.5281/zenodo.1162952.

Empir Software Eng (2018) 23:3161–31863180

https://github.com/fastread/src
https://doi.org/10.5281/zenodo.1162952

In the experiments, we assume that the human reviewer is always correct. In practice, this
assumption cannot hold and problems such as disagreement between reviewers or concept
drift (in which reviewers disagree with themselves as time passes) may occur. As discussed
below when we discuss Future Work, we intend to explore this matter in the near future.

The comparisons in our experiment are based on the controlled variables listed in Sec-
tion 4.4. If those settings change, then the conclusion in Section 5 may become unreliable.

9 Conclusions

Systematic literature reviews are the primary method for aggregating evidence in evidence-
based software engineering. It is suggested for every researcher in software engineering to
frequently conduct SLRs (Keele 2007). One drawback with such SLRs is the time required
to complete such a study: an SLR would can weeks to months to finish and the conclusion
drawn can be out of date in a few years.

To tackle this barrier to understanding the literature, this study focuses on primary study
selection, one of the most difficult and time consuming steps in an SLR. Machine learn-
ing methods, especially active learning, are explored in our attempts to reduce the effort
required to exclude primary studies. In this paper:

– We explored 32 different active learners. To the best of our knowledge, this is largest
such study yet completed in the software engineering domain.

– We have collected data from four large literature reviews. This data is publically avail-
able (https://doi.org/10.5281/zenodo.1162952). Note that the creation and distribution
of these data sets is an important contribution, because prior to this study, it was difficult
to obtain even one such data set.

– We have offered a baseline result that can serve as a challenge problem for SE
researchers: how to find more relevant papers after reviewing fewer papers. We have
placed in the public domain (github.com/fastread/src) software tools that let others
compare our approach with alternative methods.

– We created a new reading-assistant tool called FASTREAD. To the best of our
knowledge, FASTREAD’s combination of methods has not been previously explored.

– Using FASTREAD, we decreased the number of studies to be reviewed by 20-50%
(comparing to the prior state-of-the-art).

As a result of the above we can:

– Offer much assistance to any future SLR.
– Offer a cautionary tale to SE researchers who use data miners. Specifically: do not be

content with off-the-shelf solutions developed by other communities. SE has nuanced
differences to other domains so our methods need to be tuned to our data. Even within
the SE community there may be variations, so the framework provided by this paper is
a good example to find the best method for a specific task on specific data.

10 Future Work

This study has several limitations as described in Section 7. We consider the limitations as
open challenges and plan to address those in future work. Specific problems and plans for
the future are listed below.

Empir Software Eng (2018) 23:3161–3186 3181

https://doi.org/10.5281/zenodo.1162952

– Conclusions are drawn from three synthetic SLR datasets and one Kitchenham dataset.
Validate the generalizability of the results on different datasets, including datasets from
evidence-based medicine and e-discovery.

– Experiment results are evaluated by WSS@95, which assumes a stop rule of reaching
95% recall. How to stop at 95% recall without first knowing the number “relevant”
studies in the pool is an interesting topic. We are exploring this topic actively.

– The size and prevalence of data can affect performance of FASTREAD. With the capa-
bility of cost reduction from FASTREAD, it is reasonable to ask whether we need the
narrow initial search. An interesting future research would be to use every paper on, say
Scopus, database as candidates and allow user to just using some simple search to ini-
tiate and guide the selection. As a result, the recall is no longer restricted by the initial
search string thus may yield higher recall with reasonable cost.

– About 10 to 20% efforts are spent on random selection step and most of the variances
are also introduced in this step. To speed up the random selection step, external expert
knowledge will be introduced while unsupervised learning methods such as VTM,
LDA, word2vec, or t-SNE will also be considered in future work.

– Some magic parameters are arbitrarily chosen, which may affect the performance.
However, parameter tuning is not a good fit for human-in-the-loop primary study selec-
tion because a) parameters should be tuned for the data working on; b) but the effect of
applying different parameters can not be tested since querying extra label incurs extra
cost. Therefore, novel methods should be explored for parameter selection; e.g. better
criterion for when to switch from uncertainty sampling to certainty sampling (instead
of the “30” relevant examples rule applied now). Works from Borg (2016) and Fu et al.
(2016) will be considered as candidate solutions to this problem.

– Current scenario is restricted to having only one reviewer, which is impractical in prac-
tice. Problems including how to assign review tasks to multiple reviewers and how to
utilize reviewers with different cost and different capability will be explored in the
future.

– Currently, we assume that reviewers never make mistakes. In future work, we will
explore concept drift (reviewers disagree with themselves, at some later time) and how
to settle disagreements (reviewers disagree with each other).

– This study focuses only on primary study selection. Assistance on other steps of SLR
such as searching, data extraction, and protocol development can also help reduce total
effort of SLRs. The potential of combining VTM, snowballing, and other tools with
FASTREAD needs to be explored as well.

We invite other researchers to join us in the exploring the above.

Acknowledgements The authors thank Barbara Kitchenham for her attention to this work and for sharing
with us the “Kitchenham” dataset used in our experiments.

References

Adeva JG, Atxa JP, Carrillo MU, Zengotitabengoa EA (2014) Automatic text classification to support
systematic reviews in medicine. Expert Syst Appl 41(4):1498–1508

Bezerra YM, Pereira TAB, da Silveira GE (2009) A systematic review of software product lines applied
to mobile middleware. In: Sixth international conference on information technology: new generations,
2009. ITNG’09. IEEE, pp 1024–1029

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3(Jan):993–1022

Empir Software Eng (2018) 23:3161–31863182

Borg M (2016) Tuner: a framework for tuning software engineering tools with hands-on instructions in r.
Journal of Software Evolution and Process 28(6):427–459

Bowes D, Hall T, Beecham S (2012) Slurp: a tool to help large complex systematic literature reviews deliver
valid and rigorous results. In: Proceedings of the 2nd international workshop on evidential assessment
of software technologies. ACM, pp 33–36

Carver JC, Hassler E, Hernandes E, Kraft NA (2013) Identifying barriers to the systematic literature
review process. In: 2013 ACM/IEEE international symposium on empirical software engineering and
measurement. IEEE, pp 203–212

Cohen AM (2006) An effective general purpose approach for automated biomedical document classifica-
tion. In: AMIA annual symposium proceedings, vol 2006. American Medical Informatics Association,
p 161

Cohen AM (2011) Performance of support-vector-machine-based classification on 15 systematic review
topics evaluated with the wss@ 95 measure. J Am Med Inform Assoc 18(1):104–104

Cohen AM, Hersh WR, Peterson K, Yen PY (2006) Reducing workload in systematic review preparation
using automated citation classification. J Am Med Inform Assoc 13(2):206–219

Cohen AM, Ambert K, McDonagh M (2010) A prospective evaluation of an automated classification system
to support evidence-based medicine and systematic review. In: AMIA annual symposium proceedings,
vol 2010. American Medical Informatics Association, p 121

Cormack GV, Grossman MR (2014) Evaluation of machine-learning protocols for technology-assisted
review in electronic discovery. In: Proceedings of the 37th international ACM SIGIR conference on
research & development in information retrieval. ACM, pp 153–162

Cormack GV, Grossman MR (2015) Autonomy and reliability of continuous active learning for technology-
assisted review. arXiv:1504.06868

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
Dyba T, Kitchenham BA, Jorgensen M (2005) Evidence-based software engineering for practitioners. IEEE

Softw 22(1):58–65. https://doi.org/10.1109/MS.2005.6
Feldt R, Magazinius A (2010) Validity threats in empirical software engineering research-an initial survey.

In: SEKE, pp 374–379
Felizardo KR, Nakagawa EY, Feitosa D, Minghim R, Maldonado JC (2010) An approach based on visual

text mining to support categorization and classification in the systematic mapping. In: Proc. of EASE,
vol 10. pp 1–10

Felizardo KR, Andery GF, Paulovich FV, Minghim R, Maldonado JC (2012) A visual analysis approach to
validate the selection review of primary studies in systematic reviews. Inf Softw Technol 54(10):1079–
1091

Felizardo KR, Nakagawa EY, MacDonell SG, Maldonado JC (2014) A visual analysis approach
to update systematic reviews. In: Proceedings of the 18th international conference on eval-
uation and assessment in software engineering, EASE ’14. ACM, New York, pp 4:1–4:10.
https://doi.org/10.1145/2601248.2601252

Felizardo KR, Mendes E, Kalinowski M, Souza ÉF, Vijaykumar NL (2016) Using forward snowballing to
update systematic reviews in software engineering. In: Proceedings of the 10th ACM/IEEE international
symposium on empirical software engineering and measurement. ACM, p 53

Fernández-Sáez AM, Bocco MG, Romero FP (2010) SLR-Tool: a tool for performing systematic literature
reviews. In: ICSOFT (2), pp 157–166

Fu W, Menzies T, Shen X (2016) Tuning for software analytics: is it really necessary? Inf Softw Technol
76:135–146

Grossman MR, Cormack GV (2013) The grossman-cormack glossary of technology-assisted review with
foreword by john m. facciola, u.s. magistrate judge. Federal Courts Law Review 7(1):1–34

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature review on fault prediction
performance in software engineering. IEEE Trans Softw Eng 38(6):1276–1304

Hassler E, Carver JC, Kraft NA, Hale D (2014) Outcomes of a community workshop to identify and rank
barriers to the systematic literature review process. In: Proceedings of the 18th international conference
on evaluation and assessment in software engineering. ACM, p 31

Hassler E, Carver JC, Hale D, Al-Zubidy A (2016) Identification of SLR tool needs—results of a community
workshop. Inf Softw Technol 70:122–129

Hernandes E, Zamboni A, Fabbri S, Thommazo AD (2012) Using gqm and tam to evaluate start-a tool that
supports systematic review. CLEI Electronic Journal 15(1):3–3

Jalali S, Wohlin C (2012) Systematic literature studies: database searches vs. backward snowballing.
In: Proceedings of the ACM-IEEE international symposium on empirical software engineering and
measurement. ACM, pp 29–38

Joachims T (2006) Training linear svms in linear time. In: Proceedings of the 12th ACM SIGKDD
international conference on knowledge discovery and data mining. ACM, pp 217–226

Empir Software Eng (2018) 23:3161–3186 3183

http://arxiv.org/abs/1504.06868
https://doi.org/10.1109/MS.2005.6
https://doi.org/10.1145/2601248.2601252

Keele S (2007) Guidelines for performing systematic literature reviews in software engineering. In: Technical
report, Ver. 2.3 EBSE Technical Report. EBSE

Kitchenham B, Brereton P (2013) A systematic review of systematic review process research in software
engineering. Inf Softw Technol 55(12):2049–2075

Kitchenham BA, Dyba T, Jorgensen M (2004) Evidence-based software engineering. In: Proceedings of the
26th international conference on software engineering. IEEE Computer Society, pp 273–281

Kitchenham B, Pretorius R, Budgen D, Brereton OP, Turner M, Niazi M, Linkman S (2010) Systematic
literature reviews in software engineering–a tertiary study. Inf Softw Technol 52(8):792–805

Krishna R, Yu Z, Agrawal A, Dominguez M, Wolf D (2016) The bigse project: lessons learned from vali-
dating industrial text mining. In: Proceedings of the 2nd international workshop on BIG data software
engineering. ACM, pp 65–71

Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: Proceedings of the 31st
international conference on machine learning (ICML-14), pp 1188–1196

Liu J, Timsina P, El-Gayar O (2016) A comparative analysis of semi-supervised learning: the case
of article selection for medical systematic reviews. Inf Syst Front:1–13 https://doi.org/10.1007/
s10796-016-9724-0

Malheiros V, Hohn E, Pinho R, Mendonca M, Maldonado JC (2007) A visual text mining approach for sys-
tematic reviews. In: First international symposium on empirical software engineering and measurement
(ESEM 2007). IEEE, pp 245–254

Marshall C, Brereton P (2013) Tools to support systematic literature reviews in software engineering: a
mapping study. In: 2013 ACM/IEEE international symposium on empirical software engineering and
measurement. IEEE, pp 296–299

Marshall C, Brereton P, Kitchenham B (2014) Tools to support systematic reviews in software engineering:
a feature analysis. In: Proceedings of the 18th international conference on evaluation and assessment in
software engineering, EASE ’14. ACM, pp 13:1–13:10

Marshall C, Brereton P, Kitchenham B (2015) Tools to support systematic reviews in software engineer-
ing: a cross-domain survey using semi-structured interviews. In: Proceedings of the 19th international
conference on evaluation and assessment in software engineering. ACM, p 26

Miwa M, Thomas J, O’Mara-Eves A, Ananiadou S (2014) Reducing systematic review workload through
certainty-based screening. J Biomed Inform 51:242–253

Molléri JS, Benitti FBV (2015) Sesra: a web-based automated tool to support the systematic literature review
process. In: Proceedings of the 19th international conference on evaluation and assessment in software
engineering, EASE ’15. ACM, New York, pp 24:1–24:6. https://doi.org/10.1145/2745802.2745825

Nguyen AT, Wallace BC, Lease M (2015) Combining crowd and expert labels using decision theoretic active
learning. In: Third AAAI conference on human computation and crowdsourcing

Olorisade BK, de Quincey E, Brereton P, Andras P (2016) A critical analysis of studies that address the
use of text mining for citation screening in systematic reviews. In: Proceedings of the 20th international
conference on evaluation and assessment in software engineering. ACM, p 14

Olorisade BK, Brereton P, Andras P (2017) Reproducibility of studies on text mining for citation screening
in systematic reviews: evaluation and checklist. J Biomed Inform 73:1

O’Mara-Eves A, Thomas J, McNaught J, Miwa M, Ananiadou S (2015) Using text mining for study
identification in systematic reviews: a systematic review of current approaches. Systematic Reviews
4(1):5

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for
systematic reviews. Systematic Reviews 5(1):210. https://doi.org/10.1186/s13643-016-0384-4

Paynter R, Bañez LL, Berliner E, Erinoff E, Lege-Matsuura J, Potter S, Uhl S (2016) Epc meth-
ods: an exploration of the use of text-mining software in systematic reviews. Research white paper
(prepared by the Scientific Resource Center and the Vanderbilt and ECRI Evidence-based Prac-
tice Centers under contract nos. HHSA290201200004C (SRC), HHSA290201200009I (Vanderbilt),
and HHSA290201200011I (ECRI). Agency for Healthcare Research and Quality (US). http://www.
effectivehealthcare.ahrq.gov/reports/final/cfm

Radjenović D, Heričko M, Torkar R, Živkovič A (2013) Software fault prediction metrics: a systematic
literature review. Inf Softw Technol 55(8):1397–1418

Roegiest A, Cormack GV, Grossman M, Clarke C (2015) Trec 2015 total recall track overview. Proc TREC-
2015

Ros R, Bjarnason E, Runeson P (2017) A machine learning approach for semi-automated search and selection
in literature studies. In: Proceedings of the 21st international conference on evaluation and assessment
in software engineering. ACM, pp 118–127

Settles B (2010) Active learning literature survey. University of Wisconsin, Madison 52(55-66):11
Settles B (2012) Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 6(1):1–

114

Empir Software Eng (2018) 23:3161–31863184

https://doi.org/10.1007/s10796-016-9724-0
https://doi.org/10.1007/s10796-016-9724-0
https://doi.org/10.1145/2745802.2745825
https://doi.org/10.1186/s13643-016-0384-4
http://www.effectivehealthcare.ahrq.gov/reports/final/cfm
http://www.effectivehealthcare.ahrq.gov/reports/final/cfm

Shemilt I, Khan N, Park S, Thomas J (2016) Use of cost-effectiveness analysis to compare the efficiency of
study identification methods in systematic reviews. Systematic Reviews 5(1):140

Thomas J, Brunton J, Graziosi S (2010) Eppi-reviewer 4.0: software for research synthesis
Wahono RS (2015) A systematic literature review of software defect prediction: research trends, datasets,

methods and frameworks. J Softw Eng 1(1):1–16
Wallace BC, Small K, Brodley CE, Trikalinos TA (2010a) Active learning for biomedical citation screening.

In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data
mining. ACM, pp 173–182

Wallace BC, Trikalinos TA, Lau J, Brodley C, Schmid CH (2010b) Semi-automated screening of biomedical
citations for systematic reviews. BMC Bioinf 11(1):1

Wallace BC, Small K, Brodley CE, Trikalinos TA (2011) Who should label what? Instance allocation in
multiple expert active learning. In: SDM. SIAM, pp 176–187

Wallace BC, Small K, Brodley CE, Lau J, Trikalinos TA (2012) Deploying an interactive machine learn-
ing system in an evidence-based practice center: abstrackr. In: Proceedings of the 2nd ACM SIGHIT
international health informatics symposium. ACM, pp 819–824

Wallace BC, Dahabreh IJ, Moran KH, Brodley CE, Trikalinos TA (2013a) Active literature discovery for
scoping evidence reviews: how many needles are there. In: KDD workshop on data mining for healthcare
(KDD-DMH)

Wallace BC, Dahabreh IJ, Schmid CH, Lau J, Trikalinos TA (2013b) Modernizing the systematic review
process to inform comparative effectiveness: tools and methods. Journal of Comparative Effectiveness
Research 2(3):273–282

Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software
engineering. In: Proceedings of the 18th international conference on evaluation and assessment in
software engineering. ACM, p 38

Wohlin C (2016) Second-generation systematic literature studies using snowballing. In: Proceedings of the
20th international conference on evaluation and assessment in software engineering. ACM, p 15

Zhang H, Babar MA, Bai X, Li J, Huang L (2011a) An empirical assessment of a systematic search process
for systematic reviews. In: 15th annual conference on evaluation & assessment in software engineering
(EASE 2011). IET, pp 56–65

Zhang H, Babar MA, Tell P (2011b) Identifying relevant studies in software engineering. Inf Softw Technol
53(6):625–637

Zhe Yu is a third year Ph.D. student in the department of Computer Science at North Carolina State Uni-
versity. He received his bachelor and master degree in Shanghai Jiao Tong University, China. His primary
interest lies in the collaboration of human and machine learning algorithms that leads to better performance
and higher efficiency than pure human or machine learning. He currently works on developing active learn-
ing algorithms and tools that help researchers conduct literature reviews. For more information, visit https://
azhe825.github.io.

Empir Software Eng (2018) 23:3161–3186 3185

https://azhe825.github.io
https://azhe825.github.io

Nicholas A. Kraft is a software researcher at ABB Corporate Research in Raleigh, North Carolina. Previ-
ously, he was an associate professor in the Department of Computer Science at The University of Alabama.
He received the Ph.D. degree in computer science from Clemson University in 2007. His research interests
are in software evolution, with an emphasis on techniques and tools to support developers in understand-
ing evolving software and to support managers in understanding software evolution processes. Dr. Kraft’s
research has been funded by grants from the NSF, DARPA, and ED. He currently serves on the editorial
board of IEEE Software and on the steering committee of the IEEE International Conference on Software
Maintenance and Evolution (ICSME). He is a senior member of the ACM and the IEEE.

Tim Menzies (Ph.D., UNSW, 1995) is a full Professor in CS at North Carolina State University. He
researchers SE, data mining, AI, search-based SE, and open access science. A former SE research chair at
NASA, he is the author of over 250 referred publications and he has been a lead researcher on projects for
NSF, NIJ, DoD, NASA, USDA. Prof. Menzies is the cofounder of the PROMISE conference series devoted to
reproducible experiments in software engineering (http://tiny.cc/seacraft). He has served as associate editor
of IEEE Transactions on Software Engineering, ACM Transactions on Software Engineering Methodologies,
Empirical Software Engineering, the Automated Software Engineering Journal the Big Data Journal, Infor-
mation Software Technology, IEEE Software, and the Software Quality Journal. He has also served as PC
cochair for IEEE ASE (2012); ICSE NIER track (2015); Search-based SE (2017); and co-general chair of
ICMSE (2016). For more, see his publications https://goo.gl/qNQAIq) or home page http://menzies.us.

Empir Software Eng (2018) 23:3161–31863186

http://tiny.cc/seacraft
https://goo.gl/qNQAIq
http://menzies.us

	Finding better active learners for faster literature reviews
	Abstract
	Introduction
	Background
	Related Work
	Software Engineering Tools
	Legal Electronic Discovery Tools
	Evidence-Based Medicine Tools

	Technical Details
	When to Start Training
	Which Document to Query Next
	Whether to Stop Training (or not)
	How to Balance the Training Data

	Experiments
	Performance Metrics
	Datasets
	Simulation Studies
	Controlled Variables

	Results
	RQ1: Can Active Learning Techniques Reduce Effort in Primary Study Selection?
	RQ2: Should we Just Adopt the State-of-the-Art Treatments from Other Fields? Is it Possible to Build a Better One by Mixing and Matching from Those?
	RQ3: How much Effort can FASTREAD Save in an SLR?

	Tool Support
	Discussion
	What is Missed?
	What About Domain Knowledge?
	What About Real Human Reviewers?
	What About Multiple Categories of Studies?

	Threats to Validity
	Conclusions
	Future Work
	Acknowledgements
	References

