
https://doi.org/10.1007/s10664-017-9543-z

General methods for software architecture
recovery: a potential approach and its evaluation

Damian A. Tamburri1 ·Rick Kazman2,3

© Springer Science+Business Media, LLC 2017

Abstract Software architecture is a critical artefact in the software lifecycle. It is a system
blueprint for construction, it aids in planning teaming and division of work, and it aids in
reasoning about system properties. But architecture documentation is seldom created and,
even when it is initially created, it is seldom maintained. For these reasons organisations
often feel the need to recover legacy architectures, for example, as part of planning for evo-
lution or cloud migration. But there is no existing general architecture recovery approach
nor tool that can be applied to any type of system, under any condition. We will show
that one way of achieving such generality is to apply systematic code inspection following
a Grounded Theory (GT) approach. Though relatively costly and human-intensive, a GT-
based approach has several merits, for example: (a) it is general by design; (b) it can be
partially automated; (c) it yields evidence-based results rooted of the system being exam-
ined. This article presents one theoretical formulation of a general architecture recovery
method–called REM–and reports on the evaluation of REM in the context of a large archi-
tecture recovery campaign performed for the European Space Agency. Our results illustrate
some intriguing properties and opportunities of GT-based architecture recovery approaches
and point out lessons learned and venues for further research.

Communicated by: Martin Robillard

� Damian A. Tamburri
damianandrew.tamburri@polimi.it

Rick Kazman
kazman@hawaii.edu

1 Politecnico Di Milano, Milan, Italy

2 University of Hawaii, Honolulu, HI, USA

3 Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Empir Software Eng (2018) 23:1457–1489

Published online: 22 September 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9543-z&domain=pdf
mailto:damianandrew.tamburri@polimi.it
mailto:kazman@hawaii.edu

Keywords Software architecture recovery · Ground-truth software architectures ·
Grounded theory · QVT · OCL · UML profiles · Model-driven engineering · Model-driven
architecture · European space agency · Industrial experience report

1 Introduction

Software architecture is an abstraction of a software system: its composite parts, their prop-
erties, their relationships, as well as the choices that led to the system and its parts (Bass
et al. 2012). This article reports on our experiences with recovering software architectures
by means of an approach that makes no assumptions towards the architecture being recov-
ered and, hence, may be *always* applicable, no matter the functions, qualities, languages,
or operational conditions of the system whose architecture needs to be recovered. In fact,
this article contains a first theory for defining a “general” software architecture recov-
ery approach, evaluating that theory over a single, albeit large, industrial, mission-critical
case-study. Our argument towards such general methods is quite intuitive.

On one hand, software architecture is a critical software engineering artefact given its
many possible uses (e.g., documentation (Bachmann et al. 2000), verification (Tsai and Xu
2000), analysis (Clements et al. 2001), community steering and agreement, work-division,
decision-making, etc.). And there may be dire consequences for not having a good software
architecture, as has been reported in many research conferences, e.g., ICSE,1 WICSA &
CompArch2 or ECSA.3

On the other hand, both theory and practise in architectures suggest that maintaining
good quality software architectures is non-trivial. And this is particularly difficult for legacy
systems because in these cases there is typically no documentation available and the origi-
nal developers are often long gone. This is where software architecture recovery is crucial
(Dueñas et al. 1998; Eixelsberger et al. 1998; Kazman and Carriere 1999; Schmerl et al.
2006). Software architecture recovery is the process of inspecting software systems and
extracting representations of their artefacts (e.g., call graphs, file dependency graphs, etc.)
for the purpose of documenting the software architecture (Ding and Medvidovic 2001).
Software architecture recovery research has seen increased attention in the last few years
from multiple perspectives. For example, an established body of work in this area flourishes
in the form of EU projects such as REMICS4 and ARTIST.5 Also, considerable standardisa-
tion efforts exist such as the OMG Architecture-Driven Modernisation taskforce (Newcomb
2005; Izquierdo and Molina 2010). Finally, there has been research on discovering the
Ground-Truth of architectures, such as Medvidovic et al. (Garcia et al. 2013).

Nevertheless, as recent results show (Lutellier et al. 2015), one limitation in the state
of the art is that there is no single approach or technology that can be considered general,
that is, systematically usable for recovering software architectures for any kind of system
(e.g., a mission-critical system vs. an old web application), for any kind of purpose (e.g., for

1http://icse2017.gatech.edu/
2http://www.softwarearchitecture.org
3http://ecsa2016.iku.edu.tr
4http://www.remics.eu/
5http://artist-project.eu/

1458 Empir Software Eng (2018) 23:1457–1489

http://icse2017.gatech.edu/
http://www.softwarearchitecture.org
http://ecsa2016.iku.edu.tr
http://www.remics.eu/
http://artist-project.eu/

modernisation as opposed to re-documentation) or under any circumstance (e.g., without
assuming artefacts other than sources).

What is more, most available approaches for software architecture recovery are inaccu-
rate (Lutellier et al. 2015) and frequently quite expensive. Furthermore, existing approaches
do not provide a way to estimate the costs of the recovery effort so that an effective business
case can be made, and an evaluation of expected ROI can be done. For these reasons, project
managers are often hesitant to invest in such efforts. Finally, many existing approaches tar-
get just a single view (Clements et al. 2002) of an architecture, for example a “component
and connector” view of the running system, or a module view.

This paper, by way of contrast, offers an architecture recovery approach that, basing its
root around GT: (a) may be general by design; (b) can be made reliable at will, since it
allows recovery of software architectures by construction from the very basic elements they
represent (code artefacts, their structure, and modularisation), hence, multiple observers
may be able to retrieve high-quality software architecture artefacts by triangulation, whilst
the reliability of their observations can also be assessed with classical inter-coder reliabil-
ity metrics (Gwet and Gwet 2002); (c) can be, and in fact was, partially automated; and
(d) whose cost can be estimated up-front and depends strictly on the number and size of
artefacts for the system under analysis. This approach stems from an industrial research
and development project called RTE,6 recently unclassified by the European Space Agency
(ESA). The key goal behind RTE was that of “delivering an effective round-trip engineering
technology for heterogeneous legacy space software systems” (Sarkarati et al. 2008). As part
of this project we elaborated an approach that combined: (a) Grounded Theory, the prince
of Qualitative Research approaches (Corbin and Strauss 1990; Schreiber and Carley 2004);
(b) Model-Driven Architecture (MDA) principles and tools, e.g., model transformation
technology; and (c) reverse-engineering technology.

The key idea behind RTE is simple: manual inspection of code is unavoidable to retrieve
highly-reliable, if not ground-truth software architectures... but code, at its simplest, is
nothing more than structured text embodying a theory (Naur 1985). So, why not realise
architecture recovery with a research method aimed at manual inspection and analysis
of text and theory generation? This is where Grounded Theory (GT) comes into play.
Grounded Theory (Schreiber and Carley 2004) is a systematic, incremental and itera-
tive qualitative research methodology developed in the late 1960s and employed in many
research domains, including software engineering. Granted, this approach is labour inten-
sive; however, counterbalancing the cost are two benefits: a) we can accurately predict an
upper bound on the expense, and b) we have techniques to help manage that expense.

The approach resulting from the RTE project came to be known as “Roundtrip Engineer-
ing Methodology (REM)” and is the key contribution of this paper. The REM has many
unique features: (a) may in fact be general - REM, following GT, makes no assumptions
as to the nature of the text that needs to be analysed (e.g., in the scope of our project REM
was applied to testing specifications as well as Java code) - this paper reports a data point to
argue for this hypothesis; (b) it is reliable - REM involves the manual inspection of source
code files using a structured GT methodology which is meant for the generation of a the-
ory grounded in factual evidence (primarily source code, in our case) and whose reliability
can be increased with multiple observers by triangulation and assessed with classical inter
rater reliability metrics; (c) REM can be, and was in fact, partially automated using MDA
model transformation technology; (d) REM can be instrumented for cost-estimation which

6http://tinyurl.com/of65un2

1459Empir Software Eng (2018) 23:1457–1489

http://tinyurl.com/of65un2

is required to build business cases around recovery expenses - REM could do this by asso-
ciating an inspection cost with every source artefact available and evaluating analysis costs
through GT phases. Several approaches exist to assist this estimation or to elaborate ad-hoc
estimation techniques, e.g., by Thomson (2011). Finally, REM does not substitute current
analysis and reverse-engineering techniques. Rather, REM may be used in combination with
approaches that provide a high-level view, or those that reverse-engineer code-level facts.
Both of these provide a starting-point from which REM engineers can begin their reading
of the code.

As a proof of concept to test the REM generality hypothesis, the methodology was
applied to a large mission-critical software system called FARC (File ARChive, part of the
ESA MYCONYS Mission Control Software7). MYCONYS provides a secure, highly avail-
able and dependable distributed file-system for all ESA stations (e.g., satellite observation
posts or launching sites) across the world, and the data they produce and exchange.

Novelty, Limitations and Conclusions As a result of the above proof-of-concept study,
we argue that REM is a novel approach with profound potential. On one hand, we observed
that the instruments we used to partially automate REM are sturdy and inextricably linked to
the RTE scenario. On the other hand, we found that a measurable baseline needs to be cre-
ated around approaches such as REM to provide quantification instruments for appraisal of
precision, convenience, as well as testing the generality of the approach further. Finally, we
recognise that the great potential of recovering highly-reliable software architectures comes
at a great cost. Therefore, approaches such as REM should, for the moment, be consid-
ered as last-resort mechanisms, applicable wherefore all other approaches are inadequate.
For example, our case study was a last-resort scenario, presented to us by ESA, where
their heterogeneous code, operations, and maintenance scripts made all existing approaches
infeasible. Similarly, the precision of approaches such as REM are still an open working
hypothesis and seem to heavily depend by the case at hand.

In conclusion, this manuscript outlines and tests REM, a qualitative analysis-inspired
semi-automated recovery approach. Although we claim that REM is a general approach,
we cannot currently prove this yet. Rather, the industrial case study showcased in this
manuscript shows that the approach does in fact work with no assumptions over systems
under analysis and motivates further research in this direction to actually seize and demon-
strate this opportunity towards generality. This paper is a humble bootstrap of the research
line above; we offer a well-articulated but limited point of evidence that is consistent with
our claim of generality, resting upon the foundations of GT.

Paper Structure First, Section 2 describes REM in detail. Second, as a proof-of-concept,
the paper shows how REM was applied to FARC, allowing us to evaluate our approach.
Third, the paper elaborates on the ways in which REM was automated in the context of
FARC, providing insights elicited from industrial practise. Fourth, the paper reports lessons
learned during the study that might benefit further research into software architecture
recovery research.

7http://www.esa.int/Our Activities/Operations/gse/MICONYS

1460 Empir Software Eng (2018) 23:1457–1489

http://www.esa.int/Our_Activities/Operations/gse/MICONYS

2 GT-Based Architecture Recovery

This section elaborates on our experience with a GT-based method for architecture recovery
which makes no assumptions over the architecture to be recovered. First, we describe the
Grounded Theory qualitative data analysis method (van Niekerk and Roode 2009; Corbin
and Strauss 1990). Later, we map GT to architecture recovery principles for the purpose of
elaborating the REM methodology.

2.1 What is Grounded Theory?

Grounded Theory is arguably the most widely-used and perhaps the most effective struc-
tured qualitative data analysis methodology ever created. GT was created by two researchers
in sociology—Barney Glaser and Anselm Strauss—in late 1967. Although the method was
initially designed for the analysis of structured text, recent evolutions and interpretations of
the method have extended its usage to video, audio, web and other forms of content. GT is
generally split into three phases:

1) Open Coding: during this phase the primary sources of data (usually text or qualitative
data of some sort) are read or viewed and each portion of the text is constantly compared
to “codes”, i.e. labels for portions of text that represent the concepts expressed. For
example, some source code or a code-inspection report discussing code review results
may be labelled with the code “COD-REV” or several portions of the same code might
be labelled with: (a) “REV-CONT” for content of the review, (b) with “REV-METH”
for the method of the review, and so on. This process is known as text micro-analysis
(see top-most dotted box in Fig. 1). If the elements in the text express concepts that
cannot be mapped to an existing code, then an additional code is created. Moreover,
the researcher applying the method is constantly noting down observations in the form
of “memos”, i.e. brief textual notes describing an idea or observation made on the data
so far or on the portion of text just analysed. Following our code review example,
for the “REV-METH” code researchers may note in a memo that these reviews seem
to follow a similar method for interfaces and a slightly different method for private
classes. This process of memoing is constant; for example, when new codes are created
memos capture the rationale for creation. The end result of open coding is a set of
categories, creating a taxonomy of codes.

2) Selective Coding: during this phase the codes are constantly compared with each other
(rather than with other pieces of data) until the categories are saturated into clusters
of core-categories (see middle dotted box in Fig. 1). For example, the code category
“REV-METH” is merged with category “REV-LIST-TYP” that identifies the types
of code review guidelines applied in review exercises. Both codes are merged into a
core-category of “REVIEW-PERF” identifying the prerequisites for performing code
reviews. This process is typically instrumental to devise relations between two or
more categories. For example, notice the relation between “REV-METH” and “REV-
LIST-TYP”. This is a process of selection of the core elements that the analyst can
identify, but the process is also guided by the entity of merged concepts. The biggest
and “denser” clusters of codes are usually selected first, since they clearly represent
valuable clusters.

3) Theoretical Coding: during this phase the codes and core-categories are sorted and ten-
tatively modelled (a process sometimes known as Theoretical Modelling). A Grounded
Theory is generated by letting it emerge from one (or more) theory views or available

1461Empir Software Eng (2018) 23:1457–1489

data models, usually by observation, e.g., through theory-inference focus groups. For
example, a focus-group of expert code reviewers may visually inspect, confirm, and
refine all the relations inferred by researchers through open- and selective-coding.

Alternatively, the theory is “forced” by comparison with an initial set of hypotheses.
For example, researchers may have previously generated a series of hypotheses regarding
what they expect to find in code reviews. These hypotheses can then be tested against the
generated theory.

At this point, one might consider applying further analysis techniques, such as the 6C
causality modelling framework for GT, where six types of codes (Context, Cause, Conse-
quence, Contingency, Covariance, Conditions) are tentatively related together to infer causal
relations (Glaser 1978).

Figure 1 shows the series of steps to be applied sequentially and iteratively as part of a
GT-based analysis. Essentially, observers of a phenomenon are required to label any piece
of evidence (in our case, source code elements) with a label, indicating the meaning of that
piece of evidence (e.g., a method call, an entire method, an entire Java Class, depending
on the desired accuracy – a class could be labelled with class purpose or functional role).

DataSet

Categories

Emerging Core Categories

Properties, sub-categories

Open Coding : Constant
Comparison / Memoing,
Microanalysis, Clustering

DataSet

Categories

Selective Coding : Constant
Comparison / Memoing

Microanalysis

Clustering

Theoretical Sampling

Basics of Observed Phenomenon

Theoretical Model

Theoretical Coding : Sorting,
Comparing/Cross-Referencing

Memos

Theoretical Sampling

Fig. 1 Grounded theory – a general overview

1462 Empir Software Eng (2018) 23:1457–1489

These labels can then be analysed and clustered according to the emergent categorisation.
Subsequently, codes can be merged, e.g., according to semantic similarity principles (Resnik
1999). As labels (or better, codes) are merged, categories become enriched with further
details (e.g., some labels likely become properties of some others and so on). Moreover,
in the shift from open to selective coding, patterns are discovered across categories (e.g.,
recurrent categories of sections of source code may denote a type of software component).
The goal of selective coding is to relate categories together until there are no other additional
possible relations to be discovered. The process to be followed is reflected in Fig. 2, tailored
from a tutorial on Grounded Theory (Khandkar 2011).

In summary, GT is not just a “qualitative data analysis method” - GT encompasses all
phases of the research from sampling and data collection up to theory building, rather than
simply data analysis. With reference to Peter Naur’s “Programming as Theory Building”
(Naur 1985), we conjecture that a software system is a theory about how it is constructed,
structured, and operates. GT offers us a method that allows that theory to spontaneously
“emerge” from data, using close reading, analysis, and repeated abstraction. A key tenet of
GT is that “All is Data” - meaning that GT procedures can be applied to any phenomena
under study - typically interviews or interview transcripts, but also recordings, documen-
tation, or in the case of this work, programme source code, operations scripts, deployment
assets, configuration management, and more. The insight underlying the REM method (see
Section 2.2) is that the theory of a software system, i.e., its software architecture, the guid-
ing principles underlying its design, can be discovered or recovered by applying GT as a
“recovery” research method.

2.2 REM Method Outline

As previously stated, because GT lends itself well to qualitative-quantitative analyses and
theory-building exercises, it can flexibly be applied to most if not all cases of theory-
recovery exercises including software architecture recovery. This section maps GT onto
REM (Henriksson and Larsson 2003; Sarkarati et al. 2008) for software architecture recov-
ery. To devise a method featuring GT for architecture recovery, a necessary first step is
to examine the definition of software architecture. Paraphrasing from (Bass et al. 2012):
“Software architecture is an abstraction of a software system comprising its elements, their

Fig. 2 Grounded theory in practise, discovering patterns (Khandkar 2011)

1463Empir Software Eng (2018) 23:1457–1489

externally visible properties, their relations, and the choices that led to the system and its
parts”.

Software architecture, according to this definition, means:

1. The set of architecture elements (i.e., the set of components and connectors that are the
essential parts of a software architecture specification (Malavolta et al. 2010));

2. Their visible properties (i.e., the important attributes of these elements);
3. The set of relations across architecture elements;
4. The abstractions realised by these architecture elements;
5. The set of choices that led to those elements, relations and properties;

general architecture recovery thus amounts to:
Recovery of software architecture for any software scenario, under any circumstance,

with the sole assumption that source artefacts for the software to be analysed are available
and analysable by means of visual inspection, possibly assisted by reverse-engineering and
other tools.

Using these axioms as a basis, REM allows us to recover items 1, 3 and 4 of the above,
whilst partially aiding in the elaboration of items 2 and 5. Section 2.2.3 focuses on how
REM may be used to recover items 1,3 and 4. Later, Section 4 discusses how REM can be
instrumented to aid in the recovery of architecture knowledge (e.g., architectural properties)
and decisions, e.g., though further analysis of the elicited memos.

REM recovers architecture elements by systematically coding the entire set of available
system artefacts. To bootstrap the coding, an initial set of codes (referred to as GT-codes
from now on, to avoid confusion with actual software code) is inferred from whatever
architecture knowledge is available. In our case, we used concerns (Lago et al. 2010) that
originally drove the creation of the project under study—the FARC (see Section 3). Notwith-
standing, a classical Grounded Theory methodology may also be applied without an initial
set of GT-codes. For example, a pilot study on random areas of code or a reduced data
sample may be used to generate an initial GT-codes list.

A key principle to drive this direct investigation is to visually inspect and label source
elements following the exact order with which the operational system is built and deployed.
This principle serves two purposes: (a) the build order is an expression of the dependencies
that the software architecture has to uphold - architecture recovery efforts, therefore, need
to elicit independent components and middleware (which are black-boxes in the architec-
ture being recovered) before their dependent counterparts; (b) also, the build order allows
for traceability of the recovered software architecture to make sure it is, in fact, reliably
reflecting reality; this may not include all modules in the source code.

For example, assume you want to recover a modern cloud application X whose build
and deploy script is specified in TOSCA, i.e., the standard “Topology and Orchestration
Specification for Cloud Applications” (Wettinger et al. 2016). A valuable starting code-
list may be inferred from the TOSCA specification itself, whilst the TOSCA blueprint
for application X is most definitely the starting point for an architecture recovery
exercise.

REM is arranged into four stages:

A) GT-Coding and Micro-Analysis This stage features the use of GT-codes as part of
micro-analysis (Onions 2006) of source elements. The goal of this stage is to label source
elements using GT-codes (e.g., assuming reverse-engineering to UML class or composite
structure diagrams is possible, GT-codes can be expressed as stereotypes in a UML archi-
tecture recovery profile). Also, following the classical GT process, the stage includes the

1464 Empir Software Eng (2018) 23:1457–1489

incremental refinement of the GT-codes profile with insights, relations and memos learned
iteratively from stage A). For example, the use of UML can help ensure code coverage (i.e.,
allowing analysts to know what is being recovered, and where, across the system). Also,
along with the use of UML to represent source code artefacts, a UML profile can contain
GT-codes in the form of UML stereotypes. Profiles also make it easier to elaborate stereo-
type relations and characteristics as the GT process unfolds. The stage is iterated upon until
no unlabelled source element exists;

B) GT-codes Categorisation This stage features an analysis of codes (e.g., as part
of UML profiles, and potentially partially automated) from stage A) via the constant-
comparison principle (Corbin and Strauss 1990). The goal is to generate “saturated”
categories, i.e., including as many GT-codes as possible;

C) Recovery of Architecture Elements This stage features an analysis to understand
structural decomposition relations across categories and core-categories generated as part
of GT, to identify architectural concepts;

D) Theoretical Coding of Relations and High-Level Abstraction This stage features
a step of constant observations and comparisons that produces the software architecture
abstractions we seek. For example, UML can be used to instrument an instance of the above
GT process that can be partially automated with model-to-model transformation to search
recurrent clusters and interfaces to produce a corresponding UML component diagram
and/or a composite-structure diagram. By enacting this process we discover any orphan
elements or ambiguities.

2.2.1 GT-Coding and Micro-Analysis

REM begins by elaborating an initial list of GT-codes, using architecture knowledge elicited
from existing documents, or by conducting a pilot study. Micro-analysis consists of visu-
ally inspecting every source element, analysing and establishing the source element’s role
as part of the system. The goal of this analysis is to label every artefact (an entire Java
class, for example) that reflects a concern or a function. As part of this process, analysts
are required to annotate source elements with “memos”—notes about possible structural
decomposition properties or other characteristics typical of software architecture (e.g., mod-
ularisation (Baldwin and Clark 2000)). In our case-study, for example, the REM GT-coding
list started from a list of seven stakeholder concerns (Lago et al. 2010) that drove the design
and implementation of FARC years before (e.g., front-end decoupling, availability, etc.).
Using these seven concerns as initial GT-codes we started a micro-analysis of the available
software code artefacts (which we call source elements from now on).

In addition, as part of REM GT-codes definition, every GT-code includes a mnemonic
aid identifying its meaning.

As previously stated, to aid the application of GT-codes throughout micro-analysis of
reverse-engineered diagrams, GT-codes are realised as diagrams themselves. This aids REM
in four ways: (a) GT-codes are easily applicable to reverse-engineered source elements in
the form of diagram objects; (b) memos are more easily assignable to GT-coded source
elements, e.g., as tagged values (Kandé and Strohmeier 2000) for defined stereotypes;
(c) relations amongst GT-codes are easily captured in the diagram; (d) the profiles and
annotations may be studied for further modernisation.

1465Empir Software Eng (2018) 23:1457–1489

2.2.2 GT-codes Categorisation and Recovery of Architecture Elements

Categorisation of GT-codes (the topmost step 2 in Fig. 1) starts immediately after the first
pass of micro-analysis coding is complete (i.e., after the phenomena are “labelled”—the
topmost step 1 on Fig. 1). This pass typically generates hundreds of GT-codes (302 distinct
labels, in our case). The REM categorisation step is conducted incrementally on these GT-
codes, iteratively moving back and forth between the two artefacts involved, in our case:
(a) the UML profiles containing REM GT-codes (to visually spot relations); and (b) the
GT-coded source elements (to confirm the relations).

Also, during categorisation, the notion of architecture elements begins to emerge. In
essence, the categorisation step uses memos—annotations on the possible structural decom-
position and characteristics of the system (see Section 2.2.1) for the purpose of formulating
modularity and decomposition hypotheses for analysed source elements (step 1 of “Selec-
tive Coding” in Fig. 1). These hypotheses are then confirmed or disproved by again
inspecting the related source elements (step 2 of “Selective Coding” in Fig. 1). This
approach is consistent with identifying what Baldwin and Clark (Baldwin and Clark 2000)
call design rules, i.e., decisions that decouple architectural elements into related but inde-
pendent modules. Note that this approach can benefit from automation beyond what REM
offers in its purest form, e.g., by using architectural analysis tools such as Titan (Xiao et al.
2014).

The resulting process of categorisation (step 3 of “Selective Coding” in Fig. 1) concludes
when: (a) no additional decomposition and modularity hypotheses can be formulated, and
(b) there are no more memos left to aid hypotheses formulation.

The core-categories distilled in the process above match the definition of architecture ele-
ments (see Section 2), since they represent the sets of source elements clustered by semantic
similarity and matched by design rules (Baldwin and Clark 2000). In other words, they are
the core parts of the system that cannot be further abstracted.

2.2.3 Theoretical Coding: Recovering Relations and High-Level Abstraction

The theoretical coding part of REM (bottom part of Fig. 1) features the tool-assisted creation
of a structural decomposition of the software architecture. Following the architecture-driven
modernisation standard (Newcomb 2005), this view was realised, in our case study, using
a UML 2.x component diagram and its creation was aided by model-transformation. For
example, in our proof-of-concept application of REM, a series of 4 model transformations
were sufficient for this purpose and acted jointly as follows:

1) Produce a UML package with one distinct package per core-category elicited during
Selective Coding;

2) Produce a UML component diagram containing a component for every Core-Category;
3) Build relations in the component diagram across components that: (a) reflect Core-

Categories with memo-ed and/or coded relations to other core-categories that emerged
during GT-coding; (b) reflect relations found amongst code-constructs during reverse-
engineering;

4) Produce interfaces for components that reflect Core-Categories grounded in source ele-
ments that identify system end-points by design (e.g., interfaces have public methods
only).

1466 Empir Software Eng (2018) 23:1457–1489

2.2.4 Reapplying REM

In summary, the REM methodology is depicted in Fig. 3. The methodology can be
summarised in compacted form as the incremental workflow of the following steps:

– A) [OPTIONAL] Elaborate initial GT-codes list, e.g., using ancestral architecture
knowledge elicited from existing documents or conducting a pilot study;

1. Use the GT-codes list to label reverse-engineered source elements, starting from
programme build artefacts;

2. Augment list containing codes with memos, i.e., code-inspection insights learned
iteratively from step A);

3. Repeat until no further source element exists;

– B) Analyse codes via the constant-comparison principle - the goal is to generate
saturated categories encompassing all GT-codes;

GROUND-TRUTH
SOFTWARE ARCHITECTURE

GT-CORE-
CATEGORIES

GT-CODES
CATEGORIES

Architecture
Element 2

Source-Element 1 Source-Element "n"...

GT-Code 1 ... GT-Code "n"

Category
1

Category
"n"...

Core-
Category

1
...

Core-
Category

"n"

Architecture
Element 1

...

RUNNING
SYSTEM

GT-CODING
 SCHEMA

A)

B)

C)

D)

(e.g., JAVA Source)

 (e.g., Auto-Gen UML Component
Diagram from core-categories)

Fig. 3 REM in practise, recovering the architecture (grounded-)theory (Khandkar 2011)

1467Empir Software Eng (2018) 23:1457–1489

– C) Analyse saturated categories via constant-comparison and pattern-matching princi-
ples - the goal is to generate saturated clusters of saturated categories;

3 Our Experience with REM in Action

For the purpose of proof-of-concept evaluation, REM was applied on an industrial product
called FARC, provided by ESA during the RTE study. This evaluation was meant to show
that REM is feasible and yields useful, actionable results. These objectives were addressed
in two ways: (a) the recovered architecture was successfully used in the rest of the project for
forward engineering and improvement of the FARC system; (b) our final deliverable (con-
taining recovered architecture knowledge and structural decomposition views) was accepted
after review by the original FARC designers and architects. This section introduces the
FARC and outlines the application of REM for the purpose of recovering the FARC Archi-
tecture. Finally, the section concludes with a report of the qualitative evaluation that was
set-up by ESA to evaluate and eventually accept REM methodology and results.

3.1 The FARC: a Brief Overview

FARC is a medium-sized (600 to 800 KSLoC) mission-critical ESA software system part
of the SCOS 2000 ESA ad-hoc distributed SCOS-2000 Mission Control System (MCS).
Quoting from the original design document for the FARC, “The purpose of the FARC is
to store, retrieve and manage files such as configuration, database and binary files across
any number of distributed sites. The FARC is able to maintain all file-based data within
the SCOS-2000 runtime environment. Files are divided into two operational types - static
configuration files part of the runtime environment and dynamic files updated at runtime”.

3.2 Providing Crude Tool Support for REM

Several technologies were used to partially automate the application of REM. ESA
requested a systematic assessment of the effectiveness of our automation technologies
which was enacted by analysing the recovery contribution of the automated steps of REM
against the total man-months spent applying REM. We established that the technology
employed for REM effectively automated approximately 40% of the architecture recovery
effort. The materials and technologies elaborated in this section are property of ESA but
may be inspected online8 for replication purposes only - further details and resources for
verifiability are discussed in Section 3.8.

3.2.1 Reverse-Engineering

Reverse-engineering was carried out using closed-source parsing technology: Borland
Together EA 2006 R2. This technology allowed us to obtain UML class diagrams from Java,
CORBA IDL, and C/C++ sources. Moreover, our own Perl scripts were used to extract
diagrams from testing specifications and deployment scripts. In addition, a number of Perl
scripts and ad-hoc parsers were used to partially automate the recovery of FARC behaviour,

8http://tinyurl.com/q8rb8na

1468 Empir Software Eng (2018) 23:1457–1489

http://tinyurl.com/q8rb8na

to be used as part of the architecture recovery. Reverse engineering and architecture recov-
ery tools can also be employed for further automation, e.g., software modularisation and
clustering tools such as Structurizr9 or Titan (Xiao et al. 2014) may assist in the visual
inspection of codes and/or the direct coding of modules.

3.2.2 UML Profiling

UML Profiles were used as a documentation vehicle for the GT-codes elicited as part of our
case-study: stereotypes in the profile reflected the tags and labels used to aid the architec-
ture recovery and its automation. Several profiles were developed in the scope of RTE. Most
notably, PIMTAGS is the UML profile that contains the set of GT-codes applied as part of
REM to the entire set of reverse-engineered source elements. The PIMTAGS UML profile
first contained initial stakeholder concerns used to develop the FARC. It was expected that
these would be reflected in the code and the architecture since they were the basic required
properties of the FARC system. FARC was constructed imposing a strict separation of con-
cerns between common system components (Frankel 2002), namely: (i) Data Formatting
and Persistence; (ii) Database Handling; (iii) Presentation (GUI), (iv) Programming Lan-
guage Specific Constructs; (v) Intercommunication Components and (vi) Core Business
Logic; (vii) External Logic. The PIMTAGS profile initially contained these seven concerns
and was incrementally saturated with other GT-codes as part of the GT study. In addition,
the profile was augmented with notes and OCL constraints representing memos, that is,
observations, relations and constraints reflecting empirical interrelations observed in source
elements elicited during GT. The OCL language was used as a constraint language to aid
further automation for architecture analysis.

3.2.3 Model Transformation

The Query-View-Transformation (QVT) language10 was used as the model transforma-
tion baseline behind RTE. QVT transformations were developed to automate the recovery
and representation of software architecture models as part of our REM exercise. The QVT
transformations we elaborated are detailed as follows:

– (i) PSM 2 PIM.qvt, finds and clusters together in the same namespace all source ele-
ments bearing the recovered core-categories - a UML component diagram (see next
transformation) is then used to capture the relations across namespaces clustering
relations across source elements (e.g., dependencies, function calls, etc.);

– (ii) Model construction.qvt, elaborates a UML component diagram with specific
architectural components using clusters generated by PSM 2 PIM.qvt;

– (iii) Pack 2 component.qvt, realises architecture recovery by binding architecture com-
ponents with appropriate relations and creates the related interfaces where needed,
based on results of PSM 2 PIM.qvt;

– (iv) PIM 2 PIM.qvt, creates a reference between every component, interface, and rela-
tion in the output from Pack 2 component.qvt, to original source code elements (e.g.,
classes, scripts, etc.);

9http://www.codingthearchitecture.com/
10http://www.omg.org/spec/QVT/

1469Empir Software Eng (2018) 23:1457–1489

http://www.codingthearchitecture.com/
http://www.omg.org/spec/QVT/

– (v) PIM 2 EGOS mapping.qvt, creates a reference between the structural representa-
tion of the architecture obtained using transformations (i) to (iv) with partially recovered
behaviour from deployed sources - for this feature, we also devised a separate script
to parse code behaviour (method calls and function invocations) into UML sequence
diagrams, given a specified call nesting;

– (vi) CORBAinterfPub.qvt, produces CORBA IDL code for the interfaces in the
recovered architecture.11

As an example of transformation behaviour, the PSM 2 PIM QVT script executes in a
manner much similar to the pseudo-code below:

Begin : / FARC s i d e Arch r e c /
var aux = s e l e c t a l l c l a s s e s from a l l n e s t e d packages
in c u r r e n t p r o j e c t ;
d iv id e (aux) ; / d i v i d e c l a s s e s a c co rd ing t o s t e r e o t y p e
and a s s ign t o one package per s t e r e o t y p e /
c l e a n u p (p r o j e c t) ;
re turn (r e s u l t s) ;

End .
c l e a n u p (in : UML p r o j e c t , ou t : UML p r o j e c t)
p r o j e c t . r emov e unu s e d ob j e c t s ;
re turn (p r o j e c t) ;

d iv id e (in : s e t o f c l a s s e s , ou t : s e t o f packages)
var packages [number o f s t e r e o t y p e s] ;
f o r (number o f s t e r e o t y p e s amongst c l a s s e s)

b u i l d one package and a s s i g n i t to packages [. . .] ;
a s s i g n eve ry c l a s s with c u r r e n t s t e r e o t y p e to c u r r e n t
package ;

re turn (packages) ;

Finally, the application of all model transformations was automated using ANT scripts.12

For the sake of space we do not discuss the model-transformations themselves but limit
ourselves to discussing their operating principles.13

3.3 Applying REM for FARC Architecture Recovery

This section elaborates on how REM was applied to FARC in the scope of the RTE ESA
study.

3.3.1 REM: Study Costs and Facts

Applying REM for the modernisation of FARC, entailed four phases: (1) initial processing;
(2) architecture recovery; (3) forward engineering; (4) acceptance. The entire study cost
approximately 17 person-months (PM), with a team of 6. This cost was split as follows:

11A number of other auxiliary model-transformations were devised but their structure and application is not
discussed here for the sake of space.
12http://ant.apache.org/
13Further references on model transformations are available here: http://tinyurl.com/q8rb8na.

1470 Empir Software Eng (2018) 23:1457–1489

http://ant.apache.org/
http://tinyurl.com/q8rb8na

1. Initial REM elaboration: 1 PM - during this period we studied GT approaches and
refined a possible contextualisation of them within the RTE study, thus eliciting and
distilling the process we outlined in Section 2;

2. REM instantiation: 4.75 PMs - this process was carried out by 2 people working in
parallel on the same source artefacts, for triangulation of results and subsequent inter-
coder reliability assessment (Antoine et al. 2014); this assessment was required by ESA
stakeholders to increase accuracy and was later praised during the final acceptance
workshop;

3. re-design and forward engineering: 2 PMs - this process entailed using the recovered
architecture assets to refactor the legacy system into a modernised version of at least 1
proof-of-concept feature, in our case, we chose to refine the distributed transitive clock
synchronisation feature;

4. testing and integration: 1, 2 PM - this process entailed testing the re-engineered trans-
active clock synchronisation feature as part of the legacy application and redeploy the
FARC in a clean-room operational environment;

5. deployment and acceptance: 1 PM - the previous step was reiterated as part of the
final acceptance workshop and in the presence of the system’s operators and space-
operations controllers.

3.3.2 REM: Organisational Structure

The recovery team consisted of two senior software architects and two junior researcher-
s/developers as well as two expert developers. Initial GT-coding was carried out in parallel
by the software architects and junior researchers. Afterwards, for the purpose of assess-
ing inter-coder reliability (Lavrakas 2008), visual inspection of conflicting coding instances
selected for further discussion was carried out by expert developers and discussed as a
group. No FARC software architect was involved in the recovery team.

3.3.3 Processing FARC with REM

Following the REM, the FARC system was reverse engineered as follows.

• A) At the kick-off of this stage, the FARC sources and scripts were packaged by ESA
and sent to the four analysts. As part of GT-coding and microanalysis, an initial inter-
view was held with the original FARC designers to elicit the basis from which to
construct the initial set of GT-codes (Fig. 4). As a result of the interview, the initial ver-
sion of a UML profile called PIMTAGS was developed, containing 7 GT-codes to be
applied manually on reverse-engineered UML diagrams. For example, the excerpt on
Fig. 5 is extracted from the PIMTAGS profile and identifies three clusters of GT-codes
reflecting architecture links (AL 2 PIM), programming-language specific constructs
(PL 2 PIM) as well as platform-independent constructs (PIM). Moreover, this excerpt
highlights a memo in the form of an OCL Constraint (topmost box on Fig. 5). Finally,
GT-codes inside PIMTAGS were associated with explanatory comments and UML
notes (see lower-angled comment box associated with the AL 2 PIM element) as well
as properties that allowed for their traceability to source elements (“trace2PIM” or
“PIMComponentFlag”).

Concurrently with source element microanalysis, a market scan was initialised to
find reverse-engineering technology that was able to extract UML diagrams from the
source elements at our disposal, featuring, Java, C++, C, CORBA, Unix shell script,

1471Empir Software Eng (2018) 23:1457–1489

Fig. 4 Sample application of a single GT-code on a single source element

and Ant scripts. Micro-analysis was started after the preliminary version of PIMTAGS
and reverse-engineered diagrams were produced. Figure 4 highlights a sample appli-
cation of a GT-code from PIMTAGS, i.e., in the form of a stereotype. In this case, the
stereotype was applied to the entire class.

Through micro-analysis an additional 47 GT-codes were introduced. These addi-
tional GT-codes reflected further design and implementation concerns addressed by
GT-coded source elements. For example, the FARC-CLIENT-GUI or FARC-CLIENT-
DAEMON were examples of GT-codes addressing visualisation and event-based
reaction concerns.

• B) and C) Throughout these stages, the set of profiles produced as part of micro-
analysis were analysed for the purpose of categorisation, following the GT principle of
constant comparison. Model transformation was used to partially automate and assist
the constant comparison activity by identifying GT-codes with identical structures and

Fig. 5 Sample extract of the UML GT-codes profile for FARC called PIMTAGS UML profile

1472 Empir Software Eng (2018) 23:1457–1489

relations. As a result of this activity, GT-codes that were part of the same category were
tagged with the << CategoryName >> stereotype and clustered together by means
of model transformations into a single UML package called << CategoryName >>.
Figure 6 shows a small sample of source elements labelled with GT-codes and clustered
into core categories.

As we compared codes to find categories, we observed that multiple codes were
clearly related, according to memos noted throughout the micro-analysis step (step 1 of
“Open Coding” on Fig. 1). At this point, we went back to inspect the source element
to which every memo was associated. The reasons for this step are: (a) we needed to
confirm or disprove our modularity and decomposition hypotheses; (b) we needed to
further elaborate on the categories found and their mutual relations. For example, during
re-analysis, we noticed that many categories had modularity and decomposition rela-
tions of their own and had “refinement” relations, i.e., some categories were properties
or extensions of other categories. Core-categories emerged as part of this elaboration of
categories.

• D) At this stage, the set of UML packages created as a result of stage B) were processed
through automated model transformation as follows:

– (a) a component was created per every package in the input set;
– (b) the component was populated with the contents of the package so that

internal component structure reflected package contents;

Fig. 6 Sample application of GT-codes and categories

1473Empir Software Eng (2018) 23:1457–1489

Fig. 7 Highest-level software architecture representation for FARC: a mock-up

– (c) interfaces, systems endpoints and appropriate relations were created
whenever package contents were related to other packages/components;

At this point, we reported to ESA stakeholders that the REM architecture recovery
elicited a highly-reliable software architecture description (following stages A to D) that
differed considerably from the component structure expected by the ESA FARC stakehold-
ers that we interviewed initially. This and similar mismatches were a critical outcome of the
RTE study and are discussed further in Sections 3.5 and 4.

3.4 A Highly-Reliable Software Architecture for FARC

The result of the REM process as applied to the FARC case-study is mocked up in Fig. 7 and
refined in Fig. 8. The figure shows a high-level overview of the software architecture that the
RTE project recovered for FARC, represented using a simple box-line notation resembling
a Deployment-Diagram.14 Figure 8 further zooms into the diagram in Fig. 7 to show the
internal structure of the Multi-Domain FARC Server. Both of these figures were realised by
drawing a box for each architecture element reported in our recovered architecture, and then
clustering together the relations between those elements and representing those relations
with a single arrow.

This Figure highlights the structure of the FARC architecture and its deployment. In
particular, the FARC followed a Multi-Tier architecture pattern since Clients (see bottom
part of Fig. 7) as well as Server components are replicated and redistributed across a number

14Component and class names have been changed to avoid disclosure of protected information.

1474 Empir Software Eng (2018) 23:1457–1489

Domain
Archives
Cluster

Redundancy
Daemon

Tabular

Clean
Dispatch

Host
Daemon

Multi-Domain FARC Server

CD1

CD2

CD3

T1

T2

T3

RD1

RD2

RD3

RD1

RD2

HD2

HD1

...

...

...

...

Fig. 8 A detailed view of the multi-domain FARC Server internal structure, as recovered by REM

of data domains in the European Space Operations Ground Segment (i.e., the 3 stations for
which the FARC was designed). As we elaborated the set of architecture elements, relations,
and their properties, over 20 architecture features and flaws were discovered, for example:

1. the GUI component is further elaborated into three sets of features mapped to three sets
of data (i.e., domains) that FARC is capable of handling.

2. there is a logical and physical subdivision between an area of the architecture (e.g.,
domain 3) and the rest of the architecture. This is due to the sensitive nature of data
addressed in domain 3.

3. we found that the FARC server component was designed to operate in single- as well
as multi-domain mode beyond the current mode of operation (i.e., 3 domains).

4. we observed that 3 interfaces across the FARC Server component were securing the
messages they exchanged (through marshalling and un-marshalling) rather than secur-
ing the intercommunication channels. This was due to a misinterpreted requirement.
This, and similar misinterpretation insights we discovered, were deemed critical for the
FARC renewal project and were praised by the stakeholder.

5. we observed that 18 APIs in the FARC architecture were implemented both in C++ and
Java. There appears to have been an unclear requirement at the beginning of the FARC
project concerning which language was more convenient.

6. we observed that an entire area of the FARC architecture, including several sub-
components of the dedicated domain FARC server system (see top left-hand side of
Fig. 7), could not be migrated to the new ESA reference architecture (EGOS-MF15)
other than through a massive restructuring. The legacy area in question was designed to
intercommunicate with an old and established product from the standard ESA operating
system that was deprecated in the new ESA reference architecture.

Upon final evaluation of the recovered architecture we were required to outline our
approach and key results to a focus group composed of 3 FARC operators and 2 FARC sys-
tems modernisation architects. The existence of the team of modernisation architects was

15http://tinyurl.com/jl39tec

1475Empir Software Eng (2018) 23:1457–1489

http://tinyurl.com/jl39tec

obfuscated by ESA stakeholders; any interaction with our project was deliberately prohib-
ited to avoid bias. We were also required to evaluate the REM process and key results of
the RTE study against our mission objectives as part of a final acceptance workshop in a
meeting with the RTE study participants, FARC engineers and ESA personnel related to
FARC. This evaluation was initiated when the FARC focus-group had evaluated the REM
case-study results. The RTE mission objectives were:

1. REM could be reused in any other architecture recovery campaign across the ESA
consortium;

2. The REM evaluation case-study could be reused as a basis for ongoing FARC systems
modernisation, provided the necessary patches were applied to harmonise its architec-
tural structure and properties with the new ESA Standard Reference Architecture;

3. All REM results were accepted by FARC systems modernisation architects and reused
as insights for the purpose of modernisation planning.

The next subsections elaborate on the acceptance focus-group and subsequent workshop.
These served as qualitative evaluation of REM, its results, as well as the entire RTE study.

3.5 Evaluating REM: A Focus-Group Study

The objective of the ESA focus group was to evaluate wether the architecture elicited as
part of REM results actually reflected the deployed FARC architecture. To facilitate this
evaluation, we prepared a presentation of the architecture recovery results. This presentation
was arranged according to Kruchten’s 4 + 1 software architecture views model (Kruchten
1995b). After our presentation we were presented with an overview of the actual FARC
architecture component model (see Fig. 9).

The evaluation of our results by the ESA focus group reported the following:

– the RTE team managed to recover and re-document knowledge concerning the archi-
tectural decomposition of FARC and its components;

– the RTE team managed to recover and re-document knowledge concerning the major
distribution and interfaces across the FARC architecture;

– the RTE team managed to recover and re-document knowledge concerning the peculiar
Domain-based file-management characteristics within FARC;

– the RTE team failed to recover and re-document any knowledge of the checkpointing
and security management aspects of FARC;

– the RTE team managed to recover and re-document knowledge concerning the mir-
roring and replication facilities of FARC – this knowledge may be vital for further
modernisation of FARC;

– the RTE team managed to recover and re-document the current FARC API layout –
efforts were invested in modernising these APIs towards Java5 by means of JET16

technology;
– also, as part of the FARC API recovery, the RTE team successfully isolated a critical

architecture flaw and security risk connected to the existence of a partially implemented
(but exposed) set of Java APIs whose behaviour mirrored their official C++ counter-
parts. This hazard and similar cross-cutting concerns isolated as part of the application
of REM reflected several FARC software architecture flaws in modularisation;

16https://eclipse.org/modelling/m2t/?project=jet

1476 Empir Software Eng (2018) 23:1457–1489

https://eclipse.org/modelling/m2t/?project=jet

Fig. 9 The actual FARC component model

– the RTE team failed to recover and re-document networked consistency management
aspects arranged across highlighted FARC components (see the dotted box in Fig. 9);

The evaluation was, on the whole, positive and the REM-FARC results were officially
accepted. However, the evaluation also showed that REM needs additional refinement
or further research to create mechanisms capable of eliciting functionality that is not
reflected in any localised structural property, but rather emerges from interactions amongst
components of the architecture, e.g., security checkpointing or consistency management.

3.6 REM Final Acceptance Workshop

Fifteen days after the ESA focus-group evaluation of the REM and its application on FARC,
the entire RTE project ecosystem was required to undergo final acceptance. Four presenta-
tions served as introductions for: (a) the REM method; (b) the foundations behind REM and
supporting tool-chains; (c) REM results and FARC knowledge recovery and modernisation;
(d) recommendations and lessons learned. A sample presentation is available online.17

As part of the final acceptance workshop, RTE results and processes were evaluated
against against mission objectives as follows:

1. REM can be safely reused in any other architecture recovery campaign across
the ESA consortium: “the REM methodology is indeed generic enough to encom-
pass any architecture recovery process to be enacted for the purpose of ESA systems

17http://tinyurl.com/j8x3pux

1477Empir Software Eng (2018) 23:1457–1489

http://tinyurl.com/j8x3pux

modernisation. RTE recommendations and automation facilities, however, may only
serve as starting points to be configured if further experimentation with REM may be
needed. Refinement of RTE results may be needed to extend REM beyond architecture
recovery”. In summary, we were able to tackle our mission objective 1, however the
automation tools that we provided were, according to ESA stakeholders, only partially
fulfilling the goal of being highly generalisable; the automation was too focused on
the specifics of the FARC case-study. As a consequence we were given a 30-day proba-
tion period to refactor the automation tools and accommodate them for further review.
These followup results and refactored transformations are not discussed further in this
article.

2. The REM evaluation case-study, i.e., the FARC-EGOS component can be reused
as basis for ongoing FARC systems modernisation: “The REM methodology and
RTE team offered a great deal of knowledge from which additional insights and mod-
ernisation features may be refined in the current FARC-to-EGOS-MF modernisation
project. In particular REM results concerning the API structure, dependencies and tech-
nological modernisation serve as great additions to the project’s assets”. In summary,
we were able to provide valuable knowledge beyond expectations from both FARC
modernisation architects and current FARC operators. Essential knowledge was recov-
ered that can drive architecture reasoning or modernisation in FARC, by means of the
insights we provided.

3. All REM results shall be accepted by FARC systems modernisation architects: this
objective was discussed in more detail in Section 3.5.

3.7 REM: Venues for Future Automation

Improving the automation of REM was one of the key goals identified by ESA stakeholders
in response to our final methodology presentation. Therefore ESA requested that we explore
approaches for additional automation in the future. To this purpose we conducted bi-weekly
focus groups over a period of 45 days. Focus groups involved the RTE team, software archi-
tects originally part of the development of FARC, as well as other ESA stakeholders for the
RTE study (1 senior manager and 2 experts). Workshops entailed an in-depth presentation
of the study phases to brainstorm proposals for further automation. Results were then anal-
ysed by the RTE team using a storytelling approach (Corbin and Strauss 2008). As a final
outcome of this process, four ideas were distilled as the most reasonable and immediate
routes to improving automation:

1. Auto-scripts as memos to be run on all models - our conjecture here was that by coding
observations or memos in the form of OCL (or another object constraint language) the
resulting constraints could be applied to models worked out as part of the application of
REM, with the objective of partially automating the discovery of similar memos. This
was explored in RTE but never tested.

2. Profiles as input for auto-coding model-transformations - our conjecture here was that
UML profiles developed as part of GT-coding on a substantial part of source elements
could become input to a model-transformation that would: (a) scan the remaining source
elements; (b) apply the constant comparison principle automatically; (c) measure and
report a confidence evaluation. This venue for further automation was never explored
beyond the formulation above.

3. Ad-hoc query transformations - our conjecture here was that model transformation
could be used for automating the“querying” of available models, e.g., to prove or

1478 Empir Software Eng (2018) 23:1457–1489

refute the structural dependency or decomposition hypotheses discussed earlier in
Section 2.2.2. The starting point for this conjecture was that the Query part of the
Query-View-Transformation language, the baseline transformation language for REM,
was not actually exploited as part of the elaboration of our modernisation methodology.
Indeed, at the time RTE was conducted, no implementation of the Query part existed.
Further exploration of this approach is needed to confirm or disprove this conjecture.

4. MultiREM, i.e., Multiple REMs for multiple software architecture views - our conjecture
here was that REM itself could be applied over and over again to incrementally refine
the architecture knowledge elicited as part of the process. The starting point for this
conjecture was that the REM approach, as it was outlined in the previous sections,
focuses on a structural decomposition view (Kruchten 1995a) of software architecture
whilst other architecture views remain implicit. However, the REM approach could
easily be re-focused to analyse artefacts other than source elements for the purpose of
recovering other architecture views. This conjecture however, was not explored further.

5. REM-of-REMs, i.e., a scalable, multi-observer, GT-based architecture recovery - in an
effort to scale up approaches such as REM, multiple teams could work concurrently
on pre-arranged divisions of the source artefacts. Because GT-based approaches are
theory-building approaches they lend themselves to combining efforts, as shown in
previous research (Suddaby 2006). Further experimentation in this respect would be
needed to test and refine this process.

3.8 Verifiability

To encourage the generalisability of our results as well as the verifiability of our claims, we
formally requested and obtained the permission to share the FARC source code for further
experimentation in the scope of this study. Considering the exploratory nature of REM, we
clarified to ESA stakeholders responsible for REM and FARC secrecy that sharing the code
and methodology with a wider audience may encourage further refinement and automation
of the methodology and further investigation into the FARC case-study. As a result, the
stakeholders allowed us to share all documentation and sources online.18 These artefacts
are still under licence however, and are available for study-replication purposes only.19

4 Discussions, Observations, and Lessons Learned

We learned several lessons concerning architecture recovery research and practise from the
RTE study. Also, a number of discussion points emerged as part of REM and the experience
reported in the previous sections.

1. Architecture recovery approaches must be linked to a business case. As part of
RTE we learned that industrial stakeholders are, understandably, concerned with how much
of the system can be recovered and what is the trade-off between the recovery effort invested
and re-development. Therefore, software architecture recovery approaches need to make
their costs explicit and tie these to benefits. These concerns must be addressed at every stage,

18http://tinyurl.com/lf876f7
19The authors shall be informed of every study-replication effort, so that ESA stakeholders may be involved
if needed.

1479Empir Software Eng (2018) 23:1457–1489

http://tinyurl.com/lf876f7

starting from study planning and terminating with whatever recovered artefacts are pro-
duced. Our goal should therefore be to estimate, up-front, what kind of return on investment
can be obtained by applying a reverse engineering tool or method.

Our Experience Report In the case of RTE and our application of REM, because the
code-inspection time could be estimated by analysing how long each activity took for
our (relatively unexperienced) analysts, we were able to devise a cost-estimation mech-
anism tailored from Thomson (2011).
What we learned Further research is needed to elaborate and validate such a mecha-
nism. Regarding this point we observed that, although REM is relatively expensive and
human-intensive, it provides a great benefit that many other approaches do not and that
companies desire: a cost upper bound. In fact, the cost of the REM activity compares
favourably with state of the art approaches such as Lutellier et al. (2015) where authors
stated that a 2-year longitudinal study involved a team of 6 researchers and exten-
sive interviews with software architects to analyse a 10 MSLOC system. Although the
effort is comparable between their study and ours, we were able to produce our esti-
mate a mere two weeks into the study; the same cannot be said for other approaches,
such as Lutellier et al. (2015). Also, the instantiation of the approach in Lutellier et al.
(2015) would likely yield cost estimation figures which are intrinsically bound to many
context-specific variables (e.g., programming languages involved, level of applicabil-
ity of previous automations, level of confidence, etc.). In a GT-based approach, the only
variable is source-code quantity. Nonetheless, beyond these preliminary conjectures, it
is clear that more research must be invested in validating the cost of REM.

2. Architecture recovery is even more a human activity than software architecting
itself, therefore the only general approach possible is the human and machine-aided
approach. As part of RTE we learned that recovering software architectures and related
artefacts means also to capture the design rationale in the minds of the developers. This
human involvement activity is an essential part of the recovery process and should therefore
be taken into account when developing any modernisation proposals.

Our Experience Report During the evaluation of REM, for example, we learned
that certain FARC developers used an ad-hoc style preferring certain coding prac-
tises, design patterns or modular decompositions rather than other ones. Therefore, the
team that had to run the modernisation attempt (i.e., REM) could be prepared with
human and organisational insights from the development communities that originally
developed the product. In addition, whilst applying REM we observed that certain
architecture decisions could be easily recovered by further analysing the memos and
observations we made during GT-Coding. For example, some developers decided to
adopt a modularisation strategy that was never recorded anywhere but became evident
from the memo-ing exercise. The point here is that no tool is able to convey this archi-
tecture knowledge automatically, or even semi-automatically.
What we learned Further research of these knowledge recovery venues is therefore in
order.

3. Fully automated approaches tend to be viewed with scepticism by industry stake-
holders. Industrial stakeholders who decide whether architecture recovery is of value are

1480 Empir Software Eng (2018) 23:1457–1489

frequently non-technical and often neglect the value of automation in favour of the (more
easily assessed) work of humans.

Our Experience ReportWhen we first showcased the REM methodology to our ESA
stakeholders, to our amazement we received little scepticism when we outlined the
substantial manual effort required. Furthermore, in subsequent presentations on our
intention to explore further automation (rather than completing the evaluation of REM
as quickly as possible) we learned that too much automation might be viewed with
scepticism and “mistrust in the machine”.
What we learned Exploration of this human and organisational dynamic is part of our
plans for further research, to establish principles for designing architecture recovery
tools and methods. We further elaborate these in Section 7.2.

4. Architecture recovery approaches should also aim to reconstruct organisational
structures for software products. Those structures are likely to be needed by project
decision-makers to maintain the renewed code-base.

Our Experience Report Part of the recommendations requested from the RTE study
were considering human and organisational structures necessary for the proper opera-
tion of the modernised software. As the RTE team discussed this request, we learned
that architecture recovery attempts could be guided to elicit the organisational structure
(Tamburri et al. 2013b) of the development community (Tamburri et al. 2013a, 2016)
so as to recommend a structure to support the software to be modernised.
What we learnedAlthough we did not look into this organisational recovery activity as
part of RTE, this is an obvious and important research area, consistent with the emerg-
ing necessity of complex organisational structures for development and operations
(e.g., Cois et al. 2014), (Herbsleb and Grinter 1999).

5. There exists a spectrum of applicability across which any architecture recov-
ery approach can be categorised. Whilst defining this spectrum is beyond the scope of
our article, we observed that, based on the number and type of assumptions that recovery
approaches make over the system to be analysed, these approaches could be typed and clus-
tered together. In this imaginary spectrum, REM would be one of the bounds, since it makes
no assumptions for the targeted system. Similarly, other approaches’ applicability can be
measured and quantified in terms of relative distance to REM, simply counting how many
assumptions are made over the system to be recovered.

Our Experience ReportWithin the context of RTE we were required by the industrial
stakeholder to consider and use for recovery every asset in the FARC system, including:
(1) Simulink maintenance models; (2) operations scripts in a closed-source shell-script
variant for a fixed SLES9 OS version; (3) textual and box-and-line documents and
models; (4) informal change-logs noted in user-manuals. The heterogeneous nature of
this information was a key reason why we resorted to creating REM in the first place.
What we learned REM may be considered a last-resort methodology which offers
broad applicability but at potentially substantial costs.

1481Empir Software Eng (2018) 23:1457–1489

5 Theoretical Limitations and Threats to Validity

There are several limitations and threats to validity intrinsic to the study and results reported
in this paper.

5.1 Approach Limitations

Although we have claimed that REM is a general approach, we cannot prove this claim. Our
case study shows that the approach does in fact work, but no single case study can show
that a method works generally. An appraisal of the generality behind REM is rooted in a
discussion of the general application of grounded-theory, which is beyond the scope of this
paper. Further research could investigate how to demonstrate generality. In this paper we
simply offer one datapoint that is consistent with our claim of generality, resting upon the
foundations of GT. Furthermore, the tool support that we realised in our proof-of-concept
experiment suffers from a single-point observation limitation, i.e., it was designed to address
a specific problem. Although much of the tool support in question does not hard-code any
reference to FARC or RTE, and could potentially serve other instances of REM applications,
we cannot claim anything beyond the tooling’s usefulness in the proof-of-concept. Further
technical evaluation and replication of REM in different contexts, both industrial and open-
source, would be needed to properly assess this tooling and its generalisability. For example,
our tool support is inextricably linked to the use of Model-Driven Architecture technology
which is bound to function in an object-oriented fashion.

5.2 Threats to Validity

Assessing the validity of qualitative research is a subject still thriving of investigation
and speculation, most prominently in social and organisational research. We focus on he
major assessment school proposed by Denzin and Lincoln (2011) and related literature,
which stresses the rigour of results interpretation. Here below follow a list of distresses we
identified for our work along the lines defined by said frameworks.

Contextual Validity Paraphrasing from Bloor (1997), contextual validity refers to “the
credibility of case study evidence and the conclusions drawn. The primary focus of such
research is to capture authentically the lived experiences of people and to represent them
in a convincing text, which demonstrates that the researcher fully understands the case”. In
our case, the methodology previously outlined, the results, conclusions, lessons learned, and
insights reported in this paper stem from self-ethnography and an accurate analysis of final
delivery reports obtained as part of the RTE study. The REM methodology was accepted
as part of the BSSC20-based organisational and methodological baseline adopted by ESA
and all descriptions are consistent with the material depicted in this pages; hence, REM
represents a valid contribution with respect to the context from which it draws.

Generalisability Validity Paraphrasing from Myers (2009), generalisability validity
refers to whether the research results are transferable, i.e., can be extended to a wider con-
text, have theoretical generalisability, empirical applicability and practical usefulness. In
our case, whilst the proposed REM method can in fact be extended to a wider context by

20http://www.esa.int/TEC/Software engineering and standardisation/TECA5CUXBQE 0.html

1482 Empir Software Eng (2018) 23:1457–1489

http://www.esa.int/TEC/Software_engineering_and_standardisation/TECA5CUXBQE_0.html

definition and already a plethora of cases that confirm its root-method GT empirical applica-
bility, the extensibility of our evaluation of REM in action does suffer from generalisability
validity. On one hand, the proposed methodology is claimed to be general by design but,
on the other hand, we dive deep into a single case-study wherefore the methodology was
applied. This limits greatly the generalisability of the case-study observations, results, and
lessons learned but to the best of our knowledge, does not limit or hinder in any way the
generalisability of the proposed method which is general by design. This not withstanding,
our results and lessons learned encourage further research in the direction of assessing the
degree to which REM, a qualitative analysis-inspired semi-automated recovery approach,
can actually be generalised across multiple, sufficiently diverse case-studies.

Procedural Reliability According to Miller et al. (Silverman 1997), procedural reliabil-
ity or validity generally refers to results consistency, typically meaning that another person
should be able to examine the object of study and come to similar conclusions. In our case,
our conclusions are twofold (1) that REM is a theoretical hypothesis for an architecture
recovery methodology which is general by design and (2) that we offer a single datapoint to
validate such a hypothesis. Although the methods and procedures employed towards both
conclusions rely on established practises in qualitative research (e.g., GT, inter-coder reli-
ability (Lavrakas 2008) and triangulation, etc.) we cannot prove that there exist no other
possible interpretations of our case-study and our proposed methodology. However, accord-
ing to Teddlie and Tashakkori (2009), researchers need to establish weather their research
design and procedure correctly addresses the “Did we accurately capture/represent the phe-
nomenon or attribute under investigation?”. In our case, our case-study report relies on direct
and fully-embedded in-vivo experience report by direct observation. Moreover, the formu-
lation of the REM methodology stemming from that study has been reviewed by researchers
and practitioners involved in the study, confirming its procedural reliability.

6 Related Work

Architecture recovery has been a topic of research for several decades, stretching back to
the 1990s. Early approaches, e.g. Guo et al. (1999), Kazman and Carriere (1999), Kaz-
man and Carriere (1998), and Kazman et al. (1998) tended to focus on the artefacts that
could be recovered, and the capabilities and limitations of existing tools, rather than on the
methodology of recovery per se. However, both dimensions did emerge even in this early
research.

Currently, research in modernisation approaches is based around some clustering or pat-
tern recognition technique such as Medvidovic and Jakobac (2006) by Medvidovic et al. or
Vasconcelos and Werner (2007), this last one being part of the ARES initiative.21 A lot of
such efforts were captured effectively in the survey by Pollet et al. (2007). Also, almost in
parallel with our own efforts at ESA, the OMG Architecture-Driven Modernisation task-
force began the work that would later result in the Knowledge-Discovery Metamodel ideas
and related works such as the MoDisco toolchain.22 Works in software architecture recovery
most closely related to REM are reported below.

21http://www.ares-nest.org/tiki-index.php
22https://eclipse.org/MoDisco/

1483Empir Software Eng (2018) 23:1457–1489

http://www.ares-nest.org/tiki-index.php
https://eclipse.org/MoDisco/

Medvidovic et al., in Medvidovic and Jakobac (2006) and subsequent works (e.g.,
Lutellier et al. 2015), provide a lightweight approaches to architectural recovery based, for
example, on particular clustering methods which isolate functional components according to
a number of heuristics on the system’s reverse-engineered structure. The approach of using
fixed heuristics is intuitively similar to the idea behind REM of using a Grounded Theory
based exploration of source elements, leaving the heuristics to the realm of intuitionistic
reasoning and visual analysis typical of Grounded Theory as in REM. The key strongpoint
of our approach is that the quasi-heuristic approach in REM is part of a systematic and gen-
eral approach to qualitative text analysis rather than code inspection. Indeed, the two lines
of research (code inspection and GT-based architecture recovery) could very well benefit
form interaction in further research, e.g., in refining and automating said heuristics and their
application.

In addition, work in Software reflexion models is related to the work we carried out at
ESA. In particular, the foundational work by Murphy et al. (2001) lays the foundations and
motivations for efforts that we ourselves retained during our study. Similarly, the work in
software reconnaissance by Gear et al. (2005) seems related to what we tried initially in
REM but failed, i.e., the sort-of manual exploration of software code by means of computer-
assisted approaches. REM and reconnaissance approaches may well be combined for further
automation.

Furthermore, works that semi-formalise dependencies across architecture elements and
any constraints thereof, may well be similar to what we tried to do in REM by means of
OCL or QVT transformations. For example, works such as Terra and de Oliveira Valente
(2009) by Terra et al. offers a framework to manage object-orientation. The advantage we
propose within REM is that by means of OCL and QVT, any sort of dependency may be
addressed, even though with something (i.e., OCL) which is much less formalised than an
actual programming language.

Finally, an interesting related initiative by Sartipi et al. (2006), proposes an approach
to architectural recovery focusing on extracting views, addressing different concerns. REM
focuses on a structural dependency view of the software architectures much like Sartipi
et al. focus on addressing multiple views and multiple concerns. The overlaps between
REM and the approach in Sartipi et al. (2006) could be a valuable starting point for further
research.

7 Conclusions and Future Work

Software architectures are key artefacts in the software lifecycle. Recovering legacy soft-
ware architectures is important for a variety of reasons: to assess legacy software, possibly
promoting reuse. However, research and practise in software architecture recovery agree
that recovery endeavours often lack ground-truth, i.e., the representations of software archi-
tecture that can be proven to reflect the actual architecture. Also, research has illustrated a
limitation of many existing approaches in that they target a limited number of scenarios and
may require a substantial learning curve.

This paper has introduced REM, an architecture recovery method that: (a) may in fact
be general by design; (b) was partially automated in the context of a large, industrial case-
study. To evaluate REM we reported on the original study that spawned REM as part of an
architecture recovery and modernisation endeavour at ESA, the European Space Agency.

Evaluating REM, we learned that it has several interesting limitations that should be
subject to further study and validation. As part of the contributions reported in this paper, we

1484 Empir Software Eng (2018) 23:1457–1489

also outline the ways in which REM could be further automated as well as key messages to
be employed for further research in REM and similar GT-based modernisation approaches.

7.1 Conclusions

From our object of study and its evaluation, we were able to conclude that: (a) REM
represents the first key and concrete step towards general, highly-reliable software architec-
ture recovery; (b) REM is to be considered as a last-resort tool; (c) our proof-of-concept
experimentation showed that many “soft” dimensions of software architectures (e.g., organ-
isational structure, knowledge management, etc.) are closely related to architecture recovery
exercises.

7.2 Future Work and Research Roadmap

As a result of our study, we conclude that the topic of general, highly-reliable software
architecture recovery has massive potential and, in the scope of REM, we offere a formula-
tion for a wider research agenda in this direction. In this respect, we foresee the following 3
challenges, offering possible research methods:

1. Formally-verified Generality: providing a formal demonstration of generality behind a
GT structured approach for architecture recovery would essentially prove the general
nature of the method and confirm its practical value. This research venue may start
from operationalising the REM process even further, providing formal definitions of
each action and evaluating whether that action is always applicable, i.e., it makes no
assumption with respect to the system under study. Mathematical analysis (e.g., formal
concept analysis (Wille 2005)) and theorem-proving methods (Bibel 1982) may be used
in this endeavour.

2. Computer-assisted Architecture Recovery: so far, architecture recovery has mostly
focused on providing tools that study running software artefacts to provide tentative
recovery of designs or design views. Conversely, approaches such as REM require a
sensibly different target, namely, tools that assist the code-inspection process of recov-
ering software architectures by direct observation. In this work, we refined crude and
rudimentary tools for the latter purpose. These tools and their design may be used as
prototype instruments to define improved versions. Research methods such as design
science (Hevner et al. 2004) as well as action research (Boaduo 2011) may be used in
this endeavour.

3. Scalable General Architecture Recovery: as previously theorised, REM could be
applied iteratively and in parallel by several teams which are given a selected subset
of code-artefacts belonging to a bigger system. Because REM does not rely on system
correctness or completeness assumptions, its execution can be parallelised in multiple
ways. An appropriate research venue can be, therefore, to establish which is the most
effective way to apply GT-based approaches to architecture recovery at a large scale.
From a research design perspective, a mixed-methods study involving multiple open-
source communities may be instrumented. For example, several research groups can
be given randomly selected parts of an open-source product whilst, at the same time a
single team can carry out the entire recovery exercise. Likewise, this exercise can be
repeated over time until a theory emerges.

4. Architecture Recovery Accountability: a major limitation we observed in the state of the
art is that there exists no baseline for evaluation of architecture recovery approaches.
In our endeavour we confirmed the validity of our method by using a proof-of-concept

1485Empir Software Eng (2018) 23:1457–1489

experiment but we cannot currently compare our results with any available and com-
parable approach. On one hand, the key approaches to architecture recovery should be
studied and their validity quantified at a large scale, and, on the other hand, approaches
such as REM should be instrumented to provide comparable quantifications.

Finally, defining general methods for software architecture recovery also calls for
systematic, precise and scoped definitions over what software architecture ground-truth
actually is, and how that reflects on its recovery - critical questions such as “what is ground-
truth software architecture recovery?” or “Can a system have multiple ground truths? If
so, what are the criteria? And how many are there?” represent a Pandora’s box over what
software architecture represents and the exercise of recuperating it. These questions are a
paramount challenge for the software architecture community at large, which is still open
to address.

Acknowledgments We acknowledge the precious comments we received from the anonymous reviewers
- they helped greatly in structuring the value and contributions in this manuscript. This research has been
conducted in collaboration with TERMA GmbH23 as an ESA GSTP study founded by ESA under contract
20645/07/F/VS. The author would like to thank Drs. Gert Villemos, Antonio Bianco and Henry Muccini for
support during RTE. Damian’s work is partially supported by the European Commission grant no. 644869
(H2020 - Call 1), DICE.

References

Antoine JY, Villaneau J, Lefeuvre A (2014) Weighted krippendorff’s alpha is a more reliable metrics for
multi-coders ordinal annotations: experimental studies on emotion, opinion and coreference annotation.
In: Bouma G, Parmentier Y (eds) EACL. The Association for Computer Linguistics, pp 550–559. http://
dblp.uni-trier.de/db/conf/eacl/eacl2014.html#AntoineVL14

Bachmann F et al (2000) Software architecture documentation in practice: documenting architectural layers.
Special Report CMU/SEI-2000-SR-004 SEI CMU

Baldwin C, Clark K (2000) Design rules: the power of modularity, vol 1. MIT Press, Cambridge, MA
Bass L, Clements P, Kazman R (2012) Software architecture in practice. SEI Series in Software Engineering.

Addison-Wesley. https://books.google.com/books?id=-II73rBDXCYC
Bibel W (1982) Automated theorem proving. Vieweg, Braunschweig
Bloor M (1997) Techniques of validation in qualitative research. A critical commentary. In: Miller G,

Dingwall R (eds) Context and method in qualitative research. Sage, Thousand Oaks, CA, pp 37–50
Boaduo NAP (2011) Action research in virtual communities: how can this complement successful social

networking? IJVCSN 3(4):1–14. http://dblp.uni-trier.de/db/journals/ijvcsn/ijvcsn3.html#Boaduo11
Clements P, Kazman R, Klein M (2001) Evaluatinjg software architectures: methods and case studies.

Addison Wesley Professional
Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Nord R, Stafford J (2002) Documenting

software architectures: views and beyond. Addison Wesley Professional
Cois CA, Yankel J, Connell A (2014) Modern devops: optimizing software development through effec-

tive system interactions. In: IPCC. IEEE, pp 1–7. http://dblp.uni-trier.de/db/conf/ipcc/ipcc2014.html#
CoisYC14

Corbin J, Strauss A (1990) Grounded theory research: procedures, canons, and evaluative criteria. Qual Sociol
13(1):3–21

Corbin JM, Strauss AL (2008) Basics of qualitative research, 3 edn. Sage Publisher
Denzin NK, Lincoln YS (2011) The sage handbook of qualitative research. Sage, Thousand Oaks
Ding L, Medvidovic N (2001) Focus: a light-weight, incremental approach to software architecture recovery

and evolution. In: WICSA. IEEE Computer Society, p 191

23www.terma.de

1486 Empir Software Eng (2018) 23:1457–1489

http://dblp.uni-trier.de/db/conf/eacl/eacl2014.html#AntoineVL14
http://dblp.uni-trier.de/db/conf/eacl/eacl2014.html#AntoineVL14
https://books.google.com/books?id=-II73rBDXCYC
http://dblp.uni-trier.de/db/journals/ijvcsn/ijvcsn3.html#Boaduo11
http://dblp.uni-trier.de/db/conf/ipcc/ipcc2014.html#CoisYC14
http://dblp.uni-trier.de/db/conf/ipcc/ipcc2014.html#CoisYC14
www.terma.de

Dueñas JC, de Oliveira WL, de la Puente JA (1998) Architecture recovery for software evolution. In:
CSMR. IEEE Computer Society, pp 113–120. http://dblp.uni-trier.de/db/conf/csmr/csmr1998.html#
DuenasOP98

Eixelsberger W, Ogris M, Gall HC, Bellay B (1998) Software architecture recovery of a program family.
In: Torii K, Futatsugi K, Kemmerer RA (eds) ICSE. IEEE Computer Society, pp 508–511. http://dblp.
uni-trier.de/db/conf/icse/icse98.html#EixelsbergerOGB98

Frankel D (2002) Model driven architecture: applying MDA to enterprise computing. Wiley
Garcia J, Krka I, Mattmann C, Medvidovic N (2013) Obtaining ground-truth software architectures. In:

Proceedings of the 2013 international conference on software engineering, ICSE ’13. IEEE Press,
Piscataway, NJ, USA, pp 901-910. http://dl.acm.org/citation.cfm?id=2486788.2486911

Gear AL, Buckley J, Collins JJ (2005) Software reconnexion: understanding software using a variation on
software reconnaissance and reflexion modelling. In: ISESE. IEEE Computer Society, pp 34–43. http://
dblp.uni-trier.de/db/conf/isese/isese2005.html#GearBC05

Glaser BG (1978) Theoretical sensitivity: advances in the methodology of grounded theory. Sociology Press,
San Francisco, CA

Guo G, Atlee J, Kazman R (1999) A software architecture reconstruction method. In: Software architecture
(proceedings of the first working IFIP conference on software architecture (WICSA1)), pp 15–33

Gwet K, Gwet K (2002) Inter-rater reliability: dependency on trait prevalence and marginal homogeneity.
Stat Methods Inter-Rater Reliab Assess 2:1–9

Henriksson A, Larsson H (2003) A definition of round-trip engineering. Tech. rep., Linkpings University,
Sweden. http://www.ida.liu.se/∼henla/papers/roundtrip-engineering.pdf

Herbsleb J, Grinter R (1999) Architectures, coordination, and distance: conway’s law and beyond. IEEE
Softw 16(5):63–70. https://doi.org/10.1109/52.795103

Hevner, March, Park, Ram (2004) Design science in information system research. https://www.researchgate.
net/publication/201168946 Design Science in Information Systems Research

Izquierdo JLC, Molina JG (2010) An architecture-driven modernization tool for calculating metrics. IEEE
Softw 27(4):37–43. http://dblp.uni-trier.de/db/journals/software/software27.html#IzquierdoM10

Kandé MM, Strohmeier A (2000) Towards a UML profile for software architecture. In: Kent S, Evans A (eds)
UML’2000 - the unified modeling language: advancing the standard, third international conference,
York, UK, October 2–6, 2000, LNCS, vol 1939, pp 513–527

Kazman R, Carriere J (1998) View extraction and view fusion in architectural understanding. In: Proceedings
of the fifth international conference on software reuse, pp 290–299

Kazman R, Carriere SJ (1999) Playing detective: reconstructing software architecture from available
evidence. Autom Softw Eng 6(2):107–138

Kazman R, Woods S, Carriere J (1998) Requirements for integrating software architecture and reengineering
models: corum ii. In: Proceedings of the 5th IEEE working conference on reverse engineering (WCRE),
pp 154–163

Khandkar SH (2011) Open coding: introduction. http://pages.cpsc.ucalgary.ca/∼saul/wiki/uploads/CPSC681/
open-coding.pdf

Kruchten P (1995) Architectural blueprints – the “4 + 1” view model of software architecture. IEEE Softw
12(6)

Kruchten P (1995) The 4 + 1 view model of architecture. IEEE Softw 12(6):45–50
Lago P, Avgeriou P, Hilliard R (2010) Guest editors’ introduction: software architecture: framing stakehold-

ers’ concerns. IEEE Softw 27(6):20–24. http://dblp.uni-trier.de/db/journals/software/software27.html#
LagoAH10

Lavrakas PJ (ed.) (2008) Encyclopedia of survey research methods. SAGE Publications Inc.
https://doi.org/10.4135/9781412963947

Lutellier T, Chollak D, Joshua Garcia LT, Rayside D, Medvidovic N, Kroeger R (2015) Comparing software
architecture recovery techniques using accurate dependencies. In: Proceedings of the 2015 international
conference on software engineering, ICSE ’15. IEEE Press, Piscataway, NJ, USA

Malavolta I, Muccini H, Pelliccione P, Tamburri DA (2010) Providing architectural languages and tools
interoperability through model transformation technologies. IEEE Trans Software Eng 36(1):119–140.
http://dblp.uni-trier.de/db/journals/tse/tse36.html#MalavoltaMPT10

Medvidovic N, Jakobac V (2006) Using software evolution to focus architectural recovery. Autom Softw
Eng 13(32):225–256

Murphy GC, Notkin D, Sullivan KJ (2001) Software reflexion models: bridging the gap between design and
implementation. IEEE TSE 27(4):364–380

Myers DM (2009) Qualitative research in business & management, 1st edn. Sage, Los Angeles. http://www.
gbv.de/dms/zbw/574672206.pdf

Naur P (1985) Programming as theory building. Microprocessing and Microprogramming 15(5):253–261

1487Empir Software Eng (2018) 23:1457–1489

http://dblp.uni-trier.de/db/conf/csmr/csmr1998.html#DuenasOP98
http://dblp.uni-trier.de/db/conf/csmr/csmr1998.html#DuenasOP98
http://dblp.uni-trier.de/db/conf/icse/icse98.html#EixelsbergerOGB98
http://dblp.uni-trier.de/db/conf/icse/icse98.html#EixelsbergerOGB98
http://dl.acm.org/citation.cfm?id=2486788.2486911
http://dblp.uni-trier.de/db/conf/isese/isese2005.html#GearBC05
http://dblp.uni-trier.de/db/conf/isese/isese2005.html#GearBC05
http://www.ida.liu.se/~henla/papers/roundtrip-engineering.pdf
https://doi.org/10.1109/52.795103
https://www.researchgate.net/publication/201168946_Design_Science_in_Information_Systems_Research
https://www.researchgate.net/publication/201168946_Design_Science_in_Information_Systems_Research
http://dblp.uni-trier.de/db/journals/software/software27.html#IzquierdoM10
http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/open-coding.pdf
http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/open-coding.pdf
http://dblp.uni-trier.de/db/journals/software/software27.html#LagoAH10
http://dblp.uni-trier.de/db/journals/software/software27.html#LagoAH10
https://doi.org/10.4135/9781412963947
http://dblp.uni-trier.de/db/journals/tse/tse36.html#MalavoltaMPT10
http://www.gbv.de/dms/zbw/574672206.pdf
http://www.gbv.de/dms/zbw/574672206.pdf

Newcomb P (2005) Architecture-driven modernization (adm). In: WCRE. IEEE Computer Society, p 237.
http://dblp.uni-trier.de/db/conf/wcre/wcre2005.html#Newcomb05

Onions PEW (2006) Grounded theory applications in reviewing knowledge management literature. In: Leeds
Metropolitan University innovation north research conference (1962), pp 1–20. http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.107.2036&rep=rep1&type=pdf

Pollet D, Ducasse S, Poyet L, Alloui I, Cı̂mpan S, Verjus H (2007) Towards a process-oriented software
architecture reconstruction taxonomy. In: Krikhaar RL, Verhoef C, Lucca GAD (eds) CSMR. IEEE
Computer Society, pp 137–148. http://dblp.uni-trier.de/db/conf/csmr/csmr2007.html#PolletDPACV07

Resnik P (1999) Semantic similarity in a taxonomy: an information-based measure and its application to
problems of ambiguity in natural language. J Artif Intell Res 11:95–130

Sarkarati M, Gomez E, Nanni A, Tamburri DA, Bianco A (2008) Round trip engineering for legacy space data
systems based on a model driven architecture approach. In: Proceedings of SpaceOps 2008 conference,
Heidelberg, Germany, May 12–16, 2008, pp 310–320

Sartipi K, Dezhkam N, Safyallah H (2006) An orchestrated multi-view software architecture reconstruction
environment. IEEE Computer Society, Washington, DC, USA

Schmerl B, Garlan D, Kazman R, Yan H (2006) Discovering architectures from running systems. IEEE Trans
Softw Eng 32(7):454–466

Schreiber C, Carley KM (2004) Going beyond the data: empirical validation leading to grounded theory.
Computational & Mathematical Organization Theory 10(2):155–164

Silverman D (1997) Validity and credibility in qualitative research. In: Miller G, Dingwall R (eds) Context
and method in qualitative research. Sage, Thousand Oaks, CA, pp 13–25

Suddaby R (2006) From the editors: what grounded theory is not. Acad Manag J 49(4):633–642
Tamburri DA, Lago P, van Vliet H (2013a) Uncovering latent social communities in software development.

IEEE Softw 30(1):29–36. https://doi.org/10.1109/MS.2012.170
Tamburri DA, Lago P, van Vliet H (2013b) Organizational social structures for software engineering. ACM

Comput Surv 46(1):3:1–3:35. https://doi.org/10.1145/2522968.2522971
Tamburri DA, Kazman R, Fahimi H (2016) The architect’s role in community shepherding. IEEE Softw

33(6):70–79. http://dblp.uni-trier.de/db/journals/software/software33.html#TamburriKF16
Teddlie C, Tashakkori A (2009) Foundations of mixed methods research: integrating quantitative and qual-

itative approaches in the social and behavioral sciences. Sage, Los Angeles. http://www.amazon.com/
Foundations-Mixed-Methods-Research-Quantitative/dp/0761930124

Terra R, de Oliveira Valente MT (2009) A dependency constraint language to manage object-oriented soft-
ware architectures. Softw Pract Exper 39(12):1073–1094. http://dblp.uni-trier.de/db/journals/spe/spe39.
html#TerraV09

Thomson SB (2011) Sample size and grounded theory. JOAAG, 184–192
Tsai J, Xu K (2000) A comparative study of formal verification techniques for software architecture

specifications. Ann Softw Eng 10(1):207–223. https://doi.org/10.1023/A:1018960305057
van Niekerk JC, Roode JD (2009) Glaserian and straussian grounded theory: similar or completely differ-

ent?. In: Dwolatzky B, Cohen J, Hazelhurst S (eds) SAICSIT conference, ACM international conference
proceeding series, ACM, pp 96–103

Vasconcelos A, Werner C (2007) Architecture recovery and evaluation aiming at program understanding and
reuse. LNCS Springer

Wettinger J, Breitenbücher U, Kopp O, Leymann F (2016) Streamlining devops automation for cloud applica-
tions using tosca as standardized metamodel. Futur Gener Comput Syst 56:317–332. http://dblp.uni-trier.
de/db/journals/fgcs/fgcs56.html#WettingerBKL16

Wille R (2005) Formal concept analysis as mathematical theory of concepts and concept hierarchies. In:
Formal concept analysis, pp 1–33

Xiao L, Cai Y, Kazman R (2014) Titan: a toolset that connects software architecture with quality analysis.
In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engi-
neering, FSE 2014. ACM, New York, NY, USA, pp 763–766. https://doi.org/10.1145/2635868.2661677

1488 Empir Software Eng (2018) 23:1457–1489

http://dblp.uni-trier.de/db/conf/wcre/wcre2005.html#Newcomb05
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.2036&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.2036&rep=rep1&type=pdf
http://dblp.uni-trier.de/db/conf/csmr/csmr2007.html#PolletDPACV07
https://doi.org/10.1109/MS.2012.170
https://doi.org/10.1145/2522968.2522971
http://dblp.uni-trier.de/db/journals/software/software33.html#TamburriKF16
http://www.amazon.com/Foundations-Mixed-Methods-Research-Quantitative/dp/0761930124
http://www.amazon.com/Foundations-Mixed-Methods-Research-Quantitative/dp/0761930124
http://dblp.uni-trier.de/db/journals/spe/spe39.html#TerraV09
http://dblp.uni-trier.de/db/journals/spe/spe39.html#TerraV09
https://doi.org/10.1023/A:1018960305057
http://dblp.uni-trier.de/db/journals/fgcs/fgcs56.html#WettingerBKL16
http://dblp.uni-trier.de/db/journals/fgcs/fgcs56.html#WettingerBKL16
https://doi.org/10.1145/2635868.2661677

Damian A. Tamburri is a Research Fellow at Politecnico di Milano, Italy. Though still in his very early
career, he has published over 40+ papers in either Journals such as the Transactions on Software Engi-
neering (TSE) Journal, The ACM Computing Surveys (CSUR) Journal, the IEEE Software Magazine or
top software engineering conferences (such as ICSE or FSE) and top software architecture conferences
(such as ECSA or WICSA). In addition, as part of his quick career, he is now an IEEE Software edito-
rial board member and secretary of the IFIP TC2, TC6, and TC8 Working-Group on “Service-Oriented
Computing”. His current research interests lie mainly in social software engineering (Socio-technical con-
gruence, Measuring Social Debt, etc.), advanced software architecture styles (e.g., SOA, Big-Data, etc.) and
advanced software architecting methods (e.g., MDA, continuous architecting and DevOps). Contact him at
damianandrew.tamburri@polimi.it or dtamburri@acm.org.

Rick Kazman is a Professor at the University of Hawaii and a Principal Researcher at the Software Engineer-
ing Institute of Carnegie Mellon University. His primary research interests are software architecture, design
and analysis tools, software visualization, and software engineering economics. Kazman has created several
highly influential methods and tools for architecture analysis, including the SAAM (Software Architecture
Analysis Method), the ATAM (Architecture Tradeoff Analysis Method), the CBAM (Cost-Benefit Analy-
sis Method) as well as the Dali and Titan tools. He is the author of over 200 publications, and co-author of
several books, including Software Architecture in Practice, Designing Software Architectures: A Practical
Approach, Evaluating Software Architectures: Methods and Case Studies, and Ultra-Large-Scale Systems:
The Software Challenge of the Future. Contact him at kazman@hawaii.edu.

1489Empir Software Eng (2018) 23:1457–1489

	General methods for software architecture recovery: a potential approach and its evaluation
	Abstract
	Introduction
	Novelty, Limitations and Conclusions
	Paper Structure

	GT-Based Architecture Recovery
	What is Grounded Theory?
	REM Method Outline
	A) GT-Coding and Micro-Analysis
	B) GT-codes Categorisation
	C) Recovery of Architecture Elements
	D) Theoretical Coding of Relations and High-Level Abstraction

	GT-Coding and Micro-Analysis
	GT-codes Categorisation and Recovery of Architecture Elements
	Theoretical Coding: Recovering Relations and High-Level Abstraction
	Reapplying REM

	Our Experience with REM in Action
	The FARC: a Brief Overview
	Providing Crude Tool Support for REM
	Reverse-Engineering
	UML Profiling
	Model Transformation

	Applying REM for FARC Architecture Recovery
	REM: Study Costs and Facts
	REM: Organisational Structure
	Processing FARC with REM

	A Highly-Reliable Software Architecture for FARC
	Evaluating REM: A Focus-Group Study
	REM Final Acceptance Workshop
	REM: Venues for Future Automation
	Verifiability

	Discussions, Observations, and Lessons Learned
	Theoretical Limitations and Threats to Validity
	Approach Limitations
	Threats to Validity
	Contextual Validity
	Generalisability Validity
	Procedural Reliability

	Related Work
	Conclusions and Future Work
	Conclusions
	Future Work and Research Roadmap

	Acknowledgments
	References

