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Abstract Program comprehension is an important skill for programmers – extending and
debugging existing source code is part of the daily routine. Syntax highlighting is one of the
most common tools used to support developers in understanding algorithms. However, most
research in this area originates from a time when programmers used a completely different
tool chain. We examined the influence of syntax highlighting on novices’ ability to compre-
hend source code. Additional analyses cover the influence of task type and programming
experience on the code comprehension ability itself and its relation to syntax highlighting.
We conducted a controlled experiment with 390 undergraduate students in an introductory
Java programming course. We measured the correctness with which they solved small cod-
ing tasks. Each test subject received some tasks with syntax highlighting and some without.
The data provided no evidence that syntax highlighting improves novices’ ability to com-
prehend source code. There are very few similar experiments and it is unclear as of yet
which factors impact the effectiveness of syntax highlighting. One major limitation may
be the types of tasks chosen for this experiment. The results suggest that syntax highlight-
ing squanders a feedback channel from the IDE to the programmer that can be used more
effectively.
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1 Introduction

Software developers spend a considerable amount of time extending or debugging existing
systems (Lientz et al. 1978) – tasks requiring sound program comprehension skills. Unfor-
tunately, source code can be complicated and even professional programmers need time
to process and understand what a given algorithm is actually doing (Tiarks 2011). Typical
programming tasks often involve code written by others, forcing developers to work with
unfamiliar variable names, unexpected code structures, and peculiar comments.

Different strategies have been developed to support program comprehension. Coding
guidelines are often used, so code written in the same project or the same company is sup-
posed to have an identical look and feel. Style guides and coding conventions are also issued
by language maintainers, e.g. for Java (Oracle Technology Network 1999) or C# (Microsoft
Developer Network 2015). Another strategy, code indentation, is used to indicate blocks
belonging together. Additionally, syntax highlighting is used to visually distinguish source
code elements.

Syntax highlighting is a common tool for software developers. Every major Integrated
Development Environment (IDE) ships with its own colouring scheme that is activated
by default but can often be customised to fit the developer’s needs and personal taste.
In a nutshell, syntax highlighting uses typographic signalling on parts of source code
to provide visual cues about language elements and programme structure. For exam-
ple, it sets keywords apart from variables or makes static method calls immediately
distinguishable from regular method calls. A variety of markups is used and a mix of
colouring and different text formatting styles such as italics or boldface fonts is com-
mon. That colouring plays an important role in syntax highlighting is no surprise as it
builds on an important human skill. Colour vision serves two main purposes: perceptual
segregation and signalling (Goldstein 1995). Both are used when working with high-
lighted source code. Programmers need to distinguish between different keywords, token
types, predefined language elements (that typically cannot be redefined for individual pur-
poses), and custom programming constructs, e.g. variable names. According to Goldstein
(1995), colours provide a clear model of the perceived concept. In case of programming,
colours clearly signal differences between various language elements and give clues to the
programmer.

Source code works in two ways. On the one hand, it is a set of instructions for the com-
puter, telling it specifically what to do. On the other hand, it serves as an explanation to
human readers, describing the technical implementation of an algorithm in detail (Knuth
1984). Understanding the computer’s interpretation of the source code is therefore a valu-
able information for developers. One way for IDEs to connect both perspectives is syntax
highlighting. Gruhn and Hannebauer (2012).

However, little is known about the actual effect of syntax highlighting on programmers.
Some older research on the influence of different semantical code highlighting schemes on
program comprehension exists (Baecker and Marcus 1989; van Laar 1989), but only a few
recent studies investigated the effects of syntax highlighting commonly used in today’s IDEs
(Beelders and du Plessis 2015; Sarkar 2015) and found contradicting results. We do not
know whether programmers understand source code with highlighted syntactical structures
better or if it is actually harmful to their program comprehension. Especially beginners
might suspect that the colours and font styles have some additional meaning, but without
enough experience, their purpose remains hidden or – even worse – might be misinterpreted.
Despite the lack of evidence for its usefulness, different forms of syntax highlighting are
omnipresent in professional as well as educational IDEs. Different cognitive processes are
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at work here, and whilst it would be interesting to investigate these and the influence of
syntax highlighting in detail, we will focus on the results, i.e. whether syntax highlighting
supports programming novices, and leave questions regarding the how and why to future
research.

We conducted an extensive study on syntax highlighting with 390 mostly first-year stu-
dents enrolled in computer science or related fields. Test subjects were presented with a
set of different Java code snippets in two flavours – using Syntax Highlighting (SH) versus
plain Black & White (BW) text – and had to solve simple program comprehension tasks
on these code snippets. We then performed statistical analyses on their results in order to
examine the impact of syntax highlighting on their ability to solve the tasks correctly. The
time needed to solve the tasks was not measured as previous research suggests that code
highlighting has an impact on correctness (Baecker and Marcus 1989), whereas there is
no statistically significant impact on speed even in experiments that showed correctness
improvements through code highlighting (Oman and Cook 1990).

Contrary to our expectations and given that syntax highlighting is omnipresent in
modern IDEs, the results do not support our hypotheses. Earlier research on code high-
lighting based on semantical code properties showed stronger positive effects on Program
comprehension with at least four times smaller datasets (Baecker and Marcus 1989; Oman
and Cook 1990; Rambally 1986; Tapp and Kazman 1994). We conclude that, for the types
of tasks used in the experiment, programmers do not benefit from the Eclipse code high-
lighting used in the experiment, which is based on syntactical structures. Our findings
indicate that current IDEs possibly waste a feedback channel to the developer with an inef-
fective code highlighting scheme. This feedback channel could convey more meaningful
information, for example the font colour could encode the type of function in terms of its
namespace.

Jedlitschka et al. (2008) proposed a structure for experiment reports in software engineer-
ing that this experiment report adheres to. Thus, we will first describe related technology
and studies in Section 2 and then describe our experiment design in Section 3. In
Section 4, we discuss the coding tasks used for the experiments and the results obtained for
the individual task categories. Result analysis follows in Section 5. We discuss all results in
Section 6 and look at possible threats to validity in Section 7, before concluding the paper in
Section 8.

2 Background

Recently, the effect of syntax highlighting on programming performance received some
research attention. Before this, a somewhat larger number of studies was conducted in the
80s and 90s – a time when programmers used a different set of tools and languages to
write software. Furthermore, most of these studies concentrate on different typographic
signalling methods (e.g. indentation or font size). We identified three different uses of high-
lighting: indicating the token type, conveying run-time information, and grouping segments
of code into logical units. Also, in most older studies, source code was printed out on paper
and handed to the test subjects – an unusual experimental setup from today’s perspective.
Working with printed source code has become very uncommon.1

1Microsoft Visual Studio and Eclipse still can print out source code, though. Interestingly, Eclipse retains
syntax highlighting in the print-out and Visual Studio removes it.
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2.1 Syntax highlighting

Hakala et al. (2006) performed an experiment with 16 third and fourth year computer
science students and compare three different colouring schemes for Java:

– a control scheme without highlighting,
– a block scheme with blue comments, red method headers and declarations, and the

remaining code in black and white, and
– a token scheme using the syntax highlighting for Java from the code editor vim.

There were twelve tasks, in each of which participants had to search for a target within a
code block of 76 lines of code. The colouring schemes had neither an effect on the speed
with which participants found the target nor an effect on the correctness with which they
found the correct target. Whilst there are some threats to the validity of this experiment,
there were three different types of targets and the type of target did have a statistically
significant effect on speed and correctness. Thus, code colouring is at most a small help for
the tasks tested in the experiment. Nevertheless, the majority of participants subjectively
found colours useful for their task.

Sarkar (2015) had 10 graduate computer science students read the source code of six
python programmes and determine the output for a given input value. The six python pro-
grammes came in three pairs of equal difficulty, and each participant saw one random
programme of each pair with a common syntax highlighting scheme, whilst the other had no
typographic highlighting. Tasks were solved significantly faster with SH and eye-tracking
data showed that SH significantly reduced the number of context switches. The advan-
tage of SH becomes significantly less with growing experience of the participants. SH had
no effects on fixation counts and durations. However, the small number of participants
threatens the result’s validity, as the statistical significance may be an effect of possibly
unfavourable task assignment.

Dimitri (2015) evaluated the effect of typographic highlighting in Sonic Pi, a simple
programming language for music and subset of Ruby. In an experiment with 10 computer
science students, the author showed that syntax highlighting reduces the time needed to
write as well as debug a programme in Sonic Pi. The results also indicate that this effect
becomes weaker when participants have more experience in programming. It is unclear
how these results apply to general programming as the used programming tasks were much
simpler than typical programming tasks, e.g. the code in the experiment used no conditions,
method invocations, or variables.

Beelders and du Plessis (2015) performed an experiment with 34 students, in which they
used eye-tracking to compare the difficulty of reading a code snippet in C# with and with-
out syntax highlighting. The participants had to find the output value of two code snippets
with given input values. The figures in the study indicate that they used the standard syntax
highlighting scheme from Visual Studio for the experiment. The authors do not find signifi-
cant benefits of syntax highlighting for participant’s performance, measured via the number
of eye fixation on different parts of the code, fixation durations, and required regressions,
i.e. looking back to something already looked at. However, this may be due to a too small
number of participants. The correctness or speed of the answer was not taken into account.
At least with significance level α = 0.1, there are some conditions with statistical signifi-
cance where the participants subjectively found the syntax-highlighted code more readable
and aesthetically more pleasing.



Empir Software Eng (2018) 23:2795–2828 2799

2.2 Highlighting schemes different to modern IDEs

This section reviews older related studies using highlighting schemes that are uncommon
today. These forms of code highlighting were not necessarily based on token type.

Rambally (1986) provided test subjects (44 intermediate-level and 35 senior-level pro-
gramming students) with source code formatted according to three different schemes: (a)
with coloured blocks, denoting loops for example; (b) with colours for different statements
and functions, e.g. input/output (I/O) or variable binding; (c) black and white plain text. He
hypothesised that only scheme (b) would lead to improvements in program comprehension.
The results were in favour of the hypothesis, so he concluded that the colouring supported
test subjects in understanding the source code. Interestingly, he added that test subjects
favoured scheme (a), although the comprehension results clearly indicated that scheme (b)
was more efficient. This experiment used two different highlighting variants: scheme (a)
highlights units and scheme (b) highlights different token types – an approach pretty close
to syntax highlighting, but Rambally – in contrast to modern IDEs – seemed to take fur-
ther information into account, e.g. by specifically colouring functions concerned with I/O.
Furthermore, it is not clear what exact colouring strategy was used, it could be either back-
ground or font colouring. In any case, Rambally (1986) shows that colouring is a way to
improve program comprehension and that the rules used to determine the colouring scheme
impact its effectiveness.

Crosby and Stelovsky (1990) investigated how programmers read algorithms. They pre-
sented an algorithm’s source code written in Pascal without highlighting and a graphical
representation to novices as well as experienced software developers and evaluated whether
these two groups would use different reading strategies in order to understand the pro-
gramme. The authors recorded the test subjects’ eye movements and tried to detect patterns
whilst they examined the algorithm. They found that keywords are not the primarily inves-
tigated parts of a programme, although keywords are typically emphasised through the use
of bold font. Comments and comparisons attract most of the readers’ attention. This obser-
vation held true for experienced as well as novice programmers. The authors stated that
keywords lack semantic information and are too predictable to be important enough to
understand the algorithm, hence the little interest from readers. Highlighting keywords is an
approach to indicate token types. Unfortunately, Crosby and Stelovsky (1990) did not inves-
tigate whether the bold font suggested a keyword and therefore a part of the text that does
not need that much attention from readers or if the code’s structure simply made a keyword
necessary and obvious.

Feigenspan et al. (2013) show that changing the background colour of preprocessor
directive blocks makes it easier for developers to identify code belonging to the same
feature. They showed that background colouring can improve program comprehension, is
favoured by programmers, and can scale to very large programmes. However, their approach
is just an alternative way of marking related source code parts. For this specific use, their
approach is useful, but it does not answer any question about syntax highlighting itself.
They highlight units of code with background colouring.

van Laar (1989) tested the effect of coloured structures in source code. He presented
Pascal programmes to 16 test subjects using a mix of coloured and non-coloured as well as
indented and non-indented source code. He found significant differences in how well the
subjects processed different variations and identified the coloured and indented one as the
most effective. In contrast to syntax highlighting schemes of modern IDEs, van Laar (1989)
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used colours in a similar way to indentations: highlighting lines of code belonging to the
same code block instead of employing a syntactical colouring scheme. van Laar (1989) thus
demonstrated how colours can be used, but his approach differs from the colouring scheme
we focus on in our study. Again, this was an attempt to highlight units of code using different
background or font colours.

Reijers et al. (2011) described their approach to transfer the notion of syntax highlighting
into the field of Business Process Modelling (BPM). Modellers and programmers share a
common fate: they have to constantly understand existing conceptualisations (models or
source code) and align them with their own mental model. Reijers et al. (2011) therefore
developed a highlighting scheme for workflow nets and conducted an experiment with 62
expert (from industry and academia) and 42 novice (students on graduate level) modellers.
The experiment showed that the highlighting scheme significantly increased the accuracy
of novices, helping them to read and understand the models. Of course, this study does not
deal with source code, but their approach is close to highlighting token types. Nevertheless,
it shows that novices can benefit from coloured elements.

Tapp and Kazman (1994) performed a 3×2 experiment with 39 test subjects. The experi-
ment compared three different code formatting flavours for two different programming tasks.
One flavour coloured the background of the code, but not its font. The second flavour high-
lighted code via different font sizes. The third flavour acted as a control group and involved
no special formatting. The background colours or font sizes for certain lines of code
provided additional information depending on the task at hand. The experiment showed sig-
nificantly improved performance in one aspect for one of the tasks when using the colouring
flavour. Test subjects also favoured colouring over font size. However, Tapp and Kazman
(1994) did not test syntax highlighting. Instead, they tried to convey information about the
programme’s behaviour at run-time via background colouring or font size.

Gellenbeck and Cook (1991) presented a rather small experiment with only eight test
subjects. In contrast to other studies, they focused on professional programmers having
more than five years of experience. They marked module names and header comments with
typographic signalling in the form of a larger and boldface font compared to the rest of the
source code, which was then printed out and handed to the subjects. Besides the signalling,
they tested for the usefulness of mnemonic names and header comments. They conclude
that mnemonic names and header comments are more important to program comprehension
than signalling and also that signalling does not aid programmers in locating information
within a programme. Although they highlighted different token types with different font
formatting, their experiment was restricted to two types of tokens and did not cover the
whole source code.

Baecker and Marcus (1989) presented various highlighting schemes for programmes
written in C. They discussed several aspects of source code visualisation such as font types
and sizes, bar positions and sizes, whitespace distribution, brackets and boxes for structur-
ing, and background highlighting. Font colouring is only a minor topic. They also discussed
which source code properties should determine the visualisation parameters. Whilst they
focused on source code print-outs, they also explained possible adaptations of the print-out
format to on-screen displays. Baecker and Marcus (1989) validated their proposed format in
an experiment with 44 third-year students. They found improvements of program compre-
hension through the proposed format, and tested them with statistically significant result,
although this depended on the specific programme. This was an extensive study with differ-
ent alternatives, all involving different highlighting for token types. However, they mainly
used font formatting for signalling purposes and, in contrast to recent IDEs, did not take
colouring into account.
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Oman and Cook (1990) analysed the influence of macro- and micro-typography on pro-
gram comprehension. They proposed a book-like arrangement of source code, including
e.g. a table of contents, and called this part the macro-typography. In addition, they propose
micro-typographic changes to the presentation of the source code: This primarily prescribes
how to use indentation and empty lines, but also boldface fonts for function calls. They val-
idate the proposed format in three different experiments; the one relevant for our study tests
the micro-typographic enhancements. 36 intermediate and 44 advanced computer science
students participated and C as well as Pascal were used. The results showed statistically
significant benefits when using the proposed micro-typographic format. Oman and Cook
(1990) mixed unit and token type highlighting in the micro-typography and focused on unit
highlighting in the macro-typography.

All these studies have in common that they tested different typographic signalling mech-
anisms and aimed for highlighting different information. Some of them found significant
evidence that the proposed highlighting schemes were useful to experts as well as novices.
However, the implementation of syntax highlighting in recent IDEs differs from the schemes
described above – syntax highlighting typically only indicates different token types, with-
out providing any additional or more sophisticated information. Eclipse in particular uses a
rather minimalistic colouring scheme by default compared to other IDEs.

2.3 Summary

In summary, research gives some hints that syntax highlighting in its current form may
be useful at least for some programming tasks, but the results are still inconclusive. Pos-
itive outcomes are based on small scale experiments and sometimes treat special cases
not representative for general programming tasks. Other experiments could not show that
syntax highlighting helps with any programming tasks. Even in experiments where syntax
highlighting was of no help, programmers mostly liked the use of colours in code editors.
In particular, Rambally (1986) showed that programmers favour suboptimal highlighting
schemes sometimes.

3 Experiment planning

We describe our experimental set up in the following subsections. We take a closer look
at the test group, examine the different tasks they had to solve, and what environment was
used.

3.1 Experiment goals

With the results from the experiments, we wanted to analyse four research questions
(henceforth referred to as RQ 1-4). The first targets the general effect of syntax highlighting:

Research Question 1 Does syntax highlighting support program comprehension and
therefore have a positive effect on the programming ability of novice programmers?

Syntax highlighting colourises tokens based on their token type. There are various data
sources other than the token type on which the typography of the displayed source code
may depend, like programme run-time information (Tapp and Kazman 1994) or unit types
(Rambally 1986; Oman and Cook 1990). Section 2 discusses this in more detail. The type
of information most helpful to programmers depends on what they want to understand when
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reading source code. For example, they may want to know the output of a given code snippet,
its algorithmic complexity or which other modules the given code snippet depends on. This
yields the next research question:

Research Question 2 How does the extent of the positive effect of syntax highlighting
depend on the type of task to be solved?

Long experience with a certain Integrated Development Environment (IDE) makes devel-
opers accustomed to its way of syntax highlighting. Consequently, using the accustomed
syntax highlighting scheme on source code may result in better and faster program com-
prehension. However, experienced developers may easily recognise different token types
without syntax highlighting, thus the benefits of syntax highlighting are lost. We test which
of these two forces has a stronger effect and ask:

Research Question 3 Does the positive effect on their programming ability increase when
programmers familiarise themselves with the meanings of their Integrated Development
Environment (IDE)’s syntax highlighting rules?

Grant and Sackman (1967) as well as Sackman et al. (1968) found high performance dif-
ferences of 25 to 1 between skilled and unskilled programmers. However, Prechelt (1999)
showed that the original figures of 25 to 1 were based on methodological problems and the
interpersonal variation is in fact only between 2 to 1 and 4 to 1. Still, there are differences
and existing research analysed what factors determine these differences (Bergin and Reilly
2005; Holden andWeeden 2003). The statistical impact of self-reported programming expe-
rience and programming performance yielded some contradictory results (Bergin and Reilly
2005; Kleinschmager and Hanenberg 2011). This leads to another research question, this
time not related to syntax highlighting:

Research Question 4 Does previous programming experience increase the ability of
students to correctly solve short programming-related tasks?

RQ 4 allowed us to evaluate the validity of the self-reported data. Furthermore it let us
evaluate whether the tasks we used in our experiments actually require programming skills
to solve them correctly.

3.2 Experiment participation

Test subjects of our study were students enrolled in computer science and related fields
attending a course on Programming in Java. All students in the course could participate
in the experiment as a preparation for their final course exams. They were informed that
this preparation is also an experiment, but not about the specific nature of the experiment
to make it a blind experiment. They also gave their consent for the scientific usage of the
results. The test group consisted mainly of first year undergraduate students with little or
no programming experience as well as several more experienced students. The experiment
comprised three points of measurement, each of which involved a different set of tasks. In
total, 390 students participated in at least one point of measurement.

The study data were drawn from three preparatory pre-exam tests interspersed through-
out the semester, henceforth referred to as Point of Measurement A, B, and C. The timeline
and exact number of test subjects per point of measurement is presented in Table 1. 79
test subjects participated in only one point of measurement, 209 test subjects participated
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Table 1 Distribution of tasks
and test subjects per point of
measurement

Point of measurement A B C

Number of tasks 5 8 7

Number of participants 376 319 107

Date of measurement 2013-05-14 2013-06-04 2013-07-09

in two points of measurement, and 102 test subjects participated in all three points of
measurement.

The experiments were conducted in form of one-hour-long electronic examinations using
the LPLUS examination system (LPLUS GmbH 2014) that were automatically evaluated.
Students got the opportunity to get acquainted with the examination system during a sepa-
rate pilot session before performing any real experiment. The pilot session also provided us
with some feedback on task design as well as examination system handling.

During experiments, test subjects were located at isolated PCs and presented with tasks
on a computer screen with mouse and keyboard available. Tasks were either knowledge
questions or source code tasks. The knowledge questions asked for definitions or tested
understanding of object-oriented concepts and were not factored into the study results as
they are not affected by syntax highlighting. These knowledge questions were included
for didactical reasons, as the experiments also served as preparation for the course exams.
Source code tasks asked the test subjects to solve problems based on source code snippets.

3.3 Programming experience

243 students also completed a form about their programming experience. This form did not
work in Point of Measurement A due to a technical issue, therefore data from this form are
not available for all participants.

Figure 1 shows the distribution of answers regarding programming experience. We asked
for experience with programming in general and for experience with Java in particular, since
we used Java in the experiment. We operationalised programming experience via the self-
reported time since the participants started programming in general or with Java. We chose
this measure for its objectiveness, and only later found out that other measures might have
been more suitable (Siegmund et al. 2014).

Other demographic data like the participants’ gender and age were not collected.
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3.4 Source code tasks

Every source code task existed in two flavours of typographic style: either with syntax
highlighting using Eclipse’s basic Java scheme (SH) or merely in plain black & white text
(BW). There was no difference in terms of content. Both flavours used the Courier New
font, the default in the Eclipse Integrated Development Environment (IDE) on Windows.
Test subjects worked on each task either in SH flavour or BW flavour, but never on both.
However, different tasks could have different flavours for the same test subject.

The order in which the tasks were presented was randomised for each test subject. For
single and multiple choice tasks, the order of possible answers was also randomised for
each test subject. This ensured that results were not biassed by the order in which the tasks
or answers were presented.

All 20 source code tasks were used to conduct our study. The distribution over points of
measurement is presented in Table 1. A task from Point of Measurement A was reused in
Point of Measurement C, but treated as separate (henceforth denoted as tasks 3 and 3b).

The tasks presented to test subjects belonged to different categories summarised in
Table 2, each of which was processed in a different way. Didactical considerations influ-
enced which tasks occurred in an experiment, therefore some task categories occur more
often than others. Table 2 also lists how many Lines of Code (LOC) the tasks in each
category had at least and at most. A detailed analysis of the task categories follows in
Section 4.

The tasks are numbered, using the following scheme: Tasks 1 (OUTP), 2 (FTG), 3
(UML), 6 (FSE), and 7 (FTGUML) belong to Point of Measurement A. Point of Measure-
ment B comprises the Tasks 8 (OUTP), 9 (OUTP), 10 (UML), 11 (ARR), 12 (FTGUML),
13 (OUTP), 14 (FSE), and 15 (FTGUML). The remaining tasks are Tasks 16 (OUTP), 17
(ARR), 3b (UML), 18 (FTGUML), 19 (FTGUML), 21 (ARR), and 22 (FSE) and belong to
Point of Measurement C.

3.5 Collected variables

In the experiment, we collected the variables shown in Table 3 for each test subject. TASK-
SCORE-N, TASK-CORRECT-N, and TASK-FLAVOUR-N are sets of variables, they exist

Table 2 Task categories

Code Task Description No. of tasks (LOC)

OUTP Determine Output Determine the output of a given code
snippet

5 8-25

FSE Find syntactical errors Name all lines of code that cannot be
compiled

3 27-37

FTG Fill in the gaps Fill the gaps in code snippets with
given answers

1 23

UML Find coding mistakes Find all mismatches of code snippets
with given UML diagrams

3 27-29

FTGUML Fill in the gaps (UML) Fill the gaps in code snippets with
given answers to match a given
UML diagram

5 11-37

ARR Arrange code snippets Arrange given code snippets in cor-
rect sequence

3 11-20
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Table 3 Collected variables

Name Description Value range

TASK-SCORE-N For each task N that the test sub-
jected worked on, the degree to
which the test subject solved the task
correctly

[0; 1]

TASK-CORRECT-N For each task N that the test sub-
jected worked on, a boolean value
indicating whether TASK-SCORE-
N reaches a task-specific threshold
so that the task is considered cor-
rectly solved

true or false

TASK-FLAVOUR-N For each task N that the test subject
worked on, the flavour in which the
task was presented to the test subject

SH or BW

TOTAL-SCORE The arithmetic mean of all task scores [0; 1]
DR A difference in proportions, measur-

ing the impact of SH on the par-
ticipant. The sign shows whether
SH had positive or negative impact,
whilst the absolute value indicates
its strength.

[−1; 1]

JAVA-XP Months of experience programming
in Java

Non-negative rational number

GENERAL-XP Months of experience programming
in any programming language

Non-negative rational number

for every combination of test subject and task that the test subject worked on. The other
variables exist only once for each test subject.

For the analysis of RQ 1, we use the DR and, as a means of method triangulation,
an accumulation analysis based on TASK-CORRECT-N and TASK-FLAVOUR-N. TASK-
CORRECT-N and TASK-FLAVOUR-N are the foundation for the analysis of RQ 2. For
RQ 3, we use DR, JAVA-XP, and GENERAL-XP. Finally, RQ 4 uses TOTAL-SCORE,
JAVA-XP, and GENERAL-XP.

The variables JAVA-XP and GENERAL-XP are described in Section 3.3. The variables
TASK-CORRECT-N and DR will now be defined more precisely.

3.5.1 TASK-CORRECT-N: Correctly solved tasks

Some tasks can only be solved correctly or incorrectly. Other tasks can be partially correct,
but only with a few discrete values between completely correct and completely incorrect.
To treat tasks uniformly and because we know of no statistical method with enough statis-
tical power to handle partial values when analysing individual tasks, we use a threshold to
separate correct from incorrect solutions for tasks that have partially correct solutions. For
example, a trivial threshold would treat all partially correct solutions as correct and only
solutions with no correct parts as incorrect. Ideally, the number of correct and incorrect
answers should be balanced: If there are very few correct or incorrect answers, the results
are more prone to measurement errors. Therefore, every task that allows partially correct
solutions has an individual threshold that depends on the difficulty of the task. With respect
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to this threshold, all tasks will be treated as having solutions that are distinctly correct or
incorrect.

3.5.2 DR: A measure of sensitivity to syntax highlighting

We assigned a score from 0 to 1 for each task and test subject that worked on this task
(TASK-SCORE-N). We used the results for tests with higher statistical power, although they
cannot be used for individual tasks or task categories.

The following paragraphs define a possible measure for the effect of syntax highlighting
on a test subject – the difference in proportions (DR) – and explain its rationale. The DR
is adapted from similar types of statistical experiments, where proportions are called risks
(Ludbrook 2008). First, we will present a simple and straightforward definition of the DR.
Later, we refine this definition to avoid a specific bias induced by the way the experiment
was designed.

A simple definition D̃R of the DR is just the difference between the fraction of correct
solutions of tasks with SH and tasks with BW. For example, if a test subject solved three of
four tasks with SH completely correct and failed at the fourth task, this test subject would
have solved 75% of the SH tasks correctly. If the test subject likewise solved 30% of tasks
in BW correctly, the D̃R for this test subject would be 0.75 − 0.30 = 0.45, indicating that
SH had a positive influence on the test subject.

The experiment design guarantees that every test subject faces at least one task with SH
and at least one task in BW. Thus, the D̃R is well-defined for every test subject. A D̃R close

to 0 indicates that the test subject is insensitive to SH, whilst absolute values for
∣
∣
∣D̃R

∣
∣
∣ close

to 1 indicate that a test subject is very sensitive to SH. The sign of D̃R shows whether the
effect of SH is positive or negative.

The tasks’ difficulties vary independently of the presence of SH. For example, assume
that for one test subject, the set of tasks in the BW flavour are on average more difficult
than the ones in the SH flavour. Even if the test subject was completely insensitive to SH,
the probability of a D̃R > 0 would be greater than the probability of a D̃R < 0. Since
every task had a different fraction of test subjects with SH, this error may accumulate to
a systematic bias for the D̃R when looking at greater numbers of test subjects. To counter
this systematic bias, we used a measure DR derived from D̃R, that contains an additional
correction factor.

For the calculation of the DR, tasks gain different weights, depending on the relation of
number of test subjects working on the task in the SH flavour to the number of test subjects
working on the task in the BW flavour. These weights shall ensure that both flavours receive
the same share of influence from every task.

Let T be the set of tasks and S be the set of test subjects. For every test subject s ∈
S, let sTSH , sTBW ⊂ T be the set of tasks that s worked on in the SH and BW flavour,
respectively. For every task t ∈ T , the weight ft ∈ (0; 1) shall be defined as

ft := |{s ∈ S|t ∈ sTSH }|
|{s ∈ S|t ∈ sTBW }|

For example 223 test subjects were presented Task 1 with SH, whilst 153 test subjects
worked on Task 1 in the BW flavour. Thus, we have fT ask1 = 223

153 = 1.4575. For those test
subjects who worked on Task 1 in BW, the task will count as 1.4575 tasks for the calculation
of the DR, so the (unknown) difficulty of Task 1 has the same impact on SH tasks as it has
on BW tasks.
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Let sc : T → [0; 1] be the function that says how much test subject s solved of each
task correctly. For example, sc(Task 1) = 1 means that s solved Task 1 absolutely correct,
whilst sc(Task 1) = 0.5 means that s reached only half of the score of Task 1. Based on the
definition of D̃R and the weight ft , the DR for the test subject s, denoted as sDR, shall be
defined as

sDR :=
∑

t∈sTSH sc (t)

|sTSH | −
∑

t∈sTBW
ft · sc (t)

∑

t∈sTBW
ft

(1)

3.6 Experiment design

Test subjects participating in a particular point of measurement worked on all tasks of that
point of measurement. Each test subject was presented with some tasks in SH and some
others in BW. The flavour was assigned randomly for each test subject and task, but every
test subject received the same number of tasks in SH as all other test subjects of the same
point of measurement. Therefore all test subjects also worked on the same number of tasks
in BW. For example, in Point of Measurement A, all participants worked on the same five
tasks, of which three were in SH and two in BW for each test subject, but which ones were
in SH varied randomly between test subjects. In the first two points of measurement, test
subjects would receive slightly more SH than BW tasks.

3.6.1 Analysis per task type: RQ 2

The analyses for RQ 2 are separate for each task. They compare test subjects with the task
in SH flavour against those with BW flavour. Thus, this is a series of post-test two-group
randomised experiments.

A task can be modelled with two probabilities πSH , πBW ∈ [0; 1]. πSH and πBW rep-
resent the probability that a randomly chosen test subject will solve the task correctly if
the source code is presented with SH or in BW, respectively. This is the probability that
TASK-CORRECT-N is true depending on TASK-FLAVOUR-N. The probabilities πSH and
πBW depend only on the task but not on a specific test subject, as test subjects are selected
randomly within a given set.

If the answer to RQ 1 is positive, test subjects should perform better in a task if the source
code is presented with SH as opposed to presentation in BW. Expressed as a formula, this
means πSH > πBW . Accordingly, the null hypothesis in this case is πSH ≤ πBW .

Every individual task represents an experiment for RQ 1 in itself. The solutions for each
flavour can be modelled as binomial distributions and the results can be displayed in a
contingency table such as Table 4.

Given a contingency table of this type, the following three statistical tests decide whether
the null hypothesis can be rejected: Pearson’s χ2-statistic, Barnard’s Exact Test, and Fisher’s
Exact Test. Fisher’s Exact Test does not apply to the type of experiment in this paper,
although it is often incorrectly used for these types of statistical problems. In order to use

Table 4 2 × 2 contingency table
showing the solutions of one task SH BW

Number of correct solutions a b

Number of incorrect solutions c d
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Fisher’s Exact Test, a + b and c + d would have to be fixed. The popular Pearson’s χ2-
statistic is only an approximation and therefore less accurate than Barnard’s Exact Test.
Hence, we use Barnard’s Exact Test to test whether the null hypothesis can be rejected.
Ludbrook (2008).

For the calculation of Barnard’s Exact Test, we adapted the Comprehensive R Archive
Network (CRAN) package Barnard (Erguler 2013) in the statistical software R. The adap-
tation (Hannebauer et al. 2017) allowed differentiation between left-tailed and right-tailed
tests. The original package automatically chooses whether to use a left-tailed or right-tailed
test, which sometimes yields unintended results.

First, every task in all three points of measurements was analysed separately. Thus, every
task defined its own contingency table. Using Barnard’s Exact Test, every task is assigned
a p-value. This p-value equals the probability of seeing such a result, given that the null
hypothesis is true, i. e. SH was no benefit for the test subjects working on this task.

3.6.2 Calculating combined p-values

Given the number of tables involved, only very low p-values are evidence of effects for a
specific task. The actual p-values calculated for the contingency tables are not low enough
to allow this deduction. Additionally, the individual contingency tables do not map directly
to one of the four research questions formulated in Section 1. Instead, the p-values should be
treated as intermediate calculation steps that need further treatment to answer the research
questions.

However, difficulty may differ even for tasks in the same category. A task’s difficulty
is hard to predict in advance, thus finding the right balance is tricky. This prevents the use
of a contingency table adding up solutions for multiple tasks. Instead, multiple tasks must
be seen as multiple independent experiments. Therefore we combined the p-values for the
individual tasks using Wallis’s method of calculating the combined p-value for a set of
experiments (Wallis 1942).

4 Results

The following sections for the individual task categories contain the contingency tables for
all respective tasks along with the corresponding p-values. For reasons of brevity, the sums
are omitted. The tasks use an internal numbering scheme invisible to test subjects, since
task order was randomised. Tasks 1 to 7 belong to Point of Measurement A, Tasks 8 to 15
to Point of Measurement B, and Tasks 16 to 22 and 3b to Point of Measurement C. Detailed
data are part of the downloadable lab package (Hannebauer et al. 2017).

4.1 Task category OUTP (‘determine output’)

The OUTP (‘determine output’) category presented code snippets for which test subjects
had to determine the correct output. The answers were either selectable via multiple choice
or to be entered in free text fields. Figure 2 shows a screenshot of Task 13 as an example.
Test subjects could take notes to find a solution.

Understanding code occurs on different layers of abstraction. The lowest layer is under-
standing how a piece of code transforms an input into its output. Programmers may
perform something like a symbolic execution in their minds to get an abstract idea of
this transformation. This task does not ask for the abstract transformation, but for the
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Fig. 2 Screenshot of Task 13 with SH, with English instruction and answer replacing the German original
used in the experiment

transformation of a specific input. This can be easier for some tasks, but the example
of Task 13 as displayed in Fig. 2 shows that understanding the abstract algorithm is
sometimes easier: The code bubble-sorts an array of seven elements, which is tedious to
do with pen and paper, but the output is obvious once a test subject understands that
doMysteriousStuffWithAnArray() implements a sorting algorithm. Therefore we
believe that this task category represents a common program comprehension task of a
low level of abstraction. This type of task may also occur in debugging contexts where a
programmer has to find out why a piece of code has an incorrect output for some input
value.

How could syntax highlighting help participants solve this task correctly? Syntax high-
lighting may help the programmer to find the important parts of the code where the
algorithm is implemented and distinguish it from the scaffolding that the programming lan-
guage requires for a syntactically correct programme. Colours help with this perceptual
segregation (Goldstein 1995). Participants facing the SH variant may focus their attention
on determining the output of the programme, whilst participants with the BW variant may
need to spend some of their mental resources on the mere comprehension of the source code
structure whilst determining the output.

Table 5 lists the contingency tables for the five tasks in the category OUTP. The one-sided
Barnard’s tests do not show statistically significant advantages of the SH variant, except for
Task 13, where it is slightly statistically significant. The combined p-value is 0.2814, so
this task category generally seems not be influenced by the presence or absence of SH.

4.2 Task category FSE (‘find syntactical errors’)

For tasks in the category FSE (‘find syntactical errors’), test subjects had to locate syntac-
tical errors in a given code snippet that would prevent the code from compiling. There was
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Table 5 Contingency tables of
the tasks in category OUTP Task 1 SH BW

Correct 194 133

Incorrect 29 20

p = 0.5311

Task 8 SH BW

Correct 16 13

Incorrect 198 92

p = 1

Task 9 SH BW

Correct 28 12

Incorrect 185 94

p = 0.3956

Task 13 SH BW

Correct 112 48

Incorrect 99 60

p = 0.0808

Task 16 SH BW

Correct 18 12

Incorrect 37 40

p = 0.142

no need to state the exact error – rather, test subjects were asked for the line numbers of the
defective lines. Figure 3 shows Task 14 as an example of FSE.

This task category asks the test subjects to solve a common programming error (Seo et al.
2014): syntactic defects typically detected by a compiler. In the example shown in Fig. 3,
the compiler would complain about the use of an undefined variable ‘i’ in line 7 and an
unexpected ‘do’ in line 21. Syntax highlighting visualises the syntactic representation the
compiler has about the code, so tasks in this category are the most likely to benefit from
syntax highlighting.

Table 6 shows the contingency tables for the three tasks in this category. Only for one
task, SH has a slightly statistically significant advantage. The combined p-value is 0.0925,
which is also slightly statistically significant. There are seven task categories, so finding a
result significant at the significance level α = 0.1 for one of them might also be a statistical
artefact. Also, considering the high number of participants, the effect of SH must be quite
weak if it exists.

Although SH might bring a weak benefit for this kind of task, it is still an intricate
problem to search for syntax errors manually. Running the compiler would yield exactly the
lines with syntax errors that are searched for in this type of task in fractions of a second.
Thus, this specific kind of task might be unnecessary in real programming.

4.3 Task category FTG (‘fill in the gaps’)

FTG (‘fill in the gaps’) tasks presented test subjects with code snippets containing different
gaps. The aim was to fill the gaps with given answers, leading to a useful programme.
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public class AdaptiveInsertionSort extends InsertionSort { 
public void sort(char[] values) { 

int high = values.length - 1; 

// place smallest element at index 0
for (i = high; i >= 1; i--) { 

if (values[i] < values[i - 1]) { 
this.swap(values, i - 1, i); 

   }
  }

// optimized Insertion Sort
for (int k = 2; k <= high; k++) { 

this.shift(values, k); 
  }
 } 

private void shift(char[] values, int i) { 
char x = values[i]; 
do (values[i - 1] > x) { 

   values[i] = values[i - 1]; 
   i--; 
  }
  values[i] = x;
 } 
}

Fig. 3 Example code snippet containing two syntactical errors of FSE task 14 in SH flavour. Test subjects
were provided with a text box for each of the two syntactical errors

Given answer snippets could be dragged around with the mouse and dropped into the gaps.
Figure 4 shows a screenshot of the only task in this category in the BW variant.

This type of task asked for a high-level understanding of class inheritance and polymor-
phism. Syntax highlighting could help to find the code parts relevant for the programme
– strings are highlighted and the question asks for an output of ’B’. However, as the con-
tingency table in Table 7 shows, the results are not even in favour of syntax highlighting.
Possibly, this was due to the small size of the programme snippets.

Table 6 Contingency tables of
the tasks in category FSE Task 6 SH BW

Correct 123 68

Incorrect 106 79

p = 0.091

Task 14 SH BW

Correct 139 69

Incorrect 72 39

p = 0.4324

Task 22 SH BW

Correct 34 25

Incorrect 21 27

p = 0.1109
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Fig. 4 Reproduction of Task 2 in BW in English. The original uses German identifiers and instructions

4.4 Task category UML (‘find coding mistakes’)

In UML (‘find coding mistakes’) tasks, a source code snippet was accompanied by a UML
class diagram. The aim was to identify how the code snippet differed from the diagram. The
diagram was always to be considered correct, so test subjects had to find mismatches within
the code. Figure 5 shows a screenshot of Task 3, where test subjects could select the true
statements from the following list (statements were originally in German and translated for
this list):

– The order of inheritance must be reversed. TopInsurance must inherit from
BasicInsurance and not the other way around.

– Class attributes, for example overvoltagedamages in BasicInsurance, must be
declared public, as access from outside is not possible otherwise.

– Attributes like overvoltagedamages in method output() must be converted to
strings with the method toString() before output.

– Method output() must be marked public.
– Attributes rainfall and phoneabuse must be redefined in class Basic-

Insurance.
– Method output() must have return type String.

The different elements of the UML class diagram correspond to elements in the Java
code. Programmers may know which kind of token they are searching for. In this case, they
may restrict their search to those elements having the correct highlighting for the searched
token type if they work on the SH variant. For example, the UML diagram specifies whether

Table 7 Contingency table of
the task in category FTG Task 2 SH BW

Correct 145 102

Incorrect 76 53

p = 0.9985
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Fig. 5 Reproduction of Task 3 in SH. The original version had German instructions and identifiers

attributes and methods should be declared public or private. This is specified via keywords
in the Java code and so a programmer may search for keywords when checking whether
accessibility had been defined correctly in the code.

Table 8 shows the contingency tables for the three tasks in this category. Task 3 originally
appeared in point of measurement A and was reused in point of measurement C as Task
3b. None of these tasks showed a statistically significant advantage of SH over BW. The
combined p-value of 0.3339 is also not statistically significant.

4.5 Task category FTGUML (‘fill in the gaps (UML)’)

The FTGUML (‘fill in the gaps (UML)’) category combines the previous tasks FTG and
UML. Test subjects were again provided with a code snippet and a UML class diagram and
had to match both by filling in the gaps with given answers. The gaps were either within the
code or the diagram, depending on the task. Figure 6 shows a screenshot of Task 15 with SH.

The code to be inserted consisted of single words each. The words did not differ in
terms of highlighting, so a possible advantage of SH would be limited to the main body
of code. Here again, the highlighting might make it easier to map elements of the UML
diagram to parts of the code. For example, the interface keyword may show up as UML
stereotype, other keywords use different symbols, whilst class identifiers show up as the
same text in the diagram. Table 9 shows the contingency tables for the five tasks in category
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Table 8 Contingency tables of
the tasks in category UML Task 3 SH BW

Correct 114 67

Incorrect 114 81

p = 0.2463

Task 10 SH BW

Correct 84 51

Incorrect 130 54

p = 1

Task 3b SH BW

Correct 33 25

Incorrect 22 27

p = 0.1315

Fig. 6 Screenshot of Task 15 in SH with English instructions translated from German. Test subjects could
drag and drop the four keywords into the boxes in the code
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FTGUML, but no statistically significant effect in favour of SH results from Barnard’s tests
of the contingency tables. The combined p-value of 0.9412 by Wallis’s method is also not
statistically significant.

4.6 Task category ARR (‘arrange code snippets’)

Finally, the ARR (‘arrange code snippets’) category provided test subjects with different
lines of code and an algorithm description. The given snippets had to be dragged and
dropped into the right order to produce a meaningful programme according to the given
description. Figure 7 shows a screenshot of Task 21, which was the only task in category
ARR.

This type of task may require test subjects to look back and forth between the task
description and the code to compare which line of code corresponds to which part of the task
description. Beelders and du Plessis (2015) characterised these regressions as an indicator
for the difficulty to comprehend code. Syntax Highlighting might help to find the right spot
in the code that maps to a part of the task instruction as opposed to keywords that do not
map directly to task instructions, but are merely scaffolding. Thus, syntax highlighted code
might reduce the cognitive effort for this mapping and therefore ease the task of comparison.

Table 10 shows the contingency tables for the three ARR tasks. SH did not show a posi-
tive effect for our test subjects. Consequently, the combined p-value of 1 for the three tasks
is not statistically significant.

Table 9 Contingency tables of
the tasks in category FTGUML Task 7 SH BW

Correct 139 91

Incorrect 88 58

p = 0.5011

Task 12 SH BW

Correct 94 57

Incorrect 117 51

p = 1

Task 15 SH BW

Correct 141 83

Incorrect 72 23

p = 1

Task 18 SH BW

Correct 36 29

Incorrect 19 23

p = 0.253

Task 19 SH BW

Correct 25 29

Incorrect 27 26

p = 0.9995
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Fig. 7 Screenshot of Task 21 in SH and English reproduction of the originally German task instructions

5 Analysis

This section describes the outcomes of the statistical tests used for the four research
questions.

Table 10 Contingency tables of
the tasks in category ARR Task 11 SH BW

Correct 35 79

Incorrect 73 132

p = 0.9827

Task 17 SH BW

Correct 41 45

Incorrect 11 10

p = 1

Task 21 SH BW

Correct 33 40

Incorrect 19 15

p = 1
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5.1 RQ 1: overall effect

The DR is a measure of a test subject’s sensitivity to syntax highlighting, where positive
values indicate a positive effect of SH and negative values indicate a negative effect. The
distribution of DR values for the 390 test subjects is shown in Fig. 8.

If SH has a positive effect on the results, the mean DR should be positive. Indeed, the
mean is 0.00558, but as this is very close to 0.0, the effect can only be very weak. Figure 8
shows that the distribution looks like a normal distribution, so a parametric test could show
whether this difference in mean is statistically significant.

However, a Shapiro-Wilk Test finds statistically significant differences between the sam-
ple and the normal distribution (p < 0.001). As the Shapiro-Wilk test is very sensitive to
sample sizes, these differences may not be a problem for using the t-test. High skewness is
a major problem for t-tests (Chaffin and Rhiel 1993), so we analysed the skewness of the
sample. The skewness of the DR distribution in the sample is 0.416. Extrapolating the data
from Chaffin and Rhiel (1993) suggests that with the sample size of n = 390, the skewness
is low enough to allow a one-tailed one-sample t-test.

A one-tailed one-sample t-test does not show that the DR is statistically significantly
greater than 0 (p = 0.3458). Hence the dataset provides no evidence that RQ 1 has a positive
answer. If there is an effect, it is too small to be recognised in the dataset.

As Dragicevic (2016) suggests, confidence intervals are a method to find out whether
the effect is just very weak or the test power is just too low to measure it. In order to find
an effect size for SH, we calculated the 95% confidence interval for the mean, which is the
DR interval [−0.022; 0.033] . Divided by the sample standard deviation, the 95% confi-
dence interval of the mean covers the standard deviations [−0.079σ ; 0.120σ ]. As previous
research did not calculate effect sizes, we cannot compare the effect size in our setting with
those of previous studies.

However, it is still possible that there is an effect for individual experience levels or
individual task types that becomes visible when looking only at these specific subsets.

5.2 RQ 2: differences between task types

As explained in Section 3.4, the tasks differ in the type of problem the test subjects had to
solve. This allowed to evaluate RQ 2. Using Wallis’ method, tasks belonging to the same
category were combined and one overall p-value was calculated per category. Table 11
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Table 11 p-values per task category

Category OUTP FSE FTG UML FTGUML ARR

p-value 0.2814 0.0925 0.9985 0.3339 0.9412 1

shows the results of these calculations again for all task categories. No category showed
significantly better results for tasks in the SH flavour opposed to tasks in the BW flavour.
FSE showed slightly significant differences, with p < 0.1, but this might be a statistical
artefact, given the large sample size.

Combining the results of all tasks provides another statistical test for SH’s general effect
according to RQ 1. For this test, results from all tasks must be combined. Using Wallis’
method as described above, the tasks’ p-values were combined to calculate an overall p-
value of 0.74. This is much higher than any meaningful significance level, hence this method
also shows no evidence for a positive answer to RQ 1 in the dataset.

5.3 RQ 3: influence of programming experience

243 test subjects also filled out a questionnaire about their programming experience,
described in Section 3.3. The questionnaire yielded the general programming experience in
months for 239 survey participants and the Java programming experience in months for 239
survey participants (the sets are not equal, as eight participants answered only one question).
Figure 9 shows a histogram of the DRs grouped by years of experience of the test subjects.

We conducted a regression analysis to find out whether there is a correlation between
programming experience and sensitivity to syntax highlighting. The regression analysis
excludes the five-cent-fractile with the longest experience. These outliers have more than six
years of experience with programming in general or more than four years of programming
experience with Java. There are two reasons for this exclusion: First, after a whilst, knowl-
edge about the SH scheme is saturated and additional Java experience does not increase
sensitivity to SH anymore. In fact, Eclipse’s SH scheme is quite simple and consists only
of four colours and one variation in font type. The five-cent-fractile still leaves a very
gentle learning curve of one colour per year. Second, the experience values rely on the hon-
esty of the survey participants and their comprehension of the questionnaire. Although no
specific evidence came up to cast doubt on the honesty and comprehension of the survey
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Table 12 Results from the two (OLS) regression analyses with DR as dependent variable (all non-
significant); all experiences are in months

Explanatory variable Coefficient F-test p-value(F)

General programming experience -0.0002 F(1, 225) = 0.05 0.8238

Java programming experience -0.0005 F(1, 226) = 0.16 0.6903

participants, bogus values are more likely to be outliers. In an ordinary least squares (OLS)
regression analysis, outliers impact the regression by the square of their deviation from the
mean. Thus, extreme outliers have a strong impact on the regression. Even few bogus values
of this kind could invalidate the analysis.

In the following (OLS) regression analysis, both the general programming experience in
months as well as the Java programming experience in months are explanatory variables.
General programming experience and Java experience correlate quite closely with each
other. Thus, the analysis comprises two (OLS) regressions, one for each of the explana-
tory variables. The DR serves as dependant variable. Both regressions are insignificant. The
results are listed in Table 12.

5.4 RQ 4: programming performance and experience

In order to cheque the answers of the questionnaire for plausibility, another regression anal-
ysis calculates the correlation between experience and the test subjects’ score for all coding
tasks, irrespective of their highlighting flavour. Programming experience in general corre-
lates significantly with the test subject’s score (p = 0.0321). Java experience correlates
even highly significant with the test subject’s score (p = 0.0010). Table 13 lists detailed
results for these regression analyses. As shown, every month of Java programming experi-
ence increases the expected test score by 0.3146 percentage points. Figure 10 visualises this
relationship. General programming experience has a much weaker effect, as every month of
General programming experience increases the score by only 0.0594 percentage points.

Figure 11 highlights this relationship as a histogram, where the test subjects who
answered about their Java experience are divided into four groups: no prior experience, at
most one year of Java experience, at most two years of Java experience, and more than two
years of Java experience. The histogram is normalised to relative frequencies, so each bar
shows only the fraction of test subjects within each of the four groups that reach a score in
the interval indicated on the x-axis. The histogram visually shows that the score distribution
shifts to a greater average when the sample has more Java experience, measured as years
since the test subject has started to work with Java.

Table 13 Results from the two (OLS) regression analyses with score in percentage as dependent variable;
all experiences are in months

Explanatory variable Coefficient F-test p-value(F)

General programming experience 0.0594 F(1, 225) = 4.65 0.0321∗

Java programming experience 0.3146 F(1, 226) = 11.18 0.0010∗∗∗

∗ significant at α = 0.05
∗∗∗ significant at α = 0.001
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Fig. 10 Scatter plot showing actual test scores by Java experience and the fitted curve resulting from the
regression analysis

The arithmetic mean score in the group with no prior Java experience is 50.37% and the
sample standard deviation in this group is σ = 16.64 percentage points. Together with the
information shown above, each year of Java programming experience increases the expected
score by 12 · 0.3146 = 0.2268σ . Future research should find out which factors influence
this effect size.

These results answer RQ 4 positively: Self-reported programming experience correlates
positively with actual performance in the type of short programming-related tasks used in our
study. Programming experience with the specific, object-oriented language used in the tasks
has stronger influence on the score than general programming experience. This positive
result is also a hint that the test subjects correctly reported their programming experience
and that solving the short tasks used in our experiment requires programming skills.

6 Discussion

This section discusses the results and compares them to related studies. We draw implica-
tions from the data and ask questions for further research.
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6.1 RQ 1: syntax highlighting effect

With regard to RQ 1, we expected syntax highlighting to support novices in understanding
source code. A task’s SH flavour should thus have yielded more correct results from stu-
dents than its corresponding BW flavour. This, however, was not the case in general, as the
analyses in Sections 5.1 and 5.2 have shown – a surprising result, as previous experiments
showed much stronger statistical effects given a smaller dataset (Baecker and Marcus 1989;
Oman and Cook 1990; Rambally 1986; Tapp and Kazman 1994). In contrast to these ear-
lier studies examined in Section 2.2, our experiment used a modern Integrated Development
Environment (IDE)’s (Eclipse) syntax highlighting scheme and therefore presented test sub-
jects with a program comprehension mechanism used in professional environments. This
difference may account for the negative results.

As described in Section 2.1, a few studies also analysed syntax higlighting as used
in in modern IDEs. Two previous studies with smaller data sets found similar results
(Hakala et al. 2006; Beelders and du Plessis 2015). Sarkar (2015) found seemingly con-
tradicting results. The reason for these differences are unclear as of yet and could be
the python highlighting scheme, a different participant culture, or simply a statistical
artefact.

Not only professional IDEs, even less sophisticated text editors provide syntax highlight-
ing as a must-have feature. For example, the text editing library Scintilla (Scintilla Project
2014) devotes 52,4% of their source code to syntax highlighting.2 Apparently, the tested
syntax highlighting scheme is of no specific use for novices, so questions about the teaching
approach to programming languages arise. Is it useful for novices to use professional tools?
Could novices benefit from a different highlighting scheme? Can we train better develop-
ers by changing the learning environments? An interesting follow-up experiment could be
a replication of our scenario with a syntax highlighting scheme used by educational IDEs
(e.g. Allen et al. 2002, Grey and Flatt 2003).

Furthermore, with syntax highlighting not being as supportive as expected, ways to
employ additional mechanisms to program comprehension as tested in related studies are
of interest. One example of a more efficient colouring scheme follows Rambally’s colour-
ing of statements based on their function (Rambally 1986): Instead of colouring the source
code based on the token type, built-in language constructs like classes and methods might
be assigned colours based on their namespace. In object-oriented programming languages
like Java and C#, namespaces are commonly used and e.g. accompanying frameworks cate-
gorise pre-defined classes in namespaces already, so the only effort necessary would be on
the Integrated Development Environment (IDE)’s side.

Rambally (1986) also showed that there are cases where programmers favour a less
efficient highlighting scheme over a more efficient one. More generally, Mehta and Zhu
(2009) have shown that people favour colouring schemes that are considerably less suited
for the task at hand. Hakala et al. (2006) and Beelders and du Plessis (2015) both explained
that their participants found syntax highlighting useful, although they had not measured
any objective benefit of syntax highlighting. This may explain why the current form of
syntax highlighting is so common, even if its benefits were negligible, as in the context
of our experiment. This paradox may also prevent the introduction of better highlighting
schemes.

2The *.cxx files in lexer and lexlib contain 38,482 and 908 (LOC), respectively, whereas the whole project
comprises 75,182 (LOC) in version 225.
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6.2 RQ 2: task type dependency

Regarding the different task types, only the ’find syntactical errors’ (FSE) category showed
at least a slightly significant effect of syntax highlighting on the test subjects’ results. For
this task type, the test subjects achieved more correct results with the SH than the BW
flavour. This supports the idea underlying RQ 2 that the task at hand is an important factor
for the supportive effect of syntax highlighting. Indeed, that syntax highlighting would have
a stronger effect on tasks in the category FSE than in other categories was expectable – it
was the only category directly targeting syntactical problems: Test subjects had to hunt for
syntax errors in code snippets. Besides this, it remains surprising that no other task type
statistically shows a benefit from the use of syntax highlighting.

As in the analysis of RQ 1, this result begs for an even more critical look at the use
of syntax highlighting nowadays. Regarding novices, only the search for syntactical errors
could be shown to benefit from the current use and application of syntax highlighting. The
use of a programming language’s syntax is definitely problematic for novices. However,
the tasks in the category FSE challenged the test subjects only to enter the line numbers of
syntax errors a compiler would show them anyway. Thus, in a real programming scenario,
programmers already receive a more elaborate explanation of syntax errors if they just try to
compile the programme instead of skimming through the syntax-highlighted source code.
On the other hand, maybe syntax highlighting teaches novices about the different types
of tokens and therefore plays an important role in the learning phase of becoming a pro-
grammer. In this case, a less minimalistic colouring scheme than Eclipse’s might be more
beneficial.

6.3 RQ 3: familiarisation

According to RQ 3, the more experience programmers have with a specific type of SH,
the easier it is for them to understand the message underlying the colouring of the text.
Thus, experienced programmers should benefit more from SH. In fact, the need to learn the
language of SH might then explain the lack of evidence for RQ 1, as the test subjects were
mostly novices.

However, the results show no evidence for a positive answer to RQ 3. As discussed in
the previous part of this section, there is also a theoretical explanation for a possibly neg-
ative answer to RQ 3: Maybe only novices benefit from SH, as only novices still have
to learn the differences between different types of tokens. Yet, if such a relation were
present, the regression analysis described in Section 5.3 should have detected it: The rela-
tion would have shown a negative coefficient for the experience and a low p-value. Thus,
if a relation existed in either direction, it was too weak to be detected with our data and
methods.

6.4 RQ 4: programming experience

The regression analysis in Section 5.4 provides an answer to RQ 4: Programmers with
longer programming experience perform better – they solve code comprehension tasks
involving short snippets of source code more correctly. We measured programming experi-
ence as the self-reported length of time for which a test subject had been programming in
general and especially in Java. Siegmund et al. (2014) found years of programming expe-
rience a good predictor for the ability to solve short programming task that correspond to
our category OUTP. Since they measured the time needed to solve a task and we measured
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correctness, the results are not directly comparable, though. In contrast to our study, Dieste
et al. (2017) found years of programming experience to have no effect on programming
performance.

7 Threats to validity

In this section, we discuss possible limitations to our study. We analyse the experimental
setup and try to identify threats to the internal, external, and general validity (Kitchenham
et al. 2002).

7.1 General validity

As is the case in many studies in university environments, our test group consisted of stu-
dents, which might reduce the credibility for practical application due to the controlled
learning environment. Of course, this does not affect our experiment’s validity as statements
about novice programmers: first-year students are representatives of this target group.

Another possible threat to the general validity might result from wrong experiment
design, e.g. the tasks might not measure program comprehension but rather a completely
different cognitive process. We tried to avoid this pitfall commonly known as construct
validity by using different types of tasks, so it becomes more unlikely that all tasks measure
something different than program comprehension.

Tests on continuous values like parametric tests have a higher statistical power than tests
on binary variables. Especially, Barnard’s Tests has a lower statistical power than a t-test.
Thus, results for the individual task types based on Barnard’s Test may simply not have
shown an effect because the statistical power was too low. However, the experiment’s sam-
ple size was comparatively high, so the effect of syntax highlighting cannot be very strong if
it is still not detected with Barnard’s Test. Furthermore, we analysed RQ 1 with a t-test and
also conducted an analysis of effect size and showed that the effect of syntax highlighting
was small in the experiment setting.

Test subjects may have the opinion that SH improves their programming performance
and therefore the presence of SH might have influenced their motivation and self-perception
of the task difficulty, which in turn might have influenced the results. We used a blind
experiment, so the test subjects did not know that each task existed in two flavours, BW and
SH, to reduce this threat to validity.

7.2 Internal validity

Also, our participants had to use an unfamiliar software system and could not work with
their accustomed Integrated Development Environment (IDE) or individual syntax high-
lighting settings. The experiments took place in a special room for electronic examinations
and it is unclear how and if this artificial atmosphere and the technical equipment might
have influenced the individual results. We tried to mitigate this risk by providing a trial
session one week before the first experiment.

Furthermore, our tasks consisted of given code snippets. It is unclear how the snippets’
size has influenced the results – it may be that code size is an important factor determin-
ing the effectiveness of using syntax highlighting. However, for example Rambally (1986)
measured significant effects of highlighting using a programme of only 107 LOC.
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7.3 External validity

The experiments only included tasks in which the test subjects had to read and understand,
but not write source code. This implies the threat that the lack of interaction reduced the
effect of syntax highlighting below statistical significance. However, even if syntax high-
lighting helped only in writing source code, it would do so by improved comprehensibility
of the written code, because syntax highlighting itself has obviously no interactive compo-
nent. This indicates that an effect of syntax highlighting on code comprehensibility would
be a pre-condition for a positive effect on the ability to write source code. Almost all related
research presented in Section 2 supports this line of argument, as they let the test subjects
only read and not write code, and still showed positive effects on code comprehensibility
for other types of highlighting than syntax highlighting (Baecker and Marcus 1989; Oman
and Cook 1990; Rambally 1986; Tapp and Kazman 1994).

Wemeasured whether test subjects solved the tasks correctly or not. The benefit of syntax
highlighting however might not be a higher chance to solve a task correctly, but faster. As we
did not measure the time needed to solve individual tasks, the analysis neither implies nor
denies a relation between syntax highlighting and the speed of solving a task. However, as
presented in Section 2, no previous study analysed the effect of highlighting on both speed
and correctness and found an effect only on speed but not on correctness. But for example
Oman and Cook (1990) showed that some forms of highlighting show significant effects on
correctness, but not so much on speed. Even if there is an effect of syntax highlighting on
speed, this does not invalidate the result that the effect on correctness is weak: As described
in Section 5.1, with a confidence of 95%, syntax highlighting helps to solve at most 3.3%
of the tasks used in this experiment correctly, which is 0.120 standard deviations.

8 Conclusion

We could not find evidence in our data that syntax highlighting as used in Eclipse has a ben-
eficial effect on program comprehension for programming novices. If there is a beneficial
effect, the effect size must be quite small. This result is surprising given that modern IDEs – in
professional and educational incarnations – extensively use syntax highlighting in similar ways.

Previous research suggests that programmers sometimes prefer ineffective colouring
schemes. Future research should explore the causes and investigate the optimal colouring
scheme to please users and provide useful information.

Another explanation for the popularity of syntax highlighting – despite its lack of effect
at least under the circumstances of the experiment described in this paper – may be that it
is useful for learning a language but not for using it. This is an interesting research question
worth exploring that might also yield insights for the preparation of learning materials.

As discussed in Section 7, we did not analyse whether syntax highlighting helps to solve
a task quicker. This nevertheless interesting question is therefore still open to future research
as well. Our experiments had constraints whose role should be explored in future experi-
ments: Are there additional types of tasks, for example with a larger volume of source code,
that might increase the usefulness of syntax highlighting? Is a syntax highlighting scheme
different to Eclipse’s more beneficial?

Furthermore, we tested program comprehension with existing code, hence we can only
make assumptions about reading but not about writing code. For future research in this area,
more interesting questions arise: Can syntax highlighting support novices in making less
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syntactical errors whilst typing? Is an opposite approach – highlighting syntactical errors
instead of tokens – more effective?

Contrary to Eclipse’s syntax highlighting scheme, previous research demonstrates that
other types of highlighting have beneficial effects on program comprehension (Baecker and
Marcus 1989; Oman and Cook 1990; Rambally 1986; Tapp and Kazman 1994). Given that
the effect of syntax highlighting for program comprehension is so small, current IDEs may
use code colouring as a more effective feedback channel by providing alternative informa-
tion like aforementioned researchers suggest. Other interesting options for code colouring
are:

– The colouring of a class or function call could depend on the namespace the class or
function is defined in. The colour would show which kind of classes the code uses,
and so a glance over a piece of code would reveal already which part is responsible for
e.g. file I/O, networking, etc. Varicoloured code might indicate cross-functional code,
whilst single-coloured pieces of code might indicate a proper separation of concerns.

– Colour might as well indicate the number of edits to the code. If code has been edited
very often, it might be better to rewrite the whole code section instead of applying yet
another patch.

– Authorship information from versioning systems might be another interesting colouring
option. Each colour of the source code represents one author. This allows developers
to quickly identify sections edited by multiple authors. Research suggests that these
sections are more prone to errors (Bird et al. 2011).
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