
Empir Software Eng
https://doi.org/10.1007/s10664-017-9583-4

Supporting the analyzability of architectural component
models - empirical findings and tool support

Srdjan Stevanetic1 ·Uwe Zdun1

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract This article discusses the understandability of component models that are fre-
quently used as central views in architectural descriptions of software systems. We
empirically examine how different component level metrics and the participants’ experience
and expertise can be used to predict the understandability of those models. In addition, we
develop a tool that supports applying the obtained empirical findings in practice. Our results
show that the prediction models have a large effect size, which means that their prediction
strength is of high practical significance. The participants’ experience plays an important
role in the prediction but the obtained models are not as accurate as the models that use
the component level metrics. The developed tools combine the DSL-based architecture
abstraction approach with the obtained empirical findings. While the DSL-based architec-
ture abstraction approach enables software architects to keep source code and architecture
consistent, the metrics extensions enable them, while working with the DSL, to continu-
ously judge and improve the analyzability of architectural component models based on the
understandability of their individual components they create with the DSL. Provided met-
rics extensions can also help in assessing how much each architectural rule used to specify
the DSL affects the understandability of a component which enables for instance finding the
rules that contribute the most to a limited understandability. Finally, our approach supports
change impact analysis, i.e., the identification of changes that affect different analyzabil-
ity levels of the component models. We studied the applicability of our approach in a case
study of an existing open source system.

Communicated by: Richard Paige

� Srdjan Stevanetic
srdjan.stevanetic@univie.ac.at

Uwe Zdun
uwe.zdun@univie.ac.at

1 Software Architecture Research Group, University of Vienna,
Währingerstraße 29, 1090 Vienna, Austria

(2018) 23:3578–3625

Published online: 29 March 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9583-4&domain=pdf
http://orcid.org/0000-0001-9768-0468
mailto:srdjan.stevanetic@univie.ac.at
mailto:uwe.zdun@univie.ac.at

Keywords Software architecture · Architectural component models · Understandability ·
Software metrics · Empirical study · Architecture evolution

1 Introduction

In the process of software systems development software architecture represents a key arte-
fact that affects all later activities such as design and implementation and plays a crucial
role in achieving the desired software qualities (Losavio et al. 2003). Software architecture
focuses on a high level view of a software system and it is defined as : “the structure or struc-
tures of the system, which comprise software components, the externally visible properties
of those components, and the relationships among them” (Bass et al. 1998).

According to the software architecture community, an architectural description can
comprise multiple views concentrating on one of many system concerns, such as logi-
cal, implementation, deployment, process, or architectural knowledge view, and from the
viewpoint of different stakeholders, such as end-users, developers, project managers, and
business analysts (Kruchten 1995; Clements et al. 2003). Architectural component and con-
nector models (or shortly component models), that are part of the implementation view,
are frequently used as a central view of the architectural descriptions of software sys-
tems (Clements et al. 2003). Component models represent high-level abstractions of the
system implementation and are often considered to contain the most significant architec-
tural information (Clements et al. 2003). In this view, components could refer to different
system entities such as processes, objects, clients, servers, data stores, modules, subsys-
tems, etc., while connectors represent the interaction mechanisms between components
(Clements et al. 2003). In this article, we consider a component more in the sense of soft-
ware modules by adopting the definition of Clemens et al., i.e. a component represents an
implementation unit of software that provides coherent unit of functionality at the first level
of decomposition in the system (Clements et al. 2003). This definition is adopted because
our work focuses on the understandability of component models which mainly relates to
understanding a functional decomposition of the system and the effect of modifying the
system functionalities, i.e. the impact analysis. Please note that component decomposi-
tion can be made independent of the functionality type implemented in a component. For
example, a decomposition can consider both technical functionalities (e.g. components for
file-access or network connection) and business functionalities (e.g. components for savings
or accounts). Since a component in a component model represents a high-level abstraction
of the entities in the source code of the system, it can be broken down into (i.e., is refined
by) more fine-grained, technical components or classes that realize the component in the
technical design or implementation of the system. In the context of object-oriented soft-
ware systems that we focus on, a component usually groups a set of source code classes
and/or packages with similar functionalities, while a connector could represent any kind of
dependency between classes like method calls, fields access, etc.

Understandability is one of the most important characteristics of software quality
(Pacione et al. 2004). The difficulty of understanding the software system limits its reuse
and maintenance. Boehm defined software understandability as a feature of software qual-
ity which means ease of understanding software systems (Boehm 1978). In the context of
component models, understandability refers to understanding the functionalities of indi-
vidual components together with the functional relatedness among them (Dugerdil and
Niculescu 2014). Understandability is a critical aspect for the component models, as their

Empir Software Eng (2018) 23:3578–3625 3579

main purpose is to “ ... enable designers to abstract away fine-grained details that obscure
understanding and focus on the “big picture:” system structure, the interactions between
components, ...” Oreizy et al. (1999). This, however, is not possible if the given models
themselves and/or the links to other design and code artefacts are hard to understand.

In our previous work (Stevanetic and Zdun 2016), we examined the relationships between
the effort required to understand a component, measured through the time that participants
spent on studying a component, and the hierarchical quality metrics originally designed to
assess the understandability of the modular design of an object-oriented software system
(Hwa et al. 2009). Those metrics refer to 6 design properties found to have an impact on
the understandability of the modular design of a system: size, complexity, encapsulation
(i.e. information-hiding), coupling, cohesion and modular abstraction. In the same study, we
have further examined the impact of personal factors (i.e. the participants’ experience and
expertise), and compared the efficiency of both personal and system related factors (metrics)
with the prediction models obtained in our previous studies (Stevanetic and Zdun 2014a,
b). In another study reported in a position paper (Stevanetic et al. 2014), we presented a
tool for supporting software evolution by integrating a DSL-based architecture evolution
approach with our empirically evaluated understandability metrics. In this article, we pro-
vide: 1) an extended description of the results obtained in our previous work (Stevanetic
and Zdun 2016) consisting of more detailed description of the studied metrics and applied
statistical techniques as well as more detailed explanations and discussions of the obtained
results, 2) a new metric for measuring the analyzability of component models based on the
integration of our empirical evaluations and the existing work on the analyzability related
metrics proposed by Bouwers et al. (2011), and 3) significant tool extensions compared to
our previous work reported in a position paper (Stevanetic et al. 2014) including the realiza-
tion of the new analyzability metric by supporting how much each of the architectural rules
used to specify a DSL-based architectural abstraction specification contributes to the under-
standability of components and enabling change impact analysis, i.e. the identification of
changes in the system that affect different analyzability levels of the component models.

The results of our empirical analyses show that the hierarchical understandability met-
rics can predict the understandability with high practical significance. On the one hand,
the obtained prediction models are significantly better then the models obtained using the
graph based metrics (examined in Stevanetic and Zdun 2014a), the package based metrics
(examined in Stevanetic and Zdun 2014b) or the models that use the participants’ expe-
riences as predictors. On the other hand, those models are not significantly different or
worse in prediction from the models that combine both the system related metrics (the
graph based, package based, and hierarchical understandability metrics) and the partici-
pants’ experiences. This means that, from all studied predictors, the system related metrics
(i.e. the hierarchical understandability metrics) are enough to consider for the prediction.
We also find that the participants’ experiences are important and can predict a significant
amount of variance in the data but the obtained models are not as accurate as the models
that use the metrics related to the software system itself (concretely the hierarchical under-
standability metrics). Regarding the tool support, we demonstrate in a case study how it can
be used to create component models with appropriate analyzability level by incrementally
improving an initial component model of the system. In addition, we show how the tool can
be used for change impact analysis, i.e for detecting the changes that exist between different
component models that affect their different analyzability levels.

This article is organized as follows: In Section 2, we discuss the related work. In Section 3
we describe the study design. Section 4 describes the statistical methods we applied and the

Empir Software Eng (2018) 23:3578–36253580

analysis of our data. In Section 5 we discuss the threats to validity. Section 6 describes the
tool we developed together with a case study on how the tool can be utilized in a practical
context. In Section 7 we conclude and discuss future directions of our research.

2 Related work

So far very few studies investigate the empirical evidence on the architectural understand-
ability. One of them examines the influence of package coupling on the understandability
of the software systems (Gupta and Chhabra 2009), while another one examines the rela-
tionships between some package-level metrics and package understandability (Elish 2010).
None of the studies examines the understandability of architectural components. In this
section we discuss the existing works in several fields closely related to our work.

2.1 Measuring the understandability

In the work by Patig (2008) the variables and tasks that have been proposed by cognitive
psychology or applied in computer science to test understandability are extracted. Those
variables and tasks are summarized in Fig. 1 and they represent a theoretical framework for
investigations on understandability. The variables have been theoretically justified by the
authors who used them. In our case, the independent variables represent the metrics that we
collected (in the work by Patig they are related to abstract/concrete syntax and therefore this
part of the figure is adapted from the original one). The dependent variable in our case is
the understandability of components. As we see from Fig. 1, different measures can be used
to quantify the dependent variable(s) such as frequency (the number of correct answers),
selection (which of several answers participants choose), response latency (how quickly par-
ticipants reacts), response duration (how long participants deal with a task), and amplitude
(measuring the strength of response, i.e. brain activities in performing a task). In our case
we measured the correctness of the answers and the time that participants spent on resolving
the questions. Regarding the comprehension tasks the participants of an experiment need

Task
Independent Variable(s)

Metrics related to

component views

Comprehension Modelling

Dependent Variable(s)

Content Persons

Participants Experimenter

Experiment

Conduct Situation

Extraneous Variable(s)

Surface-lavel

Syntactic

Semantic

Problem-solving

Effectiveness

Frequency

Selection

Efficiency

Responce latency

Responce

duration

Amplitude

Fig. 1 Theoretical framework for investigations on understandability (adapted from Patig 2008)

Empir Software Eng (2018) 23:3578–3625 3581

to answer an appropriate set of questions. If the questions are related to the syntax of the
model (constructs of the model) the task is called syntactic. If the questions are related to the
understanding of the context described the task is called semantic. Both of these two types
of tasks are related to surface level understanding. In problem-solving tasks that address
deeper understanding participants have to resolve whether and how certain information can
be extracted from a model. In our case the problem-solving tasks are more suitable because
the participants have to understand not just the component models themselves, i.e. how the
components interact in the model, but also the relations between them and the concrete sys-
tem implementation. Modelling tasks are used more for measuring the general ease of use
of some notation and therefore they are not suitable for our case.

In the work by Patig all proposed dependent variables are externally measured in terms of
using some external means like the time that participants spent on answering the questions
or the percentage of the correct answers on those questions. Beside the external means it is
also possible to use the participants subjective ratings in the measurement process. In the
context of model understandability Moody proposes three ways how to assess understand-
ability: the model user’s rating of model understandability, the ability of users to interpret
the model correctly, and the model developer’s rating for model understandability (Moody
1998). The first and the third way are based on the subjective ratings of users/developers.
However, Lindland et al. explain that the ability of model users to interpret the model
correctly is the best operational test whether the model is actually understood rather than
whether it is understandable (Lindland et al. 1994; Moody 1998).

2.2 Architecture and design metrics and their empirical evaluations

There exist plenty of software metrics for measuring the system’s architecture, architec-
tural components, and other high level software artefacts and structures (packages, modules,
graph-based structures). For example, metrics related to components and component models
measure different attributes like size, coupling, cohesion, and dependencies of components
as well as the complexity of the whole component models (Sharma et al. 2009; Sartipi 2001;
Sengupta et al. 2011). Regarding the software packages, different metrics that measure size,
coupling, stability, and cohesion are proposed (Elish 2010; Gupta and Chhabra 2009; Martin
2003; Gupta and Chhabra 2012). Graph-based metrics measure the complexity of interac-
tions between the graph nodes (Bhattacharya et al. 2012; Ma et al. 2006; Allen et al. 2007).
Certain graph-based metrics are evaluated to be useful for measuring large scale software
systems that are observed to share some properties that are common for complex networks
across many fields of science (Ma et al. 2006). Most of the above given metrics lack of
the links to the quality attributes. Stevanetic and Zdun (2015) present a systematic mapping
study on software metrics related to the understandability concepts of software architectures
with regard to their relations to the system implementation. In this article and the previous
ones that empirically investigate the understandability of components, the examined metrics
are chosen from the given mapping study and tested in the given context.

There exist several studies that empirically evaluate metrics. In contrast to our work, they
usually evaluate the usefulness of a metric for its proposed purpose, but do not test the rela-
tionships of specific metrics, as in our case the prediction of the understandability using
predictor metrics. Also, none of the studies focuses on architectural component models.
Among many others, Basili et al. evaluate object-oriented design metrics as quality indica-
tors (Basili et al. 1996). Albrecht and Gaffney provide one of many examples for a study
on development effort metrics (Albrecht and Gaffney 1983). Similarly to our work Moody
presents an empirical evaluation of the use of data model quality metrics (Moody 2003). In

Empir Software Eng (2018) 23:3578–36253582

this approach a broad set of quality metrics is investigated. The result obtained is that only
a few of these quality metrics have an influence on the quality as perceived by the model
users. These are the system complexity, the number of data items duplicated in existing sys-
tems, the development cost estimation, the reuse percentage, and the number of defects by
quality factor.

2.3 Understandability of UML models and process models

There exist a variety of studies in the literature that examine the understandability of dif-
ferent UML models. Some of them examine the layout or visualization aspects of UML
models. Purchase et al. (2001) show that certain visualizations are better than the other
depending on the kind of comprehension tasks that is used. Criteria and guidelines of how
to create effective layout for UML class and sequence diagrams are established in the work
by Sun and Wong (2005). They are based on perceptual theories.

Some other studies related to UML model understandability compare the effect of using
different UML diagram types (e.g., sequence and collaboration diagrams). For example,
Otero and Dolado take different UML diagrams types, sequence, collaboration, and state
diagrams, and evaluate the semantic comprehension of the diagrams when used for different
application domains (Otero and Dolado 2004).

Some authors investigate the styles and rigor in UML models and how they affect the
understandability of the models. For example, Briand et al. (2005) investigate the impact of
using OCL (object constraint language) in UML models on defect detection, understandabil-
ity, and impact analysis of changes. They find that the benefits for the individual activities
are modest but the overall benefits of using OCL on the aforementioned activities are sig-
nificant. None of the aforementioned studies examine the understandability of architectural
components, the central high level organizational units of the architectural descriptions of
software systems.

The work in the field of process model related metrics emphasize the importance of
model characteristics for assessing model understandability. Such metrics measure struc-
tural properties of a process model, motivated by prior work in software engineering related
to lines of code, cyclomatic number, or object-oriented metrics (McCabe 1976; Chidamber
and Kemerer 1994; Fenton and Pfleeger 1998). Soo and Jung-Mo (1992), Nissen (1998),
and Morasca (1999) focus on defining metrics. Different metrics have been also validated
empirically. Cardoso adapts the cyclomatic number metric for business processes (called
it control-flow complexity (CFC)) and proves the correlation of the metric with perceived
complexity of process models (Cardoso 2006). Canfora, Rolon, and Garcia analyse under-
standability as an aspect of maintainability using different metrics of size, complexity, and
coupling in their experiments. They identify several significant correlations (Canfora et al.
2005; Aguilar et al. 2007). Some other metrics are related to cognitive research, e.g. Van-
derfeesten et al. (2008), and based on concepts of modularity, e.g. Vanhatalo et al. (2007)
and van der Aalst and Bisgaard Lassen (2008).

Different empirical validations in the field of process models clearly show that size is
an important model factor for understandability, but does not fully determine phenomenons
of understanding. It means that additional metrics like structuredness can help to improve
the explanatory power significantly (Mendling 2008). In our case, we examine the effect of
different metrics, that measure more/less the same concepts as those mentioned for process
model understandability (size, coupling, complexity), on understandability of components’
functionalities implemented by the corresponding set of source code classes. We also show
that the size is not enough to fully determine the understandability and additional properties

Empir Software Eng (2018) 23:3578–3625 3583

need to be taken into account. Similar to our work, Reijers and Mendling (2011) investigate
the impact of personal and model related factors on understandability of process models.
They show that expert modelers perform significantly better and that the complexity of
the model affects understanding. A combined regression model is calculated that permits
preliminary conclusions on the relative importance of both groups of factors. They find
that personal factors (theoretical knowledge, practical experience, educational background)
have a stronger explanatory power in terms of adjusted R2 than model related factors but
they kept the size of the models constant by intentionally selecting models of equivalent
size. We also find that the participants’ experiences are important as well as the system
related metrics but in contrast to the work by Reijers and Mendling, we find that the system
related metrics have a significantly stronger explanatory power and even alone can be used
for the prediction, i.e. combining them with the experiences does not produce a stronger
explanatory power. Furthermore, we take into account the size. Also, all our participants are
students and we do not consider experts from industry as it is the case in the previous study.

2.4 Software quality models

To assess design quality different object-oriented software quality models have been pro-
posed and validated in the literature (Chidamber and Kemerer 1994; Bansiya and Davis
2002; Genero Bocco et al. 2005; Harrison et al. 1998; Basili et al. 1996). In those models,
software quality is assessed using several software metrics that are used to quantitatively
assess design properties such as coupling and cohesion. But those models are insufficient
to manage understandability in the high level system representations such as module-view,
package-view, or component-view because they capture a software system as the set of
classes and their relationships, but not the set of modules, packages or components and their
relationships.

Contrary to the given quality models, Bansiya and Davis (2002) proposes a hierarchi-
cal quality model for object-oriented design quality assessment (QMOOD) which is able
to assess understandability of a system. Their model extends Dromey’s quality framework
used for building product based quality models (Dromey 1995; Dromey and McGettrick
1992). However, QMOOD can only consider the dependencies between classes in a mod-
ule without considering the dependencies between classes of different modules as well as a
module hierarchy and therefore cannot assess the quality of modular design properly. Sarkar
et al. (2008) examine different metrics that can be used to assess modularization quality of
a large-scale object-oriented software system. But the authors do not provide relationships
between their metrics and the high-level quality attributes. Therefore more investigations
are necessary to establish the links between those metrics and high-level quality attributes.
Hwa et al. (2009) propose a hierarchical model to assess understandability of modulariza-
tion in large-scale object-oriented software. They define several design properties, which
capture the characteristics influencing on understandability, and design metrics based on
the properties, which are used to quantitatively assess understandability. In this article, we
use the concepts and metrics defined in the work by Hwa et al. to improve the explanatory
power of our previously obtained models on understandability of architectural components.

2.5 Other aspects related to architectural component models

Even though there is a lack of empirical studies on architectural component models under-
standability, other aspects like fault density and reuse of components have been studied before.
In the work by Fenton and Ohlsson the relations between fault density and component

Empir Software Eng (2018) 23:3578–36253584

size are examined (Fenton and Ohlsson 2000). Mohagheghi et al. use the historical data on
defects, modification rate, and software size to investigate the comparison between soft-
ware reuse and defect density and stability (Mohagheghi et al. 2004). Malaiya and Denton
study the factors that can be used to determine the “optimal” component size with regard
to fault density (Malaiya and Denton 2000). They identified component partitioning and
implementation as influencing factors. Graves et al. examine the software change history of
components in order to create a fault prediction model (Graves et al. 2000). Metrics such as
change times, time elapsed since the last changes, and number of changes are used in the
model, while size and complexity metrics are not deemed useful. These and similar studies
have in common with our one that a link between software quality or desired properties,
such as fault density or reuse rate, and component properties, such as size, complexity, or
change rate, are made. These studies are different from our one as they examine aspects that
can be studied without considering the human participants: They only analyse aspects that
can solely be studied using the software systems and their historical data.

A number of authors propose ways to improve the understandability of architectural
models through additional models or documentation artefacts. A major research direction
deals with documenting architectural decisions and architectural knowledge in addition
to component models (Babar and Lago 2009; Jansen and Bosch 2005; Zimmermann
et al. 2007). Another major research direction deals with architectural views (Clements
et al. 2002; Hofmeister et al. 2000; Kruchten 1995) which enable different stakeholders
to view the architectures from different perspectives. Both research directions only com-
plement component models with additional knowledge, but neither of them studied the
understandability issues of component models with regard to their relations to the system
implementation.

2.6 Architecture abstraction and evolution

There exist several approaches that support the abstraction of the architecture from other
system artefacts as well as the architecture evolution. Here, we discuss some of those
approaches that are closely related to the approach used in our tool.

Konersmann et al. (2013) describe the ADVERT approach that provides support for
software evolution on an architectural level. Their approach is based on two ideas: (1) Main-
taining trace links between requirements, design decisions, and architecture elements, and
(2) explicitly integrating software architecture information into the code. Contrary to our
approach the ADVERT approach assumes that the architecture already exists (is built from
the design solutions) and it does not provide architecture level quality checks. Another
approach that focuses on architecture evolution is proposed by Barnes et al. (2014). They
support the modelling of different evolution paths and allow reasoning about architecture
evolution based on these different paths. Cuesta et al. (2013) extends the approach by
Barnes et al. by proposing the documentation of architecture evolution using architectural
knowledge. These approaches are more focussed on reasoning about architecture evolu-
tion while our approach aims at supporting architecture evolution in order to evolve source
code and architecture documentation in a synchronized fashion, allowing at the same time
architecture quality evaluation.

There exist several approaches that focus on the automatic creation of source code
abstractions using automatic clustering. The comparison and review of those approaches
and the corresponding clustering measures can be found in the work by Maqbool and Babri
(2007). They define a number of clustering algorithms groups and compare their perfor-
mance using different open source projects. The results show which approach works good

Empir Software Eng (2018) 23:3578–3625 3585

for which application but no conclusions regarding the overall effort necessary to correct the
automatic clustering are drawn. Contrary to all these approaches our DSL-based approach is
semi-automatic, enables the checking of design constraints during the abstraction process,
provides traceability between source code and models and focuses on the evolution of the
architecture (having an “up-to-date” architecture that reflects the source code) rather then
the recovery of architecture. Also, our approach provides quality checking of the generated
architectural abstractions based on the corresponding empirical evaluations.

Egyed (2004) proposes an approach for model abstraction based on traceability infor-
mation and abstraction rules. The author identified 120 abstraction rules for the example of
UML class models, which need to be extended with a probability value because the rules
may not always be valid. Our approach is based on architectural abstraction specifications
that enable creating architectural models on different levels of abstraction, starting from the
system implementation.

3 Empirical study description

For the planning of our study, data collection, and analysis and interpretation of the results,
we have followed the experimental process guidelines proposed by Kitchenham et al.
(2002). In particular, for the planning phase, the next guidelines are followed: experimental
context setting guidelines (examining the related work, defining hypotheses, and consider-
ing the circumstances in which an empirical study takes place) and study design guidelines
(defining the population of the study, administering the treatments, considering the meth-
ods for reducing bias). For data collection, and the analysis and interpretation of the results,
the next guidelines are followed: data collection guidelines (defining measures used in
the study, ensuring their accurate calculation, considering which data should be excluded),
analysis guidelines (choosing the appropriate statistical techniques, performing the data sen-
sitivity analysis), interpretation guidelines (defining the population and the circumstances
for which the results apply, specifying study limitations and threats to validity).

3.1 Goals

As mentioned above, this article aims at further elaborating on the concepts and metrics
related to the empirical evaluations of the understandability of components that we studied
in our previous work. Namely, we examine the usefulness of the hierarchical understandabil-
ity metrics proposed in the work by Hwa et al. (2009) as well as the participants’ experience
and try to improve the prediction efficiency of our previous prediction models.

In the following couple of paragraphs we provide the notation and the definitions of the
metrics we used in our previous work as well as the metrics from the discussed hierarchical
model.

The metrics that we studied in our previous studies include: metrics adapted from the
corresponding package level metrics defined by Martin (2003) (studied in Stevanetic and
Zdun 2014b) and metrics on graphs that have been previously defined by Allen (2002) and
Allen et al. (2007) (studied in Stevanetic and Zdun 2014a).

The metrics adapted from the package-level metrics defined by Martin are shown in
Table 1. The first three metrics are adapted from the corresponding package level metrics
(number of classes for a package, package afferent coupling and package efferent coupling)
defined by Martin (2003). We consider the dependencies between the components in terms
of the dependencies between the classes while in the work by Martin the dependencies

Empir Software Eng (2018) 23:3578–36253586

Ta
bl
e
1

M
et

ri
cs

ad
ap

te
d

fr
om

th
e

pa
ck

ag
e

le
ve

lm
et

ri
cs

de
fi

ne
d

by
M

ar
tin

(2
00

3)

M
et

ri
c’

s
na

m
e

N
um

be
r

of
cl

as
se

s
(N

C
)

N
um

be
r

of
in

co
m

in
g

de
pe

nd
en

ci
es

(N
ID

)
N

um
be

r
of

ou
tg

oi
ng

de
pe

nd
en

ci
es

(N
O

D
)

N
um

be
r

of
in

te
rn

al
de

pe
nd

en
ci

es
(N

In
tD

)

M
et

ri
c’

s
de

fi
ni

tio
n

To
ta

l
nu

m
be

r
of

cl
as

se
s

in
si

de
a

co
m

po
ne

nt
.

To
ta

l
nu

m
be

r
of

cl
as

se
s

in
si

de
a

co
m

po
ne

nt
.

To
ta

ln
um

be
r

of
de

pe
nd

en
ci

es
be

tw
ee

n
th

e
cl

as
se

s
ou

ts
id

e
of

a
co

m
po

ne
nt

an
d

th
e

cl
as

se
s

in
si

de
a

co
m

po
ne

nt
th

at
ar

e
us

ed
by

th
os

e
ou

ts
id

e
cl

as
se

s.

To
ta

l
nu

m
be

r
of

de
pe

nd
en

ci
es

be
tw

ee
n

th
e

cl
as

se
s

in
si

de
a

co
m

po
ne

nt
an

d
th

e
cl

as
se

s
ou

t-
si

de
of

a
co

m
po

ne
nt

th
at

ar
e

us
ed

by
th

os
e

in
si

de
cl

as
se

s.

M
ea

su
re

d
Pr

op
er

ty
D

es
ig

n
Si

ze
/C

om
pl

ex
ity

C
ou

pl
in

g
C

ou
pl

in
g

C
om

pl
ex

ity

Empir Software Eng (2018) 23:3578–3625 3587

Table 2 Graph based metrics definitions (adapted from Allen 2002 and Allen et al. 2007) (please note that
Size(Si) is in principle calculated in the same way as Size(mk |S), just a different graph (in this case the one
defined as Si) is observed)

Metrics definitions

Information theory based metrics Counting based metrics

Size(mk |S) = ∑

iεmk

(− log pL(i)) CSize (mk |S) = nk

Length(mk |S) = max
i,jεmk

(
min

r
(Size(Pr (i, j))|S)

)
CLength (mk |S) = max

i,jεmk

(
min

r
(CSize (Pr (i, j)) |S)

)

Complexity(mk |S) = ∑

iεmk

Size (Si)−Size
(
mk |S#

)
CComplexity (mk |S) = ne k

Coupling (mk |MS) = Complexity
(
mk |MS∗) CCoupling (mk |MS) = CComplexity

(
mk |MS∗)

Cohesion (mk |MS) = Complexity(mk |MSo)

Complexity
(
mk

(nk)|MSo
) CCohesion (mk |MS) = CComplexity(mk |MSo)

CComplexity
(
mk

(nk)|MSo
)

between packages are considered through the number of packages that are related to the
given package1. The first three metrics characterize the coupling and the size of a compo-
nent and the fourth metric is introduced to model the internal complexity of the component
in terms of the number of dependencies between classes within a component.

Regarding the metrics defined by Allen (2002) and Allen et al. (2007), a graph composed
of nodes and edges is considered as an abstraction of a software system and a sub-graph repre-
sents a software module. With respect to our case, nodes correspond to the source code classes
while edges correspond to the relationships between those classes. Components (that group
source code classes) in our case correspond to the modules in the work by Allen (2002).

In this paragraph we provide the metrics’ definitions together with some explanations.
The definitions of the graph based metrics are shown in Table 2. The notation used for the
metrics definitions is the following (adapted from the work by Allen 2002): S – the whole
system graph (all nodes and edges), S# – edges–only graph (edges in S and end points), Si –
node sub–graph (nodes in S# and edges incident to node i (i = 0 for the environment node,
i = 1, ..., n for system nodes)), MS – S partitioned into modules, mk – module k (nodes in a
module and their incident edges), MS∗ – nodes in MS and intermodule edges, MS0 – nodes
in MS and intramodule edges, Pr(i, j) – path between nodes i and j (nodes and edges on
the path between the nodes i and j , including i and j), pL(i) – the proportion of the i-th row
pattern in the nodes × edges table, nk – the number of nodes in a module, ne k – the number
of edges incident to nodes in a module, and m

(nk)
k – module as a complete graph consisting

of nodes in a module and all possible edges between those nodes. The definitions of the
length metrics are based on the notion of size, applied to paths (each path is considered to
be a module in that case) (Allen 2002). The definitions of the coupling and the cohesion
metrics are based on the definition of complexity whereby different graph abstractions are
considered. Namely for the complexity metrics a whole system graph is considered while
for the coupling and cohesion metrics an intermodule edges graph and an intramodule edges
graph are considered, respectively. For instance, the counting coupling metric for a module
is equal to the number of edges incident to nodes in a module but only intermodule edges
are taken into account unlike the counting complexity metric where edges in a whole system
graph are taken into account.

1Please note that the relationships between the classes consider dependencies between the classes affected
by method calls, data reference or inheritance relationships. The same dependencies are considered for all
sets of metrics.

Empir Software Eng (2018) 23:3578–36253588

The metrics from the hierarchical understandability assessment model consider six
design properties which affect understandability of the modular design of a system. Hwa
et al. (2009) systematically examined which properties can affect the understandability and
the six of them they found are: design size, complexity, encapsulation (i.e. information-
hiding), coupling, cohesion and modular abstraction. Complexity, encapsulation, coupling
and cohesion come from general properties which should be managed for software qual-
ity (Ghezzi et al. 2002; Booch 1994; Bansiya and Davis 2002) and modular abstraction
is a new design concept introduced by the module/package hierarchy (Lungu et al. 2006).
Table 3 represents the metrics definitions together with the corresponding notation. Please
note that modules in the work by Hwa et al. correspond to components in our case. Please
also note that the DMH metric (Depth in Module Hierarchy) might not be always directly
applicable for components since e.g. one (big) component might contain classes located in
several modules/packages with similar functionalities. In that case, similarly to Hwa et al.,
we can find an average depth in a hierarchy for all classes in a component with respect to
the location of the class in a module/package hierarchy.

3.2 Variables

The variables used in our study can be divided into two sets. The first set is related to the
variables that are collected from the participants and the second set is related to the vari-
ables that are collected from the studied system. All the variables can also be divided into
dependent and independent variables. The first set of variables includes 7 variables, from
which 5 are independent variables related to the participants’ demographic information:
programming experience, Java programming experience, commercial programming experi-
ence, experience in programming computer games, and Android programming experience,
and the remaining two are the time required to study a component and the percentage of
the correct answers on the given questions. The time variable is used to measure the effort
required to understand a component and it represents a dependent variable. The percentage
of the correct answers variable is introduced to help in estimating the time variable, in the
case that the participants do not spend enough time to fully examine the given components
in order to achieve a high percentage of correctness (see below for more explanations).

The second set of variables are related to the metrics that we aim to explore (see Tables 1,
2 and 3) and they are calculated from the studied system. All the metrics are treated as
independent variables.

The dependent variables and their scale types, units, and ranges are shown in Table 4
while the independent variables together with their scale types, units, and ranges are shown
in Table 5.

3.3 Hypotheses

We expect that the given hierarchical understandability metrics can be used as good predic-
tors of the understandability. In addition, we expect that the participants’ experience is also
significant in predicting the understandability effort. In other words, we expect that the pre-
diction models that use the participants’ experience can provide better prediction than using
the median as an estimate. In case of the experience variables, we do not expect that they
can capture the variability of the measured understandability as good as the metrics related
to the system itself. For example, if we have two components to be studied, one with 3 and
the other one with 15 classes, it is hard to believe that participants with the same experi-
ence would need the same effort to understand them. A bigger component would require

Empir Software Eng (2018) 23:3578–3625 3589

Ta
bl
e
3

N
ot

at
io

n
fo

r
th

e
hi

er
ar

ch
ic

al
un

de
rs

ta
nd

ab
ili

ty
m

et
ri

cs
an

d
th

ei
r

de
fi

ni
tio

ns
(a

da
pt

ed
fr

om
H

w
a

et
al

.2
00

9)

N
ot

at
io

n
D

es
cr

ip
tio

n

M
D

T
he

se
to

f
m

od
ul

es
in

th
e

sy
st

em

C
T

he
se

to
f

cl
as

se
s

in
th

e
sy

st
em

C
(m

d
)

T
he

se
to

f
cl

as
se

s
in

a
m

od
ul

e
m

d
(C

=
⋃

m
d
∈M

D
C

(m
d
))

r
e
l c

(c
1
c 2

)
tr

ue
–

if
a

cl
as

s
c 1

de
pe

nd
s

on
an

ot
he

r
cl

as
s

c 2
by

m
et

ho
d

ca
lls

,
da

ta
re

fe
re

nc
e

or
in

he
ri

ta
nc

e
re

la
tio

ns
hi

p
fa

ls
e

–
ot

he
rw

is
e

r
e
l m

d
(m

d
1
m

d
2
)

tr
ue

–
if

∃c
1
,
c 2

[c 1
∈C

(m
d

1
)
∩c

2
∈C

(m
d

2
)
∩r

e
l c

(c
1
c 2

)]
fa

ls
e

–
ot

he
rw

is
e

M
D

a
(m

d
)

T
he

se
to

f
al

la
nc

es
to

r
m

od
ul

es
of

a
m

od
ul

e
m

d
in

th
e

m
od

ul
e

hi
er

ar
ch

y

M
et

ri
c’

s
na

m
e

M
et

ri
c’

s
de

fi
ni

tio
ns

M
ea

su
re

d
Pr

op
er

ty

M
od

ul
e

Si
ze

in
C

la
ss

es
(M

SC
)

M
SC

(m
d
)
=

| C
(m

d
)|

D
es

ig
n

Si
ze

/C
om

pl
ex

ity

N
um

be
r

of
A

PI
C

la
ss

es
(N

A
C

)
N

A
C

(m
d
)
=

|{ c
1

∈C
(m

d
)
| ∃c

2
∈C

(m
d

2)
[r

e
l c

(c
2
,
c 1

)
∧m

d
2

∈M
D

∧m
d

2
�=

m
d

]}|
E

nc
ap

su
la

tio
n

D
ir

ec
tM

od
ul

e
C

ou
pl

in
g

(D
M

C
)

D
M

C
(m

d
)
=

|{ m
d

2
∈M

D
| re

l c
(m

d
,
m

d
2
)
∨r

e
l c

(m
d

2
,
m

d
)
,
m

d
�=

m
d

2
}|

C
ou

pl
in

g

N
um

be
r

of
D

is
jo

in
tC

lu
st

er
s

(N
D

C
)

N
D

C
(m

d
)
=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

c
l
⊆

C
(m

d
)

∣ ∣ ∣ ∣ ∣ ∣ ∣

∀c
i
∈c

l
[

(| cl
| =

1
∨∃

c j
∈c

l
(r

e
l c

(c i
,
c j

)
∨r

e
l c

(c j
,
c i

))
)
∧

�
c k

∈C
[(

c k
/∈c

l
∧ (

r
e
l c

(c
i
,
c k

)
∨r

e
l c

(c
k
,
c i

))
)]

]

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

C
oh

es
io

n

C
oh

es
io

n
by

R
es

to
f

W
or

ld
(C

R
W

)
C

R
W

(m
d
)
=

∑
| SR

C
(c

)|
∣ ∣ ∣⋃

c
∈C

(m
d
)
S
R

C
(c

)∣ ∣ ∣
,
S
R

C
(c

)
=

{ c 2
∈C

| (c
2

∈ (
C

−
C

(m
d
))

)
∧ (

r
e
l c

(c
,
c 2

)
∨r

e
l c

(c
2
,
c
))

}
C

oh
es

io
n

D
ep

th
in

M
od

ul
e

H
ie

ra
rc

hy
(D

M
H

)
D

M
H

(m
d
)
=

| M
D

a
(m

d
)|

A
bs

tr
ac

tio
n

Empir Software Eng (2018) 23:3578–36253590

Table 4 Dependent variables
and their scale types, units and
ranges (reused from (Stevanetic
and Zdun 2014a)

Description Scale type Unit Range

Time Ratio Minutes Positive natural numbers

including 0

much more effort than a smaller one that is caused by the variation in their sizes. There-
fore we do not expect that the corresponding prediction models for the experience variables
are highly accurate. At the end, by combining the system related metrics (the graph-based,
package-level, and hierarchical understandability metrics) with the participants’ experience,
we expect that more efficient prediction models can be obtained compared to those that
consider separately the graph based metrics, the package-level metrics, the hierarchical
understandability metrics and the participants’ experience.

Based on previous considerations we formulate the following set of hypotheses:

Hypothesis (H1): The hierarchical quality model metrics can be successfully utilized to
predict the effort required to understand a component with high practical significance.

Hypothesis (H2): Prediction models created using just the participants’ experiences as
predictors have at least one predictor with a non-zero coefficient, i.e. they can predict the
understandability effort significantly well.

Table 5 Independent variables and their scale types, units and ranges

Description Scale type Unit Range

Programming exp. Ratio Years Positive rational numbers incl. 0

Java programming exp. Ratio Years Positive rational numbers incl. 0

Commercial programming exp. Ratio Years Positive rational numbers incl. 0

Computer games programming exp. Ratio Years Positive rational numbers incl. 0

Android programming exp. Ratio Years Positive rational numbers incl. 0

NC (Number of Classes) Ratio Class Positive natural numbers incl. 0

NID (Number of Incoming Dependencies) Ratio Dependency Positive natural numbers incl. 0

NOD (Number of Outgoing Dependencies) Ratio Dependency Positive natural numbers incl. 0

NIntD (Number of Internal Dependencies) Ratio Dependency Positive natural numbers incl. 0

Size (inform. and count.) Ratio bit/node Positive real/integer numbers incl. 0

Complexity (inform. and count.) Ratio bit/edge Positive real/integer numbers incl. 0

Coupling (inform. and count.) Ratio bit/edge Positive real/integer numbers incl. 0

Length (inform. and count.) Ratio bit/node Positive real/integer numbers incl. 0

Cohesion (inform. and count.) Ratio – Positive real/rational numbers incl. 0

Percentage of the correct answers Ratio – [0,100]%

MSC (Module Size in Classes) Ratio class Positive integer numbers incl. 0

NAC (Number of API Classes) Ratio class Positive integer numbers incl. 0

DMC (Direct Module Coupling) Ratio module Positive integer numbers incl. 0

NDC (Number of Disjoint Clusters) Ratio – Positive integer numbers incl. 0

CRW (Cohesion by Rest of World) Ratio class Positive rational numbers incl. 0

DMH (Depth in Module Hierarchy) Ratio – Positive integer numbers incl. 0

Empir Software Eng (2018) 23:3578–3625 3591

Hypothesis (H3): Combining both the system related metrics and the participants’ expe-
riences leads to a significantly increased efficiency of the obtained prediction models
compared to the prediction models that use just the graph based metrics.

Hypothesis (H4): Combining both the system related metrics and the participants’ expe-
riences leads to a significantly increased efficiency of the obtained prediction models
compared to the prediction models that use just the package-level metrics.

Hypothesis (H5): Combining both the system related metrics and the participants’ expe-
riences leads to a significantly increased efficiency of the obtained prediction models
compared to the prediction models that use just the participants’ experiences.

Hypothesis (H6): Combining both the system related metrics and the participants’ expe-
riences leads to a significantly increased efficiency of the obtained prediction models
compared to the prediction models that use just the hierarchical understandability
metrics.

3.4 Study design

3.4.1 Subjects

The participants of the study are 49 master students. The study took place within the
Advanced Software Engineering (ASE) lecture at the University of Vienna in the Winter
Semester 2013.

3.4.2 Objects

The object of our study was the Soomla Android store 2 system, version 2.0. It is an
open source cross platform framework that supports virtual economy in mobile games, and
encourages better game design and faster development. We choose the given system because
of the following factors:

– The system is open source which enables us to carry out the study and communicate its
results.

– The system is written in Java which the participants are familiar enough with.
– The application domain of the system is probably known to the participants from similar

game applications.
– The system has industrial relevance since it is used in many real-world games.
– The source code of the system contains of 54 classes within 8 packages. The system has

in total 3623 LOC (excluding blank and commented lines) and therefore it is probably
understandable within a study session, but also not too simple.

3.4.3 Instrumentation

Architectural documentation about the Soomla Android store system A UML com-
ponent diagram representing the architecture of the system, its conceptual description and
the traceability links that relate the architecture to the system implementation (class design)
are handed in to the participants.

The architecture of the system is shown in Fig. 2. There are in total seven architec-
tural components: Security (C1), CryptDecrypt (C2), PriceModel (C3), GooglePlayBilling

2all versions: https://github.com/soomla/android-store, studied version: https://swa.univie.ac.at/soomla/

Empir Software Eng (2018) 23:3578–36253592

https://github.com/soomla/android-store
https://swa.univie.ac.at/soomla/

«jdbc»

encrypt/decript

obfuscator

sharedPreferences

«rest»

googlePlayBillingAccess

androidBus and storeInfo

storageManager

storeAssets

price

assetsInfo

StoreAssets PriceModel

DatabaseServicesStoreController

GooglePlayBilling

«RESTWebService»
GooglePlayServer

Security

CryptDecrypt

«database»
SQLLiteDatabase

Fig. 2 Architectural description of the Soomla Android store system in the form of a UML component
diagram (reused from Stevanetic and Zdun 2014b)

(C4), StoreController (C5), DatabaseServices (C6), and StoreAssets (C7). In addition there
exist two more external components: GooglePlayServer, the REST Web Services running
at Google, and SQLLiteDatabase, the database accessed using JDBC. The architectural rep-
resentation of the system is constructed by two experienced software architects. They fully
studied the given system and its documentation and extracted its architecture together with
the traceability links to the system implementation. Table 6 shows a short description of the
roles that the components play in the system.

Table 6 Soomla Android store architectural components and their roles in the system (reused from
Stevanetic and Zdun 2014b)

Component Component’s role

Security (C1) Verifies the information during the purchasing process

CryptDecrypt (C2) Provides encrypt/decrypt services to obfuscate the billing information and
to encrypt/decrypt the data stored to or retrieved from the database

PriceModel (C3) Describes the model that explains how the prices of virtual items are formed

GooglePlayBilling (C4) Simplifies in-app billing API which is a Google play service that lets
you sell virtual goods from inside your applications

StoreController (C5) Provides the runtime functionality of the Android store and contains up-to-
date store information

DatabaseServices (C6) Performs the initialization of the database and implement retrieve, add, and
remove operations for store assets in the database

StoreAssets (C7) Describes the virtual items used in the application (virtual currency, virtual
goods, and their classification)

Empir Software Eng (2018) 23:3578–3625 3593

Source code access The access to the source code of the system was browser-based, on
prepared computers. Namely we enabled the participants to easily navigate through the
components and open the source code of their realized classes by grouping the classes into
the corresponding components.

A questionnaire to be filled-in by the participants The first part of the questionnaire is
related to the rated participants’ experiences including. The second part contains the under-
standability questions related to the 7 architectural components. Four true/false questions
were provided to be studied for each component, and the participants had to check the right
answers among them. In order to correctly answer the questions, the participants had to
fully understand the functionalities of each component by examining the relationships (as
well as the roles of those relationships) among the classes inside a component and the rela-
tionships among the classes inside a component and the classes outside of that component.
In the case of bigger components, answering the questions requires to analyse more classes
and their relationships than in the case of smaller components. Table 7 shows an exam-
ple of two questions, one for Component GooglePlayBilling (Q1) and the other one for
Component Security (Q2). Component GooglePlayBilling (has 11 classes) is bigger than
Component Security (has 2 classes) and therefore the corresponding question(s) require to
examine more classes and their relationships than the question(s) for Component Security.
The order in which the seven components are studied is changed for different participants
so that 7 random combinations of components are generated and assigned to the partici-
pants (the order of questions within the components remained the same). For example, one
participant studied the components in one order, e.g.: C2, C6, C1, C3, C5, C7, and C4 while
another one studied them in some other randomly generated order, e.g.: C1, C5, C7, C3, C4,
C6, and C2. The randomization enables us to get more/less balanced data for all the com-
ponents in terms of equalizing the fatigue effects or the lack of time needed to complete all
required tasks.

In order to measure the time that the participants spent on analysing each of the com-
ponents, we provided a table with the time slots. Each slot contains a start and a stop time.
The start time indicates the time when the participants started analysing a component while
the stop time indicates the time when they finish it. Several slots were provided for each

Table 7 An example of two questions (one for Component GooglePlayBilling and one for Component
Security)

Q1 (GooglePlayBilling).

The usual data flow in the component GooglePlayBilling can be represented using the next sequence
of relationships: class BillingRequest – Android Market – class BillingReceiver – class BillingService –
class ResponseHandler – class PurchaseObserver. The sequence can be explained as follows: The class
BillingRequest sends messages to Android Market using MarketBillingService, then the class BillingRe-
ceiver receives and forwards all received messages for handling the further communication with Android
Market to the BillingService class, then BillingService notifies the application about purchase state changes
using the ResponseHandler class which at the end updates the UI using the received information from the
Android Market (posting appropriate events, updating currency balances, items, etc.).

a) True � b) False �

Q2 (Security).

The class Security uses the class AESObfuscator in order to obfuscate (make unclear) of values before
saving to database (DB) and when retrieving from DB.

a) True � b) False �

Empir Software Eng (2018) 23:3578–36253594

Fig. 3 Participants’ demographic information

component in case that the participants want to analyse a component several times. The for-
mat used for writing the time is hour : minute. The time limit for the whole study was 90
minutes. None of the participants has been studied the system before so that a potential bias
that some participants spent additional time (beside the time written in the time slots) on
examining the system is negligible. To ensure that there will be enough time to analyse all
the components within the study session of 1.5 hours, we tried the same study with several
our colleagues before we tried it within the course. All of them agreed that the given tasks
are appropriate for the given time limit. All the above explained instruments are available
on the following Web address3. The file containing our results to be assessed by others is
available on the same page.

3.5 Execution

3.5.1 Data collection

Figure 3 shows the data related to the participants’ demographic information.
Based on the information from the figure we can say that the programming experience

of the participants is medium to high. Most of them have more than 3 years of programming
experience. Many of the participants also have industrial programming experience but only
a few of them have game programming experience and experience with Android.

The descriptive statistics (mean, median, and standard deviation) related to the time and
the percentage of the correct answers variables are shown in Fig. 4. From our results we
excluded the participants who have less than one year of programming experience (9 of
them). Some of the participants did not specify both start and stop time for all studied com-
ponents, so that we also excluded those results from the analysis (just for the components
where the start and stop time were not specified). The total number of collected data samples
for all components is 7(components) × 49(students) = 343 and the number of excluded
data samples is 103.

3https://swa.univie.ac.at/soomla-architectural-components/

Empir Software Eng (2018) 23:3578–3625 3595

https://swa.univie.ac.at/soomla-architectural-components/

0

5

10

15

20

25

C1 C2 C3 C4 C5 C6 C7

Mean Median Std. Dev.

Time (minutes) Percentage of the correct answers

0

20

40

60

80

100

C1 C2 C3 C4 C5 C6 C7

Fig. 4 Descriptive statistics for the time and the percentage of the correct answers variables (reused from
Stevanetic and Zdun 2014a)

The data related to the metrics we aim to explore are shown in Tables 8, 9 and 10. The
graph based metrics are automatically calculated from the corresponding graph abstractions
of the system. The graph abstraction of the whole system is also utilized for the calcu-
lation of the package based and hierarchical understandability metrics. The metrics are
independently calculated by two architects who studied the system in order to avoid mis-
interpretation of their calculations. The accuracy of the graph based metrics calculations is
additionally tested on the examples provided by Allen (2002).

Looking at Fig. 4 we can say that the obtained time for the first three components (C1,
C2 and C3) is significantly lower than the time for the remaining four components. This
observation is expected since the first three components contain smaller number of classes
in comparison to the other four. Another observation is related to the component C4. The
average time needed to analyse this component is significantly higher than the time needed
to analyse the components C5, C6 and C7. Consequentially the percentage of the correct
answers for the components C5, C6 and C7 is decreased with respect to the component C4
which has more/less similar values to the smaller components (C1, C2 and C3). Even though
it seems expected that the percentage of the correct answers decreases for the components
that have many classes simply because of the higher amount of information that need to
be handled which increases the probability of missing some relevant information parts, it
seems also that the participants spent a bit less time for analysing the components C5, C6
and C7 than it is necessary (or at least for the component C7 which has the same number of
classes as the component C4) in order to score better and achieve the higher percentage of

Table 8 Package based component level metrics (reused from Stevanetic and Zdun 2014b)

Component level
metrics

Number
of classes

Number of incoming
dependencies

Number of outgoing
dependencies

Number of inter-
nal dependencies

Security (C1) 2 3 4 1

CryptDecrypt (C2) 5 9 0 5

PriceModel (C3) 3 1 4 2

GooglePlayBilling (C4) 11 4 3 12

StoreController (C5) 8 5 15 5

DatabaseServices (C6) 8 8 8 13

StoreAssets (C7) 13 9 3 14

Empir Software Eng (2018) 23:3578–36253596

Table 9 Graph based component level metrics (reused from Stevanetic and Zdun 2014a)

Component level metrics Size Complexity Coupling Cohesion Length

Info Count Info Count Info Count Info Count Info Count

Security (C1) 11.23 2 62.72 8 44.15 7 1.00 1.00 11.23 2
CryptDecrypt (C2) 28.07 5 138.2 14 54.82 9 0.49 0.50 16.84 3
PriceModel (C3) 16.84 3 66.72 7 31.34 5 0.61 0.67 16.84 3
GooglePlayBilling (C4) 61.76 11 222.3 19 42.11 7 0.27 0.27 28.07 5
StoreController (C5) 44.92 8 205.7 25 125.2 20 0.31 0.33 16.84 3
DatabaseServices (C6) 44.92 8 298.2 29 101.5 16 0.47 0.46 16.84 3
StoreAssets (C7) 61.76 11 274.3 24 64.73 10 0.40 0.39 22.46 4

the correct answers. With respect to this and the discussion in Section 3.2 the percentage of
the correct answers variable is used to help in estimating the time required to fully analyse
a component and achieve maximal correctness of 100%.

3.5.2 Validation

To prevent the participants from using forbidden materials and talking to each other at
least one observer was present in the lab during the study execution. It also enabled the
participants to pose clarification questions. The materials given to the participants are col-
lected before any of them left the lab. There were no cases where the participants behaved
unexpectedly.

4 Analysis

The following statistical tests are used for analysing the data.

– Variance Inflation Factor (VIF) (O’brien 2007) and Condition Number (CN) (Belsley
1991) - Collinearity Analysis

– Multiple Regression Analysis (MRA) (Rubinfeld 2000)

VIF and CN are commonly used to detect the multicollinearity problems (see below).
MRA is commonly used to examine the relationship between one dependent variable and
more than one independent variables or predictors. The relationship is assumed to be linear,
which makes a model easy to interpret. Furthermore, the “true” relationship is often at least

Table 10 Hierarchical understandability component level metrics (reused from (Stevanetic and Zdun 2016))

Component level metrics MSC NAC DMC NDC CRW DMH

Security (C1) 2 1 2 0 1 1
CryptDecrypt (C2) 5 5 3 0 1.8 2
PriceModel (C3) 3 1 2 0 1.25 3
GooglePlayBilling (C4) 11 4 2 0 3.5 1
StoreController (C5) 8 2 4 0 1.33 1.87
DatabaseServices (C6) 8 5 4 0 2.29 1.87
StoreAssets (C7) 11 6 3 0 1.43 2.64

Empir Software Eng (2018) 23:3578–3625 3597

Table 11 Condition number and variance inflation factor – information theory graph based metrics

Variable VIF VIF (w/o
Length)

VIF (w/o
Size)

VIF (w/o Size,
Length)

VIF (w/o Com-
plexity, Length)

Size 52.61 12.95 N/A N/A 3.69

Complexity 12.62 10.44 5.66 2.97 N/A

Coupling 12.90 2.59 7.60 1.64 1.29

Cohesion 12.54 3.92 9.01 2.09 3.49

Length 54.54 N/A 13.43 N/A N/A

Percentage of the
correct answers

1.39 1.38 1.36 1.34 1.38

Condition
number (CN)

33.78 18.10 13.68 7.73 7.27

approximately linear over the range of values that are of interest to us. Even if it is not, the
variables can be transformed in such a way as to linearise the relationship. The analyses are
performed using the programming language R (R Development Core Team 2008).

4.1 Collinearity analysis

Collinearity analysis aims at indicating the variables that are highly correlated with some
other variables. Those variables should be excluded from the set of all possible predictors
potentially considered for the prediction. To test for possible correlations within the stud-
ied metrics sets, we calculate the Condition Number (CN) and the Variance Inflation Factor
(VIF). The VIF values greater than 10 suggest high correlation, i.e. multicollinearity prob-
lems among the tested variables. The CN values greater than 30 suggest the same (Belsley
et al. 1980).

Regarding the information theory and counting graph based metrics we consider them
as two separate sets of predictors because we already saw that they are highly correlated in
our case. Therefore, all potential predictors considered for the prediction models generation
include either the information theory based metrics or the counting based metrics and the
percentage of the correct answers (see discussion in Section 3.5.1). The VIF and the CN
values for the information theory graph based metrics and the package based metrics are
shown in Tables 11 and 12 respectively.

Regarding the information theory graph based metrics, as we can see from Table 11, the
greatest VIF value when all metrics (predictors) are included (column “VIF”) is the value for
the Length metric (54.54 > 10). The VIF value for the Size metric is very close to it (52.61).
Therefore, in the first step we can exclude either the Length or the Size metric from the set
of predictors. The results for the VIF values and the CN value after excluding these metrics
are shown in the third and the fourth column of the figure. After excluding the Length metric
there are two predictors that can be further excluded, the Size or the Complexity metric (they
are both greater than 10 and have similar VIF values4). After excluding the Size metric,

4In principle the predictors with the highest VIF values are step-by-step excluded from the set until the
highest VIF value becomes less than 10. In our case we have two predictors that have high VIF values that
are close to each other (both in the first and in the second step of the analysis) and therefore we can exclude
either one or another predictor. The performances of the obtained linear regression models in all the cases
show very tiny differences between each other (see Section 4.2).

Empir Software Eng (2018) 23:3578–36253598

Table 12 Condition Number and Variance Inflation Factor – package based metrics (reused from Stevanetic
and Zdun 2014b)

Variable VIF VIF (without NIntD)

Percentage of the correct answers 1.4405 1.4391

Number of Classes (NC) 7.3977 1.6092

Number of Incoming Dependencies (NID) 1.5776 1.4213

Number of Outgoing Dependencies (NOD) 1.2432 1.2135

Number of Internal Dependencies (NintD) 7.9627 N/A

Condition number (CN) 5.72 4.94

only the Length metric has the VIF value greater than 10. Therefore, we obtained two final
sets of possible predictors that are used for creating the prediction models for information
theory based metrics. Excluded predictors are either the Size and the Length metrics or the
Complexity and the Length metrics. The final sets of predictors have acceptable VIF and
CN values (see for example those in Table 11). Using the same procedure for the counting
based metrics we obtain three final sets of possible predictors, i.e. the sets exclude either
the Size and the Length metrics, the Complexity and the Length metrics, or the Size and the
Cohesion metrics.

For the package based metrics, as we can see from Table 12, the VIF coefficients in
the case when all predictors are included are less than 10 where the greatest VIF value is
7.96 (for NIntD). Therefore, we can say that there is a slight tendency of multicollinearity
between the variables. Hence, we decided to exclude the NIntD from the set of all predictors
after which we get acceptable results for both VIF and CN values (see Fig. 12).

Regarding the hierarchical understandability metrics they are no multicollinearity prob-
lems in that set of metrics. The highest VIF value has the MSC metric (3.87) and the CN
value for this set of predictors is 13.11. The participants’ experiences also do not express
multicollinearity problems. The highest VIF value has the programming experience vari-
able (1.62) and the CN for the whole set of variables is 8.29. As mentioned above, we
would like to examine the model where all the studied variables are taken into account, i.e.
the hierarchical understandability metrics, the participants’ experiences, the package based
metrics and the counting or information theory graph based metrics. Combining all those 4
sets together introduces multicollinearity problems since there are metrics in multiple sets
that measure the same concepts (size, coupling, and cohesion) even if different metrics for
those concepts are used. After examining the VIF and CN values all graph based and pack-
age based metrics can be excluded from the set. After excluding these metrics, the highest
VIF value has the MSC metric (3.98) and the CN value for the remaining set of variables is
16.76.

4.2 Multiple regression analysis

In this part of the analysis we create multiple regression models that can be used for predict-
ing the time variable. They are also used to test our hypotheses described in Section 3.3. To
prevent the over-fitting of the data, i.e. to enable more efficient generalization of the results
we perform the Mallows’ Cp calculation for creating the prediction models (Kobayashi and
Sakata 1990). If p is the number of predictors including the constant predictor, if it exists,
all the models that satisfy the equation Cp ≤ p must be considered as reasonable good fits
with respect to preventing data over-fitting.

Empir Software Eng (2018) 23:3578–3625 3599

Before we move to the regression analysis, we shortly explain the role of the percent-
age of the correct answers variable. In Section 3.2, we mentioned that this variable is used
as an independent variable to help estimating the time as a dependent variable. Namely,
there might exist a dependency between the time and the percentage of the correct answers
because if the participants spend less than some minimum time required to analyse a compo-
nent, the percentage of the correct answers will probably decrease because of an incomplete
insight into all relevant component parts. Therefore with the help of the percentage of the
correct answers variable we can estimate the time required to fully understand a given
component, i.e., to achieve 100% of the correct answers.5 If we replace the value for the
percentage of the correct answers in the obtained prediction models (see below) with the
constant value of 100%, the effort required to fully understand a component is obtained,
that further depends only on other factors included in the model. Please note also that pre-
dicting the time for 100% of the correctness is not the most realistic requirement because of
the lack of the data that are available for that. For example we can also estimate 75% of the
correctness which would be more accurate because there exist more data for that. However
in our case we use 100% because of the negligible difference in the prediction.

To check the accuracy of the obtained prediction models we calculated a goodness of
fit measure using the following equation based on the absolute deviation of the median
(Kampenes et al. 2007) (assuming Xi is the prediction and Yi is the actual value):

A(accuracy) =
∑

i |Yi − Xi |
∑

i |Yi − median(Yi)|
The smaller the value of A the better prediction. If the value is greater than 1, the estimation
is not working, i.e. there is no evidence that the prediction is better than using the median
as an estimate. The value (1-A) represents the proportion of the variation in the Y variable
explained by the predictions. (1-A) is a robust analogue of R2, so the following guidelines
based on those proposed by Kampenes et al. (2007) can be used for the effect size calcula-
tion: the (1-A) values in the range of 0 to 0.0372 represent a small effect size, the values in
the range of 0.0372 to 0.208 represent a medium effect size while the values in the range
of 0.208 to 0.753 represent a large effect size. Furthermore, for good prediction models the
residuals have to be normally distributed which is the case with our data. The influential
points are the points whose removal will cause a large change in the fit, and they can be
detected using Cook’s distance contour lines (Cook 1977). When some points have a dis-
tance that is larger than 1, it suggests that the model might be poor or might have outliers.
Our models do not have influential points. We further provide the significance of the coef-
ficient of determination (R2) for the obtained models that is measured by the F-statistic
(Dalgaard 2004).

In order to test our hypotheses described in Section 3.3, we first generate the predic-
tion models that consider: 1) the package based understandability metrics, 2) the graph
based understandability metrics, 3) the hierarchical understandability metrics, 4) the par-
ticipants experiences, and 5) both system related metrics (the package based, graph based
and hierarchical understandability metrics) and the participants experiences, using the
above explained analysis. The obtained models are then compared if there is a significant

5Please note that predicting the percentage of the correct answers variable is also possible but since we focus
on estimating the time as a measure for the understandability effort we consider the percentage of the correct
answers as an auxiliary variable that helps in predicting the time variable.

Empir Software Eng (2018) 23:3578–36253600

Table 13 Models’ parameters – package based metrics

Coefficients Intercept Percentage
of the correct
answers

Number of
Classes

Number of
Incoming
Dependen-
cies

Number of
Outgoing
Dependen-
cies

Model 1 0 4.8597 1.5162 −0.5349 0

Model 2 0 4.5754 1.4628 −0.5175 0.1150

Model 3 2.4250 2.8902 1.4200 −0.5795 0

Models’
characteristics

F-statistic:
p-value

Accuracy Effect size (1-
Accuracy)

Model 1 < 2.2e−16 0.6436 0.3563

Model 2 < 2.2e−16 0.6447 0.3552

Model 3 < 2.2e−16 0.6387 0.3612

difference in their prediction capabilities. The best 3 models in terms of the given accuracy
measure (A) for the above given cases that fit the explained criteria (Cp ≤ p) are shown
in Tables 13 (the package based metrics), 14 (the counting graph based metrics), 15 (the
hierarchical metrics), 16 (the participants’ experiences), 17 (the participants’ experiences
together with the system related metrics). For all shown models except the ones that con-
sider the participants’ experiences as predictors, the effect size is in the range of 32% to
40% which represents a large effect size. Those results suggest that the obtained predic-
tion models have high practical significance. Please note that the percentage of the correct
answers variable is taken into account for the construction of the prediction models as inde-
pendent variable based on the discussion provided in Section 3.1. With regard to that, we
have to check if this variable alone captures the most of the variance in the measured under-
standability effort in which case the studied metrics and participants’ experiences variables
do not play an important role. It is not the case, since the prediction model that considers
only the percentage of the correct answers variable has the accuracy measure (A) greater
then 1 and does not provide better prediction then using just the median as an estimate.

Another useful technique for overcoming the over-fitting problem is the cross-validation
analysis (Field et al. 2012). Beside the Mallows’ Cp analysis, we also applied 10-fold cross-
validation technique on our data.6 The results of the cross-validation analysis corroborate
the results of the Mallows’ Cp analysis and confirm their validity.

Regarding the hypothesis H1 that consider the prediction models for the hierarchical
understandability metrics, with respect to the analysis undertaken, we can say that the
hypothesis H1 is supported, i.e. the hierarchical quality model metrics can be success-
fully utilized to predict the effort required to understand a component with high practical
significance.

Regarding the hypothesis H2 that consider the participants’ experiences as predictors,
we see from Table 16 that the effect size of the obtained models (around 4%) is on the bor-
der between small and medium. Compared to the other obtained models that consider the
system related metrics, we can say that these models are much less accurate and efficient.

6“Cross Validation techniques in R: A brief overview of some methods, packages, and functions for assessing
prediction models”.

Empir Software Eng (2018) 23:3578–3625 3601

Table 14 Models’ parameters – counting graph based metrics

Coefficients Size Complexity Coupling Length Cohesion Percentage
of the correct
answers

Model 3 1.3890 0 0 0 0 2.7413

Model 4 1.4519 0 −0.0665 0 0 3.0246

Model 5 1.3893 0 0 0 0.0334 2.7157

Models’
characteristics

F-statistic:
p-value

Accuracy Effect size (1-
Accuracy)

Model 3 < 2.2e−16 0.6770 0.3230

Model 4 < 2.2e−16 0.6781 0.3219

Model 5 < 2.2e−16 0.6768 0.3232

These results comply with the discussions provided in Section 3.3 that the participants’
experiences cannot capture the variability as good as the metrics related to the software
model itself. Therefore it has been demonstrated that the hypothesis H2 is supported, i.e.
the prediction models for the effort required to understand a component created using just
the participants’ experiences as predictors have at least one predictor with a non-zero coef-
ficient, i.e. they can predict the understandability effort significantly well. Please note that
this does not mean that the obtained models are well-fitted (accurate), it just means that
they can predict the significant amount of variance in the model comparing to the remain-
ing unexplained variance (Field et al. 2012). Based on the obtained result, we can say that
the participants’ experiences are important and can significantly improve the understand-
ability but they are not able to appropriately capture the variance in the data caused by the
variation of system’s structural properties (like size, coupling, cohesion, etc.). The result is
as mentioned above expected.

Finally, to test the hypotheses H3, H4, H5, and H6, we compare the efficiency of the
obtained prediction models that use both the system related metrics and participants’ expe-
riences on one side and the models that use separately the package based, graph based, and
hierarchical understandability metrics, as well as the participants’ experiences. For that pur-
pose, we calculate two parameters, the difference between the AICc (second-order corrected
Akaike Information Criterion) values (�AICc) for the models to be compared and the corre-
sponding evidence ratios (w). These parameters are commonly used for model comparisons

Table 15 Models’ parameters - hierarchical understandability metrics

Coefficients MSC NAC DMC CRW DMH Percentage of the
correct answers

Model 1 1.2979 −0.7210 0 2.0825 −0.1394 1.6652

Model 2 1.1517 −0.7889 0.5555 2.5473 −0.1371 0

Model 3 1.2463 −0.7858 0.4285 2.1331 −0.3535 1.2900

Models’ char-
acteristics

F-statistic:
p-value

Accuracy Effect size
(1-Accuracy)

Model 1 < 2.2e−16 0.6053 0.3947

Model 2 < 2.2e−16 0.6054 0.3946

Model 3 < 2.2e−16 0.6024 0.3976

Empir Software Eng (2018) 23:3578–36253602

Table 16 Models’ parameters - participants’ experiences

Coeff. Prog. Java
Prog.

Comm.
Prog.

Game
Prog.

Android
Prog.

Percentage of the
correct answers

Mod 1 0 0 0 0 0.8977 12.7565

Mod 2 0 0 0 0.3978 0.7729 12.6131

Mod 3 0 0 0.2173 0 0.9456 12.0908

Models’
characteristics

F-statistic:
p-value

Accuracy Effect size (1-
Accuracy)

Mod 1 < 2.2e−16 0.9608 0.0392

Mod 2 < 2.2e−16 0.9622 0.0378

Mod 3 < 2.2e−16 0.9614 0.0384

in case of non-nested models7 (Burnham and Anderson 2002). If the obtained difference
(�AICc) is lower than 4 we can say that there is no significant difference in the prediction
capabilities (power) of the given two models (Burnham and Anderson 2002). If the differ-
ence is in the range [4,7], we can say that there is a significant difference in the prediction
capabilities, and, if the difference is greater than 10, a very strong difference exists (Burn-
ham and Anderson 2002). The evidence ratio is a value of one model being more likely than
the other model (for example a model with AICc=120 is nearly 150 times more likely than
a model with AICc=130). We compare the best models from each group in terms of the
AICc measure. The results of the analysis are shown in Table 18.

Column �AICc 1 shows the difference between the AICc values of each model and
the model that includes both the hierarchical understandability metrics and the participants’
experience variables (Model 1). The corresponding evidence ratios are shown in column w1.
From the obtained �AICc 1 values we see that there is a large significant difference (val-
ues greater then 10) in prediction capabilities between Model 1 and the last 3 listed models
Models 3, 4, and 5. Regarding the difference in prediction between Model 1 and Model 2
(that just includes the hierarchical understandability metrics) no significant difference exists
(�AICc 1 = −1.88). Based on the obtained results we can say that the Hypotheses H3,
H4, and H5 are supported while the Hypothesis H6 is not supported, i.e. combining both
the system related metrics and the participants’ experience variables leads to a significantly
increased efficiency of the obtained prediction models compared to: 1) the prediction mod-
els that use just the graph based metrics, 2) the prediction models that use just the package
based metrics, and 2) the prediction models that use just the participants’ experiences. The
model with both the hierarchical understandability metrics and the participants’ experience
is not significantly better in prediction compared to the model that includes just the hierar-
chical understandability metrics. It is even a little bit worse (the AICc value is increased by
1.88)8. As a consequence of this last fact we can also conclude that the model that includes
just the hierarchical understandability metrics is significantly better than the last 3 listed
models, i.e. Models 3 ,4, and 5 (the differences of the AICc values are increased by 1.88
in comparison with the �AICc 1). Columns �AICc 2 and w2 show the differences of the
AICc values and the corresponding evidence ratios between each model and Model 2.

7Nested models are those where all predictors from one model are also contained in the other model. Our
models use different sets of predictors and therefore they are non-nested.
8The reason for that is that Model 2 has a lower number of predictors which is more preferable for the AICc
criterion.

Empir Software Eng (2018) 23:3578–3625 3603

Ta
bl
e
17

M
od

el
s’

pa
ra

m
et

er
s

-
pa

rt
ic

ip
an

ts
’

ex
pe

ri
en

ce
s

to
ge

th
er

w
ith

th
e

sy
st

em
re

la
te

d
m

et
ri

cs

C
oe

ff
.

Pr
og

.
Ja

va
Pr

og
.

C
om

m
Pr

og
.

G
am

e
Pr

og
.

M
SC

N
A

C
C

R
W

D
M

C
D

M
H

Pe
rc

en
ta

ge
of

th
e

co
rr

ec
ta

ns
w

er
s

M
od

1
0

0
0

0.
22

9
1.

18
8

−0
.7

0
2.

62
5

0
0.

23
0

0

M
od

2
0

0
−0

.0
17

0.
22

5
1.

18
8

−0
.6

9
2.

63
2

0
0.

24
3

0

M
od

3
−0

.0
19

−0
.0

9
0

0.
29

3
1.

30
5

−0
.7

4
2.

11
9

0
0

1.
79

0

M
od

el
s’

ch
ar

ac
te

ri
st

ic
s

F-
st

at
is

tic
:

p-
va

lu
e

A
cc

ur
ac

y
E

ff
ec

ts
iz

e
(1

-A
cc

ur
ac

y)

M
od

1
<

2.
2e

−1
6

0.
60

92
0.

39
08

M
od

2
<

2.
2e

−1
6

0.
60

79
0.

39
21

M
od

3
<

2.
2e

−1
6

0.
59

36
0.

40
63

Empir Software Eng (2018) 23:3578–36253604

Table 18 Model comparisons

Model Description �AICc 1 �AICc 2 w1 w2

Model 1 The hierarchical understandability metrics
plus the participants’ experiences

0 1.88 1 2.56

Model 2 The hierarchical understandability metrics −1.88 0 0.39 1

Model 3 The participants’ experiences > 10.00 > 10.00 > e+05 > e+05

Model 4 The graph-based metrics > 10.00 > 10.00 > e+05 > e+05

Model 5 The package-level metrics > 10.00 > 10.00 > e+05 > e+05

�AICc 1 = AICc (Model i) - AICc (Model 1); w1 (evidence ratio) = exp(0.5*�AICc 1)

�AICc 2 = AICc (Model i) - AICc (Model 2); w2 (evidence ratio) = exp(0.5*�AICc 2)

To summarize the obtained results we can say the following. The introduced hierarchical
understandability metrics can be used to predict the understandability effort of a component
with high practical significance. On the one hand, those prediction models are significantly
better in predicting the understandability effort than the models obtained using the graph
based metrics, the package based metrics or the participants’ experiences. On the other hand,
those models are not significantly different or worse in the prediction from the models that
combine both the system related metrics (the graph based, package based and hierarchical
understandability metrics) and the participants’ experiences. The participants’ experience
can predict a significant amount of variance in the data but the obtained models are not
as accurate as the models that use the metrics related to the system itself (concretely the
hierarchical understandability metrics).

With respect to the discussions in Section 3.2 we can now calculate the effort required to
fully understand a component by replacing the percentage of the correct answers variable
in the obtained prediction models with the constant value of 100%. In Fig. 5 the predicted
time variable using the model with the highest effect size value (Model 3 from Table 15)
and the time variable obtained from the participants are shown. The predicted time variable
significantly differs from the time variable obtained from the participants just for the com-
ponent StoreAssets (C7). It can be interpreted that the participants needed a bit more time

Fig. 5 The time from the
participants and the time from
the predicted model where the
correctness of the answers is set
to 100 %

C1 C2 C3 C4 C5 C6 C7

Time from participants (mean)

Time from the predicted model

Time

0
5

1
0

1
5

2
0

2
5

3
0

Empir Software Eng (2018) 23:3578–3625 3605

for analysing the component StoreAssets (C7) in order to be able to answer all the ques-
tions correctly. It really makes sense because the component StoreAssets (C7) has 11 classes
as there are in the component GooglePlayBilling (C4) and therefore we expect that they
require similar times in order to be fully studied.

Before we move to the next section let us examine one more interesting aspect. Namely in
the context of process model understandability (Canfora et al. 2005; Aguilar et al. 2007) (see
Section 2 for more details) different empirical validations showed that size is not enough
to fully determine phenomena of understanding: additional metrics like structuredness help
to improve the explanatory power significantly (Mendling 2008). We confirm this in the
context of architectural components by comparing the prediction power of the model that
considers just the size metric (MSC metric) and the best obtained model in terms of the
accuracy measure that considers the hierarchical understandability metrics. The obtained
�AICc value is 59.707 and the corresponding evidence ratio is w=9.2e+12. These results
confirm that there is a strong significant difference in the prediction power between the
mentioned models.

5 Validity evaluation

In this section we discuss how we tried to minimize the threats to validity. The following
threats are taken into account:

Conclusion validity The conclusion validity indicates to which extent the conclusions are
statistically valid. The sample size is one of the possible threats for the statistical validity.
In our case 49 students answered the questions for the 7 components.

While the number of participants we used is quite fair the dataset consisting of 7 com-
ponents is limited to the relatively small-size dataset due to the limited time of the study
session. However after performing the power analysis in R (Kabacoff 2011) we found that
the statistical power obtained for our sample with the medium effect size of 0.15, which
corresponds to the expected R2 around 0.4 (we assumed the effect size suggested by Cohen
(1988)) is 0.99. It means that the likelihood of finding a prediction model when there is
one with the given effect size is 99 %. Therefore the total sample size is not considered to
be a threat for the conclusion validity. Anyway we plan to increase the number of studied
components in our future work.

Construct validity The construct validity describes the degree to which the used variables
are accurately measured by the appropriated instruments.

A possible threat to the construct validity might be related to the instruments for measur-
ing the time variable. Namely the participants might have forgotten to write the time in the
time slots appropriately, i.e. right before they start analysing a given component and right
after they finish it. To minimize that threat we put a reminder before the text related to each
component to remind the participants to write the time appropriately.

For the future reproduction studies in a browser-based environment it might be useful
to set up a script that monitors the website being viewed and automatically collects the infor-
mation per student. Another option would be to use IDE tracking tools, e.g. an Eclipse plugin.

The true/false questions might seem to be not good choice for measuring the under-
standability since the participants could get the right answer 50% of the time. However,
the maximal likelihood that any number of participants from the given range (1–49) get
the correct answers on 2 or more question (2, 3, or 4) is just around 14%. Therefore the

Empir Software Eng (2018) 23:3578–36253606

likelihood of obtaining a substantially higher score by guessing alone is very small (Ebel
and Frisbie 1991).

The component level metrics are calculated automatically with the help of the tool Objec-
tAid UML Explorer9. The dependencies between the source code classes are visualized in
the tool and based on those visualizations the corresponding graph abstractions used for the
graph based metrics calculations are manually generated. The hierarchical understandability
metrics are directly calculated from the provided visualizations. The accuracy of the graph
based metrics calculations is additionally tested on the examples provided in the work by
Allen (2002). In any case, all metrics are independently calculated by two architects who
also created the architecture of the studied system. Therefore, the threat that the metrics
calculations are not valid is highly reduced.

Internal validity The internal validity relates to the degree to which conclusions can
be drawn about cause-effect of independent variables on the dependent variables. The
following threats are considered:

– Participants competences and experiences. The participants’ competence might
influence the study results. In our case all participants have knowledge about software
development and software architecture, as well as of software traceability. Most of them
have at least medium experience in programming. Regarding the participants’ experi-
ences we considered the experience years (see Table 5). Some other potential variables
related to the participants’ demographic information may affect the obtained results to
a certain extent. For example, in addition to the considered variables we examined pos-
sible differences in our results in case we add the final participants’ grades in the course
and if the participants successfully passed two other courses that might be relevant for
the studied problem Software Engineering, and Information Systems and Technologies.
After considering these variables the accuracy measure for the best prediction model
that considers the experience variables only slightly changed. This result does not affect
any of our hypotheses and considerations and therefore we decided not to report about
it in detail. In our future work we plan to include experts who have many years of
professional experience and to test whether some different prediction models can be
obtained.

– Fatigue effects. Total time limit for the whole study was 1.5 hours so fatigue was not
very relevant. Also, the randomization of the tasks helped to cancel out these effects.

– Question design. The fact that we used more complex questions in case of larger com-
ponents might cause additional difficulties to answer them. It is because in practice,
people have a limit to the number of things they can keep in mind at a time. However,
please note that each smaller question within the bigger one can be separately studied.

External validity The external validity is related to the degree to which the results of the
study can be generalized to the broader population. The greater the external validity, the
more the results of an empirical study can be generalised to actual software engineering
practice. We dealt with the following facts:

– Components and their metrics.
With respect to the time limitation of our study, we tried to find the components that

vary in the size and the other studied metrics to the extent possible in order to make our

9www.objectaid.com

Empir Software Eng (2018) 23:3578–3625 3607

www.objectaid.com

results more generalizable. Therefore we intentionally took the components that vary in
the size and the other studied metrics in order to cover different metrics values. There is
a very low threat for the statistical validity of our results (see Section 5). The obtained
prediction models are validated to prevent over-fitting of the data (see Section 4.2), i.e.
to enable a reasonably well-fitting prediction in case of new data. However, to examine
more fine-grained distributions of the components’ metrics and especially the compo-
nents whose metrics’ values significantly vary from the studied metrics’ values (i.e.
are significantly bigger than the studied metrics’ values), more components need to be
examined. In case of bigger components it would be interesting to see to which extent
the obtained prediction models would be affected. In that case the participants would
require much more time to analyse the components. Furthermore, an architectural rep-
resentation would probably require hierarchical organization of the components, i.e.
components having sub-components at different abstraction levels (it starts from a set
of high-level components that model high level functionalities and results in a set of
low-level components that combine to perform the high-level functionalities). This rep-
resentation complies with the guides for software architecture definition in the series
of guides for software engineering produced by the Board for Software Standardisation
and Control (BSSC) of the European Space Agency (Mazza et al. 1996), for instance.
Having in mind the above discussion we are aware that our results (obtained prediction
models) might vary to a certain extent for new data. According to that our tool sup-
port (see Section 6 for more details) is designed to consider the predicted component’s
understandability values as more relative values (rather than evaluating the design by
giving absolute values), i.e. in comparison to the understandability of other components
in the system, that is used for identifying critical components which require more effort
to be understood compared to other components in the system.

– Studied system and its representations.
Regarding the studied system we chose the system that is written in Java (that the

participants are familiar with), that has industrial relevance, and whose application
domain is relatively known to the participants (see more details in Section 3.4.2). The
architecture of the system is represented in the form of a UML component diagram
that the participants are also familiar with (see Section 5). Having in mind these facts,
we can say that our results might be more or less different for other potential systems
depending on the extent to which the assumptions related to the chosen system are vio-
lated. For example, the results might differ for a system written in some other language
that the participants are not familiar with, or some domain specific systems that the
participants are totally unfamiliar with, etc. Also, architectural descriptions of software
systems using component models could be created in different ways, starting from the
simple descriptions of the system like box-and-line diagrams (Rozanski and Woods
2005), over semi-formal models (e.g. UML models) (Björkander and Kobryn 2003;
Medvidovic et al. 2002; Robbins et al. 1998) to formal models in architecture descrip-
tion languages (ADLs) (Medvidovic and Taylor 2000) or domain-specific languages
for architecture description (Völter 2010). More studies are necessary to examine how
different architectural representations affect the understandability of components with
respect to their concrete implementation.

– Varying class sizes within components.
As we already mentioned above in order to generalize our results we plan to increase

the number of studied components. Beside that we consider one more threat in this
context, it is the size of the classes in a component. Considering general case there
might be some classes that are much bigger than other classes in the system. In that case

Empir Software Eng (2018) 23:3578–36253608

the number of classes in a component will not appropriately capture the component
size (in our case as it is mentioned in Section 3.4.2 no big deviations in the sizes of
the classes exist). However that case might also be considered as inappropriate design,
i.e. big classes can be divided into smaller classes that consist of one or a set of closely
related functionalities. Anyway the given observation can be further examined in order
to see how the deviations in the size of classes affect the obtained results.

– Subjects.
It has been shown in previous research that software engineering students may pro-

vide an adequate model for the professional population (Weber et al. 2014). Even
though our participants have substantial experience including the industrial background
certain changes in the obtained results might be expected with experts. Studies with
experts would enable us to conduct more robust analysis.

To summarize the cases in which our findings, i.e. predictions, would appropriately work,
taking into account the given threats to validity, we can say the following:

– The studied system needs to be object-oriented and its application domain relatively
known to the participants.

– The architectural components need to have up to 15-20 classes that do not have big
deviations in their size (e.g. one very big class and several very small ones)

– The participants need to have at least a couple of years of appropriate programming
experience as well as basic knowledge in the software architecture and software engi-
neering field so that they can easily understand the code of the system together with its
architecture.

In other cases, the obtained results can vary from ours to a lesser or greater extent.

6 Tool support

6.1 Background

In our previous work (position paper Stevanetic et al. 2014), we presented an integration
of a semi-automated DSL-based abstraction of architectural component models and under-
standability related software metrics. An overview of our approach is shown in Fig. 6. The
black part refers to the semi-automated DSL-based architectural abstraction while the red
part marked with dashed lines refers to the understandability metrics.

Regarding the black part, we defined a DSL that enables architectural abstractions from
class models, which can be automatically extracted from the source code, into architec-
tural component models. First, a class model from the system’s source code is extracted.
Starting from a class model, a UML component model is generated using the architectural
abstraction specification defined in the DSL code. In this way the traceability informa-
tion that links the class models and component models can be preserved. Furthermore, the
approach supports consistency checks that are based on the automatically generated trace-
ability information that link the DSL, the class model, and the component model of the
system. For instance, the source code classes that are not covered by the architecture abstrac-
tion specification or connectors that are defined in the architecture specification but where
no relation exists in the source code classes are checked. This enables having an “up-to-
date” component model that reflects the source code (i.e. all source code classes are mapped

Empir Software Eng (2018) 23:3578–3625 3609

UML Class
Model

UML
Component

View

UML Component
View

(existing/previous
version)

Delta

automatic extraction

Compare

automatic
transformation

mapping

model versions
consistency

Metrics
Constraints

Metrics
Calculations

2. evaluate

Architecture
Abstraction DSL

3. improve

mapping

1.calculate

1. calculate

Source Code

design-code
consistency
checks

3. improve

Fig. 6 Integration of the understandability related metrics in the DSL-based architecture abstraction
approach (reused from Stevanetic et al. 2014)

to their respective components). The given approach also supports the software architect
throughout the evolution of a software system by allowing him/her to compare different
component models (see the bottom of the figure) and to maintain them in correspondence
with the source code over time.

The red part marked with dashed lines describes the integration of the understandability
metrics for generated component models. For example, they provide an indicator whether a
component model is growing too large or other similar guidelines. Firstly, the metrics cal-
culations are extracted from both the class model and the component model. The obtained
metrics values are then evaluated with regard to different metrics constraints. Metrics con-
straints represent a set of rules defined on metrics values that need to be satisfied. In our case
they are defined based on our empirical evaluations and also take into account some addi-
tional considerations (see Stevanetic et al. 2014). In case that some metrics values do not
satisfy the corresponding constraints the architectural abstraction DSL or the source code
can be improved in order to resolve the inconsistencies that occurred.

In this paper, we investigate how our empirical findings can be combined with existing
empirical evaluations and how we can provide a corresponding tool support. In that con-
text, we have found the work by Bouwers et al. (2011), who studied the analyzability of
component models. Taking into account the findings from Bouwers et al., who found that
the components should be balanced in size in order to facilitate the system’s analyzabil-
ity, we have argued that balanced values for the components’ understandability effort can

Empir Software Eng (2018) 23:3578–36253610

facilitate the analyzability of the whole system. In contrast to our previous position paper
(Stevanetic et al. 2014), where the idea about the balanced understandability of components
is just mentioned, in this article we further elaborate on concrete calculations of the compo-
nents’ analyzability based on the integration of our new understandability effort prediction
models (i.e. the ones that use the hierarchical understandability metrics, see Section 4.2)
and the metrics provided by Bouwers et al.

6.2 Architecture analyzability metric

In this section, we briefly explain our new analyzability metric for component models that
is based on the integration of our understandability related prediction models in the analyz-
ability metric defined by Bouwers et al. (2011). Furthermore, we elaborate on calculations
related to how much each of the rules used to specify architectural abstractions contribute
to the overall understandability of components.

Namely, Bouwers et al. (2011) defined a metric for quantifying the analyzability of
software architectures. The metric is called Component Balance (CB) and is defined as
the product of two metrics: System Breakdown (SB), which measures whether a system
is decomposed into a reasonable number of components and Component Size Uniformity
(CSU), which measures whether the components are all reasonably sized. The SB metric is
based on the number of components in the system and it is driven by logic that both high and
low number of components hinders analyzability. For example, having only one component
is bad since the structure of the code does not provide any hints as to where functional-
ity is implemented. On the other hand, many small components do not provide a software
engineer with sufficient clues as to which component should be chosen to inspect.

The CSU metric captures how uniformly the volume of the system is distributed over its
components and it is based on the Gini coefficient (see Bouwers et al. 2011). To provide
maximal discriminative power to a software engineer, a system should be decomposed into
a limited number of components of roughly the same size.

Now, we can explain our idea of combining the metric given above with our empirical
findings. Namely one of the main drawbacks of the given metric is that it captures the
system’s structural decomposition only using the size metric of a component. Dependencies
between components are not taken into account which is important because the size is not
enough to fully determine phenomena of understanding (see Section 4.2). To improve the
situation, we propose to use our “understandability metric” related to the obtained prediction
models instead of a simple size metric. In that case both the internal structure of a component
and its dependencies to other components are captured (see Section 3.4.3)

Therefore, instead of using the size metric for the CSU metric, we can use the metric
obtained from our prediction models as follows:

Understandability(c) = 1.1517 × MSC(c) − 0.7889 × NAC(c) + 0.5555 × DMC(c)

+ 2.5473 × CRW(c) − 0.1371 × DMH(c)

CSU(C) = 1 − Gini({Understandability(c) : c ∈ C})

We picked the second prediction model from Table 15 but any of the models can be used
since they have almost the same explanatory power (accuracy). Using the adapted CSU
metric, we can now calculate the adapted CB metric as a new analyzability metric.

Empir Software Eng (2018) 23:3578–3625 3611

6.3 Integration of the metrics in the tool

In this Section, we explain how our concepts are embodied in the tool using a concrete
example. In particular, we demonstrate how to create component models with reasonable
analyzability level by incrementally improving an initial component model of the system. In
addition, we show how the tool can be used in detecting the changes that exist between dif-
ferent component models that affect their different analyzability levels. For the calculations
given below we used the prediction model 1 given in Table 15 (any other model provided in
Table 15 can be used).

The calculation of all required metrics are added in the Metrics Calculation part of our
tool (see Fig. 6). The Metrics Calculation part is developed using the custom validation fea-
tures for Xtext based projects (for more information please refer to http://eclipse.org/Xtext/
documentation/). Particularly, the DSL specification for the component models abstraction
is written in a file. The file can then be explicitly validated via the menu option in which case
the validator class that pursues the metrics calculations is called. The calculated metrics are
written in a file which is then processed using the R programming language script. The final
output represents the barplot diagram of the CSU metric together with the hierarchical met-
rics used in the prediction models for all components in the system. Additionally, the CB and
SB metrics are calculated for the whole system. Furthermore, our tool supports the calcula-
tions on how much each of the architectural rules, used to specify a DSL-based architectural
abstraction specification, contributes to the understandability of a given component.

To demonstrate our tool we use the example of the Frag system. Frag10 is a dynamic
programming language implemented in Java, specifically designed for being a tailorable
language, building Domain-Specific Languages (DSLs), supporting Model-driven Software
Development, and for being easily embeddable in Java. To generate the initial component
model of the system, we studied the source code of the system and the corresponding class
model that is automatically generated from the system’s source code. To ease this task, we
imported the source code in an Eclipse IDE. The understanding of the system was facilitated
by the fact that one of the authors of the paper is also the author of Frag. After initial exami-
nations, we created the initial architecture abstraction specification of the system consisting
of 6 components (Core, Interpreter, Command Objects, Parser, Exceptions, and MDSD) is
generated. The given 6 components are found to represent the major functionalities and/or
concerns in the system. The DSL specification of the initial component model is shown
in Fig. 7. Figure 8 shows the distribution of the calculated metrics values for the initial
component model. The CB metric value for the model is 0.32.

From the DSL specification (developed using Xtext2), we can see that different archi-
tectural rules are used to write the architecture abstraction. For example, rules operating on
source code artefacts relate different source code artefacts packages, classes, and interfaces
to an architectural component (e.g. Package rule shown in Fig. 7 which selects everything
inside a specific package), rules utilizing relationships between source code artefacts relate
an architectural component to the source code artefacts that have specific relationships to
the given source code artefact like sub- and super-type relations for classes and interfaces,
interface realizations, and other dependencies (e.g. Uses rule shown in Fig. 7), etc. Com-
plex rules definitions are supported through the implementation of the three set operations

10http://frag.sourceforge.net/

Empir Software Eng (2018) 23:3578–36253612

http://eclipse.org/Xtext/documentation/
http://eclipse.org/Xtext/documentation/
http://frag.sourceforge.net/

Fig. 7 Initial component model - DSL specification

union (or), intersect (and), and difference (and not) which are all used in Fig. 7. Detailed
information about all rules and how they are derived can be found in Haitzer and Zdun
(2014).

Here, we shortly explain how the metrics for each architectural rule in the DSL specifi-
cation are calculated. In particular, each rule specifies a set of source code elements to be
added to a given component. Hence, for each rule we can calculate the above mentioned set
of metrics as we do for the system’s main components. Let us explain how exactly these
calculations are done for Component Interpreter in the example from Fig. 7. The rules are
evaluated in the following way: first the highest level rule is evaluated. In our example, the
highest level rule is the or composition rule which actually specifies all classes in the com-
ponent. Next the left part of the previously analysed composition rule is evaluated, which
is here the Class rule. Then the right part of the or rule is analysed. Since it consists of

0

20

40

60

80

100

120

140

160

180

200
MSC

NAC

CRW

DMH

CSU

Metrics values for the given components

Fig. 8 Initial component model - metrics

Empir Software Eng (2018) 23:3578–3625 3613

0

20

40

60

80

100

120

140
MSC

NAC

CRW

DMH

CSU

Metrics values for the given components

Fig. 9 Changed component model 1 - metrics

further composition rules the next highest level rule will be picked. In the given exam-
ple it would be the and not composition rule which specifies all classes contained in both
root.frag.core.Interp and root.frag packages without the class root.frag.core.Dual. Next the
left part of the and not rule would be evaluated, which corresponds to the and composition
rule. Then the left and right parts of the and rule are examined which corresponds to the
Uses rule and the Package rule, respectively. At the end the right part of the (and not) rule
is evaluated which corresponds to the Class rule.

From Fig. 8 we can see that Component Interpreter has significantly higher CSU metric
than the other components, mainly because of the high number of classes that it contains
(see the MSC metric in the figure). Namely, we want that Component Interpreter includes
all classes which name ends with “Interp” or those that are tightly coupled to the class Interp
from the core package (see the DSL specification of Component Interpreter in Fig. 7).
However, by examining how much each architectural rule in Component Interpreter affects
the CSU metric value for the whole component we find that the Uses and Package rules
and therefore the and rule that connects them have the high CSU metric values because
of the high number of classes that those rules produce (see Fig. 10). Consequently, a lot
of classes are assigned to Component Interpreter that should not belong there. To improve
the situation we change the DSL specification for Component Interpreter so that the tightly
coupled classes to the class Interp now include those that both use the given class and are
used by it. Furthermore, the Package rule now limits finding the tightly coupled classes to
the core package. The metrics for the new component model are shown in Fig. 9. The CB
metric value for the new component model is 0.37 (Fig. 10).

By looking at Fig. 9 we can see that now Component Parser has significantly higher
CSU metric value than the other components. The high CSU metric value for Compo-
nent Parser is mainly affected by the relatively high number of classes that this component
contains (see the MSC metric values in Fig. 9) compared to the other components. There-
fore, dividing it into several smaller components would probably improve the situation, i.e.
increase the overall CB metric value for the system. From the point of the SB metric value
which decreases if the number of components is greater or smaller than 8 (see Section 6.2),

Empir Software Eng (2018) 23:3578–36253614

0

50

100

150

200

250 MSC

NAC

CRW

DMH

CSU

Metrics values for different architectural rules

Fig. 10 The impact of each architectural rule on understandability – component interpreter from Fig. 7

dividing the Parser component into 2 or 3 smaller components would increase its value
since the current number of components in the system is 6.

By examining the Parser component we have found that it would make sense to divide
the component into two components ParserRules and ParsedObjects. Namely, the parser
used in Frag uses lexical parsing approach based on the composition of rule definitions
that are similar to EBNF. A rule is a description of the situation when the rule matches (a
matcher) plus an action that is taken when the rule applies. The result is a tokenized list of
parsed elements. Since the concept of rules is important it makes sense to create a separate
component for handling the parsing rules (Component ParserRules). The second new com-
ponent ParsedObjects relates to the list of the parsed elements that roughly corresponds to
the Abstract Syntax Tree (AST) in other parsing approaches. Having a separate component
for the AST of the parsed code makes sense because the AST structure can contain addi-
tional information that need to be managed, i.e. the information related to the subsequent
processing, e.g. contextual analysis, etc. The calculated metrics for the new component
model are shown in Fig. 11. The CB metric for the new component model is 0.55 and it is
increased by 0.18 compared to the previous component model.

The distribution of the metrics values for the new components can further be examined in
order to make additional possible improvements. For example, we can examine if it would
make sense to divide Component CommandObjects that has the highest CSU metric value
in the newly generated component model. By examining the corresponding classes of the
CommandObjects component we have found that it can be further divided into two compo-
nents FileCommands and NonFileCommands that correspond to the commands for handling
files and other non-file related commands. The calculated metrics for the generated compo-
nent model that encompasses all mentioned changes are shown in Fig. 12. The CB metric
for the component model that consists of all mentioned changes is 0.64 and it is increased
by 0.09 compared to the component model it is adapted from.

The example given above shows how we can gradually improve the analyzability of the
initial component model by making changes in the DSL and judge the analyzability of the

Empir Software Eng (2018) 23:3578–3625 3615

0

10

20

30

40

50

60

70

80

90
MSC

NAC

CRW

DMH

CSU

Metrics values for the given components

Fig. 11 Changed component model 2 - metrics

component model created with the DSL using the given metrics calculations. It would be
also possible to make source code changes and observe their effect on the analyzability of
the generated component model.

Let us now explain how our tool can support finding the changes that affect different
analyzability levels of two different component models. To appropriately capture different
changes in the system that can affect changes in the given metrics values, our tool supports
finding the changes at three different levels in the system: source code changes, compo-
nent model changes, and DSL changes. Regarding the source code changes, by comparing

0

10

20

30

40

50

60

70

80
MSC

NAC

CRW

DMH

CSU

Metrics values for the given components

Fig. 12 Changed component model 3 - metrics

Empir Software Eng (2018) 23:3578–36253616

0

10

20

30

40

50

60

70

80
MSC

NAC

CRW

DMH

CSU

Metrics values for the given components

Fig. 13 Component model of the frag version 0.8 - metrics

different source code versions of the system an architect or developer can find which source
code elements are added to the system, deleted from it, or changed. By comparing the com-
ponent models, a user can find the differences in the realized classes contained in each of
the components, i.e. if some classes are added to a given component or removed from it
(which cannot be seen using the source code comparisons). Furthermore, by comparing the
component models it is possible to find new components in the system or those that are
deleted from it. The DSL comparisons show the differences in the architectural rules used
to specify which system parts are assigned to a component. By combining the given three
kinds of comparisons a user can precisely determine the differences in the compared sys-
tem’s versions as well as in each of the compared components. To realize the mentioned
kinds of comparisons we used and extended the Eclipse IDE’s features for the comparisons
of different resources. Furthermore, to enable finding the component model changes we cre-
ated the corresponding serialized representations of the examined component models that
contain the fully qualified names of all source code artefacts related to each component.

We compare two component models of the Frag system, one that corresponds to the
0.7 version of the system and another one that corresponds to the 0.8 version. The metrics
values for the first component model are shown in Fig. 12 while for the second component
model they are shown in Fig. 13.

To find which changes in the system caused the different metrics levels of the given
component models we compared their DSLs, their source code, and the classes they contain.
From the DSL comparison we can see if there is a difference in the architectural rules
used to specify the given views, if new components are added, or if some of them are
deleted. By comparing the two DSLs we have found that Component MDSD from the first
view (version 0.7) is replaced with 3 new Components DSL, FCL, and FMF in the second
view (version 0.8). Otherwise, no changes in the DSL of the other components have been
found. By comparing the components’ contained classes we have found that the package

Empir Software Eng (2018) 23:3578–3625 3617

Fig. 14 Change impact analysis comparisons

core in the first view is renamed to the package fmf in the second view.11 Using the same
comparison we have found which classes are newly added to the components or which
classes are deleted from them. Finally by comparing the source code folders we can find
which classes changed their source code. In our example we have found that all classes have
been changed to a certain extent. Figure 14 shows the visualization of the given comparisons
views (DSL, classes, and source code comparisons) based on the Eclipse features for the
resource comparisons. Table 19 provides an overview of all found changes.

11The classes contained in the components are compared using their full qualified names that include the
names of all packages that contain a given class.

Empir Software Eng (2018) 23:3578–36253618

Table 19 Overview of all found changes

Added
classes

Deleted
classes

Changed
classes

Version 0.7 Version 0.8

ParserRules 2 0 41 yes yes

ParsedObjects 2 1 37 yes yes

NonFileCommands 2 0 31 yes yes

FileCommands 1 0 6 yes yes

Interpreter 0 0 5 yes yes

MDSD 0 0 43 yes no (divided into the
DSL, FCL, and FMF
components)

Core 0 0 27 yes yes

Exceptions 0 0 3 yes yes

DSL 0 0 10 no yes

FCL 0 0 11 no yes

FMF 0 0 11 no yes

TemplateEngine 0 0 4 no yes

By comparing the corresponding metrics values for the given two component models, we
can say that, except newly introduced components, they show very small differences. This is
not in accordance with the number of changes that we found (see Table 19). However, after
examining the given changes we have found that the only real changes in terms of adding,
deleting or changing some functionality in the system or its part are related to the added
or deleted classes in the components (Columns “Added Classes” and “Deleted Classes” in
Table 19). The changes in other classes are mostly syntactic changes or code refactoring
related changes that do not affect classes’ external behaviour.

The integrated metrics benefit from the architecture abstraction tool in the way that the
later provides an “up-to-date” architectural component model that reflects the source code
(i.e. all source code classes are mapped to their respective components) that is necessary
for the metrics calculations. This way, as we demonstrated, the architects or developers
can gradually improve the architecture by making the changes in the source code or in the
architecture abstraction DSL and judge the analyzability of the architecture created with the
DSL. To perform such improvements the architect or developer can partially benefit from
the given metrics calculations provided for each component. For example, as we demon-
strated, components that have a large number of classes (i.e. the high MSC metric value)
can be broken into several new components. Similarly, components with high coupling can
be modified by rearranging their classes with other classes to which they have a strong cou-
pling or by refactoring the classes source code to reduce their coupling to the classes in other
components. Modification steps, of course, require manual effort and human expertise.

The metrics calculations for each component as a whole provide useful information on
what is its understandability level and what is it affected from. The metrics calculations for
each architectural rule related to a given component help an architect or developer to grasp
how much different source code artefacts that constitute a given component contribute to
its understandability, which rules contribute the most to the limited understandability, etc.
(as demonstrated for Component Interpreter above). It can help during performing changes
in the DSL of a component in terms that an architect can assess in which direction and

Empir Software Eng (2018) 23:3578–3625 3619

approximately how much the understandability of a component will change if some rules
are changed.

7 Conclusions and future work

In this article, we provide an extended description of the analysis and results obtained in our
previous work (Stevanetic and Zdun 2016) consisting of a more detailed description of the
studied metrics, applied statistical techniques, and obtained findings. In addition, we present
a new metric for measuring the analyzability of component models based on the integra-
tion of our empirical findings and the existing observations related to them, i.e. concretely
the existing work on the analyzability related software metrics proposed by Bouwers et al.
(2011). Furthermore, we present significant tool extensions compared to our previous work
(Stevanetic et al. 2014) including the realization of the new analyzability metric by inte-
grating our previous tools for supporting software evolution using a DSL-based architecture
abstraction with the obtained empirical findings. Our tool extensions enable the calcula-
tions of how much each of the architectural rules used to specify a DSL-based architectural
abstraction specification contributes to the understandability of components and also enable
change impact analysis, i.e. the identification of changes in the system that affect different
analyzability levels of the component models.

Regarding our empirical findings, we studied the understandability of architectural com-
ponents using a number of component level metrics including the package based metrics
defined by Martin (2003), information theory graph based metrics, and the corresponding
counting-based graph based metrics defined by Allen (2002) and Allen et al. (2007), and
hierarchical understandability metrics introduced in the work by Hwa et al. (2009), as well
as the personal factors of participants like experience and expertise, and the combinations
of both personal factors and component level metrics. The understandability of component
models is measured through the time that the participants spent on understanding the com-
ponents, and then predicted using the above given component level metrics and participants’
experiences. On the one hand, the prediction models that consider the hierarchical under-
standability metrics are significantly better in predicting the understandability effort than
the models obtained using other component level metrics or the models that include the
participants’ experiences. On the other hand, those models are not significantly different
in the prediction from the models that combine both the component level metrics and the
participants’ experiences. This means that from all studied models it is enough to consider
the hierarchical understandability metrics for the prediction. This result is from our point of
view intuitive, as those metrics are originally designed to assess the understandability of the
modular design of a system. The participants’ experience is also important and can predict
a significant amount of variance in the data but the obtained models are not as accurate as
the models that use the component level metrics, i.e., the metrics related to the system itself.

The obtained empirical findings are integrated in the tool that supports the synchronized
evolution of the architecture and source code of the system. While the DSL-based architec-
ture abstraction approach enables users to keep source code and architecture consistent, the
given metrics extensions enables them, while working with the DSL or source code, to con-
tinuously judge and improve the analyzability of the architectural component model they
create with the DSL. To further support users in performing adequate changes in the DSL
or source code and understanding their impacts on the understandability of a given compo-
nent, we calculate the given metrics for each architectural rule used to define the DSL-based
specification of that component. In that way users can grasp how much different source code

Empir Software Eng (2018) 23:3578–36253620

artefacts that constitute a given component affect its understandability. Beside improving
the analyzability of component models, our approach also supports change impact analysis,
i.e. finding which changes in the system’s source code or the DSL-based architectural spec-
ification correspond to the changes in the observed metrics values. The applicability of our
approach is shown using a case study of an existing open source system.

From the academic point of view we believe that our study can serve as a good starting
point for future studies on the understandability of architectural components and component
models, but also other kinds of software models. The used instruments and applied statisti-
cal techniques provide insight in how the understandability can be appropriately measured
and predicted which can help in devising new empirical studies and experiments. From the
practitioner’s point of view, the results of our study show which factors and metrics are
important for assessing the understandability of architectural components in relation to the
system implementation and in how far those metrics can predict the understandability. The
understandability effort (time) for new architectural components can be assessed based on
the complexity of their implementation. Absolute values for the measured understandability
effort for new components are considered to be accurate only for the systems similar to the
studied one. In other cases the assessment can vary to a lesser or greater extent. Our tool sup-
port facilitates the application of the obtained empirical finding in practice. It is designed to
consider the predicted component’s understandability values as more relative values (rather
than evaluating the design by giving absolute values), i.e. in comparison to the understand-
ability of other components in the system, that is used for identifying critical components
which require more effort to be understood compared to other components in the system. In
that way, it can be more or less successfully applied for the systems and components which
size and complexity differ from the studied one.

In our future work, we plan to include experts with many years of experience and com-
pare the results with the ones obtained here. We also plan to examine more components,
including bigger ones, that would enable us to construct more robust prediction models.
However, tackling these challenges is not an easy task since it requires a lot of resources in
terms of time and money.

Acknowledgements This work was supported by the Austrian Science Fund (FWF), Project: P24345-N23.
We thank Dr. Nina Senitschnig from the Department of Statistics and Operations Research, for valuable
suggestions and help related to the statistical analysis pursued.

References

Aguilar ER, Garcı́a F, Ruiz F, Piattini M (2007) An exploratory experiment to validate measures for business
process models. In: Rolland C, Pastor O, Cavarero J-L (eds) RCIS, pp 271–280

Albrecht A, Gaffney JE (1983) Software function, source lines of code, and development effort prediction: a
software science validation. IEEE Trans Softw Eng SE-9:639–648

Allen EB (2002) Measuring graph abstractions of software: an information-theory approach. In: IEEE
METRICS. IEEE Computer Society, Washington, p 182

Allen EB, Gottipati S, Govindarajan R (2007) Measuring size, complexity, and coupling of hypergraph
abstractions of software: an information-theory approach. Software Quality Control 15:179–212

Babar MA, Lago P (2009) Editorial: design decisions and design rationale in software architecture. J Syst
Softw 82:1195–1197

Bansiya J, Davis CG (2002) A hierarchical model for object-oriented design quality assessment. IEEE Trans
Softw Eng 28:4–17

Barnes JM, Garlan D, Schmerl BR (2014) Evolution styles: foundations and models for software architecture
evolution. Softw Syst Model 13(2):649–678

Empir Software Eng (2018) 23:3578–3625 3621

Basili V, Briand L, Melo W (1996) A validation of object-oriented design metrics as quality indicators. IEEE
Trans Softw Eng 22:751–761

Bass L, Clements P, Kazman R (1998) Software architecture in practice. Addison-Wesley Longman
Publishing Co. Inc., Boston

Belsley D (1991) Conditioning diagnostics, collinearity and weak data in regression. Wiley-Interscience,
Hoboken

Belsley DA, Kuh E, Welsch RE (1980) Regression diagnostics: identifying influential data and sources of
collinearity (Wiley Series in Probability and Statistics). Wiley-Interscience, Hoboken

Bhattacharya P, Iliofotou M, Neamtiu I, Faloutsos M (2012) Graph-based analysis and prediction for software
evolution. In: ICSE’12, pp 419–429

Björkander M, Kobryn C (2003) Architecting systems with UML 2.0. IEEE Softw 20:57–61
Boehm B (1978) Characteristics of software quality. North-Holland Pub. Co., TRW series of software

technology
Booch G (1994) Object-oriented analysis and design with applications, 2nd edn. Benjamin-Cummings

Publishing Co. Inc., Redwood City
Bouwers E, Correia JP, Deursen A, Visser J (2011) Quantifying the analyzability of software architectures.

In: 2011 Ninth working IEEE/IFIP conference on software architecture. IEEE, Piscataway, pp 83–92
Briand L, Labiche Y, Di Penta M, Yan-Bondoc H (2005) An experimental investigation of formality in

uml-based development. IEEE Trans Softw Eng 31:833–849
Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic

approach. Springer, Berlin
Canfora G, Garcı́a F, Piattini M, Ruiz F, Visaggio C (2005) A family of experiments to validate metrics for

software process models. J Syst Softw 77(2):113–129
Cardoso J (2006) Process control-flow complexity metric: an empirical validation. In: IEEE international

conference on services computing, 2006. SCC ’06, pp 167–173
Chidamber S, Kemerer C (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng 20:476–

493
Clements P, Garlan D, Bass L, Stafford J, Nord R, Ivers J, Little R (2002) Documenting software

architectures: views and beyond. Pearson Education, London
Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Nord R, Stafford J (2003) Documenting

software architectures: views and beyond. Addison-wesley, Boston
Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum, New Jersey
Cuesta CE, Navarro E, Perry DE, Roda C (2013) Evolution styles: using architectural knowledge as an

evolution driver. Journal of Software: Evolution and Process 25(9):957–980
Dalgaard P (2004) Introductory statistics with r. Springer, Berlin
Dromey RG (1995) A model for software product quality. IEEE Trans Softw Eng 21:146–162
Dromey RG, McGettrick AD (1992) On specifying software quality. Softw Qual J 1:45–74
Dugerdil P, Niculescu M (2014) Visualizing software structure understandability. In: 23rd Australian soft-

ware engineering conference, ASWEC 2014, Milsons Point, April 7-10, 2014, IEEE Computer Society,
Sydney, pp 110–119

Ebel R, Frisbie D (1991) Essentials of educational measurement. Prentice Hall, Upper Saddle River
Egyed A (2004) Consistent adaptation and evolution of class diagrams during refinement. In: Fundamental

approaches to software engineering, 7th international conference, FASE 2004, ETAPS 2004 Barcelona,
Spain, vol. 2984 of Lecture Notes in Computer Science. Springer, Berlin, pp 37–53

Elish MO (2010) Exploring the relationships between design metrics and package understandability: a case
study. In: ICPC. IEEE Computer Society, Washington, pp 144–147

Cook RD (1977) Detection of Influential Observation in Linear Regression, Technometrics, 19(1):15–18.
https://doi.org/10.1080/00401706.1977.10489493

Fenton NE, Pfleeger SL (1998) Software metrics: a rigorous and practical approach, 2nd edn. PWS
Publishing Co., Boston

Fenton NE, Ohlsson N (2000) Quantitative analysis of faults and failures in a complex software system. IEEE
Trans Softw Eng 26:797–814

Field A, Miles J, Field Z (2012) Discovering statistics using r. SAGE Publications, Thousand Oaks
Genero Bocco M, Moody DL, Piattini M (2005) Assessing the capability of internal metrics as early

indicators of maintenance effort through experimentation: Research articles. J Softw Maint Evol
17:225–246

Ghezzi C, Jazayeri M, Mandrioli D (2002) Fundamentals of software engineering, 2nd edn. Prentice Hall
PTR, Upper Saddle River

Graves TL, Karr AF, Marron JS, Siy H (2000) Predicting fault incidence using software change history. IEEE
Trans Softw Eng 26:653–661

Empir Software Eng (2018) 23:3578–36253622

https://doi.org/10.1080/00401706.1977.10489493

Gupta V, Chhabra JK (2009) Package coupling measurement in object-oriented software. J Comput Sci
Technol 24:273–283

Gupta V, Chhabra JK (2012) Package level cohesion measurement in object-oriented software. J Braz Comp
Soc 18(3):251–266

Haitzer T, Zdun U (2014) Semi-automated architectural abstraction specifications for supporting software
evolution. Sci Comput Program 90(Part B, 0):135–160. Special Issue on Component-Based Software
Engineering and Software Architecture

Harrison R, Counsell SJ, Nithi RV (1998) An evaluation of the mood set of object-oriented software metrics.
IEEE Trans Softw Eng 24:491–496

Hofmeister C, Nord R, Soni D (2000) Applied software architecture. Addison-Wesley Professional, Boston
Hwa J, Lee S, Kwon Y-R (2009) Hierarchical understandability assessment model for large-scale oo system.

In: Software engineering conference, 2009. APSEC ’09. Asia-Pacific, pp 11–18
Jansen A, Bosch J (2005) Software architecture as a set of architectural design decisions. In: Proceedings of

the 5th working IEEE/IFIP conference on software architecture, WICSA ’05. IEEE Computer Society,
Washington, pp 109–120

Kabacoff R (2011) R in action: data analysis and graphics with r. Manning Pubs Co Series, Manning
Kampenes VB, Dybå T, Hannay JE, Sjøberg DIK (2007) Systematic review: a systematic review of effect

size in software engineering experiments. Inf Softw Technol 49:1073–1086
Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, El Emam K, Rosenberg J (2002) Pre-

liminary guidelines for empirical research in software engineering. IEEE Trans Softw Eng 28:721–734
Kobayashi M, Sakata S (1990) Mallows’ Cp criterion and unbiasedness of model selection. J Econ, Elsevier

45(3):385–395. <https://ideas.repec.org/a/eee/econom/v45y1990i3p385-395.html>
Konersmann M, Durdik Z, Goedicke M, Reussner RH (2013) Towards architecture-centric evolution of long-

living systems (the advert approach). In: Kruchten P, Koziolek A, Nord RL (eds) QoSA. ACM, New
York, pp 163–168

Kruchten P (1995) The 4 + 1 view model of architecture. IEEE Softw 12:42–50
Lindland OI, Sindre G, Sølvberg A (1994) Understanding quality in conceptual modeling. IEEE Softw

11:42–49
Losavio F, Chirinos L, Lévy N, Ramdane-Cherif A (2003) Quality characteristics for software architecture.

Journal of Object Technology 2(2):133–150
Lungu M, lanza M, Girba T (2006) Package patterns for visual architecture recovery. In: Proceedings of the

10th European conference on software maintenance and reengineering 2006. CSMR 2006, pp 10–196
Ma Y, He K, Du D, Liu J, Yan Y (2006) A complexity metrics set for large-scale object-oriented soft-

ware systems. In: Proceedings of the Sixth IEEE international conference on computer and information
technology, CIT ’06. IEEE Computer Society, Washington, p 189

Malaiya YK, Denton J (2000) Module size distribution and defect density. In: Proceedings of the 11th
international symposium on software reliability engineering, ISSRE ’00, IEEE Computer Society, p 62

Maqbool O, Babri H (2007) Hierarchical clustering for software architecture recovery. IEEE Trans Softw
Eng 33:759–780

Martin RC (2003) Agile software development: principles, patterns, and practices. Prentice Hall PTR, Upper
Saddle River

Mazza C, Fairclough J, Bryan M, Daniel P, Adriaan S, Richard S, Michael J, Alvisi G (1996) Software
engineering guides. Prentice-Hall International, UK

McCabe TJ (1976) A Complexity Measure. IEEE Trans Softw Eng 2(4):308–320. https://doi.org/10.1109/
TSE.1976.233837

Medvidovic N, Taylor RN (2000) A classification and comparison framework for software architecture
description languages. IEEE Trans Softw Eng 26:70–93

Medvidovic N, Rosenblum DS, Redmiles DF, Robbins JE (2002) Modeling software architectures in the
unified modeling language. ACM Trans Softw Eng Methodol 11(1):2–57

Mendling J (2008) Metrics for process models: empirical foundations of verification, error prediction, and
guidelines for correctness, 1st edn. Springer Publishing Company, Incorporated, New York

Mohagheghi P, Conradi R, Killi OM, Schwarz H (2004) An empirical study of software reuse vs. defect-
density and stability. In: Proceedings of the 26th international conference on software engineering, ICSE
’04. IEEE Computer Society, Washington, pp 282–292

Moody DL (1998) Metrics for evaluating the quality of entity relationship models. In: Proceedings of the
17th international conference on conceptual modeling, ER ’98. Springer, London, pp 211–225

Moody DL (2003) Measuring the quality of data models: an empirical evaluation of the use of quality metrics
in practice. In: Ciborra CU, Mercurio R, de Marco M, Martinez M, Carignani A (eds) ECIS, pp 1337–
1352

Morasca S (1999) Measuring attributes of concurrent software specifications in petri nets. In: Software
metrics symposium, 1999. Proceedings. Sixth International, pp 100–110

Empir Software Eng (2018) 23:3578–3625 3623

<https://ideas.repec.org/a/eee/econom/v45y1990i3p385-395.html>
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837

Nissen ME (1998) Redesigning reengineering through measurement-driven inference. MIS Q 22:509–534
Oreizy P, Gorlick MM, Taylor RN, Heimbigner D, Johnson G, Medvidovic N, Quilici A, Rosenblum DS,

Wolf AL (1999) An architecture-based approach to self-adaptive software. IEEE Intell Syst 14:54–62
Otero MC, Dolado JJ (2004) Evaluation of the comprehension of the dynamic modeling in uml. Inf Softw

Technol 46(1):35–53
O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690
Pacione MJ, Roper M, Wood M (2004) A novel software visualisation model to support software compre-

hension. In: 11th working conference on reverse engineering, pp 70–79
Patig S (2008) A practical guide to testing the understandability of notations. In: Proceedings of the Fifth

Asia-Pacific conference on conceptual modelling - vol 79, APCCM ’08. Australian Computer Society,
Inc., Darlinghurst, pp 49–58

Purchase HC, Colpoys L, McGill M, Carrington D, Britton C (2001) Uml class diagram syntax: an empir-
ical study of comprehension. In: Proceedings of the 2001 Asia-Pacific symposium on information
visualisation - vol 9, APVis ’01. Australian Computer Society, Inc., Darlinghurst, pp 113–120

Reijers H, Mendling J (2011) A study into the factors that influence the understandability of business process
models. IEEE Trans Syst Man Cybern Part A Syst Humans 41:449–462

Robbins JE, Medvidovic N, Redmiles DF, Rosenblum DS (1998) Integrating architecture description lan-
guages with a standard design method. In: Proceedings of the 20th international conference on software
engineering, ICSE ’98, IEEE Computer Society, pp 209–218

Rozanski N, Woods E (2005) Software systems architecture: working with stakeholders using viewpoints
and perspectives. Addison-Wesley Professional, Boston

Rubinfeld DL (2000) Reference guide on multiple regression, 2nd edn. Federal Judicial Center, Washington
R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org
Sarkar S, Kak A, Rama G (2008) Metrics for measuring the quality of modularization of large-scale object-

oriented software. IEEE Trans SSoftw Eng 34:700–720
Sartipi K (2001) A software evaluation model using component association views. In: IWPC, pp 259–268
Sengupta S, Kanjilal A, Bhattacharya S (2011) Measuring complexity of component based architecture: a

graph based approach. SIGSOFT Softw Eng Notes 36:1–10
Sharma A, Grover PS, Kumar R (2009) Dependency analysis for component-based software systems.

SIGSOFT Softw Eng Notes 34:1–6
Soo LG, Jung-Mo Y (1992) An empirical study on the complexity metrics of petri nets. Microelectron Reliab

32(3):323–329
Stevanetic S, Zdun U (2014a) Exploring the relationships between the understandability of architectural com-

ponents and graph-based component level metrics. In: Proceedings of the 14th international conference
on software quality (QSIC), QSIC 2014. IEEE Computer Society, Dallas

Stevanetic S, Zdun U (2014b) Exploring the relationships between the understandability of components in
architectural component models and component level metrics. In: Proceedings of the 18th international
conference on evaluation and assessment in software engineering (EASE), EASE 2014. ACM Computer
Society, London

Stevanetic S, Zdun U (2015) Software metrics for measuring the understandability of architectural struc-
tures – a systematic mapping study. In: EASE 2015 - 19th international conference on evaluation and
assessment in software engineering

Stevanetic S, Zdun U (2016) Exploring the understandability of components in architectural component
models using component level metrics and participants’ experience. In: The 19th international ACM
Sigsoft symposium on component-based software engineering (CBSE 2016)

Stevanetic S, Haitzer T, Zdun U (2014) Supporting software evolution by integrating dsl-based architectural
abstraction and understandability related metrics. In: Proceedings of the 2014 European conference on
software architecture workshops, ECSAW ’14. ACM, New York, pp 19:1–19:8

Sun D, Wong K (2005) On evaluating the layout of uml class diagrams for program comprehension. In:
Proceedings. 13th international workshop on program comprehension, 2005. IWPC 2005, pp 317–326

Vanderfeesten I, Reijers HA, Mendling RJ, Aalst WM, Cardoso J (2008) On a quest for good process models:
the cross-connectivity metric. In: Bellahséne Z, Léonard M (eds) Proceedings of the 20th international
conference on Advanced Information Systems Engineering (CAiSE ’08). Springer, Berlin, Heidelberg,
pp 480–494. https://doi.org/10.1007/978-3-540-69534-9 36

Vanhatalo J, Völzer H, Leymann F (2007) Faster and more focused control-flow analysis for business process
models through sese decomposition. In: Proceedings of the 5th international conference on service-
oriented computing, ICSOC ’07. Springer, Berlin, pp 43–55

van der Aalst WMP, Bisgaard Lassen K (2008) Translating unstructured workflow processes to readable
bpel: theory and implementation. Inf Softw Technol 50:131–159

Völter M (2010) Architecture as language. IEEE Softw 27:56–64

Empir Software Eng (2018) 23:3578–36253624

http://www.R-project.org
https://doi.org/10.1007/978-3-540-69534-9_36

Weber B, Zeitelhofer S, Pinggera J, Torres V, Reichert M (2014) How advanced change patterns impact
the process of process modeling. In: Bider I, Gaaloul K, Krogstie J, Nurcan S, Proper H, Schmidt R,
Soffer P (eds) Enterprise, business-process and information systems modeling vol 175 of Lecture Notes
in Business Information Processing. Springer, Berlin, pp 17–32

Zimmermann O, Gschwind T, Küster J, Leymann F, Schuster N (2007) Reusable architectural decision mod-
els for enterprise application development. In: Proceedings of the quality of software architectures 3rd
international conference on software architectures, components, and applications, QoSA’07, Springer,
pp 15–32

Dr. techn. Srdjan Stevanetic is a software architect and research scientist at Siemens A.G., Austria. Before
that, he received his PhD at the Software Architecture Research Group, Faculty of Computer Science, Uni-
versity of Vienna, Austria. His main working areas are: empirical software engineering, software architecture
research and review, software engineering and design in various fields including big data applications, intel-
ligent autonomous systems (robots, cyber-physical systems), SOA based applications, and NFR engineering.
Srdjan has published several articles in peer-reviewed journals, conferences, and workshops.

Prof. Dr. Uwe Zdun is a full professor for software architecture at the Faculty of Computer Science, Uni-
versity of Vienna. Before that, he worked as assistant professor at the Vienna University of Technology and
the Vienna University of Economics respectively. He received his doctoral degree from the University of
Essen in 2002. His research focuses on software design and architecture, empirical software engineering,
distributed systems engineering (service-based, cloud, mobile, IoT, and process-driven systems), software
patterns, domain-specific languages, and model-driven development. Uwe has published more than 210 arti-
cles in peer-reviewed journals, conferences, book chapters, and workshops, and is co-author of the books
“Remoting Patterns – Foundations of Enterprise, Internet, and Realtime Distributed Object Middleware”,
“Process-Driven SOA – Proven Patterns for Business-IT Alignment”, and “Software-Architektur.” He has
participated in 26 R&D projects. Uwe is editor of the journal Transactions on Pattern Languages of Program-
ming (TPLoP) published by Springer, Associate Editor of the Computing journal published by Springer, and
Associate Editor-in-Chief for design and architecture for the IEEE Software magazine.

Empir Software Eng (2018) 23:3578–3625 3625

	Supporting the analyzability of architectural component models - empirical findings and tool support
	Abstract
	Introduction
	Related work
	Measuring the understandability
	Architecture and design metrics and their empirical evaluations
	Understandability of UML models and process models
	Software quality models
	Other aspects related to architectural component models
	Architecture abstraction and evolution

	Empirical study description
	Goals
	Variables
	Hypotheses
	Study design
	Subjects
	Objects
	Instrumentation
	Architectural documentation about the Soomla Android store system
	Source code access
	A questionnaire to be filled-in by the participants

	Execution
	Data collection
	Validation

	Analysis
	Collinearity analysis
	Multiple regression analysis

	Validity evaluation
	Conclusion validity
	Construct validity
	Internal validity
	External validity

	Tool support
	Background
	Architecture analyzability metric
	Integration of the metrics in the tool

	Conclusions and future work
	Acknowledgements
	References

