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Abstract The usage of empirical methods has grown common in software engineering.
This trend spawned hundreds of publications, whose results are helping to understand and
improve the software development process. Due to the data-driven nature of this venue of
investigation, we identified several problems within the current state-of-the-art that pose a
threat to the replicability and validity of approaches. The heavy re-use of data sets in many
studies may invalidate the results in case problems with the data itself are identified. More-
over, for many studies data and/or the implementations are not available, which hinders a
replication of the results and, thereby, decreases the comparability between studies. Fur-
thermore, many studies use small data sets, which comprise of less than 10 projects. This
poses a threat especially to the external validity of these studies. Even if all information
about the studies is available, the diversity of the used tooling can make their replication
even then very hard. Within this paper, we discuss a potential solution to these problems
through a cloud-based platform that integrates data collection and analytics. We created
SmartSHARK, which implements our approach. Using SmartSHARK, we collected data
from several projects and created different analytic examples. Within this article, we present
SmartSHARK and discuss our experiences regarding the use of it and the mentioned prob-
lems. Additionally, we show how we have addressed the issues that we have identified
during our work with SmartSHARK.

Communicated by: Romain Robbes, Christian Bird and Emily Hill

P4 Fabian Trautsch
trautsch @cs.uni- goettingen.de

Steffen Herbold
herbold @cs.uni-goettingen.de

Philip Makedonski
makedonski@cs.uni-goettingen.de

Jens Grabowski
grabowski@cs.uni-goettingen.de

Institute of Computer Science, Georg-August-Universtitidt Gottingen, Gottingen, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9537-x&domain=pdf
http://orcid.org/0000-0002-8374-9142
mailto:trautsch@cs.uni-goettingen.de
mailto:herbold@cs.uni-goettingen.de
mailto:makedonski@cs.uni-goettingen.de
mailto:grabowski@cs.uni-goettingen.de

Empir Software Eng (2018) 23:1036-1083 1037

Keywords Software mining - Software analytics - Smart data platform - Replicability -
Validity

1 Introduction

The usage of empirical methods, (e.g., controlled experiments, case studies), has grown
common in software engineering. They were used by only 2% of papers published at major
journals and conferences between 1993 and 2002 (Sjgberg et al. 2005) and the usage raised
to 94% at the three major venues and conferences (International Conference on Software
Engineering (ICSE) (2012, 2013), European Software Engineering Conference/Symposium
on the Foundations of Software Engineering (2011 to 2013), and Empirical Software Engi-
neering (2011 to 2013)) (Siegmund et al. 2015a). This new trend spawned hundreds of
publications, which focus on, e.g., data collection from software repositories (Draisbach
and Naumann 2010; Dyer et al. 2015), data analysis of the collected data (Di Sorbo et al.
2015; Giger et al. 2010), or the development of new methods that could help in supporting
the software development process (He et al. 2015; Jorgensen and Shepperd 2007).

A recent study by Siegmund et al. (2015a) highlights two different problems that the cur-
rent empirical software engineering research has: replication studies are important, but there
are very few of them; the validity of studies can often not be assessed or checked with new
data. There are two different kinds of replication: exact, where the original procedures of
the experiment are followed as closely as possible and conceptual, where the same research
question is evaluated by using a different experimental procedure or different data (Shull
et al. 2008). To enable researchers to perform either of the replication types the following
needs to be available: data from the original study that should be replicated, used meth-
ods, and used algorithms. Very few papers provide all the above mentioned information, as
Gonzélez-Barahona and Robles (2012) point out in their study. The problem is also present
in the field of Mining Software Repositories (MSR) (Robles 2010).

The problem of insufficient replications and the validity problems are tightly connected.
As root cause for both of them, 5 different problems can be identified:

1. Heavy re-use of data sets. While the re-use of the same data is important for the
comparability of results, too heavy re-use without also considering new data poses a
threat to the external validity of the results. One example for this is the heavy use of the
NASA defect data for software defect prediction, which is used in at least 58 different
studies on software defect prediction (Hall et al. 2012). This allows good comparability
between results, but poses a threat to the validity, as, e.g., Shepperd et al. (2013) point
out problems with the quality of the data which could, thereby, threaten the validity of
58 studies at once.

2. Non-availability of data sets. The opposite of the above mentioned problem is that the
data used for a study is not available for other researchers. In this case, a replication of
the study is not possible, which makes it hard to compare results between studies with
different data sets.

3. Non-availability of implementations. The implementations of approaches are not
always publicly available as open source. Furthermore, visualizations that summarize
results, give an overview of the data, or are used to study certain aspects of a software
system (e.g., Van Rysselberghe and Demeyer (2004)) are even less often available for
researchers. But these visualizations are important, as they make the results and the data
better comprehensible for humans (Thomas and Cook 2006).
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For a complex research proposal, a re-implementation of approaches and/or visu-
alizations can require a high amount of resources. Even for a simple approach, the
re-implementations may differ from the initial implementation due to different inter-
pretations of the paper contents where the original implementation was described.
Moreover, there are instances in which the description of an approach does not provide
all necessary details for a one-to-one re-implementation.

4. Small data sets. Due to a lack of readily preprocessed public data, some studies use
rather small amounts of data, often of less than ten software projects. Moreover, only
very few studies use larger data sets with more than 100 software projects. This is a
threat especially to the external validity of these studies.

5. Diverse tooling. For most studies, developers create their own tool environment based
on their preferences. These environments are often based on existing solutions for data
analytics, e.g., R! for data mining or WEKA (Hall et al. 2009) for machine learning.
These solutions range from prototypes that can only be applied to the data used in the
case study but nothing else, to close-to-industrial level solutions that can be applied in a
broad range of settings. However, these solutions are usually incompatible to each other
(e.g., solutions for Linux or for Windows). Hence, even if all data, implementations, etc.
required for a replication are available, the diversity of the required tooling puts a heavy
burden on the replication process, especially if multiple results need to be replicated.

Within this paper, we want to investigate how we can address these problems. Our
solution to the above mentioned problems, which hinder the replication and therefore the
assessment of the validity of an approach is the creation of a smart data platform, which
combines data collection and data analysis. The integration of the data analysis into the plat-
form gives researchers a common ground, on which they can build their implementations.
Furthermore, we want to enable researchers to directly share their used data as well as the
used implementations. This would remove the burden (especially for novice researchers) to
set up a complete environment to replicate studies or perform conceptual replications. Fur-
thermore, such a platform would help researchers, who do not have a background in MSR,
to analyze the data. This is especially important, as more and more researchers from other
disciplines use data from, e.g., software repositories to perform their studies.

That such a platform is possible in principle was demonstrated by Microsoft, which
developed a tool for internal use called CODEMINE by Czerwonka et al. (2013). However,
within the current state of the art we found no publicly available platform, which is simi-
lar to CODEMINE in terms of its capabilities. Hence, we wanted to create a platform for
researchers who work on publicly available data, which is based on publicly available tech-
nologies. To this aim, we created SmartSHARK. With SmartSHARK we want to evaluate
the feasibility of such a smart data platform in terms of the following factors: 1) capability
to perform different analytic tasks; 2) potential to address the problems discussed above;
and 3) provide lessons learned for researchers interested in such a platform. To this aim,
we conducted an experience study to evaluate the platform to the above mentioned criteria.
Furthermore, we considered the usability of such a platform, because this is a central aspect
for the acceptance by other researchers.

In summary, the contributions of our paper are the following.

—  We analyzed the current state of practice with respect to the five problems mentioned
above, based on the proceedings of the ICSE 2015, the International Conference on

Uhttps://www.r-project.org/
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Mining Software Repositories (MSR) 2015, the International Symposium on Empirical
Software Engineering and Measurement (ESEM) 2015, and the Joint Meeting of the
European Software Engineering Conference and the Symposium on the Foundations of
Software Engineering (ESEC/FSE) 2015.

— We implemented the SmartSHARK platform that combines automated data collec-
tion from different sources with a web fronted from which Apache Spark jobs can be
submitted to the platform to perform software analytics on the collected data.

—  We analyzed, based on an experience report, if and how SmartSHARK can be used to
resolve problems mentioned above.

—  We evaluated the lessons learned from CODEMINE (Czerwonka et al. 2013) from a
research perspective.

This work is based on our previous work (Trautsch et al. 2016) which was published in
the proceedings of the MSR 2016. Based on the feedback from the community we received
during the conference and our continuing work on the project, this article provides the
following extensions in comparison to the conference paper.

—  We added the analysis of the current state of practice.

—  We extended our focus to include replication studies for MSR research.

—  We improved the design and implementation of the platform to address issues we raised
ourselves during the initial presentation of our work, as well as community feedback.

— We added a new visualization, which is a replication of a visualization from the paper
by Bird et al. (2006).

—  We added a table that shows the need of data storage for our newly developed plugins
if they are executed on the analyzed projects.

1.1 Paper Organization

The remainder of this paper is structured as follows. In Section 2 we give an overview of
related work. Then, we present the results of our analysis of current papers in Section 3.
Afterwards, in Section 4, we describe the SmartSHARK platform, which was the basis for
our experience report presented in Section 5. In Section 6 we discuss how SmartSHARK
can contribute to resolve the five problems mentioned above. Then, we describe how we
have addressed the problems described in the experience report in an updated version of
SmartSHARK in Section 7. Afterwards, we present threats to the validity of this paper in
Section 8. Finally, we conclude our paper in Section 9.

2 Related Work

The research on software data collection and software analytics covers many different direc-
tions and aspects. Most related work only considers either the data collection (e.g., Bevan
et al. (2005), Cubranié et al. (2005), and German (2004)), potentially including the pro-
vision of data sets or queryable databases (e.g., the Howison et al. (2005), Gousios and
Spinellis (2012), Gousios et al. (2014), and Di Ruscio et al. (2015), GitHub Archive?) or the
analytical aspect (e.g., defect prediction (Catal and Diri 2009), effort prediction (Jorgensen
and Shepperd 2007), developer social networks (Jermakovics et al. 2011)). Only very few

https://www.githubarchive.org/
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studies deal with both aspects. Furthermore, there is no approach which focuses on tackling
the problems regarding the replication and validity of MSR case studies.

A proprietary and not publicly available approach for building a software analytics plat-
form with integrated data collection is the Microsoft internal CODEMINE by Czerwonka
et al. (2013). With our work, we tried to build a platform with features similar to CODEM-
INE with publicly available and cost-free tools. CODEMINE is designed in a way, that more
than one CODEMINE instance can run at the same time by different product teams. These
instances all have a common core. In CODEMINE, the data is collected by different data
loaders and stored in a data store. The stored data is then exposed via different Applica-
tion Programming Interfaces (APIs) on which analytics and tools can be defined. Due to its
proprietary nature, no details on the implementation of the platform are available. However,
Czerwonka et al. provide lessons learned for building tools similar to CODEMINE. Our
SmartSHARK platform uses the same general structure as CODEMINE and these lessons,
provided by Czerwonka et al., were vital for the development of SmartSHARK. Details on
how the lessons learned influenced SmartSHARK are discussed in Section 6.2. Due to the
focus of CODEMINE on supporting the product teams at Microsoft, only Microsoft internal
data is collected. Therefore, considerations on the collection and analysis of publicly avail-
able data are out of scope of their work. Conversely, our paper focuses on the development
of a platform that can be used by researchers who work with publicly available data and the
impact such a platform can have on the replication and validity of studies.

Dyer et al. (2015) and Dyer et al. (2013) developed Boa, a domain-specific language
and infrastructure for analyzing ultra-large-scale software repositories. Boa is a query sys-
tem, where complicated queries can be executed to extract information from previously
cached repositories using a distributed MapReduce query language. Boa programs com-
pile down to different MapReduce jobs, which are then executed on an Apache Hadoop?
cluster. The key difference between Boa and SmartSHARK is the type of analytics that are
supported. While Boa provides Abstract Syntax Trees (ASTs) of the projects, it does not
directly enable deep analytics. Data like, software metrics, social metrics, etc. would have
to be calculated manually for each project by the researchers, which is very time consuming
and, thereby, probably lead to performance problems of the analytic approaches. Addition-
ally, previously developed programs could not be re-used. Furthermore, Boa heavily uses
MapReduce for its queries, whereas SmartSHARK uses Apache Spark (Zaharia et al. 2010,
2012). It is reported that Hadoop MapReduce is inefficient for interactive analytics (Zaharia
et al. 2010) as they are intended to be performed with Boa. Finally, we evaluated different
aspects of such a platform. The developers of Boa focused on how to enable large-scale
analytics, while we additionally consider how factors related to the validity and replicabi-
lity of approaches can be improved and how our platform contributes to the five mentioned
problems. However, Boa can also contribute to solving the problems mentioned in the intro-
duction, e.g., through collecting data from repositories (see: problem 1, 2, and 4). But, due
to the different focus of Boa, it currently does not provide the sharing of implementations,
although it should be possible to extend Boa in such a way. Furthermore, regarding the
diversity of tooling, Boa solves only part of the problem. The Boa domain-specific language
harmonizes the queries and the analysis that are directly performed on the Boa database.
However, in case the results of the Boa queries are further processed, e.g., with an additional
machine learning or visualization tool, users may still use arbitrary technologies on the Boa
output.

3https://hadoop.apache.org/
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Gousios and Spinellis (2009) developed the Alitheia Core platform to perform “large-
scale software quality evaluation studies” (Gousios and Spinellis 2009). The architecture of
Alitheia Core is divided into three different layers: (1) result presentation, (2) system core,
and (3) data mirroring, storage, and retrieval. The first layer is implemented via a web front-
end. The second layer includes a job scheduler and cluster service as well as other services,
which are connected via an Open Services Gateway Initiative (OSGi) interface (Alliance
2007). Basically, the OSGi specification describes a hardware-independent platform that
makes it easier for developers to modularize and maintain applications and services. The
third layer is responsible for the storage and retrieval of the collected data. This platform
provides a metrics plug-in system, which enables researchers to implement their own plug-
ins to calculate metrics out of the collected data. From a structural perspective and general
idea, Alitheia Core is similar to our approach: we also have a data collection part, an analytic
core, and a web front-end. However, our platform is designed around big data technologies
to allow scalable analytics. Moreover, our platform is deployed in a cloud, which allows
elastic scaling of resources. Finally, our analytic core, using Apache Spark, is more powerful
in terms of computational capabilities due to the usage of an Apache Hadoop cluster for
job execution and provides powerful algorithms for data analytics through Apache Spark’s
Mllib* and GraphX5 libraries. Moreover, same as Boa, the authors did not consider how the
platform can help in tackling the five problems mentioned in Section 1.

There are also commercial approaches that try to combine software data collection with
software analytics. Bitergia® offers several packages, which differ in the level of ana-
Iytic capabilities. However, the analytics provided by Bitergia are on the level of Business
Intelligence (BI), i.e., reporting the history of the repositories. For example, they provide
dashboards that display the number of performed commits or how many authors are active in
the analyzed project. Similar to Bitergia is the OpenHub project.” OpenHub is an open plat-
form, where every user can add or edit projects. The platform calculates different statistics
for added projects, which are similar to the statistics calculated by Bitergia and also on the
BI level. In comparison to SmartSHARK, Bitergia and OpenHub do not support deep ana-
Iytics or predictions for the future of projects. Additionally, users of Bitergia and OpenHub
are not allowed to create their own analytics.

3 Current State of Practice

To show that the five problems mentioned in Section 1 are still topical, we looked at the
current state of practice by analyzing papers from the ICSE 2015, MSR 2015, the ESEM
2015 and the ESEC/FSE 2015 with respect to them.

We only included papers, which have done a case study in the field of MSR, were pub-
lished on the main research track, and where the case study does not only includes a study
with human participation (e.g., surveys). We determined, if a paper has one of the problems
mentioned in Section 1 in the following way:

“http://spark.apache.org/docs/latest/mllib- guide.html
Shttp://spark.apache.org/graphx/
Shttp://bitergia.com/

7https://www.openhub.net/
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Table 1 Current state of practice. The numbers in the table correspond to the problems mentioned in
Section 1

Conference #Papers (1) 2) 3) )
ICSE 2015 15 3 9 10 (1 partly) 7
MSR 2015 23 5 (3 partly) 13 (2 partly) 15 (1 partly) 11
ESEM 2015 12 3 7 9 5
ESEC/FSE 2015 47 21 (3 partly) 18 (4 partly) 28 23
Overall 97 32 (6 partly) 47 (6 partly) 62 (2 partly) 46

— Heavy re-use of data sets: the paper used a previously published data set (e.g., from the
PROMISE (Menzies et al. 2015) repository).

— Non-availability of data sets: the paper does not provide all data (results, raw, and
processed data) or the data is not publicly available.

— Non-availability of implementations: the paper does not provide all implementations
(used tools, scripts) or the authors have not made them publicly available.

— Small data sets: the paper included less than 10 projects in their data set. However,
the problem of small data sets heavily depends on the research question and the used
data. Nevertheless, this evaluation is useful to have a first look at the generalization of
approaches, as it is more concerned with the assessment of their external validity.

— Diverse tooling: the paper does not provide or describe details of the execution environ-
ment. We checked this only for papers, where the implementation is publicly available,
as otherwise, we would not be able to execute the implementation anyhow.

Tables 1 and 2 report the results of our inspection. Table 1 shows the number of papers
for the four conferences, which were included in our inspection, and the number of papers
that had the problems mentioned in Section 1. For the first problem (heavy re-use), we found
that papers concerned with defect prediction often re-use data sets, e.g., the problematic
reuse of the pre-processed NASA defect data (Shepperd et al. 2013). Six papers used an
established data set and produced their own additionally to it.

We found that over 54% did not (or only partly) publish their data sets (problem 2).
Furthermore, we found that sometimes the links, where the data sets should have been pub-
lished, are dead links, even though the conferences have taken place only a year ago. For
six papers, the data sets are only partly available (e.g., only the results as CSV-file).

In over 65% of all analyzed papers the authors did not publish their used implementations
(problem 3). The authors did not mention which tools they used or they did not make their
own tools publicly available. Moreover, we had the same problem as mentioned above: links
that should redirect to the tools or direct download links are no longer working.

In our inspection we saw that nearly 50% of the papers that we included in our analysis
use only a small data set. Two papers were concerned with user profiles or user sessions
and one with Topcoder tasks® and not projects. These three papers were excluded from the
analysis of the last problem, as we were not able to determine from how many different
projects the used data originated.

Table 2 highlights the problem of diverse tooling. We included all papers, where the
implementation is freely available and the environment is described in the paper or in

8hittps://www.topcoder.com/
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Table 2 Papers and their environment that must be built before executing their approach (as described in the

paper or supplementary material)

Reference

Environment, as described

(Yang et al. 2015)

(Zhu et al. 2015)
(Avdiienko et al. 2015)
(Joblin et al. 2015)

(Nanz and Furia 2015)
(Lin and Whitehead 2015)

(Linares-Vasquez et al. 2015b)
(Coelho et al. 2015)

(Tao and Kim 2015)

(Claes et al. 2015)

(Le et al. 2015)

(Kouroshfar et al. 2015)

(Gupta et al. 2015)

(Gallaba et al. 2015)
(Cavalcanti et al. 2015)

(Bang et al. 2015)

(Safi et al. 2015)
(Linares-Vasquez et al. 2015a)

(Arcuri et al. 2015)

(Long and Rinard 2015)
(Samak and Ramanathan 2015)
(Shi et al. 2015)

(Gong et al. 2015)

(Nguyen et al. 2015a)
(Siegmund et al. 2015b)

(Xu et al. 2015)
(Eichberg et al. 2015)
(Smith et al. 2015)
(Dhar et al. 2015)
(Nguyen et al. 2015b)
(Beyer et al. 2015)

(Park et al. 2015)
(Hermann et al. 2015)
(Foucault et al. 2015)

APKTools, Python 2, Java SDK 1.7, Android SDK
tools, Android SDK platform-tools

WEKA, C#, Roslyn, Visual Studio 2012+

R, Python, Flowdroid

Python, R, MySQL, Perl, CPPStats, Nginx, Nodejs
Python, R, Cloc

CVSAnalY, Python, ChangeDistiller, SimPy, Net-
workX, ply, Java

Python, Apktool, Dex2jar, Procyon, srcML, MITLM
MongoDB, Java

IBM Watson Libraries (WALA), Python difflib
Ocaml

Java, Python, git, svn

Class Dependency Analyzer, Java, Bunch, ACDC,
ArchDRH

Jflex, Java

Node.js

Groovy, Neo4j, gitminer, Java
Java SDK 7, Mathematica
Java, Scala

Android Debug Bridge, HierarchyViewer, UIAu-
tomator, jMetal

Java SDK 8, Maven

AMI Image and VM Image
VM Images

PIT, Ekstazi

Node.js, Java SDK 1.6+, git, libgmp, Chrome, Python
2.7, Visual Studio 2010, Windows 7 64-bit SDK

Eclipse, PHP Development Tools for Eclipse

git, xamarin, accord, accord.math, aforge, aforge.math,
ilnumerics (only for MacOSX described)

Ant, Java

JDK8+

GenProg, TrpAutoRepair
Java, Soot

Java SDK 6, Eclipse

VM Image or Linux, OpenJDK 1.7, CPAchecker,
Ultimate Automizer

VM Image
Scala, R
VM image
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Fig. 1 Design of SmartSHARK

supplementary material (e.g., in the replication package). Furthermore, we added the
description of the environment as we found it in the material. Hence, some descriptions are
more elaborate (e.g., which version of Java or Python is used), whereas others are more
generic. Overall this table supports our hypothesis that even if the implementations are
available, the diversity of the required tooling puts a heavy burden on the replication process.

4 The SmartSHARK Platform

In order to get insights of how a CODEMINE-like tool can be made available to all
researchers, as well as analyze the features that such a platform should offer from a research
perspective, we created the platform SmartSHARK.? Figure 1 gives a logical overview
of the platform, which is independent of the underlying infrastructure. SmartSHARK is
designed as a cloud-based data platform. This means that data is shared between all users of
the platform. The process of analyzing a software project can be divided into two steps: 1)
Extract, Transform, Load (ETL) of the project data and 2) writing and running the analytic
program. The ETL is implemented as an automated process that loads extracted project data
in a MongoDB. Hence, researchers can focus on writing their analytic programs that utilize
the previously stored data from the MongoDB.

In this section, we present our first prototype of SmartSHARK. This information is
needed, as the reader needs to know the version on which our experience report in Section 5
and the subsequent discussion in Section 6 is based on. Changes that we made to cope with
the limitations and problems are discussed in Section 7.

4.1 Data ETL Process

Projects, from which the data should be extracted, transformed and loaded, are added via the
web front-end of SmartSHARK. SmartSHARK only requires (1) the URL of the Version
Control System (VCS), (2) the programming language, and (if applicable) (3) the URL of
the mailing list of the project. After this information is supplied, the ETL process for this

9The complete source code as well as deployment scripts are available in our public SVN: http://trex.
informatik.uni-goettingen.de/svn/smartshark/. A running instance is located at the following URL: http://
smartshark.informatik.uni- goettingen.de.
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project can be started and is performed automatically. This process generally also works for
closed source software, as we just need to be able to clone a project via git. Nevertheless,
this feature is not implemented in this version of SmartSHARK, as we focus on open-source
projects first, because they are widely used in research.

Currently, SmartSHARK supports GIT as VCS. The programming language is required
by InFamix'? for the calculation of software metrics. During the ETL process, the progress
can be observed in the web front-end to give the user feedback. Furthermore, each project
has its own configuration files, which can optionally be edited via the web front-end to
customize the ETL process. In this prototypical version of SmartSHARK we only support
data collection from VCSs and mailing lists. Nevertheless, we plan to include the collection
of data from several Issue Tracking Systems (ITSs) (e.g., bugzilla, jira) in our improved
platform, which is explained in Section 7.

4.1.1 Model-based Fact Extraction and Transformation Framework

Many tools and methods, which are used for data extraction and application, are context-
specific. These tools are often have a tight coupling between the extraction process and the
application, which can be problematic.

The output from the extraction process for each tool is usually in a format suitable for
the intended application, which can make the integration of the output from different tools
challenging. Additionally, each application may have certain requirements towards its input,
requiring further adaptation of the integrated output from the extraction process. Performing
the integration and adaptation at input and output level may incur considerable development
overhead and some redundancies, while still remaining context-specific. Figure 2 illustrates
an abstract representation of this scenario where inputs and outputs are integrated in an ad-
hoc manner at a lower level of abstraction. The programs in this figure are available data
collection programs (e.g., CVSAnalY!!), that generate different outputs (e.g., CVS or XML
files). These outputs are then integrated by different integration scripts in an ad-hoc manner,
depending on what the application needs as input. For example, if a researcher wants to
analyze data using the application WEKA (Hall et al. 2009), she needs to make sure that all
the output from the data collection programs are integrated and transformed into a format
that is readable by WEKA (Hall et al. 2009). If the researcher now wants to use another
application for the analysis besides WEKA (Hall et al. 2009), she needs to create another
integration to change the input accordingly, which results in a development overhead.

Hence, (Makedonski et al. 2015) proposed a model-based software mining infrastructure,
called DECENT, to circumvent these problems. The infrastructure relies on domain-specific
models of facts extracted from the outputs of the different tools, making the facts available
in a homogeneous high-level representation. These domain-specific facts models are then
integrated and transformed into models that are related to a certain assessment task. The
integrated assessment task models are queried and exported into the input formats required
by the various applications.

The DECENT infrastructure is built on top of the Eclipse Modeling Framework (EMF).
The EMF and related technologies provide interfaces for obtaining models from various
lower-level representations, such as structured text, relational databases, XML files, and
CSV files, by means of corresponding mappings. This makes the integration of various input

10The developing company Intooitus does not exist anymore and the tool is also not available anymore.
Uhttp://github.com/MetricsGrimoire/CVSAnal Y
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Fig. 2 Ad-hoc integration at input-output level

and output formats very convenient and reusable, where resulting models can be used in a
variety of contexts with little development overhead.

To extract facts from raw assets, DECENT uses various tools, which are widely used in
research. These include CVSAnalY for extracting information out of source code repository
logs (e.g., used by Fernandez-Ramil et al. (2009) and Herraiz et al. (2007)), InFamix for
calculating software quality metrics (e.g., used by Alexandru and Gall (2015)), and DuDe
(Draisbach and Naumann 2010) for duplication detection.

A high-level overview of the DECENT infrasturcture is shown in Fig. 3. Existing pro-
grams (such as CVSAnalY or InFamix) can be used to collect data from software projects.
The resulting outputs in different formats (e.g., MySQL databases, XML files) are trans-
lated into facts models by means of resource mappings and then combined into integrated
assessment models by means of model-to-model transformations resulting in a DECENT
model instance that corresponds to the project. This model instance now holds all the project
data relevant for the assessment task that was collected by the different tools. Thanks to
EMEF, the model instance can be stored in different output formats, such as a relational
database, XML file, or a MongoDB with little or no additional development overhead. The
model instance can then be querried and refined further to suit the input requirements for
the different applications.

4.1.2 VCS-ETL

The VCS-data, obtained during the ETL process, is change-based. For each change (i.e.
commit), we store all changed software artifacts and their location in the project. Therefore,
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Fig. 3 High-level model-based integration with DECENT

it is possible to reconstruct the whole project structure at any point in time. The software arti-
facts include source code files, classes, methods, functions as well as documentation files,
such as readme files. Five different types of data are stored for each artifact: 1) software
metrics; 2) source code changes; 3) project structure; 4) change history; and 5) bug-related
labels. This data is stored for each commit of the project.

The software metrics include static source code metrics, change metrics, and social
metrics (e.g. developer cooperation factors). A list of all the metrics can be found in the
SmartSHARK documentation online.!? Additionally, we save delta values for each metric,
which indicate how this metric has changed since the artifact was last touched. In addition
to the metrics, we also save the concrete textual change that was made, i.e., the diff!3 of
the commit. The diffs can be particularly important for the development of new analytic
approaches, as shown by Walden et al. (2014). The project structure includes information
about the location of each artifact at each commit, including logical artifacts such as meth-
ods and classes. The change history includes information regarding the time and purpose
for each change as well as the person responsible for it. The bug-related labels include
information on whether a change is considered to be a fix and/or a cause for a fix, i.e. a bug.

Whether a change is considered to be a fix can be determined based on a regular expres-
sion evaluated against the commit message or other means. Whether a change is considered
to be the cause for a fix is computed by means of a weighted multi-factor multi-layer
approach for identification of potential causes for events of interest based on origin anal-
ysis (Makedonski and Grabowski 2016). The approach establishes cause-fix relationships

2http://smartshark.informatik.uni- goettingen.de/index.php ?r=site%2Fmongodesign
Bhttp://www.gnu.org/software/diffutils/
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Fig. 4 Identifying causes and fixes

between changes to artifacts at different layers of granularity (project, file, class, method)
in a cause-fix graph. Based on weights assigned to a fix according to a given factor, such
as a regular expression, it computes the contribution of each cause to the fix depending on
the number of causes. Then, for each cause it computes the average contribution to fixes
according to the given factor. The approach supports determining the causes for fixes across
different factors, such as refactorings and bug fixes, based on regular expressions or other
means for determining the fixes. It is implemented within the DECENT infrastructure and
by default it uses regular expressions inherited from CVSAnalY!# for determining whether
a change is considered a fix for a bug. The regular expressions can also be customized
further to suit a specific deployment scenario.

A simplified overview of the approach for finding causes and fixes is outlined in Fig. 4
containing an excerpt from a cause-fix graph including three changes C3, C4, and Cs. Cs is
identified as a fix based on the commit message, thus it has a weight for the “bugfix” factor
equal to 1.0. C3 and Cy4 are identified as potential causes, as, e.g., they both changed lines
in a file that were also changed in the fix in C5. For both, C3 and Cj it is assumed that they
contribute equally15 (contribution = 0.5) to the fix. In this example, the total contribution to
fixes for both C3 and Cjy is the same, however, since C3 also contributes to changes in Cy,
where Cj4 is not identified as a fix under the “bugfix” factor, the average contribution of C3
is lower.

Based on the computed average contributions to causing a fix, changes are labeled as
causes for fixes. In addition to the label (true or false), a confidence indicator (high, low) is
added to indicate whether the resulting label can be trusted. The label is based on a thresh-
old derived from the distribution of the average contributions. The threshold for this study
is calculated as 50% of the mean average contribution for the corresponding level of granu-
larity. If the average contribution of a change is below the threshold, it is less likely that the
change caused a fix as the actual cause for the fix is either distributed among several potential

14The default set of regular expressions includes:

"defect (s)?", "patch(ing|es|ed)?", "bug(s|fix(es)?)?",
"(re)?fix (es|ed|ing|age|\s?up(s)?)?", "debug(ged)?", "\#\d+",
"back\s?out", "revert (ing|ed)?"

13The default assumption may be overridden by applying different strategies based on the size of the changes
or other information.
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causes or the change caused a number of other changes that were not necessarily considered fixes.
If the average contribution of a change is above the threshold for the corresponding level
of granularity, it is more likely that the change caused a fix (i.e. was bug-prone). The con-
fidence indicator is based on the proximity to the threshold. If the average contribution
of a change is close to the threshold then the label is considered less reliable, hence its
confidence is “low”. In this study, we considered a window of 1% around the threshold.
Considering the example scenario illustrated in Fig. 4, if we assume for illustrative purposes
that the mean average contribution for the file level (including all changes, not only the ones
shown in Fig. 4) is 0.5, the threshold will be 0.25 (50% of the mean average contribution).
In this case, C4 is labeled as bug-prone, while both C3 and Cs are labeled as not bug-prone,
however, C3 will have a low confidence as it is close to the threshold, while C4 and C5 will
have a high confidence as they are farther away from the threshold.

By applying this approach, a DECENT model instance is enriched with the computed
contributions, labels, and confidence indicators for each change at each level of granularity.

4.1.3 Mailing List-ETL

SmartSHARK extracts, transforms, and loads mailing lists of projects in the MongoDB.
The data includes information about the sender, receiver, time, subject, actual message, and
if the mail was sent in response to another mail.

This data is linked via the email address of the contributor to the VCS data, as proposed
by Herraiz et al. (2006). Therefore, it is possible to build complex developer cooperation
networks on basis of this data. This is especially interesting for the development of new
models regarding the cooperation and communication of developers or to perform intention
mining, as shown by Di Sorbo et al. (2015).

4.2 Software Analytics

We define software analytics as data analytics applied in the domain of software devel-
opment to gain insights into the software development process and support the associated
decision making process. This includes defect prediction (Catal and Diri 2009), effort pre-
diction (Jorgensen and Shepperd 2007), dependency analysis (Honsel et al. 2015), developer
social networks (Jermakovics et al. 2011), and other topics related to the field of software
evolution.

With the collected data, various kinds of aspects regarding the software projects and their
evolution can be analyzed, e.g., the number of file changes in a given timeframe, changes
within the file ownership, and patterns in mailing list activities. Furthermore, different
applications of machine learning, e.g., for defect prediction are possible.

To facilitate such a diversity of analytic problems, SmartSHARK uses the Apache Spark
framework as analytic back-end. Apache Spark is especially designed for big data analyt-
ics. In our deployment, Apache Spark uses an Apache Hadoop cluster to distribute data and
computations across nodes. For the definition of analytic jobs, Spark supports multiple lan-
guages. With SmartSHARK, we currently support Java and Python. To perform analytics
on SmartSHARK, the researcher first writes their analytic program. The analytic programs
can use the whole functionality of the programming language as well as Spark specific
features. The standard language features are computed on a single node of the Hadoop clus-
ter used by Spark. The Spark specific features allow the distributed computation of results
within the Hadoop cluster and, therefore, analytics that are very complex or data intensive.
Researchers can upload and execute the compiled Java application or a Python file to the
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platform using the web front-end. The front-end allows to add Spark arguments as well as
program arguments. This allows for parametrizeable analytic jobs, e.g., to define the name
of the project to be analyzed or a certain threshold important for the analytics. For the exe-
cution, the Spark jobs are submitted to the Hadoop cluster. Results can either be saved in
the MongoDB to enrich the database or as a file that users can download later.

4.3 Web Front-end

From an end-user perspective, the web front-end is the central part of our platform and it
is based on the Yii2 framework.'® It is the only place where users directly interact with
SmartSHARK and the starting point for both the data collection and the software analytics.
The front-end allows to add projects as well as view information about the already pro-
cessed projects, e.g., general information about the number of commits, project ages, and
changed artifacts in each commit. Moreover, it provides a job submission interface, through
which users of SmartSHARK can run their analytic programs. Each user owns a results
folder, which can be accessed through the web front-end. SmartSHARK implements a sim-
ple access rights system. We defined different roles: the administrator has all rights on the
web interface and complete access to the MongoDB, whereas the advanced spark user role is
restricted in using the web interface and can only modify the underlying MongoDB through
analytic jobs. The normal user role has very limited access rights in the web interface and
can only read data from the MongoDB.

The front-end is connected via a REST API to the Apache Hadoop cluster manager. But
in the current state of the platform several shell scripts are executed for the data ETL process
and the sending of the analytic jobs to the Spark instance. Nevertheless, in the near future
we want to change this by providing a REST API for submitting Spark jobs.

Moreover, the web front-end allows users to create a backup of the MongoDB for down-
load. This way, users can replicate the data of the platform and, e.g., use it in their local
environment or archive it as part of a replication set for a published study.

4.4 Cloud Deployment

The infrastructure of our SmartSHARK deployment is depicted in Fig. 5. The web-server
also serves as database server and data collection server. Furthermore, there is an Apache
Hadoop cluster to execute analytic jobs. The platform can be automatically deployed via
our deployment scripts using the DevOps technologies Vagrant!” and Ansible.!® Details
regarding the used software versions and more information regarding the deployment are
given on the homepage of SmartSHARK..”

5 SmartSHARK Experience Report

In order to evaluate if SmartSHARK can address the problems of heavy data re-use, non-
availability of data sets, non-availability of implementations, small data sets, and diverse

1ohttp://www.yiiframework.com/

17 https://www.vagrantup.com/
8http://www.ansible.com/
19http://smartshark.informatik.uni- goettingen.de/
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Fig. 5 Infrastructure of SmartSHARK

tooling, we made experiments with the platform. We collected data from multiple projects
to see if such a high degree of automation for such complex data is feasible. Then, we
proceeded with the definition of three kinds of software analytics: 1) visual analytics of
evolutionary trends during the development and within the mailing list usage; 2) a complex
machine learning based defect prediction approach; and 3) a statistical evaluation of data
in order to support effort estimation. The three analytical examples are selected in a way
to cover a broad area of research topics. Furthermore, each of these topics is a very promi-
nent research area. Additionally, we wanted to evaluate if the machine learning support of
Apache Spark is good enough for complex research tasks like defect prediction. The last
part of our experience report is related to an often neglected, but important attribute of such
platforms: the usability.

Note that the experience report is based on our first prototype version of SmartSHARK,
which is presented in Section 4. In Section 7 we describe how we changed our platform to
cope with the limitations that we identified during our work with SmartSHARK.

5.1 Data Collection

To evaluate the data collection, we randomly selected 23 projects from GitHub.?® We did not
follow any specific methodology for the selection of projects, instead we used the explore
function of GitHub to browse available projects. The only requirement for the inclusion of
a project was that it is programmed in Java, C, or C++. Table 3 lists the chosen projects,
including number of commits, number of files in the repository, size of the repository, pro-
gramming language, number of stored mails, and a very brief project description. We started
the ETL process via the SmartSHARK web interface and noted the following problems
during the data collection:

— CVSAnalY stopped working for the oryx project for a while, but then simply resumed.
Upon further investigation we determined that this was most likely a race condition in

20nttp://github.com/
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Fig. 6 Example of the change history visualization for the project ksudoku

the “Content” extension of CVSAnalY. The “Content” extension of CVSAnalY is used
to store the textual content of files at each revision.

— InFamix did not work for all revisions of the Mahout~" project. We were not able to
track down the problem because InFamix is a closed source software.

—  The collection of source code metrics was restricted to one programming language per
project, because InFamix does not support multiple languages within a project.

—  We could collect the data for only one project at a time due to the limited resources and
the high resource consumption in terms of both memory and computing power required
for the data collection.

t21

Besides these problems, there were no other failures in our data collection process for the
projects we have tested.

Nevertheless, in our current version of SmartSHARK we have substituted InFamix and
CVSAnalY with two tools, that we developed on our own. More information regarding these
tools can be found in Section 7.

5.2 Software Analytics

The second part of our experience?? report should evaluate how well the collected data in
combination with the architecture of the SmartSHARK platform is suited to perform tasks

2l https://github.com/apache/mahout

22There is no ksudoku specific list. Instead we collected the whole kde-games-devel mailing: https:/mail.
kde.org/pipermail/kde-games-devel
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Fig. 7 Example of the file-level bug overview visualization for the project k3b

from software analytics. The source code for?3 all analytics is available in the SmartSHARK
SVN.

5.2.1 Visualization of Evolution Trends

We created six different visualizations for the projects we added to SmartSHARK.

Change History Visualization This visualization shows how many software artifacts
(i.e., files, classes, functions) were changed at which point in time (i.e., commit). Fur-
thermore, the commit message can be retrieved for each change in this visualization. An
example for this visualization is shown in Fig. 6 for the project ksudoku.

File-level bug Overview Visualization This visualization depicts the number of changed
files over the project lifespan together with the number of defects. An example for this
visualization is shown in Fig. 7 for the project k3b. This figure only shows the graph for
the number of defects over the time, while the other graph is deactivated. The confidence
cut indicates till which revision we can trust our defect label data. We can not trust all the
data, as we do not know directly when a new version of the program is committed, which
files in the new revision are defect prone. The detection of bugs within revision takes some
time (some bugs are detected in week, some after three years or even later). Therefore, we
have chosen such a confidence cut as suggested by Tan et al. (2015) to draw a line between
trustful and non-trustful data.

23The project is not available anymore.
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Fig. 8 Example of the mailing list activity (sent messages) visualization for the project log4j. The blue bars
depict the number of sent messages, whereas the black bars shows the number of changed files at a certain
point in time

Mailing List Activity - Number of Sent Messages For projects that have a mailing
list, this visualization depicts how many messages were sent at which point in time. The
mailing list activity is shown together with the number of changed files for the project in
order to allow researchers to look for correlations. Figure 8 depicts an example for this kind
of visualization. This figure shows the number of sent messages (blue bars) and changed
files (black bars) for the project log4;.

Mailing List Activity - Activity of Contributing People For projects that have a mail-
ing list, this visualization shows how many people were active on the mailing list on a
monthly basis. The visualization allows to differentiate between new users on the mailing
list and these also active in the previous month. An example for this visualization is depicted
in Fig. 9 for the project k3b.

Mining Email Social Networks For projects that have a mailing list, this visualization
shows the social network of developers. This visualization is a replication of a figure from
the paper by Bird et al. (2006). We analyzed the mailing list by the number of messages sent
by developers, and the number of messages sent in reply to developers. There exist an edge
between developer A and developer B if A has sent a message to B.>* Here, we distinguish
between big and small mailing lists: If overall more than 3000 messages were sent on the
mailing list, there exist an edge between A and B only if A has sent B at least 150 messages,
which is conform to the approach by Bird et al. (2006). For mailing lists smaller than 3000
messages, we did not apply this rule, as the goal of this threshold is to reduce the size of the

24Note that all messages were always additionally sent to the mailing list.
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Fig. 9 Example of the mailing list activity (active people) visualization for the project k3b

network, which is not necessary for smaller mailing lists. Nevertheless, we experienced, that
for this kind of visualization the data must be thoroughly cleaned and prepared. For some
projects, we were only able to reconstruct that the developers have sent messages to the
mailing list, but not if they were replies to other messages. An example for this visualization
is depicted in Fig. 10 for the project libyami.

Defect Prediction Results Visualization In order to show if the platform can also be
used to give feedback on analytics performed, we created a visualization of the defect pre-
diction results (see Section 5.2.2). We show which files were predicted as defective by the
created model in comparison to which files were marked as defective by the data collection
process. This visualization shows, that visualizations for results computed by complex ana-
lytics are also possible with the platform. An example for such an visualization is depicted
in Fig. 11 for the project guice. The figure shows for a classifier which data was used for
the training and when the classification started. It also shows the results (blue line). The
reasoning behind the confidence cut is explained above.

The visualizations give a first impression about the project and provide researchers
insights regarding several evolutionary questions, e.g., patterns on the mailing list activity,
the evolution of the size of a project or when bugs were created. Furthermore, we were able
to replicate a visualization from the paper by Bird et al. (2006).

In general, these visualizations use different javascript visualizations libraries like
HighCharts/HighStock?> or visJSZ0. These libraries can be easily integrated for use in a view in
the web front-end of SmartSHARK. Therefore, if we want to create a new visualization,

25See: http://www.highcharts.com/
26See: http://visjs.org/
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Fig. 10 Example of the email social network of the project libyami

we can choose a library that supports this visualization style and add it to the web-frontend
to access the library in our created view. Other visualizations are accessible via the
SmartSHARK website.

5.2.2 Defect Prediction

The second analytic example implemented on SmartSHARK is a defect prediction model.
For this, we performed a conceptual replication of a recent publication by Tan et al. (2015).
The authors suggest to perform just-in-time defect prediction, i.e., for each commit, based
on change metrics (e.g., added lines) as well as textual data from the commits and source
code. Tan et al. suggest to use the first part of a project as training data, then leave a gap
and predict the remainder of the project using a prediction model trained on the first part of
the data. We selected to replicate this approach, as we are not aware of any public defect
prediction data set that contains both the metrics and textual features.

The data required for the defect prediction was readily available in the MongoDB back-
end of SmartSHARK, i.e., the defect labels, which were determined by DECENT and the
software metrics, which are calculated by InFamix via statically analyzing the source code.
As explained in Section 4.1.2, this data (labels and metrics) is collected for each commit of
a project for each changed artifact.

Using the functionality provided by Spark, creating the data splits as required for the
approach by Tan et al. (2015) as well as the training of the defect prediction model was
straight-forward. After fetching the data from the MongoDB, a Map job was used to prepare
the data. Then, the defect prediction model was trained using Apache Spark’s Mllib. We
evaluated our classifier with the project data available in the MongoDB. Furthermore, a
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Fig. 11 Example of the defect prediction results visualization for the project guice

confusion matrix is created to allow the calculation of performance metrics like recall and
precision. The prediction results, as well as the confusion matrix, are then stored in the
MongoDB for later use by the visualization.

To evaluate the versatility of the platform to exploit different types of data, as well as cre-
ate different types of models, we created four different defect prediction models as described
above, all using different data and classifiers: 1) a logistic regression model based on static
source code metrics and change metrics; 2) a random forest based on static source code
metrics, change metrics, and social metrics; 3) a naive bayes for text classification based on
textual diffs of revisions; 4) and a majority voting scheme with three algorithms: a random
forest and a logistic regression model trained on the static source code metrics, change met-
rics, and social metrics as well as a naive bayes model trained on the textual diffs. All of
these models could be trained and defined without any problems.

Thus, our example demonstrates that SmartSHARK can be used for regression of proba-
bilities as shown with logistic regression, classification problems as shown with the random
forest, as well as text mining. Moreover, the example demonstrates that the Spark-based
approach allows for the arbitrary combination of techniques, which we demonstrate with
the voting scheme we implemented.

5.2.3 Effort Estimation

The third analytic example was created with the aim to gain insights into how much effort
must be put into the creation of a simple effort prediction model. The example was inspired
by work on effort estimation in open source projects by Gousios et al. (2008) and Rob-
les et al. (2014). Gousios et al. estimate the contributions of developers as the LOC they
contributed, plus additional contribution factors. Robles et al. try to determine the person
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months invested in an open source project using the number of commits and the number of
active days within a period.

With our example, we create a mixture of both. As input, we use a list of projects. To cre-
ate the effort model, the means for the lines added, lines removed, the growth of the absolute
file size of the repository, and the LOC in the repository per commit were calculated for each
project. The required information is all part of the collected data. For the aggregation of the
information with Apache Spark, two Map jobs and two reduce jobs were defined, first to
create a map between the file names and the associated metric data, and then to reduce the
maps to the required means. In addition to the mean values for each individual project, the
mean values for all listed projects are also calculated. This information gives an overview
on the average contribution of developers per commit, similar to the work of Gousios et al.
(2008).

The output of the analytic job is then a list of the means for the metrics for each project
in the list, as well as the overall mean values. This information can be used to estimate and
predict the effort for new projects or project phases based on the number of source code
revisions that are expected. We denote the mean LOC as L in the following.

The number of expected code revisions can be determined in the same way as the mean
values of change for each revision: by determining the mean number of revisions per devel-
oper per month, denoted as C in the following. If #dev developers are working on the
project, it follows that the mean output will be #dev - C - L per month. Thus, if the estimated
size of a project release is x, the expected time required for the project is t = gz~
months. This estimation of developer activity for effort estimation mimics the person month
estimation by Robles et al. (2014), except that we estimate the LOC produced and not the
person months.

This straight forward approach shows how SmartSHARK can facilitate insights into the
software development using simple analysis that can be used to interpolate how projects
evolve in terms of effort measured in time and LOC based on previous research. We are
aware that this is not a perfect state-of-the-art effort prediction model, but just an example
we developed to evaluate the potential of SmartSHARK. The same concepts can be applied
to other questions, e.g., how the complexity evolves over time simply by replacing LOC
with a complexity metric.

5.3 Usability

Usability is defined through its major aspects: a given task must be executed with effec-
tiveness, efficiency and satisfaction (ISO/IEC 1998). If users are able to accomplish their
tasks, the product has a good effectiveness. Efficiency includes, that users need a minimum
amount of resources (e.g. psychological strain, time, material) to achieve their task or goal.
If the users expectations are fulfilled or even excelled they feel satisfied with the product.
To assess these attributes we conducted different experiments with SmartSHARK. In this
section, the usability of the four most important tasks is evaluated.

5.3.1 Definition of Analytic Jobs

SmartSHARK allows the usage of any existing library for the definition of analytic jobs. In
case the full power of Apache Spark is required, e.g., to achieve scalability for complex analy-
tics, features for the distributed processing must be used. This includes regular MapReduce
jobs and libraries, which are directly developed for Apache Spark. We demonstrated the use
of the Spark machine learning library for the definition of our defect prediction model.
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The definition of analytic jobs fulfilled all of the different major usability aspects, as
defined in the ISO 9241-11 (ISO/IEC 1998) standard, because we were able to successfully
define different analytic jobs without much effort. Furthermore, we were able to use
libraries to which we are used to, which fulfilled our expectations.

5.3.2 Debugging

Currently, SmartSHARK offers the possibility to gather debugging information via log
files of the Hadoop cluster. Although, this solution is feasible, most developers are used to
directly debug within their Integrated Development Environment (IDE). Furthermore, the
debugging of applications which are executed on multiple nodes, is difficult to perform,
e.g., debugging Hadoop MapReduce programs.?’ Nevertheless, Apache Spark offers debug-
ging possibilities, which can be included in later versions of SmartSHARK to offer a direct
interface for developers to debug their programs.

We were able to successfully debug our programs via the log file access. But the satis-
faction for this task is currently lacking, because the debugging was a repetitive task as we
needed to gather information from the log file to pinpoint the bug.

5.3.3 Evaluation and Presentation of Results

The evaluation of the results with Apache Spark is well supported by libraries. The feed-
back loop, of how the results are displayed and returned to the user, is passive. Currently,
SmartSHARK offers three options: 1) storage of the results directly in the MongoDB, as
we demonstrate with the defect prediction example; 2) storage on the file system for later
download by the user as we do it in the effort estimation example; and 3) directly output the
desired results via the language specific print commands.

One way to make the analysis of the results more comfortable was shown by incorporat-
ing the defect prediction results directly in the SmartSHARK website. By providing such
a visualization as shown in Fig. 11 together with metrics like recall, precision, G-Measure,
F-Measure, and MCC, the evaluation of, e.g. defect prediction, approaches gets more com-
fortable. The researcher only needs to execute the corresponding Spark job for a project and
the website will then show the results directly.

Therefore, the task of evaluating and presenting the results fulfilled all of the different
usability aspects, at least for our defect prediction example. Our visualization directly gives
feedback to the user, without the need of her to actively retrieve the results. This shows,
that SmartSHARK is capable of switching the feedback loop from a passive one (i.e., the
user needs to get active to get the results) to an active one. The only requirement for this is
the provision of Yii2-Widgets,?® which are plug-ins that implement the logic to gather and
display the data. Furthermore, these plug-ins can easily be shared.

5.3.4 Addition of New Data Sources

We developed SmartSHARK in two increments: the first increment contained only the ETL
of VCS data, while in the second increment the ETL of mailing list data was added to the
platform. Therefore, at first we were only able to make use of the first increment (collecting

2Thttps://wiki.apache.org/hadoop/HowToDebugMapReducePrograms
http://www.yiiframework.com/doc-2.0/guide- structure-widgets.html
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VCS data), but as we added the second one we were able to collect the mailing list data
without problems.

Hence, our design of the ETL process and the schema of the MongoDB ensured that
the task of adding new data sources could be performed effectively, efficiently and with
satisfaction.

6 Discussion

Within this section, we discuss how SmartSHARK can be used to address the five problems
mentioned in Section 1. Furthermore, we compare the lessons learned from CODEMINE,
with our own experience with SmartSHARK. At last, we present lessons that we learned
during the design, development, and usage of SmartSHARK.

6.1 Addressing Threats to Validity and Replicability with SmartSHARK

The motivation of our work on SmartSHARK are the five major problems, which are dis-
cussed in Section 1. Based on our experience with SmartSHARK, we discuss the impact a
platform like SmartSHARK can have on these problems, how it may help to overcome these
problems, or which additional work is required.

(1) Heavy Re-use of Data Sets A platform like SmartSHARK natively addresses this
problem. Due to an automatic project data ETL process, new projects can be added with-
out much effort. This way, SmartSHARK provides a foundation for a constantly growing
database, which means that with every experiment, new data could be used. However,
SmartSHARK also demonstrates the limitation regarding this research question: the desired
analytics are a central part. The used platform must be able to collect the required data for
the required analytics. If it does not provide such data it must be extensible in a way that
researchers are able to plug-in their own implementations so that they can also be shared
easily across different SmartSHARK instances.

Currently, our ETL process is extensible and, moreover, the results of Spark jobs can be
stored in the MongoDB to further enrich the data, if required. Additionally, by providing a
plug-in system, researchers are able to plug-in their existing programs (see: Section 7).

(2) Non-availability of Data Sets SmartSHARK provides two possible ways to address
this problem: the first is a shared cloud deployment, where all researchers have access to
the same data. The second is to create and share backups of the underlying MongoDB.

(3) Non-availability of Implementations All analytic jobs on SmartSHARK are pro-
vided as Apache Spark jobs. Therefore, published implementations can be executed on
each instance of SmartSHARK, both private and public. Implementations can be shared
both as source code or compiled Spark jobs. However, SmartSHARK itself currently does
not directly offer the sharing of the implementation, this must be done at a third-party
side. Therefore, one extension would be the addition of an implementation catalog, where
researchers can upload their implementations to share them with other researchers.

Our experience shows, that the addition of new visualizations is easy, as our website
uses the Yii2 framework, which provides a plug-in mechanism for widgets. Therefore,
if a researcher develops a visualization, it can easily be shared and installed in any
SmartSHARK instance via this mechanism.
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(4) Small Data Sets Through the automated data collection, the addition of new data to
SmartSHARK is not very time consuming for researchers, even if the collection itself might
take a while. Hence, constantly growing data sets are not a problem, which will lead to a
large body of rich data that includes the structure and meta information about the VCS,
software metrics, defect information, and mailing list data.

(5) Diverse Tooling SmartSHARK currently addresses this problem differently for data
collection and analytic applications. For the data collection, we use a model-based frame-
work for the harmonization of the heterogeneous data produced by diverse tooling. This
allows us to abstract away from concrete low-level representations in diverse formats such
as XML, relational databases, CSV files and other assets, and instead work with homoge-
neous high-level models that allow us to use model-to-model transformation to integrate and
enrich data, while still suppotring translation between different concrete representations of
the models. We have experienced, as described in Section 5.3.4, that this approach is easily
extensible and also feasible for the data collection and combination.

For the analytics, we address this problem by using Apache Spark as analytic back-end.
This means that for the execution, the problem of tool diversity is resolved, as Spark jobs
can easily be shared and executed on any SmartSHARK instance.

6.2 Lessons from CODEMINE

While not many details about Microsoft’s internal CODEMINE (Czerwonka et al. 2013)
were published, the authors gave a list of lessons learned during the creation of the plat-
form. We now compare these lessons to our experience with SmartSHARK as a tool for the
research community.

Create an Independent Instance for Each Product Team in the Data Platform
Partitioning of the platform parts to, e.g., restrain access is one import lesson that the devel-
opers of CODEMINE learned. The target of SmartSHARK are not product teams, but rather
research communities. Nevertheless, we built up our platform as modular as possible to be
able to restrain access to certain parts.

Have Uniform Interfaces for Data Analysis Czerwonka et al. (2013) describe in their
lessons learned, that a uniform interface is very important for such a platform. Furthermore,
the evolution of the API for data analysis must be done carefully. This lesson led to the
central design decision of SmartSHARK to use Apache Spark as common API for the ana-
Iytic tasks. This uniform interface allows more specific APIs to evolve for different research
communities, e.g., to better support defect prediction.

Encode Process Information Process information “includes release schedule (mile-
stones and dates), organization of code bases, team structure, and so on” (Czerwonka et al.
2013). Czerwonka et al. advise, that this information should be embedded into the plat-
form’s data store. For open source projects, this information is often not available or unclear.
Still, the collection of such information for open-source projects would be valuable for
SmartSHARK and will be part of future work.

Provide Flexibility and Extensibility for Collected Data and Deployed Analytics At

Microsoft, the requirements on such a platform in respect to the collected data or deployed
analytics varies between product teams. We found this lesson to be very important for
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SmartSHARK, because this also holds true for our research community. Deployed analyt-
ics can be of any kind. Therefore, we designed the database to be as flexible as possible
(NoSQL key/value storage), allow with Apache Spark all kinds of analytic programs, and
allow a wide variety of different data collection plug-ins with our improved version (see:
Section 7).

Allow Dynamic Discovery of Data Platform’s Capabilities by Application Czerwonka
et al. (2013) describe, that the platform should offer some kind of interface through which
the available data can be identified by the analytical applications. This lesson was partially
followed. While SmartSHARK does not provide a sandbox where researchers can test the
capabilities, the incremental development of Apache Spark jobs allows them to experience
the capabilities and test the limits. Furthermore, we are currently working on a specialized
API, which allows to identify the available data that is stored in the platform.

Support Policies for Security, Privacy, and Audit The platform must allow the set-
ting of authorization, authentication, and other security measures to secure the data and the
access, as Czerwonka et al. (2013) point out. While SmartSHARK has a basic user access
rights system, the current implementation is not enough and more diverse access rights are
required, e.g., to restrict writing access only on parts of the database.

Allow Ongoing Support and Maintenance Outside of CODEMINE At Microsoft,
product teams take over the ownership and operation of a data platform instance. There-
fore, the data platform and the offered services must be well defined. With our design of
SmartSHARK, we tried to implement this experience. We know, that for acceptance in
the research community it is mandatory to allow maintenance outside of SmartSHARK.
SmartSHARK is open-source and we invite other researchers to work together with us on
the extension of the prototype.

Host as a Cloud Service Czerwonka et al. (2013) suggest, that one should determine
if such a platform should be hosted as a cloud service or on traditional servers, based on
their needs for availability, load, etc. Following this lesson, we designed SmartSHARK as a
cloud platform to be easily scalable in terms of computational and storage resources, as we
believe that especially very complex analytic jobs are highly resource demanding.

Know the Data Platform Might not Fulfill all Data Needs The platform might not
satisfy all users, as some data might be not available for certain analytics. For SmartSHARK
we used this lesson as motivation to create an extensible approach for the ETL process. This
way, if the platform is lacking in terms of data, it is designed in a way that the problem can
be mitigated by extending the ETL process.

Innovate at the Right Level of the Stack Czerwonka et al. advise, that you should
only use mature foundational technology as much as possible. For a platform aimed at
researchers, like SmartSHARK, this lesson is only partially applicable, because it is part of
research to innovate and test new technologies. However, due to the high level of integration
between tools within SmartSHARK, we also think that a certain level of quality and maturity
is required for everything that shall be part of the main branch of SmartSHARK.
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6.3 Lessons from SmartSHARK

Because of the different focus of SmartSHARK on research instead of the support of product
teams, as well as due to the difference in available resources for researchers in comparison
to a company like Microsoft, we learned the following lessons.

(L1) Use Only Mature Tools Which you can Maintain by Yourselves The develop-
ment of SmartSHARK was challenging due to the quality and maturity of the tools used.
For the ETL of the VCS data, we relied on the popular CVSAnalY. However, the tool once
stopped for an extended period of time, which is problematic for a fully automated data
collection process, where human intervention should be the exception and not the rule. How-
ever, since CVSAnalY is open source, we could pinpoint the source of the problem and can
provide a solution in the future. For the proprietary InFamix on the other hand, we do not
know the source of the failure for Mahout and have no means of fixing this problem. Addi-
tionally, InFamix is not available anymore, which means that no fix will be available in the
future, leaving no choice but switching the tool.

(L2) Model-based Fact Extraction Works, but is Very Resource Demanding
SmartSHARK is based on DECENT, a model-based fact extraction and transformation
framework (see Section 4.1.1). DECENT provided a good foundation for the integration
of information. However, the created EMF model must fit completely into the RAM and
therefore sufficient resources need to be available. This a threat to the scalability of the
data collection, as the memory requirements of very large projects like the Linux kernel or
Firefox are high. Nevertheless, there are solutions to this problem, such as Scheidgen et al.
(2012) and Benelallam et al. (2014). Scheidgen et al. (2012) showed, that it is possible to
transparently fragment the different models and store these fragments, e.g., in a MongoDB.
NeoEMF? Benelallam et al. (2014) has evolved into a mature, efficient, and scalable multi-
database storage solution, supporting on-demand loading and powerful querying for large
EMF models.

(L3) Support Optimized Database Queries Since the amount of collected data grows
rapidly with the number of projects, well-formulated database queries are required in order
to keep the burden on the storage back-end and internal network traffic in the cloud low.
Therefore, an API that already supports the most important database queries is important
for a large-scale deployment with thousands of projects.

(L4) Heavy Resource Demand on the Infrastructure Even taking the above lessons
into account, we experienced that our setup with four VMs is the bare minimum at which we
can get SmartSHARK to run somewhat decently. For a large deployment that should be able
to mine thousands of projects a larger cloud infrastructure is required with multiple worker
nodes for the project data collection and a dedicated database back-end that is separated
from the web-front-end.

(L5) Allow Visualization Plug-ins. While Apache Spark is a good solution for non-
visual analytics, it does not support visual analytics, as we described in the experience
report. To this aim, a good and very flexible plug-in system is required, that allows, e.g.,
visualization of trends, social networks, and dependencies within projects.

2%http://www.neoemf.com
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(L6) Provide Externally Accessible APIs An enhanced API for job submission, which
could be accessed via a script, directly from an IDE, or from within other applications (e.g.,
as part of other Java applications) could help to further improve the writing of analytic jobs.
Moreover, an API that makes log information, which was collected during the execution of
jobs, visible to users would offer another active feedback loop besides the visualizations.
These APIs are on our list for future work.

7 Scaling Up the Prototype

Through the experience that we gathered with the SmartSHARK version presented in
Section 4 and the gathered feedback we updated our platform. The update does not only
change parts in the implementation, but also the design and focus of the platform is changed
to address the feedback and several issues that we uncovered (see: Section 5).

7.1 Design

We want to address the issue, that only data from one project could be collected at a time and
take care of the lessons that we have learned with our first version. Therefore, we changed
our database design and added indexes to support optimized database queries.

Furthermore, we re-designed our infrastructure. In Fig. 12 our new design is depicted.
This new design was created based on lesson L4, as we have experienced that front-end,
database, and data collection should be physically and logically separated from each other.
In contrast to Fig. 1, which only gives a broad overview of the old system, Fig. 12 includes
details about the infrastructure and the implementation of the conceptual design. The central
access point for the researcher is the webserver, where she can provide plugins, access the
analysis results, and execute the analysis jobs. Furthermore, we separated the data collection
from the data analysis: the data collection is executed on a batch system, which can be, e.g.,
a High Performance Computing (HPC) cluster while the data analysis is still executed on
a Spark cluster. The plug-in that is executed on the batch system stores its results in the
MongoDB, which can than be accessed by the analysis job that runs on the Spark cluster.
Hence, this design provides us with a good scalability, enables us to collect data from more
than one project at once (depending on the capability of the batch system), and addresses
the heavy resource demand of the data collection.

This is different to our first design, as we have a clearer separation between data collec-
tion and data analysis. This leads to a wide variety of possible data collection plug-ins, as
the batch system is not fixed to one programming language. Another central part in the new
design is the MongoDB, which should be deployed in a distributed manner to cope with
the high load. All results are stored in the MongoDB, while it is regularly accessed by the
analysis jobs. In our first design, the webserver, MongoDB, and data collection server are
placed on one single node, which did not scale well.

7.2 Implementation
As it is stated in Section 5.1 we had four different problems during the execution of our
data collection process, which we wanted to address by developing new programs that can

exchange the ones we used before. Three of these problems were connected to the tools that
we used to execute it. The first problem was the unreliability of CVSAnaly, as it stopped

@ Springer



1066 Empir Software Eng (2018) 23:1036-1083

—

trigger analysis

store results access data
provide plugins

access results access data—»

MongoDB

execute analysis
Researcher Webserver

4

store results

trigger data collection —» !‘!‘!

Batch System

Fig. 12 Improved SmartSHARK design

working for the oryx project.3® Furthermore, InFamix did not work for all revisions of
Mahout, which is why we needed to exclude it from our first report. Additionally, with
InFamix we were only able to collect source code metrics for one programming language
per project, as it does not have multiple language support.

We addressed these issues and our lesson L1, by developing two new data collection
plug-ins for SmartSHARK: vesSHARK?! and mecoSHARK.3? The vesSHARK is a tool
that is able to collect the complete commit history of a project including, e.g., all commits on
all branches, tags, differences between file revisions, and changed files. The collected data
is then stored in a database. Currently, the vesSHARK is able to collect data from projects,
which use git as VCS?? and stores the data in a MongoDB. The vesSHARK's design is
modular and offers a plug-in system that allows additional VCSs (e.g., SVN or Mecurial)
or data storages (e.g., MySQL).

We tested the vesSHARK by comparing the collected data with the data we got from
CVSAnaly, as well as the original data on GitHub using GitHub’s web interface. Through
this procedure, we discovered another bug in CVSAnalY, which sometimes caused commits
to be placed in the wrong branch of the extracted data.

30This problem does not occur anymore with the current version of CVSAnalY.
31https://github.com/smartshark/vesSHARK
32https://github.com/smartshark/mecoSHARK

33We use the official git library for analysis: https://libgit2.github.com/
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We discovered, that the data collected by vesSHARK matched the data that is stored on
GitHub, but the results of CVSAnalY are different to it. E.g., in CVSAnalY some commits
are placed on other branches than it is displayed at GitHub. Because of this observation and
the first problem mentioned above, we exchanged CVSAnalY with the vesSHARK in our
new data collection process.

The mecoSHARK is a tool that is able to collect very detailed metrics of files in a
project. Currently, it works with Java and Python projects. It checks out every revision
of the project, automatically detects the used programming languages, executes the metric
calculation plug-ins that correspond to the used programming languages, executes a clone
detection algorithm,?* and stores the collected data in a MongoDB. The programming lan-
guage is detected with sloccount (Wheeler 2004), the metric calculation itself is performed
by SourceMeter (FrontEndART Ltd 2016c), a free to use metric calculation and clone
detection tool. The mecoSHARK’s design is also modular like the vesSHARK and can be
extended via plug-ins, e.g., to use other tools than SourceMeter for metric calculation. This
allows the extension of mecoSHARK for additional programming languages, which can be
measured with other tools. Table 4 lists all currently calculated metrics for Java and Python
projects. These metrics are calculated on different levels of abstraction, e.g., class, method,
and/or function level. Furthermore, the table shows which of these metrics are also available
in InFamix. Note, that InFamix does not calculate clone metrics. Table 5 reports all clone
metrics that are calculated with mecoSHARK. A exact description of each metric is given
in the documentation of SourceMeter (FrontEndART Ltd 2016a, b).

Through the exchange of InFamix in favor of mecoSHARK we were able to collect
metrics for Mahout and we are also able to collect source code metrics for different program-
ming languages in one project, as we automatically determine the languages that are used
and execute the corresponding mecoSHARK plugins. Furthermore, we have more metrics
available on different levels of abstraction than with InFamix.

We measured the execution times of the vesSHARK and the mecoSHARK in compari-
son to the previous version of the prototype based on CVSAnalY and InFamix. To this aim,
we executed all tools on a machine with 8 Intel Xeon cores (3.6GHz each) and 16GB of
RAM, which is similar to the old deployment of SmartSHARK. Additionally, we measured
the execution time of the vesSHARK and mecoSHARK in a HPC cluster as batch system.
The different nodes and their capabilities of the used HPC cluster are listed in Table 6.
Note, that we could not reserve the whole HPC cluster for our measurements, as it is a clus-
ter available for all researchers from Géttingen University and hosted by our datacenter.?
Therefore, the results may vary due to different workloads. Note, that we needed to change
our plug-ins to enable a nearly fair comparison. First, we excluded the calculation of file
differences between revisions for the vesSHARK, as CVSAnalY does not provide this data.
Furthermore, we excluded the last step of mecoSHARK (saving the data in the MongoDB)
for this analysis, as this step is not done by InFamix, but by an additional transformation
script based on DECENT (see Section 4.1.1). Instead, we measured the time required only
for the calculation of metrics values for mecoSHARK.

34Currently, mecoSHARK is able to detect Type-2 clones, which are clones that are syntactically identical
except for variations in layout, comments, whitespaces, type references, identifier names, and literals. Details
can be found in the SourceMeter documentation: FrontEndART Ltd (2016a).

3Shttp://gwdg.de
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Table 4 Calculated source code metrics for mecoSHARK (Java/Python) and InFamix

Category

Metric Name

Java

Python

InFamix

Cohesion

Complexity

Coupling

Documentation

Inheritance

@ Springer
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Average Method Weight

Class Weight
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Nesting Level Else-If

Specialisation Index

Weighted Methods per Class

Base Class Usage Ratio

Capsules Providing Foreign Data
Coupling Between Object classes
Coupling Between Object classes Inverse
Incoming Coupling Dispersion for an Operation
Incoming Coupling Intensity for an Operation
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Table 4 (continued)

Category Metric Name

Java

Python

InFamix

Size Lines of Code
Logical Lines of Code
Number of Abstract Methods
Number of Accessed Variables
Number of Accessor Methods
Number of Added Services
Number of Attributes
Number of Classes
Number of Enums
Number of Getters
Number of Interfaces
Number of Local Attributes
Number of Local Getters
Number of Local Methods
Number of Local Public Attributes
Number of Local Public Methods
Number of Local Setters
Number of Methods
Number of Outgoing Calls
Number of Overriding Methods
Number of Packages
Number of Parameters
Number of Protected Attributes
Number of Protected Methods
Number of Public Attributes
Number of Public Methods
Number of Setters
Number of Statements
Percentage of Newly Added Services
Total Lines of Code
Total Logical Lines of Code
Total Number of Attributes
Total Number of Classes
Total Number of Directories
Total Number of Enums
Total Number of Files
Total Number of Getters
Total Number of Interfaces
Total Number of Local Attributes
Total Number of Local Getters
Total Number of Local Methods
Total Number of Local Public Attributes
Total Number of Local Public Methods
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Table 4 (continued)

Category

Metric Name

Java

Python

InFamix

Total Number of Local Setters
Total Number of Methods

Total Number of Packages

Total Number of Public Attributes
Total Number of Public Classes
Total Number of Public Enums
Total Number of Public Interfaces
Total Number of Public Methods
Total Number of Setters

Total Number of Statements

Weighted Operation Count

Lo T T - B B o

We needed to exclude the project “Minesweeper” that we have used in our earlier work
(Trautsch et al. 2016), as it is no longer available on GitHub. Additionally, for the compari-
son of mecoSHARK to InFamix, we could only use Java projects, as mecoSHARK currently
only supports Python and Java projects.

Figure 13 compares the execution time of CVSAnalY to the vesSHARK. CVSAnalY is
faster for all but two projects. We see several reasons for this: first, our plug-in is designed
for bigger projects and heavy computation load, as we spawn different processes. If we
exclude the only task that takes computational time (comparing file revisions) the different
processes block each other, which results in a slower run time. Furthermore, as we have

Table 5 Calculated clone
metrics by mecoSHARK

@ Springer

Metric Name

Java

Python

Clone Age

Clone Classes

Clone Complexity

Clone Coverage

Clone Elimination Effort
Clone Elimination Gain
Clone Embeddedness

Clone Instances

Clone Line Coverage

Clone Lines of Code

Clone Logical Line Coverage
Clone Risk

Clone Variability

Lines of Duplicated Code
Logical Lines of Duplicated Code
Normalized Clone Radius
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Table 6 Used nodes of the HPC cluster

#Nodes CPU Cores Frequency Memory
5 Magny-Cours, AMD Opteron 6174 4x12 2.20 GHz 128GB
48 Abu-Dhabi, AMD Opteron 6378 4x16 2.40 GHz 256GB
1 Haswell, Intel E7-4809 v3 4x8 2.00 GHz 2TB

15 Broadwell, Intel E5-2650 v4 2x12 2.20 GHz 512GB
5 Haswell, Intel E5-4620 v3 4x10 2.00 GHz 1.5TB

explained above, CVSAnalY does not provides as much data as the vesSHARK (e.g., com-
ments on tags) and the data that CVSAnalY collects is not equal to the data which GitHub
provide via their web interface.

Furthermore, vesSHARK on the new deployment (HPC cluster) is the slowest among the
three tested plug-ins/setups. We see several reasons for this: first, we could not control for
the load of the HPC cluster. Therefore, this could have an influence on the run time. Another
possible reason is the overhead in the communication. CVSAnalY, as well as vesSHARK
in the old deployment were communicating with a database, which was running locally on
the machine that also executed the plug-ins. In case of the vesSHARK, executed on our new
deployment, this was not possible. Therefore, all results needed to be communicated through
the network to the database server. Nevertheless, we note that all run times are below 100
seconds regardless of the deployment and whether we use CVSAnalY or the vesSHARK.
Hence, both tools as well as deployment scale well.

Figure 14 compares the execution time of InFamix and mecoSHARK. InFamix is slower
than our newly developed mecoSHARK for every project except log4j. The reason for the
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Fig. 13 Comparison of run times of CVSAnalY (single node), vcsSHARK (single node), as well as
vesSHARK running on the HPC cluster
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Fig. 14 Comparison of run times of InFamix (single node), mecoSHARK (single node), as well as
mecoSHARK running on the HPC cluster

difference for log4j is unclear and requires further investigation. The mecoSHARK, exe-
cuted on our new deployment, is up to 50 times faster than InFamix and up to 42 times faster
than mecoSHARK on the old deployment (depending on the project). The reason for this
massive speed up is that we have an embarrassingly parallel workload: if we are using the
HPC cluster, several jobs can be submitted (for each revision one job), which executes the
plug-in on the given revision. This results in a massive parallelism and in a drastic reduction
of the execution time.

Our comparison shows that we get a massive improvement of the run times through
our new deployment, if the plug-ins need to be executed for each revision. Furthermore, it
shows that our developed mecoSHARK is faster than InFamix in most cases, whereas the
vcsSHARK is slower than CVSAnalY, but provides more data.

Additionally to the execution time we also measured the used storage space for each
project and for each plugin. Tables 7 and 8 depict the number of documents that are created
in the MongoDB for each plugin and the storage space that these documents take. Please
note, that the actually used storage space is lower, as MongoDB optimizes the storing of
the documents. Furthermore, as we also stated above, the project Minesweeper is no longer
available and therefore we could not gather data using our new plugins. Tables 7 and 8 high-
light, that the bigger the projects the more documents are created and the more storage space
is needed. Furthermore, it also highlights the differences between both of our plugins with
respect to the needed storage space: vesSHARK needs less storage space as mecoSHARK.
The reason for this is the difference in the stored data. vesSHARK stores mostly meta-data
about the commits of a project, but also the concrete textual change that was made. But,
mecoSHARK stores one document for every code entity (e.g., class, method, interface) for
every commit together with its calculated metric data. Therefore, a lot more storage space
is used.
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Table 7 #Documents and used

storage space in the MongoDB Project #Documents (vesSHARK) Storage (vesSHARK)

after vesSHARK was executed.

The results are reported for each ~ cursynth 3.502 3,131 MB

project separately cxxnet 10.797 9,603 MB
elasticsearch-hadoop 30.336 14,785 MB
fatal 17.550 12,501 MB
guice 195.043 790,116 MB
HackerNews 1.144 0,560 MB
k3b 187.771 161,092 MB
ksudoku 15.599 12,28 MB
libxcam 11.440 6,222 MB
libyami 22421 14,962 MB
log4j 85.790 57,182 MB
mxnet 129.532 90,622 MB
oclint 18.770 6,973 MB
ohmu 10.336 6,361 MB
openage 60.953 26,923 MB
oryx 11.120 6,513 MB
osquery 79.326 48,743 MB
passivedns 3.013 1,209 MB
SMSSync 49.192 38,453 MB
swift 32.744 44,713 MB
wds 13.381 4,451 MB
xgboost 56.796 64,34 MB
Overall 1.046.556 1.421,735 MB

7.3 Further Extensions of the Prototype

In addition to the new vcsSHARK and mecoSHARK, which just replaced previously
already existing functionality in the prototype, we also developed the issueSHARK3® and
the coastSHARK.37 The issueSHARK is able to collect data from ITSs (e.g., issue title,
description, changes on the issue, etc.) and currently supports GitHub Issues, Bugzilla, and
Jira. The coastSHARK generates the ASTs for Java (or Python) files and gathers the AST
node counts for all files. This enables the custom definition of new metrics. Count-based
metrics can be calculated directly from the MongoDB, structural metrics could be added by
extending the coastSHARK. Both plug-ins further demonstrate the extensibility of our prototype.
The complete available data of the current state of the prototype is documented online.®
That such data is useful for research is without question. For example, the complete
body of work on software defect prediction, which encompasses hundreds of publications
(see, e.g., the surveys by Catal and Diri (2009), Hall et al. (2012), and Herbold (2017)), can
be supported by such a prototype as demonstrated in Section 5.2.2. Additionally, natural

36https://github.com/smartshark/issueSHARK
3https://github.com/smartshark/coastSHARK
38http://smartshark2.informatik.uni- goettingen.de/documentation/

@ Springer


https://github.com/smartshark/issueSHARK
https://github.com/smartshark/coastSHARK
http://smartshark2.informatik.uni-goettingen.de/documentation/

1074 Empir Software Eng (2018) 23:1036-1083

Table 8 #Documents and used storage space in the MongoDB after mecoSHARK was executed. The results
are reported for each project separately

Project #Documents (mecoSHARK) Storage (mecoSHARK)
elasticsearch-hadoop 7.611.833 4.878,285 MB

guice 13.574.467 10.012,43 MB
HackerNews 9.220 6,14 MB

log4j 22.442.724 13.747,25 MB

oryx 2.060.098 1.368,7 MB

SMSSync 6.107.692 3.824,99 MB

swift 2.591.012 1.727,42 MB

Overall 54.366.710 35.550,43 MB

language processing tasks like topic modeling require the commit messages, issue com-
ments or mailing list contents, which are all already available, covering another popular
research topic (Sun et al. 2016). Moreover, work on developer social networks, based on
commonly changed files, ITS information, as well as emails is supported. While we unfortu-
nately cannot cite a survey to demonstrate the impact of this topic, one of the early papers by
Bird et al. (2006) was already cited 512 times.>® All of these are high-impact research topics,
for which now new data can be continuously generated and shared using SmartSHARK.

The extensible nature of our platform allows us to further grow the number of possible
applications. Since we have no lock-in regarding the data collection technology and basi-
cally allow command line tools, only very little overhead is created for developers of data
collection tools, if they want to extend SmartSHARK. They only need to make sure that
they store the data compliant to the already available data to avoid redundancies and ensure
a consistent schema. As a benefit, they then get the integration with the other data collection
plug-ins. As for the analysis of the data, we already support Spark as a powerful analysis
engine. Depending on the demands by the community, it would be possible to open this up
and allow more technologies, e.g., native Python or R, without using Spark as a backend.
For the visualizations, we already demonstrated the versatility in Section 5.2.1 based on
JavaScript using HighCharts and visJS. Together with other libraries like D3.js*® JavaScript
supports many kinds of graphical representation of data. Still, we are aware that our platform
will never be able to support all MSR research, e.g, research that also requires developer sur-
veys. However, we are confident that such a large, diverse, and extensible database coupled
with an analysis frontend that allows sharing implementations can help researchers produce
replicable research results that do not suffer from the problems with external validity we
outline in this article.

7.4 Limitations and Future Work

The current version of SmartSHARK is able to execute different plug-ins (e.g., our
vesSHARK or mecoSHARK) for an arbitrary git-using project. Furthermore, we can ana-
lyze the data via Spark. However, there are some limitations of our platform on which we
are working at the moment.

3 According to Google Scholar on 2017-07-06.
4Onttps://d3js.org/
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When it comes to the non-availability of data sets and implementations, SmartSHARK
by itself cannot tackle this problem. Nevertheless, we alleviate this issue by providing a
tool, which supports the sharing of data and implementations. Furthermore, a tool such as
SmartSHARK could be integrated into the existing publication process. E.g., researchers
that submit a paper must provide their implementation (for SmartSHARK: a Apache Spark
job) and access to their SmartSHARK instance. Hence, in a peer-review process, review-
ers can re-run the jobs on the opened SmartSHARK instance and evaluate the results and
the used data. Moreover, it would be possible to compare the results with other available
approaches for which Spark jobs are existing. These jobs could be acquired by the cata-
logs that we mentioned in Section 6. Hence, reviewers could run these jobs to compare the
results on the same data set.

Furthermore, for solving the problem of the non-availability of implementations our goal
is just partly fulfilled. Currently, only Spark jobs and data collection plug-ins can be shared,
but visualization plug-ins are not part of the platform at the moment. Additionally, we want
to provide the catalogs, that were mentioned in Section 6. But for this, the general design
and structure must be fixed and evaluated by a larger group of users.

Moreover, the problem of too small data sets only applies for some approaches. Empiri-
cal software engineering is not only about analyzing big data, but there exist a lot of papers
that base their approaches on, e.g., surveys, questionnaires, interviews with developers, etc.,
like in Smith et al. (2016). This data is called “thick data” and such studies can be sup-
ported by SmartSHARK (e.g., by complementing survey results with mined project data
like in Devanbu et al. (2016)), but a full replication only using SmartSHARK is not possible.
Because such data (e.g., survey data) is not stored or connected within the platform.

For the diverse tooling, we also see some limitations. First of all, one essential step in
analyzing data, such as the data collected by SmartSHARK, is understanding and processing
it. SmartSHARK supports the understanding of data by providing several visualizations
(see: Section 5.2.1), but this can not be automated fully as human interaction is mandatory.
Furthermore, the processing (e.g., cleaning) of data is only supported via Apache Spark jobs.
Hence, SmartSHARK by itself only collects raw data (e.g., metrics data from files, commits
from the VCS) and stores it in the MongoDB. If the data should be analyzed or used in an
approach, it must be cleaned and pre-processed first. This step belongs to the analysis step
and must be therefore put into the Apache Spark job that can be shared later on.

For future work, we plan to perform an evaluation of SmartSHARKSs capabilities with
students of the courses that we teach. We want to evaluate how novice MSR researchers can
make use of SmartSHARK. This does not only include an usability analysis, but we want to
get feedback regarding SmartSHARK'’s capabilities especially from novice researchers, as
it is hard to get into MSR research, because of the complex working environment that needs
to be built up beforehand.

Furthermore, we are planing to improve our ETL process. First of all, we want to pre-
process the data by combining different user identities. Moreover, we plan to classify
commits, i.e., by putting commits into different classes like “bugfix”, “bug inducing”, etc.).

We described several improvements for SmartSHARK that we are currently planning.
But, for SmartSHARK to be able to significantly help in replicating a large portion of papers, we
need to improve our plug-in development process. This improvement, together with the
planned catalogs and the promotion of the platform, is essential to make this platform inter-
esting for a larger set of researchers and will result in more plug-ins developed for the
platform. Hence, one focus is the improvement of the usability of the platform, as we will
not be able to provide plug-ins for every kind of data collection or analysis task by ourselves. We
aim for an ecosystem, which is developed around SmartSHARK together with the community.
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8 Threats to Validity
8.1 Internal Validity

The main threat to the internal validity of our work is an inappropriate choice of collected
data and analysis techniques. In case the data we collected is not of interest for the com-
munity, this would invalidate all of our findings and insights related to the data collection
and combination. Similarly, in case our analytic examples are inappropriate, our conclu-
sions regarding the usability of the platform may be invalid, especially in terms of required
libraries. However, to our mind these threats are minimal, as both metric data as well as
historic data about the usage of GitHub are frequently used in MSR research and visualiza-
tions, defect prediction, and effort predictions have been of constant interest to researchers
in the past decade.

Furthermore, the categorization of papers, as done in Section 3, is a manual task and, by
the nature of it, there can be errors. Nevertheless, Section 3 is not meant to be an exhaustive,
systematic literature review, but it should only show a trend and indicate that the problems
mentioned in Section 1 are still topical.

8.2 External Validity

Threats to the external validity are concerned with the ability to generalize results. In our
analysis we used SmartSHARK to collect data from 23 different projects. Although we have
chosen projects, which have a wide variety of characteristics (e.g., size, number of revisions,
field of application), the results may vary if other projects are chosen.

Furthermore, for our analysis of the current state of practice we have only analyzed the
ICSE, MSR, ESEC/FSE, and ESEM from 2015. The results may vary if other conferences or
journals are chosen. Additionally, SmartSHARK, in its current state, is not able to replicate
all of the papers mentioned in Section 3. For that, more plug-ins for the data collection and
for the analysis need to be written by the research community to support the replication of
various approaches.

8.3 Construct Validity

Construct threats are concerned with the degree to which our analysis really analyses what
we are claiming it does. We developed different tools, which we connected to build up our
platform. We carefully tested these tools with manually written tests and manually-curated
data samples. Nevertheless, defects in our program may still exist, which might have an
influence on the results presented in this paper.

Furthermore, our usability evaluation was done only by the authors of this paper and,
therefore, may be biased. Hence, an usability evaluation needs to be done with more and
unbiased people to get additional insights regarding the usability of SmartSHARK, e.g.,
students or other researchers.

Additionally, we compared the run time of our plugins with established programs like
InFamix or CVSAnalY. In this comparison, we tried to create an environment which enables
a fair comparison. Nevertheless, a complete fair comparison can not be established, as the
compared tools are different in, e.g., the number of metrics they calculate or data they fetch
and process.
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9 Conclusion

Within this paper, we discussed how a platform that combines automated data collection
with a flexible analytic front-end can help to solve the problems of insufficient replicability
and problematic validity of repository mining studies.

To show that these problems are still current, we analyzed the publications of the ICSE
2015, MSR 2015, ESEC/FSE 2015, and ESEM 2015 with respect to the identified problems.
Our analysis showed, that these problems still exist.

To address these problems, we created the SmartSHARK platform, which is inspired by
CODEMINE (Czerwonka et al. 2013). Due to the differences between research and indus-
trial exploitation of such a platform, we focused our evaluation on three aspects: 1) we
showed through the definition of visualizations, defect prediction, and effort analysis, based
on two different data sources (VCS and mailing lists) that SmartSHARK can be used to
define analytics; 2) we outlined how SmartSHARK can help to improve the replicability
and validity of studies; and 3) we gave insights on research-specific lessons learned that are
important for building such a platform that were not addressed by the proprietary CODEM-
INE. SmartSHARK is open-source and we invite all interested researchers to contribute to
our platform in order to go from a proof-of-concept prototype, to a reliable and valuable
tool for the research community that solves some of the problems we are having. We moved
all our development infrastructure to GitHub to enable others to contribute easily*!.

Furthermore, we described our improvements of the platform based on our experience
report and comments from other researchers. We adapted our design and our implementation
and improved our data collection process to address the raised issues.

Acknowledgements The authors would like to thank Fabian Glaser, Michael Gottsche, and Gunnar Krull
for their support regarding the cloud technologies and the deployment as well as the GWDG for allowing us
to use their HPC resources.
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