
https://doi.org/10.1007/s10664-017-9532-2

Reducing user input requests to improve IT support
ticket resolution process

Monika Gupta1 ·Allahbaksh Asadullah2 ·
Srinivas Padmanabhuni3 ·Alexander Serebrenik4

© Springer Science+Business Media, LLC 2017

Abstract Management and maintenance of IT infrastructure resources such as hardware,
software and network is an integral part of software development and maintenance projects.
Service management ensures that the tickets submitted by users, i.e. software developers,
are serviced within the agreed resolution times. Failure to meet those times induces penalty
on the service provider. To prevent a spurious penalty on the service provider, non-working
hours such as waiting for user inputs are not included in the measured resolution time, that
is, a service level clock pauses its timing. Nevertheless, the user interactions slow down
the resolution process, that is, add to user experienced resolution time and degrade user
experience. Therefore, this work is motivated by the need to analyze and reduce user input
requests in tickets’ life cycle.

To address this problem, we analyze user input requests and investigate their impact on
user experienced resolution time. We distinguish between input requests of two types: real,
seeking information from the user to process the ticket and tactical, when no information

Communicated by: Yasutaka Kamei

� Monika Gupta
monikag@iiitd.ac.in

Allahbaksh Asadullah
allahbaksh asadullah@infosys.com

Srinivas Padmanabhuni
spadmanabhuni@gmail.com

Alexander Serebrenik
a.serebrenik@tue.nl

1 Indraprastha Institute of Information Technology, Delhi, India

2 Infosys Ltd., Bengaluru, India

3 Tarah Technologies, Bengaluru, India

4 Eindhoven University of Technology, Eindhoven, The Netherlands

Empir Software Eng (2018) 23:1 –1664 703

Published online: November 20173

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9532-2&domain=pdf
http://orcid.org/0000-0002-8030-4367
mailto:monikag@iiitd.ac.in
mailto:allahbaksh_asadullah@infosys.com
mailto:spadmanabhuni@gmail.com
mailto:a.serebrenik@tue.nl

is asked but the user input request is raised merely to pause the service level clock. Next,
we propose a system that preempts a user at the time of ticket submission to provide addi-
tional information that the analyst, a person responsible for servicing the ticket, is likely
to ask, thus reducing real user input requests. Further, we propose a detection system to
identify tactical user input requests. To evaluate the approach, we conducted a case study
in a large global IT company. We observed that around 57% of the tickets have user input
requests in the life cycle, causing user experienced resolution time to be almost twice as
long as the measured service resolution time. The proposed preemptive system preempts
the information needs with an average accuracy of 94–99% across five cross validations
while traditional approaches such as logistic regression and naive Bayes have accuracy in
the range of 50–60%. The detection system identifies around 15% of the total user input
requests as tactical. Therefore, the proposed solution can efficiently bring down the number
of user input requests and, hence, improve the user-experienced resolution time.

Keywords Software process · Machine learning · Process mining · Service level
agreement · Ticket resolution time

1 Introduction

Infrastructure support is an integral part of software development and maintenance projects.
It is usually handled by the Information Technology Infrastructure Support (ITIS) team
(April et al. 2005; Caldeira and Brito e Abreu 2008). The ITIS team is responsible for
effective deployment, configuration, usage, management and maintenance of IT infrastruc-
ture resources such as hardware, software, and network (Bartolini et al. 2009). The ITIS
team ensures stable conditions for the production systems, and enhances performance of the
features and products created by developers (Hüttermann 2012).

ITIS service is supported by an information system that is, referred to as ITIS infor-
mation system. It is a ticketing system to simplify logging of tickets by customers (here
software developers), facilitate tracking, monitoring, and resolution of tickets by analysts.
The software developers request IT infrastructure support for their business projects. Effi-
cient servicing of requests is essential for the success of the business (Barash et al. 2007;
Bartolini et al. 2009). Organizations usually have a well-defined workflow to streamline the
servicing of IT support tickets (Bartolini et al. 2009). Typically, a user reports a ticket in
the information system by selecting the ticket category such as hardware, software, and net-
work. Every category has a corresponding ticket reporting template to capture information
deemed necessary for servicing the ticket. The ITIS information system automatically asks
the user to provide details in the template for the chosen category. The user often provides
textual description for the requested service, and category-specific details. On the basis of
the ticket category, service level resolution time gets associated with the ticket. Service level
clock is used to measure the service resolution time for every ticket and can have two states:
pause (stops measuring the time) and resume (continues measuring the time). On the basis
of business criticality, the service level resolution time for every ticket category is agreed a
priori between the service provider and the client (user) as part of service level agreement
(Addy 2007; Barash et al. 2007). The ticket is assigned to an analyst, a person responsi-
ble for servicing the ticket within the associated service level resolution time. It is crucial
to service within agreed service levels because nonfeasance leads to penalty on the service
provider (Bartsch et al. 2008). The analyst can ask for user inputs while resolving the ticket.
When this happens the state of the ticket changes to Awaiting User Inputs (AUI). To prevent

Empir Software Eng (2018) 23:1 –1664 703 1665

spurious penalty on the service provider, the service level clock pauses while the ticket is in
the AUI state. Nevertheless, the time spent while remaining in the AUI state adds to the user
experienced resolution time. Indeed, passing back and forth of tickets for getting user input
slows down the resolution process and degrades user experience (Addy 2007). Therefore,
users typically like to have their tickets serviced with the minimum interaction requirements
(Addy 2007).

Analysts might require user input for various reasons such as incomplete or unclear infor-
mation provided by the user, input information requirements not being defined clearly and
completely, resolution of some tickets requiring specific information which is not intuitive
to user, and analysts not interpreting the user inputs correctly (Addy 2007). These user input
requirements can be avoided by ensuring that the information required for ticket resolution
is provided by the user at the time of ticket submission itself.

Further given the paramount importance of honoring service level agreement, marking
a ticket as Awaiting User Inputs is used as a sneaky way to achieve the service level target
of resolution time (Addy 2007; van Dongen et al. 2013). In general, analysts are guided to
request user inputs only if they genuinely need information for ticket resolution. However,
previous research suggests that there are cases of non-information seeking, tactical user
input requests, performed merely for the sake of pausing the service level clock, and thus
degrading the user experience (van Dongen et al. 2013). Therefore, to reduce the overall
number of user input requests, we need to handle tactical user input requests in addition to
ensuring the availability of relevant information at the time of ticket submission.

1.1 Real Motivating Example

Figure 1 illustrates a real example of ticket’s life cycle from the information system of a
large global IT company. As shown, a user reports a ticket in category software and sub-
category install with a short description: “Please install following software on my machine.
This is a CORE software as per EARC”. EARC is a software classification system internal
to the organization. The user also provides category specific details such as hardware asset
ID, platform, software name, and software version. Based on a priori agreed service levels,
the resolution time of 9 hours gets associated with the ticket. Next, the ticket gets assigned to
an analyst. The analyst starts working on the ticket and requests the user to “provide risk and
ops team approval”, changing the ticket status to Awaiting User Inputs. The user attaches the
approval after 21 hours 34 min (as labeled on the edge in Fig. 1). This time is not counted
towards service level resolution time but it is experienced by the user. Such real, information
seeking user input requests could have been avoided if the user had been preempted at the
time of ticket submission and required to provide the risk and ops team approval upfront.
Some time after receiving the user’s input, the analyst again changes the status to Awaiting
User Inputs with the comment “Will check and update soon” (highlighted with the dotted
outline). Inspecting this comment, we notice that no information is sought from the user;
subsequently the ticket status changes to Resolved without any input from the user. The
time for this transition, that is, 66 hours is also experienced by user but not included in the

Empir Software Eng (2018) 23:1 –1664 7031666

Fig. 1 A real example of ticket life cycle from a large global IT company, illustrating the problem of delay
(here delay of 87 hours 34 min) in overall user experienced resolution time due to multiple user input requests
by analyst

measured resolution time. Such tactical, non-information seeking user input requests need
to be detected and handled separately. Summarizing, the resolution time measured by the
service level clock that is, 5 hours 52 min (10 min + 3 hours 32 min + 2 hours 10 min) is
significantly lower than the user experienced resolution time of 93 hours 26 min (10 min
+ 3 hours 32 min + 21 hours 34 min + 2 hours 10 min + 66 hours). Consequently, for the
presented example, the measured resolution time is within the agreed threshold of 9 hours,
i.e. there is no service level violation. However, the user did not experience the agreed
service quality because of two user input requests. Both real and tactical user input requests
add to the user experienced resolution time and need to be minimized.

1.2 Research Contributions

To analyze the IT support ticket resolution process and reduce overall user input requests,
we make following research contributions:

1. To analyze the user input requests and their impact on user experienced resolution time,
we discover runtime (reality) process from ticket data as opposed to measuring perfor-
mance metrics, by novel applications of process mining (Daniel et al. 2012). Process
mining consists of analyzing event logs generated from business process execution by
the information systems (Daniel et al. 2012; van der Werf et al. 2008). The discovered
process helps managers to decide if there is need for reducing real and tactical user input
requests. Section 4 provides details on the process discovery and performance analysis.

2. To reduce real input requests in tickets’ life cycle, an automated machine learning based
preemptive model is designed. It preempts users at the time of ticket submission to

Empir Software Eng (2018) 23:1 –1664 703 1667

provide additional information which the analyst is likely to ask, thus overcoming the
limitations of ticket reporting templates. Section 5 presents the detailed model.

3. To reduce tactical input requests, a real time rule-based detection model decides
whether the user input request by an analyst is tactical and identify its refined class
to facilitate suitable actions against such requests. Section 6 focuses on the detection
model.

4. To demonstrate the usefulness of the proposed solution approach for reducing user input
requests, we conduct a case-study on ITIS data of a large global IT company. We trian-
gulate our study by conducting a survey with both users and analysts. Sections 7 and 8
provide details on the case study.

2 Background and Related Work

In this section, we discuss the background of our work including the work related to ITIS
process improvement and selection of technology used to address the problem.

2.1 ITIS Process Improvement

We start by discussing the work on ITIS process improvement. To be able to improve, it
is important to measure the performance of the ITIS process. Standards for service organi-
zations such as COBIT, ISO 20000, and IT infrastructure library, help to establish a set of
practices and processes for effective and efficient service management (Oliveira and Filho
2009; Palshikar et al. 2012; Treeratanaporn 2015). They define objectives for IT infras-
tructure support and link them to high-level metrics such as the average ticket resolution
time, and the number of ticket reopens. However, these high-level metrics are not suffi-
cient to capture the finer grain level details required for investigating the root cause for poor
performance and deciding on corrective actions.

Approaches based on mining ticket data for ITIS process improvement are more closely
related to our work. Barash et al. focused on providing useful metrics to assess and improve
performance of IT support ticket management process (Barash et al. 2007). Bartolini et al.
presented HANNIBAL, a business impact-driven decision support tool enabling business
managers to make well informed decisions about the critical incident (ticket) management
processes (Bartolini et al. 2009). Li et al. demonstrated several statistical techniques for ana-
lyzing IT support ticket data to identify anomalies (Li et al. 2014). Bartsch et al. presented
a Petri-net based approach in order to simulate service processes in terms of availability
levels, thus assisting service providers and their customers when negotiating Service Level
Agreement (SLA) during design time (Bartsch et al. 2008). Ferreira et al. applied process
mining to extract the existing process and assess whether a business process follows ITIL
guidelines by conducting a real world case study (Ferreira and Da Silva 2008). Palshikar
et al. proposed a domain driven-data mining approach to solve specific business problems
such as overall workload reduction, improved ticket processing and better SLA compliance
for ITIS services and validated on more than 25 large real-life ITIS datasets (Palshikar et al.
2010). Also, a domain data mining approach is proposed to streamline the ITIS services
in terms of levels (L1 or L2) at which tickets are handled for reducing service cost and
improving service levels (Palshikar et al. 2012). Weerdt et al. proposed a combination of
trace clustering and text mining to enhance process discovery techniques with the purpose
of retrieving more useful insights for incident management process (De Weerdt et al. 2012).
While these works addressed the improvement of IT support ticket management process by

Empir Software Eng (2018) 23:1 –1664 7031668

leveraging data and process mining based techniques, they did not focus on analyzing and
reducing user input requests. Their emphasized on achieving better service level compliance
and meeting business objectives of IT support organization, by identifying inefficiencies.

The BPI challenge 2013 investigated event logs from an incident and problem manage-
ment system, provided by Volvo IT Belgium, by applying process mining (van Dongen et al.
2013). One of the challenge’s aim was to investigate “wait user abuse” that is, user input
requests during resolution of tickets. The challenge answered high level questions such as
frequency of user input requests, behavior per support team and per organization, and aver-
age delay in ticket resolution time due to user input requests (Paszkiewicz and Picard 2013;
Van den Spiegel et al. 2013). The challenge also leveraged process mining techniques for
analyzing wait user abuse. However, they did not distinguish between real and tactical user
input requests and did not provide any solution to reduce overall user input requests in the
IT support ticket resolution process.

To the best of our knowledge, this is the first work on investigating the extent of user
input requests and distinguishing them as real and tactical, and analyzing the impact of user
input requests on user experienced ticket resolution time, using process mining techniques.
Further, the work proposes a preemptive and detection model to reduce real and identify
tactical user input requests respectively. The approach is validated through a case study in a
large global IT company.

2.2 Process Mining of Software Repositories

We advocate process mining for analyzing user input request patterns in the IT support
ticket resolution process because process mining has been advocated as a means of analyz-
ing process reality in previous studies (van der Aalst 2011). Process mining takes an event
log as input and is used for various purposes such as process discovery, conformance ver-
ification, case prediction, history based recommendations and organizational analysis (van
der Aalst 2011). It has already been applied to analyze business processes from multiple
domains (van der Aalst 2011; van der Aalst et al. 2007). Process mining of software repos-
itories has diverse applications and has attracted the attention of several researchers due to
the availability of vast data generated and archived in e.g. issue tracking systems, version
control systems, and mail archives. Process mining of software repositories can provide
Capability Maturity Model Integration (CMMI) assessors with relevant information and can
support existing software process assessment and improvement approaches (Samalikova
et al. 2014). Some of the business applications of process mining of software repositories
are: uncovering runtime process models (Gupta and Sureka 2014; Kindler et al. 2006), dis-
covering process inefficiencies and inconsistencies (Akman and Demirors 2009; Gupta and
Sureka 2014), observing project key indicators and computing correlation between product
and process metrics (Sunindyo et al. 2012), extracting general visual process patterns for
effort estimation and analyzing problem resolution activities (Knab et al. 2010), integrating multi-
ple IS for process mining from control flow and organizational perspective (Gupta et al.
2014), assessing development process components of student projects (Poncin et al. 2011a)
and combining multiple repositories for assigning role to developers (Poncin et al. 2011b).
Process mining is applied on software repositories for different purposes. The main difference is
that the techniques are tailored for the software development and bug (issue) resolution process
and this work focuses on IT support ticket resolution process with huge alternative process
variant possibilities and associated service level agreement constraints. The process struc-
ture highlights the need to analyvze the ITIS process leveraging meta data, i.e., service level
clock state to identify inefficiencies, and to suggest corrective actions for improvement.

Empir Software Eng (2018) 23:1 –1664 703 1669

2.3 Application of Recommendation Systems in Software Engineering

Recommendation systems in software engineering focus on providing information which
can be valuable for a task and improve the productivity (Robillard et al. 2014). Robillard
et al. presented diverse applications of recommendation systems in software engineer-
ing (Robillard et al. 2014). Some of the applications include recommendation system for:
requirements engineering tasks such as finding experts for development tasks (Moraes et al.
2010) and supporting build process (Schröter et al. 2008), source code based tasks such as
the correct usage of APIs (Zhang et al. 2012) and code refactoring (Bavota et al. 2014), and
bug related tasks such as duplicate bug detection (Sun et al. 2010; Sureka and Jalote 2010)
and bug triaging (Guo et al. 2010). However, the application of recommendation systems for
reducing user input requests (both real and tactical) in IT support ticket resolution process
is not yet explored which is the focus of the presented work.

Here, preemptive and detection models can be interpreted as recommendation systems
because the predicted values are used to provide actionable insights (Robillard et al. 2014).
The preemptive model predicts the information that can be needed for resolving the ticket
and hence, the user is recommended to provide the same information at the time of ticket
submission. Similarly, the detection model classifies if a user input request by an analyst
is tactical or not, thus recommending managers to take actions for preventing tactical user
input requests. Effectively, both preemptive and detection models are used to provide infor-
mation in a proactive way to improve the ticket resolution process. Proactive (preventive)
management of a process often improves efficiency by eliminating rework and the cost
associated with the delays (Addy 2007).

2.4 Information Needs in Software Engineering

Information needs of software engineers, i.e., information that engineers are looking for
when performing software engineering tasks, have been extensively studied in the literature.
In particular, the studies have focussed on the information needs arising when software is
being designed (Herbsleb and Kuwana 1993), comprehended (Roehm et al. 2012), changed
(Sillito et al. 2006, 2008) and released (Phillips et al. 2012), when bugs are being fixed
(Breu et al. 2010; Bettenburg et al. 2008; Garousi et al. 2016; Ko et al. 2006), and when
the development team’s activities need to be coordinated (Begel et al. 2015; Yusop et al.
2016; Ko et al. 2006). Similarly to this line of research we consider information needs
arising during software engineering activities, in particular those pertaining to the IT support
tickets. The nature of the IT support tickets makes them similar to the bug reports in the
issue tracking system. Hence, in the discussion below we focus on positioning our work
with respect to the studies that investigate the information needs for issue tracking systems.

Bettenburg et al. (2008) conducted a survey on developers and users from Apache,
Eclipse, and Mozilla to identify the information that makes good bug reports. Further, they
designed a tool Cuezilla that provides feedback to the user at the time of ticket reporting
for enhancing bug quality. Yusop et al. (2016) conducted a survey focused on reporting
usability defects and the analysis of 147 responses reveals a substantial gap between what
developers provide and what software developers need when fixing usability defects. These
studies captured the information deemed important in the opinion of the users and devel-
opers. As opposed to this line of work we do not rely only on the intuition and domain
knowledge of users and developers but perform data driven analysis. Therefore, we focus on
what information developers need as opposed to what information developers believe they
need.

Empir Software Eng (2018) 23:1 –1664 7031670

Ko et al. (2006) looked at thousands of bug report titles for several open source projects
and identified fields that could be incorporated into new bug report forms. It analyzed only
the titles of the bug reports, not the comments to determine the information asked during
bug resolution. Breu et al. (2010) identified eight categories of information needs by ana-
lyzing the interaction between developers and users on a sample of 600 bug reports from the
Mozilla and Eclipse project. They found a significant proportion of these interactions were
related to missing or inaccurate information. They observed some rhetorical questions (no
information asked) however, did not consider them for detailed analysis. While the interac-
tion between developers and users is analyzed, it is for a small sample of bug reports. We
focus on IT support tickets and analyze the analysts’ comments for a large number of tickets.

3 Proposed Approach

To achieve the objective of analyzing and reducing user input requests in the ticket life
cycle, we present an approach consisting of three elements as shown in Fig. 2. First, a man-
ager analyses the user input requests in the ticket resolution process by applying process
mining techniques on ticket data. This step helps the manager to make an informed decision
regarding the need for reducing real or tactical or both user input requests. Accordingly, the
preemptive model and the detection model are activated to reduce real user input requests
and to identify tactical user input requests, respectively. To reduce real user input requests,
the preemptive model preempts the user for required information at the time of ticket sub-
mission. To identify tactical user input requests, the detection model classifies the analysts’
comment while marking a ticket as Awaiting User Inputs as tactical or not.

1. Process mining of �cket logs to analyze user input requests

Ticket Data

CASE ID

TIMESTAMP

ACTIVITY… Performance Analysis
Data Source Event log Process Mining

2. Preemp�ve model to preempt user for required informa�on

3. Detec�on model to iden�fy tac�cal user input requests

New
Ticket

Will need more
informa�on?
[Using learnt

model]

Preempt user for informa�on needs
[Using learnt binary classifiers]

Nothing preempted

Make user
input request

Log it as tac�cal and
no�fy manager

Request user input and
pause service level clock

User

Analyst

Is request tac�cal?
[by parsing

analyst’s comment]

Transi�on Pa�ern Analysis

Fig. 2 Proposed approach involving three elements: 1. process mining of ticket logs to investigate process
inefficiencies specifically user input request pattern, 2. preemptive model to preempt users with additional
information needs at the time of ticket submission, and 3. detection model to identify tactical user input
requests

Empir Software Eng (2018) 23:1 –1664 703 1671

For analysis of user input requests, the process model is discovered from ticket data using
process mining (van der Aalst 2011). Discovered process model represents the reality that
is, the observed process behaviors. Each activity corresponds to a state in the process model.
The transitions involving Awaiting User Inputs (AUI) as one of the states are investigated for
the discovered process. For instance, to distinguish user input requests as real and tactical,
we analyze the outgoing edges from AUI. If users provide inputs to user input request,
the user input request is likely to be real and if the ticket is resolved by analysts without
receiving any inputs from the user for the user input request, it is more likely a tactical
user input request. To capture the delay caused due to user input requests, the performance
is analyzed for the discovered process in terms of user experienced resolution time. Based
on the transition pattern analysis and delays incurred by user input requests, a manager
decides if there is need to reduce user input requests and of which type, real or tactical or
both. Accordingly, the proposed preemptive and detection model are used to reduce real and
tactical user input requests respectively and thus, to reduce the user experienced resolution
time.

As depicted in Fig. 2, the preemptive model comes into play when a user submits a new
ticket. The learnt model first determines if any user input request is likely to be made to ser-
vice the ticket. If yes, the required information is demanded from the user. The preemptive
model ensures that the information required for processing the ticket is asked upfront. The
detection model is used when the analyst makes a user input request. It classifies the user
input request as tactical or not by analyzing the analyst’s comment when marking a ticket
as Awaiting User Inputs. If the comment is detected to be tactical, it is logged in the ITIS
information system and the manager can take appropriate actions, e.g., redefine service level
resolution time or reassign the ticket.

This is a generic approach which can be adopted to reduce overall user input requests for
any ITIS system. We discuss each of these elements in detail in the following sections.

4 Process Mining of Ticket Data: for User Input Request Analysis

To capture the extent of user input requests, investigate user response behavior to estimate
the extent of real and tactical user input requests and observe their impact on ticket resolu-
tion time, process mining is applied on ticket data. Process mining of ticket data consists of
data extraction and preprocessing to generate event logs followed by process discovery and
performance analysis.

4.1 Data Extraction and Preprocessing to Derive Event Log

Data is downloaded from the ticket information system and is transformed to make it suit-
able for process mining (Gupta et al. 2014). One of the major challenges in applying process
mining on software repositories is to produce a log conforming to the input format of a
process mining tool (Poncin et al. 2011b). Therefore, prior to applying process mining, an
event log should be generated based on the information from the ITIS information system.
Event log consists of following attributes where each of them have their significance:

– Case ID: It uniquely identifies the case. It helps to visualize the life cycle of each case
in discovered process models.

– Activity: Every event is related to some activity embarking the progress of case life
cycle.

Empir Software Eng (2018) 23:1 –1664 7031672

– Time Stamp: All events have an associated time stamp, a datetime attribute. It enables
ordering of activities on the basis of execution time and allows analysis such as
bottleneck identification that is, most time consuming transitions.

– Other attributes: Additional attributes can be useful for more interesting and diverse
analysis.

In our study, the event log consists of events having four attributes: Ticket ID, activity,
time stamp, and service level clock state. The fields are derived from extracted tickets’ data
(refer to Fig. 2) where Ticket ID uniquely identifies the ticket, and activity captures the
progress of ticket life cycle e.g., logging of ticket, assignment of ticket to analysts, making
a user input request and marking a ticket as resolved. Based on domain knowledge, the
activities required for the given analysis and deemed to have an impact on overall process
performance are captured as an event in the event log derived from ticket data. Unnecessary
activities are not captured to avoid complexity that is, the derived process model may look
like a spaghetti if there is a large number of activities (van der Aalst 2011). All events have
an associated time stamp, that is, the time when the activity is executed. Service level clock
state, that is, resume/pause is stored for each event to capture its association with every
activity. Hence, impact of an event on the measured service level resolution time.

To generate the log, we perform several preprocessing steps:

– Mapping onto the event log: All the data for ticket resolution process is recorded in
the ITIS information system. Mapping of data fields to event log attributes needs to
be done carefully depending on the type of analysis to be performed. For example,we
select Ticket ID as case ID to visualize the life cycle of a ticket that is, the transition
between different activities in the discovered process.

– Selecting optimal level of granularity for activities: Activities need to be recorded at the
desired level of granularity so that detailed analysis can be performed. For example, on
the basis of the reason for closing the ticket, we capture different activities: autoclosure
of ticket if no action from the user in response to user input request, autoclosure if ticket
is not explicitly closed by the user after resolution, and explicit closing of ticket by the
user.

– Resolving time stamp inconsistencies: Data is captured in different time zones for global
organization and thus needs to be handled carefully. We convert time stamps to a con-
sistent timezone on the basis of the geographical location (captured for the ticket) where
the ticket is submitted and resolved.

4.2 Process Discovery

As shown in Fig. 2, the preprocessed event log is imported to Disco (Günther and Disco
2012) for runtime process discovery. The discovered process captures the ordering of activ-
ities to find a good characterization of the most common possible runtime process paths.
Disco miner is based on Fuzzy Miner, a process mining algorithm that can be applied to less
structured processes which is mostly the case for real-life environments (Günther and van
der Aalst 2007). To measure the extent of user input requests and distinguish them as real
and tactical, we investigate the transitions involving Awaiting User Inputs state.

To understand the transition distribution, the percentage of transitions from the source
state S to the destination state D is measured as:

T ransitionPercentage, SD = S → D transition frequency × 100

Absolute frequency of S
(1)

Empir Software Eng (2018) 23:1 –1664 703 1673

The Awaiting User Inputs state acts as D for incoming edges and S for outgoing edges.
Incoming edges give us an intuition on the source state that is, the activities often followed
by user input requests by analysts. Similarly, outgoing edges allow us to investigate user
response behavior to user input requests by analysts and thus, possibility of requests being
real and tactical.

4.3 Performance Analysis

We measure User Experienced Resolution Time (URT) and compare it with Service Level
Resolution Time (SLRT) to capture the gap between them. To evaluate URT for ticket i, we
use the total time elapsed between ticket assignment and final resolution of ticket, without
excluding user input waiting time and non-business hours, as follows:

URTi = tsi(Resolved) − tsi(Assigned) (2)

5 Preemptive Model: for Real User Input Requests

The preemptive model is an automated learning based system deployed at the time of sub-
mitting a new ticket (refer to Fig. 2). It preempts the user to provide the information required
for servicing the ticket. There are ticket reporting templates corresponding to the ticket cat-
egory and subcategory chosen by the user. For example, if a user selects the category as
software and subcategory as install, the ITIS information system automatically asks the user
to provide details as per the corresponding template. While ticket reporting templates try to
capture the required details, they have limitations motivating the need for the preemptive
model:

– Users do not provide all the details asked in the initial template because of limited
understanding or time (Addy 2007). A balance needs to be maintained between two
contradictory demands: ask as much information as possible as to help the analyst to
service the ticket in the best possible way, and as little information as possible as not
to put too much burden on the user submitting the ticket. It is not possible to make
all the fields mandatory because this would make it difficult for users to submit their
requests. The preemptive model can help in such situations by preempting only if the
missed information is indeed crucial for processing the ticket. For example, if a user
submits a ticket in the software install category and writes description as “install latest
version of MS office” but leaves the version field blank, the system should allow the
user to submit this ticket without preemption because an analyst can service the ticket
by installing the latest version.

– If a user selects the wrong category for the ticket, the corresponding template will not
capture the information required to resolve the ticket. The learnt model can preempt the
required information because the ticket description provided by user is used as one of
the features for preemption and the model does not rely on the chosen ticket category.

– Users tend to provide incorrect or unclear information (Addy 2007) to pacify the system
which the learnt model can preempt. For example, if a user mentions version as some
random value such as xx or 2.3 for MS office then the learnt model still can preempt
and indicate that the version has been asked for similar tickets.

– Some tickets have specific information needs which are not captured in the corre-
sponding template. For example, if a user requests for installing a software that has a

Empir Software Eng (2018) 23:1 –1664 7031674

requirement such as approval for purchasing software license in case of specific propri-
etary software. Such information needs are not always intuitive for users hence can be
preempted by the learnt model.

Effectively, the preemptive model should facilitate dynamic information collection for faster
processing of the reported ticket. Since it is a preventive measure, it helps to improve
efficiency by eliminating later interaction delays and enhances user satisfaction (Addy
2007).

As depicted in Fig. 3, the major steps involved in designing the preemptive model are:
preprocessing, feature extraction, training classification model and preemption for a new
ticket at the time of submission. To preempt information needed for a given ticket, we learn
the model to predict the following:

– P1: To process a given ticket, will there be user input request?
– P2: If there will be a user input request according to P1, what is the specific information

that is likely to be asked by the analyst?

To train a supervised model for P1, the ticket is labeled as 1 if Awaiting User Inputs state
is present in ticket life cycle otherwise 0. This information is derived from the event log
extracted for each ticket.

5.1 Ground Truth

To train and evaluate the model for P2, we establish the ground truth for information needs.
The Ground Truth (GT) label for a ticket w.r.t a specific information, x is defined as follows:

GroundT ruth,GT (x) =
{

1, if x information asked in ticket’s life cycle.
0, if x information not asked in ticket’s life cycle.

(3)

Firstly, information asked by the analysts (such as software name, software version,
machine IP address, operating system, and manager approval) in the user input request com-
ments are identified on the basis of managers’ domain knowledge and manual inspection of

Preprocessing

Preempt

Feature Extrac�on
Bag of words

(Unigram, Bigram)

Dimensionality
Reduc�on (PCA)

Provide following
informa�on

• Download URL
• Approval
• So�ware version..

Learn Classifier

New Ticket
Submit

Ticket A�ributes
Descrip�on
So�ware Name
So�ware Version
Asset ID
Pla�orm
Doc A�ached…

Remove:
stop words
special char

Stemming
(Porter Stemmer)

LABEL

Supervised machine
learning algorithm

Feature
vector

Learnt
model

Fig. 3 Preemptive model to preempt users with additional information needs at the time of ticket submission
with broadly two stages: training and preemption

Empir Software Eng (2018) 23:1 –1664 703 1675

the user input request comments. Manual inspection is performed by two authors (first and
third) for disjoint set of comments (random sample of 1000 comments each) to identify the
information needs. Information needs identified by both the authors are compared to create
the consolidated list. Authors used different terms to represent the same information needs
which were made consistent. Both the authors identified same information needs (that is,
23) with one exception that is, asking user the duration for which requested software will
be used, identified by only one author as it is a rarely asked information. All the informa-
tion needs mentioned by the managers turned out to be a subset of the consolidated list. The
information needs solely identified by the authors are confirmed with the managers by pre-
senting them the information needs along with the example analysts’ comments where such
an information is asked.

Comment Annotation Using Keywords-based Approach Ground truth for every
information need is established using a keyword-based approach (Pletea et al. 2014). A list
of keywords corresponding to each information need is prepared iteratively. Initial set of
keywords is created using domain knowledge of the managers. For example, for informa-
tion need software version, “software version, sw version, and software number” are some
of the commonly used terms, thus, included in the keywords list. Porter stemming and case
folding of comments and keywords is performed to improve the matching of keywords with
the comments. If the comment contains the keywords, it is annotated with the correspond-
ing information need. Thereafter, we (first and third author of paper) manually investigate
the disjoint set of randomly selected unannotated comments (around 500 each) to identify
the comments missed out using given set of keywords. Keywords are added to the initial set
to capture the missed out comments. Also, disjoint set of annotated comments (50% of the
total annotated by each author because it is typically a small set) is manually analyzed by the
same two authors to eliminate wrongly annotated comments. Keywords are updated to dis-
till the wrongly annotated comments. The comments are now annotated with the updated set
of keywords. This process is repeated two to three times till very few/no updates are made in
the set of keywords. Similarly, keywords are created for every information need. Keywords
for an information can vary across the organization based on their specific terminologies.

Evaluate Keywords-based Annotation To evaluate the keywords based annotation, we
decide to get a set of comments manually annotated and compare it with the keywords
based annotation. We requested second year B.Tech in Computer Science students of the
university for annotation. Each participant was promised a cash gift as token of gratitude.
We received interest from nine students and shared the details with each of them. Three
of them dropped out and the remaining six were given a short in person demonstration of
the tool (screen shot made publicly available on github (Gupta 2017)) that we designed
for convenient annotation. Each participant was given a set of 4000 different comments
and 15 days time as agreed by students thus, make sure that they perform annotation with-
out any pressure. Finally we received annotated files from five participants that is, 20000
annotated comments. First author randomly verified 50 annotated comments for each stu-
dent for sanity check. For every information need, keywords based annotation is compared
with annotation by students. We observed that annotation is consistent between the two for
90–95% comments for various information needs (we compare for five - software version,
IP address, approval, operating system, and asking location/cubicle ID of the user). When
manually inspected the inconsistently annotated comments, we found that in some cases
keywords based annotation was incorrect and in some cases the student annotations were

Empir Software Eng (2018) 23:1 –1664 7031676

incorrect (attributed to human error) thus we ignored this inconsistency. This validates that
the keywords based approach correctly annotates the comments.

To annotate the ticket, every user input request comment for a ticket is checked for its
label and the ticket is labeled as 1 for the given information need if any of its comments are
annotated with the same information otherwise it is labeled as 0.

5.2 Ticket Preprocessing

A ticket consists of a short description and fields capturing category-specific information
about the ticket such as software name, version, platform, and attachment such as screen
shot. Some of the ticket attributes can be free-form text data and hence require prepro-
cessing as shown in Fig. 3. Common textual preprocessing practices such as case folding,
stemming, stop words and punctuation removal are performed (Robillard et al. 2014). We
perform stemming using Porter stemmer (Porter 1980). Removing classical stop words such
as “a” and “the” is not sufficient because there are some stop words specific to the context.
For context-specific stop word removal, we combine all the tickets into one text file and
extract the term frequencies (tf) of the unique tokens from the text. We manually create a
dictionary of stop words for given context which contains words such as “Dear”, “Please”,
and “Regards”.

5.3 Feature Extraction

As shown in Fig. 3, a bag-of-words feature model is used to represent each unstructured
feature extracted from the ticket. A bag-of-words representation is known to extract good
patterns from unstructured text data (Zhang et al. 2010). The bag-of-words model can be
learnt over a vector of unigrams or bigrams or both extracted from text data. For instance,
first we tokenize the description of ticket shown in Fig. 1 then stem the tokens that is,
“following” is stemmed to “follow”. After stemming, we remove the stop words: “on”,
“my”, “this”, “is”, “a”, “as”, and “per”. The resultant bag-of-words consists of unigrams:
“please”, “install”, “follow”, “software”, “machine”, “core”, and “EARC”. For most bag-
of-words representations, gram (unigram or bigram) features found in the training corpus
have weights such as binary or term frequency or term frequency-inverse document fre-
quency (Robillard et al. 2014; Scott and Matwin 1999). We use bag-of-words feature with
term frequency weights. Concatenation of bag-of-words features (both the unigrams and
bigrams) with features corresponding to other fields such as platform name is used as the
feature description for the entire ticket. Given the high-dimensional and sparse nature of the
final representation, learning a classifier might be affected by the curse of dimensionality
(Bishop 2006). Therefore, we apply Principal Component Analysis (PCA), a feature vec-
tor dimension reduction technique with minimum information loss, such that 95% of the
eigen energy is conserved (Jolliffe 2002). For preemption, a feature vector extracted from
the ticket submitted by a user is mapped to the reduced dimensional space learnt from the
training data.

5.4 Training and Preemption

The preemptive system is learnt over features extracted using tickets’ data at the time of
submission. To address P1, a binary classifier is trained over a set of labeled tickets to clas-
sify if user input request will be made for a given ticket or not. If the classifier predicts class
as 1, i.e. a user input request will be made, the next question (that is P2) is to identify the

Empir Software Eng (2018) 23:1 –1664 703 1677

specific information likely to be asked such as version number of a software or approval for
processing. To identify the need for each of the possible information, an independent binary
classifier is constructed. As shown in Fig. 3, when a new ticket is submitted the cumulative
results of the learnt binary classifiers suggest the subset of information that could be fur-
ther required to easily process the ticket. By dividing this complex task into simple binary
classifiers, more flexibility is added to the preemptive model. If a new information need is
identified in the future, a new binary classifier can be trained for the corresponding infor-
mation without the need to retrain any of the existing classifiers. In our study, we have used
a supervised learning model, Support Vector Machines (SVM) (Chang and Lin 2011). SVM
is a binary linear classifier that attempts to find the maximum margin hyperplane, such that
the distance of data points from either of the classes is maximized. Furthermore, it performs
classification very effectively using a technique called a kernel trick, by implicitly mapping
input data into a higher dimensional feature space, where linear classification is possible.
SVM is a popular choice and is often used in the literature (Anvik et al. 2006; Elish and Elish
2008; Joachims 1998; Maita et al. 2015; Sun et al. 2010; Xuan et al. 2012). To compare the
efficiency of SVM for the proposed preemptive system, we evaluate other commonly used
classifiers such as naive Bayes (Anderson et al. 2015), logistic regression (Harrell 2013),
and random decision forest (Ho 1998). Performance of a classifier strongly depends on
the value of its input parameters, whose optimal choice heavily depends on the data being
used (Tantithamthavorn et al. 2016). We choose the parameters for the classifiers using grid
search (Hsu et al. 2003) and heuristics (Breiman 2001).

5.5 Evaluation

A 50/50 train/test split protocol is followed to train and evaluate the classifier. In compari-
son with a more lenient protocol such as 80/20 split, the proposed split is less risk-prone in
terms of generalizability (Crowther and Cox 2005). To address the challenge of imbalanced
class labels in train data, we perform random under-sampling of majority class as recom-
mended by Japkowicz (2000). For creating the training set in a binary classification setting,
50% of data points are randomly taken from the minority class and an equal number of data
points are randomly sampled from the majority class. Thus, it is ensured that the training
data has an equal number of data points from both the classes. The remaining 50% data of
the minority class and all the remaining points of the other class are included in the test split
for evaluation (testing). To make a realistic estimation of the classifier performance and to
avoid any training bias, we perform five times random sub-sampling cross validation (also
called Monte Carlo cross-validation) where new training and test partitions are generated (at
random) each time using the above protocol (Xu and Liang 2001). The evaluation metrics
are averaged over the five rounds and the standard deviation is computed.

Accuracy places more weight on the majority class than on the minority class, thus prone
to bias in case of imbalanced datasets (Kotsiantis et al. 2006). Therefore, additional metrics
such as precision and recall are used. Classes with label 1 and label 0 correspond to positive
and negative classes respectively. TP and TN denote the number of positive and negative
examples that are classified correctly, while FN and FP denote the number of misclassi-
fied positive and negative examples respectively. We evaluate performance of the learnt
classification model on the test set using the following evaluation metrics:

Accuracy = (TP + TN)/(TP + FN + FP + TN)

Precision of positive detection = TP/(TP + FP)

Recall of positive detection = TP/(TP + FN)

Empir Software Eng (2018) 23:1 –1664 7031678

6 Detection Model: for Tactical User Input Requests

Identifying tactical input requests is important because such requests degrade user experi-
ence as indicated by users in the survey conducted at the large global IT company (Section
8.2) and also evident from following user responses recorded in the ITIS information system
of a large global IT company:

– “I have already provided all the necessary inputs. Please take actions.’’
– “Kindly let me know what inputs are required from my end. As mentioned in my earlier

comments, I have already provided the necessary information but I still see the status as
Awaiting user inputs. Its already been about a week since I submitted this request and
the issue has not been resolved as yet. Request you to kindly do the needful.’’

While users and managers recognize tactical user input requests, following are the challenges
in handling this practice thus, highlighting the need for automated detection system:

– After users recognize tactical user input requests and give feedback, the user experience
has already been degraded. With the automatic detection system, it is possible to iden-
tify such requests in a proactive way and prevent users from receiving such requests
thus, enhance user experience.

– Merely looking at the complaints will give biased impression because not every user
will raise a complaint about such tactical user input requests. Raising complaints is an
additional effort for the users which every user may not like to put. Moreover, many
users (specifically new ones) are not familiar with the process and the fact that service
level clock pauses when a ticket is in Awaiting User Inputs state thus, do not realize the
need to complain about such experiences.

– A manager needs to look at the comments manually to decide if input request seeks
any information or not, i.e. it is tactical. This control is human intensive and not always
possible given the high number of input requests made by a team of analysts every day.

– Automatic detection allows to derive actionable insights thus, help managers make
informed decisions. For example, if tactical requests are made by specific analysts then
tackled at individual’s level otherwise if practiced by majority of the analysts then take
organization level decisions such as redefine service level resolution time limit or staff
more analysts.

It is difficult to identify tactical user input requests because of the perpetual competition.
For any technique to detect tactical user input requests, analysts will come up with ways
to overcome them. The proposed detection model is an initial attempt to mitigate tactical
user input requests. The detection model identifies tactical input requests in real time by
analyzing analysts’ comments when changing status to Awaiting User Inputs. For this, as
shown in Fig. 2 we suggest to classify the user input requests using a keyword based rule
classifier. Rules are a set of regular expressions derived to represent the keywords for tactical
user input requests in a concise way. Rules are created for identifying user input requests
where no direct information is asked. Domain knowledge of managers can be used to create
an initial set of rules which can be updated iteratively by manually inspecting the tactical
comments from the data corpus. Once the rule set is ready, any user input request by the
analyst is checked against it for the classification. If the user input request is identified as
tactical, it is logged in the ITIS information system and the manager is notified to take
suitable actions.

As opposed to the preemptive component, we do not use machine learning because of
the differences in the context: as part of preemptive model, information need is preempted

Empir Software Eng (2018) 23:1 –1664 703 1679

for resolving a ticket at the time of ticket submission whereas in case of detection model,
a comment by analyst during the ticket lifecycle is classified (not preempted) as tactical or
not. For P2, the ground truth is created for a ticket by analyzing the analyst comments such
as if version is asked in some comment then ground truth for a ticket is labeled as 1 w.r.t
class version. Therefore, the preemptive model takes ticket as input and preempts the infor-
mation need using the learnt models. Unlike preemptive model, detection of tactical user
input requests requires learning a classification model from labeled analyst comments. Since
we manually create the ground truth label for tactical comments using keywords based
approach (like done for P2), learning a classification model does not add value. Therefore,
for given scenario, a set of rules to concisely represent the manually identified keywords
for tactical user input requests is sufficient. Learning a classification model for tactical user
input requests would have been an option if we had human annotated tactical user input
requests available.

The detection model identifies whether an input request by the analyst belongs to one of
the classes below. The classes are created on the basis of data analysis and discussion with
the manager for a given case study. A separate set of rules is derived for each category.

– Temporize: The analyst indicates that the ticket will be handled soon and mentions
things such as ‘Work in progress’, and ‘Will check and update’.

– Invalid: No valid character is present in the string. Comments such as empty strings or
strings consisting of few special characters only.

– Contact Me: The analyst asks the user to contact her over phone or chat or in-person
instead of asking for specific information.

– Will Transfer: The analyst informs the user that the ticket will be transferred to another
analyst and marks the state as Awaiting User Inputs. The ticket is transferred to another
analyst later instead of transferring directly.

– Done So Check: The analyst asks the user to check if the resolution is satisfactory.
Ideally the analyst should mark the ticket as Resolved when done with resolution from
their side and let the user reopen, if unsatisfied.

This classification helps managers to decide upon the appropriate course of action. For
example, if the class is Invalid, the user input request can be blocked and if the class is
Contact Me then it can be logged for clarification with the involved user and analyst to
verify whether there was a need for contact.

For evaluation, we request managers to randomly select comments from the classified
ones and indicate if they have been wrongly labeled. This ensures high precision but it is
difficult to comment on recall. We do not know how many tactical comments are missed
because of the incomplete class list or incomplete dictionary for a class.

Now, that we explained the details of the approach, we present the case study to illustrate
its effectiveness.

7 Case Study: IT Support System of a Large Global IT Company

We performed a case study in a large global IT company to find out what is happening in the
organization’s ticket resolution process by applying process mining on ticket data and thus,
derive actionable insights. We triangulated our results by conducting survey with users and
analysts, to better understand the process in-practice and validate the data driven findings
and inferences. Triangulation is known to improve the credibility and validity of the results
(Kang et al. 2013; Runeson and Höst 2009). Further, we demonstrated the usefulness of the

Empir Software Eng (2018) 23:1 –1664 7031680

Table 1 Experimental dataset details for the case study in a large global IT company

Attribute Value

Duration One quarter of 2014

Total extracted closed tickets 593,497

Total categories 64

Closed tickets with category Software 154,092 (26%)

Total subcategories in Software 15

Total tickets with atleast one AUI state 88,039 (57%)

proposed preemptive and detection model in reducing real and identifying tactical user input
requests respectively. We chose this company for the following reasons: 1. it is a CMM level
5 company with a well-defined process in place, 2. it is a large global IT company with IT
support as one of the crucial activities, 3. a large number of IT support tickets are reported,
i.e. in order of a million per quarter, by diverse users, and 4. the service level metrics are
continuously monitored by service level management and the organization has very high
service compliance.

We download data of closed tickets for one quarter, archived in the organization’s ticket
system and store it in a relational database. We ignore open tickets because we want to
analyze user input requests in the tickets’ life cycle and the resolution time. Data includes
the required information about a ticket starting from the time of ticket submission till it is
closed. As summarized in Table 1, there are 593,497 closed tickets labeled with 64 distinct
categories such as software, desktop, and network. We select software category for the study
because it is the most common category constituting 26% of total tickets and large enough

0 1 2 3 4 >4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Total AUI in lifecycle

P
e
r
c
e
n
ta

g
e
 o

f
C

a
s
e
s

Fig. 4 User input request distribution - percentage of cases with given number of Awaiting User Inputs
(AUI) state

Empir Software Eng (2018) 23:1 –1664 703 1681

to illustrate the proposed approach. The software category further has 15 subcategories such
as software install, uninstall and upgrade.

The Awaiting User Inputs state is present in 57% of the tickets and 27.5% of them have
multiple user input requests in their life cycle. With a total number of 125330 comments,
we observe from the distribution curve depicted in Fig. 4 that the majority of the cases
have one or two user input requests in the life cycle, and some cases have more than four
user input requests. Similarly, in the Volvo IT organization ticket data investigated as part
of the BPI challenge 2013 (van Dongen et al. 2013), the “wait-user” (user input requests)
activity was present in 33% cases (Paszkiewicz and Picard 2013). For many products, the
“wait-user” activity is present in 67–84% of the cases, much more than the average of 33%
(Paszkiewicz and Picard 2013). This supports the observation for our data that user input
requests are frequent in the ticket life cycle.

8 Experimental Results

In this section, we present our experimental results for the proposed approach including
process mining of ticket data, and performance of the preemptive model and the detection
model.

8.1 Process Mining of Ticket Data

As discussed in Section 4, we transformed data for all closed software category tickets
(593,497 tickets) to make it suitable for process mining and analyze user input requests.

To generate the event log, we identified the activities to be captured for the analysis. All
the important activities defined as part of ticket’s life cycle are captured explicitly in the
information system. We included in the event log a subset of the activities which we believe
captures progression of tickets, can affect the performance and is sufficient for the analysis.
Also we validated the list of activities with the manager. The list of activities along with the
significance of each activity is made publicly available (Gupta 2017). Ticket ID and time
stamp corresponding to an activity is extracted from the information system. The service
level clock state (resume/pause) for an activity is inferred from the documentation which
clearly states the activities for which the service level clock pauses. For example, the service
level clock pauses when asking for user inputs, marking a ticket as resolved, and closing a
ticket.

Transition Pattern Analysis We imported the event log to Disco for process model gen-
eration and made the derived process model for the complete process publicly available
(Gupta 2017). In Fig. 5, we present only the transitions involving Awaiting User Inputs
activity for analyzing its transition patterns. We evaluate Transition Percentage, SD (see (2))
for both incoming and outgoing edges, indicated as label in Fig. 5. State of service level
clock is indicated using play/pause icons and the median transition time is labeled on the
edges to visualize time perspective.

Incoming Edges to Awaiting User Inputs From Fig. 5, we observe that analysts seek
inputs when assigned a new ticket (ACK) or when a ticket is transferred (TR) to them from
other analysts for 26.00% and 34.35% of the instances respectively. It indicates that as they
start working on the ticket, they identify a need for additional information hence start by
asking for inputs. Interestingly, Awaiting User Inputs is a successor state for User Input

Empir Software Eng (2018) 23:1 –1664 7031682

Awai�ng User Inputs
(125330)

ACK (152820) TR (139709) Non-RE (2729)

User Input
Received (56289)

RE Closed
AUI-

Autoclosure A�achtdoc

26.00% 34.35% 35.58%

23.93% 15.42% 8.19%35.52% 6.13%

[User Update] [Signals Misuse] [No User Update] [User Update]

2.4 hrs 4.4 hrs 1.1 hrs

6.1 hrs 5.2 hrs23.2 hrs 47.9 hrs 14 days

45.96%

1.5 hrs

Fig. 5 Awaiting User Inputs state transition pattern showing user response classes where SD and median
transition time are edge labels. The state of the service level clock is indicated using play/pause icons. The
activities are: ACK - ticket assigned to an analyst, TR - transfer of ticket to other analyst, Non-RE - user
marks a ticket as not resolved, Awaiting User Inputs - analyst makes a user input request, User Input Received
- user provides input for the user input request, RE - analyst marks a ticket as resolved, Closed - user closes
the ticket, AUI-Autoclosure - ticket autoclosed as user did not provide inputs within the defined limit of 14
days, Attachtdoc - user attaches a document

Received (for 45.96% of the instances) signaling that input from user leads to another user
input request. The most common source states for Awaiting User Inputs are ACK, TR, and
User Input Received, together constituting around 90% ((152820×0.26+139709×0.3435+
56289 × 0.4596)/125330) of the total incoming transitions (refer Fig. 5). Non-RE (user
marks a ticket as not resolved after analyst says its resolved) is followed by user input
request in 35.58% of the instances but constitutes merely 0.7% (2729 × 0.3538/125330) of
total user input requests.

Outgoing Edges from Awaiting User Inputs We explore outgoing edges and classify
destination states broadly into the following two classes:

– User update: We observe that users provide inputs, User Input Received (comment
from user) or AttachtDoc (document attached by user), for around 42.00% of the user
input requests. We conjecture that user input requests with these destination states are
mostly information seeking (real) thus, updated by user. For around 15.42% of the
instances, the user does not provide information and explicitly closes a ticket instead,
i.e., the destination state is Closed.

– No update: As shown in Fig. 5, 23.93% of the total Awaiting User Inputs state transit
to RE (resolved) without any update from user. We conjecture that such user input
requests are more likely to be the tactical ones as the analysts managed to resolve the
ticket without receiving user inputs. For 8.00% of the cases, a ticket is auto-closed, i.e.
destination state is AUI-Autoclosure because no user action is performed in response to
the user input request within the defined time limit of 14 days (as enforced in the given
information system).

The above conjecture w.r.t. destination state for Awaiting User Inputs will be revisited in
Section 9.

Empir Software Eng (2018) 23:1 –1664 703 1683

Table 2 Gap between Service Level Resolution Time (SLRT) and User Experienced Resolution Time (URT)

Class #Cases SLRT Median URT Cases with URT>SLRT

1 16,110 9 hours 21 hours 62.46% cases

2 83,939 18 hours 26.34 hours 72.49% cases

3 5,490 36 hours 77.84 hours 76.14% cases

Performance Analysis We consider for analysis only the cases which are resolved and
never reopened. There are 105,539 such cases for which we evaluate user experienced
resolution time.

The software category has tickets with three service resolution time thresholds as per the
organization’s service level agreement: 9 hours, 18 hours and 36 hours. We group tickets into
three categories on the basis of same service level resolution time. As shown in Table 2, a
high percentage of cases have user experienced resolution time more than the agreed service
level resolution time. However, the service level violation is recorded for very few cases1

because the waiting time is not counted towards the measured resolution time. The median
resolution time experienced by user is 21 hours, 26.34 hours, and 77.84 hours for cases with
service level resolution time of 9 hours, 18 hours and 36 hours (refer to Table 2) respectively.
Similarly, as analyzed in Volvo IT organization ticket data for the BPI challenge, on an
average 34% of the user experienced resolution time was due to user input requests (Van
den Spiegel et al. 2013). This highlights that the user experienced resolution time is much
higher than the measured resolution time due to user input requests, thus a bottleneck in the
ticket resolution life cycle.

We observe from Fig. 5 that the median transition time for Awaiting User Inputs to RE,
potentially tactical is much higher (23.2 hours) than the median transition time for Await-
ing User Inputs to User Input Received (6.1 hours) and Attachtdoc (5.2 hours), potentially
real. Therefore, while both real and tactical user input requests add to the user experienced
resolution time, tactical user input requests cause relatively more delay.

To summarize, from process mining analysis, we observe that 57% of the tickets have
user input requests in the life cycle. Users provide input to around 42% of the total user input
requests which we consider as potentially real requests. For around 23% of the cases, the
ticket is resolved without any user inputs, thus corresponding to potentially tactical requests.
User input requests cause a significant gap between the measured resolution time and the
user experienced resolution time. The findings clearly highlight the need to reduce real and
tactical user input requests.

Next, we triangulate our results by conducting survey with users and analysts of the
organization.

8.2 Survey of Users and Analysts

We designed two short surveys (Tables 3 and 4) to understand users’ and analysts’ experi-
ence with the IT support process and in particular user input requests. The choice of options
for Q3 and Q4 in Tables 3 and 4 respectively was made after discussions with the manager
and validated with randomly selected participants for each of the respondents’ groups till

1We cannot reveal exact numbers because of confidentiality.

Empir Software Eng (2018) 23:1 –1664 7031684

Table 3 User Survey Results [95 Responses]: User experience with the IT support services provided in last
six months

Q1: In last six months, how many tickets have you submitted?

No request at all - 0 Up to 5 - 43.16%

Up to 10 - 28.42% More than 10 - 28.42%

Q2: How often were you asked to provide at least one input?

Never - 1.05% Rarely - 10.53% Sometimes - 46.31%

Often - 26.31% Always - 15.79%

Q3: Below is the list of possible reasons explaining why you were asked to

provide inputs. Rank given reasons from 1 to 5 where 1-most frequent and 5-least

frequent. NA if Not Applicable.

Reasons 1 2 3 4 5 NA

1. Complex issue that required specific information 33 28 11 13 0 10

2. Initial request you submitted was incomplete or unclear 11 16 29 26 1 12

3. You felt the asked input was unnecessary to resolve the issue 9 16 27 28 2 13

4. Approvals 39 22 13 10 1 10

5. Others..

Q4: Were any of your tickets auto closed because you could not provide

inputs within the time constraint of 14 days as enforced in ticket system?

Yes - 28.42% No - 71.58%

Q5: Did you ever decide to leave a ticket unresolved because you were

asked to provide inputs multiple times?

Yes - 23.16% No - 76.84%

all the pilot study respondents were satisfied. Still to make sure that survey respondents can
provide applicable reasons if not included in the given list, we provided other as a free form
option. We could not include the option of unnecessary user input requests in the analysts’
survey for company policy reasons. The survey was administered after analyzing the find-
ings from the process mining of ticket data to triangulate the results. We sent an email with
survey to 40 randomly selected analysts and 125 users (from diverse project teams) from
the organization. We received a total of 28 (around 70%) responses from analysts and 95
(around 76%) responses from users. Relatively high response rate can be attributed to the
fact that these are very short objective survey and many reminders were sent. Survey and
anonymized responses are made publicly available (Gupta 2017).

Analysis of Users’ Survey Table 3 presents the results of the users’ survey consisting
of five mandatory questions. This survey is about the users’ experience with IT support
services provided to them in the last six months. All the survey participants submitted ticket
in the last six months out of which 57% users submitted more than 5 tickets (refer to Q1
in Table 3). User responses to Q2 show that most of the users are asked to provide inputs
(sometimes to always). Responses to Q4 and Q5 confirms that users decide to leave tickets
unresolved or let them auto close when asked to provide multiple inputs. We contacted the

Empir Software Eng (2018) 23:1 –1664 703 1685

users who replied Yes to Q4 or Q5 over email and asked to provide the reasons for their
choice. Based on the responses, we identify the following reasons behind the decision:

– users give up if it is not crucial to get the ticket resolved and they find it difficult to
provide the information asked.

– users submit a new ticket which gets assigned to a different analyst and resolved with
fewer or no user input requests. This is more common in the cases where they feel that
unnecessary user input requests are being made by the analyst.

– users find alternative means of solving the problem that is, discuss with colleagues or
search online.

Results of Q3 from the survey reveal that majority of the users believe that the most
frequent reasons to ask for inputs are missing approvals and need for specific information
to resolve complex issues. Users also expressed that the inputs were asked because they
provided incomplete or unclear information at the time of ticket submission. Around 86%
users (only 13 select Not Applicable out of 95) agree that asking for unnecessary inputs
is one of the reasons though not the most frequent one. We received eight other answers.
Following is the list of consolidated reasons mentioned in other option:

1. When a ticket needs to be transferred to another analyst, the service level clock is paused
by marking ticket as Awaiting User Inputs till it is transferred to the other analyst.

2. In order to avoid a service level breach, tickets are closed without proper resolution
and then reopened. For reopened ticket, analysts again ask all the previously provided
information.

3. A ticket is marked as Awaiting User Inputs when analysts make request for license
purchase to the concerned authorities.

4. The analyst asks to provide information such as software version, physical address of
system and download URLs to process ticket.

The above additional reasons mentioned by the users are specific cases of requesting user
input. The answers (points 1 and 2 above) highlight the different ways for pausing service
level clock without asking any information from the user. We deem those user input requests
as tactical. In other cases, the user quote the information they were asked to provide for the
ticket resolution.

Analysis of Analysts’ Survey Analysts were asked four mandatory questions on the basis
of their experience with IT support ticket resolution in the last six months as shown in
Table 4. The majority of the survey participants (75%) have more than a year of work expe-
rience with IT service team of the organization. Responses to Q2 and Q3 reveal that while
analysts often ask for user inputs, asking inputs multiple times for the same ticket is per-
ceived as relatively infrequent. Comparison between ranking of Q3 from Table 3 and Q4
from Table 4 brings out interesting findings. While user ranked incompleteness of the ini-
tial report as a comparatively less frequent reason, analysts consider it as the most frequent
reason. It highlights the difference between the expectations of analyst and of the user (Bet-
tenburg et al. 2008). Reasons 3 and 4 in Q4 (refer to Table 4) support the observation of
having Awaiting User Inputs as a subsequent state after User Inputs Received in Fig. 5. We
received five other answers for Q4 and the consolidated reasons are as follows:

1. Users submit a ticket in a wrong category, thus the analyst needs to change the category
after analyzing the ticket and ask the user for the required information accordingly.

Empir Software Eng (2018) 23:1 –1664 7031686

Table 4 Analyst Survey Results [28 Responses]: Analysts’ experience with IT support ticket resolution in
last six months

Q1: For how many years have you been working as an analyst?

<1 yr - 25.00% Up to 3 yr - 46.43%

Up to 5 yr - 14.29% >5 yr - 14.29%

Q2: For approximately what percentage of all the tickets, do you need to

ask for user inputs atleast once?

<20% : 10.71% 21–40% : 28.57% 41–60% : 35.71%

61–80% : 3.57% 81–100% : 21.43%

Q3: For approximately what percentage of all the tickets, do you need to

ask for user inputs more than once?

<20% : 50.00% 21–40% : 14.29% 41–60% : 17.86%

61–80% : 17.86% 81–100% : 0%

Q4: Below is the list of possible reasons to ask for user inputs.

Rank given reasons from 1 to 5 where 1-most frequent and 5-least frequent.

NA if Not Applicable.

Reasons 1 2 3 4 5 NA

1. Incomplete information provided in the initial report 18 6 3 1 0 0

2. Complex issue that required specific information 4 11 7 6 0 0

3. Dependency between user inputs thus, need to ask for inputs sequentially 4 4 12 8 0 0

4. User provided wrong or unclear information 2 7 6 12 1 0

5. Others..

2. Users miss required attachment such as approval and license.

The answers highlight the points missed by users thus, analysts had to ask for user inputs.
The survey supports the findings from the ticket log analysis that analysts frequently

mark ticket as Awaiting User Inputs (Q2 of Tables 3 and 4) for two reasons: seek inputs from
users to process tickets (Q3 of Table 3 and Q4 of Table 4), and for the sake of pausing service
level clock (Q3 of Table 3). The frequent user input requests degrade user experience (from
Q4 or Q5 of Table 3) despite of very high service level compliance. This reinforces the need
to address the problem by ensuring that maximum information required for resolution is
asked upfront and misuse of user input requests is discouraged. To achieve this, we evaluate
the effectiveness of the proposed preemption and detection model.

8.3 Preemption Model

To demonstrate the usefulness of the proposed preemption, we conducted experiments on
a total of 96,756 closed tickets belonging to the most frequent subcategory, that is, install,
within the software category. We chose this because every category has different informa-
tion requirements thus for the illustration purposes we believe one category is sufficient.
The approach can be similarly applied to other categories because the overall characteristics
are common across the categories (Addy 2007).

Empir Software Eng (2018) 23:1 –1664 703 1687

Table 5 Number of class-wise data points in the ground truth and test-train split for the proposed preemptive
model

Preempted Ground Truth Train Set Test Set

Information class 1 class 0 class 1 class 0 class 1 class 0

Awaiting User Inputs 55,398 41,358 20,679 20,679 34,719 20,679

Software Version 1,174 95,582 587 587 586 94,996

Approval 3,686 93,070 1,843 1,843 1,843 91,227

IP Address 2,750 94,006 1,375 1,375 1,374 92,632

Class 1: if the information is asked in the ticket life cycle, Class 0: information is not asked in the ticket life
cycle

To learn the model for P1 (to process the ticket, will there be user input request), tickets
are labeled on the basis of Awaiting User Inputs state in life cycle. As shown in Table 5,
55,398 (57.25%) tickets belong to class 1, that is, have at least one user input request in
the life cycle. The bias due to tickets with only tactical user input requests in the life cycle
will affect the outcome of P 1 because the model is learnt to predict class for a ticket as
1 (that is, some information will be asked) even if it had just tactical user input requests.
However, outcome of P 2 will take care of this limitation: if P 1 predicts class as 1, binary
classifiers for every information need will be executed and all of them will give the output
as 0 because none of those information were asked for the given ticket. Therefore, user will
not be preempted to provide any information. Moreover, there are only 3117 tickets (that is,
around 6% of total tickets in class 1 for P 1) which just had tactical user input requests and
still were assigned ground truth label as 1 thus, ignored to eliminate such cases. Effectively,
the preemptive model remains independent of detection model and accurately preempts user
for the additional information needs.

We observe from comments that different information is asked by analysts such as man-
ager approval, operating system, location or cubicle ID, machine ID, IP address, project
code, purpose of download, problem screen shot, download URL, software name and soft-
ware version. Information requested by the analysts can, therefore, be categorized into three
categories: information such as the IP address or the machine ID that can be derived auto-
matically; information such as software name or software version that is explicitly asked in
the ticket template; information such as the manager approval that is not explicitly asked in
the ticket template but might be requested by the analyst under specific circumstances.

Ground truth is labeled for the information needs using a keyword-based approach (as
discussed in Section 5.1). Table 6 presents the example information needs for each category
along with the example keywords. Amanat (a Urdu word meaning fidelity) ID is one of the
keyword for Machine ID because it is a term used in the company to refer to a machine. To
represent each category we address P2 (what specific information is likely to be asked) for
the IP address, software version, and manager approval, corresponding to 3.5%, 1.5% and
4.8% of the 77,333 user input requests derived from 55,398 tickets. All the keywords for IP
address, software version and manager approval are made publicly available (Gupta 2017),
however, labeled data could not be shared because of company policy concerns. We notice
from ground truth in Table 5 that a relatively small percentage of tickets belong to class 1,
i.e. the data is imbalanced, likely to overfit to the majority class (He and Garcia 2009).

Empir Software Eng (2018) 23:1 –1664 7031688

Table 6 Different category of information needs with example information needs and their corresponding
example keywords

Category Information Need Example Keywords

Information that can be derived
automatically

IP Address ip, ipv4, ipaddress

Machine ID Amanat id, mac id, machine name,
machine id, hardware id, asset id,
hw name

Location of user location details, building no., cubicle id

Information that is explicitly asked
in the ticket template

Software Version Software version, sw ver, software number

Operating System OS details, platform, Operating system details

Software Name Software name, sw name

Information that is not explicitly
asked in the ticket template but
might be requested by the analysts

Manager Approval DM Appr, DM’s approval, approval
DM, approval PM, project manager
approval, PM approval

Software License PO details, PO number, license
details, Software asset id, Purchase
order

Screen Share msra, share screen

Category 1 - information that can be derived automatically, Category 2 - information that is explicitly asked
in the ticket template, and Category 3 - information that is not explicitly asked in the ticket template but
might be requested by the analysts

The following information is extracted from a user submitted ticket: description, soft-
ware name, software version, platform, doc-attached and time of reporting. Doc-attached is
a binary field indicating the presence or absence of an attachment. Platform is a categori-
cal attribute with seven unique values such as Windows, Linux and Unix. Time of reporting
is mapped to three ranges in a day, that is, morning (before noon), afternoon (from noon
to 4 PM), and evening (after 4 PM). Overall we have 21 possible values for time corre-
sponding to the seven days of the week. Description, software name and software version
are free-form text fields. The data from all the three fields for a given ticket are concate-
nated and preprocessed using case folding, stemming (using the Porter stemmer 1980) and
stop words removal. We make the manually created stop words dictionary, on the basis of
term frequency, for given context publicly available (Gupta 2017). Also we remove all the
punctuation marks except period because period is used in the IP address mentioned in the
description.

As shown in Table 5, the testing and training data is created as per the 50/50 train/test
split protocol with random under-sampling of majority class (cf. Section 5). Preprocessed
text field for tickets in training data is represented as a term frequency vector of both uni-
grams and bigrams. Many unigrams and bigrams have very low frequency adding to the
feature sparsity thus, we eliminate them by setting the term frequency threshold as 150. We
started with a low threshold and tried for random values such as 50, 100, 150 and 200, and
observed that 150 works the best given the trade-off between the model computation time
and the performance. The reduced feature set of unigrams and bigrams is concatenated with
the other three features (platform, doc-attached and time of reporting) to represent a ticket.
Thereafter, we reduced the dimension of the ticket feature vector by applying PCA. We

Empir Software Eng (2018) 23:1 –1664 703 1689

Table 7 PCA is applied for reducing feature dimension and reduced feature vector is used for training. Table
presents number of features before and after applying PCA

Preempted Information #Features before PCA #Features after PCA

Awaiting User Inputs 1357 493

Software Version 33 17

Approval 119 50

IP Address 96 42

notice from Table 7 that the feature length is different for models corresponding to different
information needs because the training data set is different.

Using the list of features and the labeled training data set, a SVM is trained with dif-
ferent kernels such as linear, polynomial and Radial Basis Function (RBF) kernel, using
LIBSVM (Chang and Lin 2011). We found experimentally that RBF kernel performed the
best with c = 8 and g = 2 where c and g are the input parameters. A grid search is per-
formed using a validation set and c = 8 and g = 2 are obtained as the best set of optimal
parameters (Hsu et al. 2003). The performance of the learnt classification model is shown
in Table 8 on the test set using evaluation metrics discussed in Section 5.5. Further, the
performance of the proposed SVM classifier is compared with some baseline and popular
classifiers in the literature such as naive Bayes, logistic regression, and Random Decision
Forest (RDF) (refer to Table 8). For logistic regression the threshold hyperparameter is man-
ually fine-tuned to be 0.5. Breiman et al. discuss some experimental heuristics to tune the
parameters of RDF (Breiman 2001). Based on those intuitions, the parameters of RDF used

Table 8 Table showing the performance of the prediction model by comparing various popular classifiers
with the proposed SVM

Evaluation Metric Awaiting User Inputs Version Approval IP Address

NB Accuracy 54.38 ± 0.09 62.19 ± 0.54 70.41 ± 0.29 60.41 ± 0.72

Precision 53.42 ± 0.08 63.71 ± 2.29 73.54 ± 0.23 63.21 ± 1.24

Recall 68.48 ± 0.32 57.58 ± 7.03 63.75 ± 1.20 49.92 ± 1.06

LR Accuracy 61.85 ± 0.17 62.84 ± 0.98 72.55 ± 0.53 63.13 ± 0.47

Precision 62.21 ± 0.11 65.78 ± 1.33 76.98 ± 0.80 65.95 ± 0.52

Recall 60.37 ± 0.45 53.63 ± 2.91 64.35 ± 0.75 54.30 ± 1.46

RDF Accuracy 99.51 ± 0.01 91.36 ± 0.92 97.73 ± 0.30 96.58 ± 0.42

Precision 99.83 ± 0.02 94.78 ± 1.45 99.36 ± 0.24 98.39 ± 0.56

Recall 99.20 ± 0.03 87.60 ± 2.84 96.07 ± 0.75 94.72 ± 0.72

SVM Accuracy 99.83 ± 0.01 94.96 ± 0.69 99.28 ± 0.17 98.69 ± 0.14

Precision 99.94 ± 0.02 95.59 ± 0.92 99.56 ± 0.23 98.89 ± 0.20

Recall 99.73 ± 0.02 94.28 ± 1.82 99.00 ± 0.24 98.49 ± 0.26

The best results are from SVM for any information need. NB - Naive Bayes, LR - Logistic Regression, RDF
- Random Decision Forest, SVM - Support Vector Machine

Empir Software Eng (2018) 23:1 –1664 7031690

(a)

(c) (d)

(b)

Fig. 6 ROC for SVM and RDF based preemtive model to illustrate their performance for different informa-
tion needs: (a) Awaiting User Inputs, (b) Software Version, (c) Approval and (d) IP Address. The y-axis is
cut at 0.8 to zoom in the point of bending for ROC curves

in our experiments are number of trees = 200, bootstrap ratio = 0.7, and subset of features
per tree = 0.6. The average results obtained over five-times repeated random subsampling
for all the classifiers are tabulated in Table 8. ROC is presented in Fig. 6 for SVM and
random decision forest classifier as they perform better for all the four models. The major
observations drawn from the results are as follows:

1. The proposed SVM classifier provides the best overall classification accuracy in the
range of 95–99% for all the information needs. SVM is kind of expected to perform
best with optimal parameter values since it is regarded as one of the best classifier in the
literature for text classification tasks (Gachechiladze et al. ; Anvik et al. 2006; Elish and
Elish 2008; Joachims 1998; Maita et al. 2015; Sun et al. 2010; Xuan et al. 2012). It can
be observed that both precision and recall of the classifier are high suggesting that the
classifier is not biased towards any particular class. It is possible because random under-
sampling of majority class is performed at the time of training to handle imbalanced
class problem.

Empir Software Eng (2018) 23:1 –1664 703 1691

2. It can be observed that an ensemble learning based classifier such as Random Deci-
sion Forest (RDF) performs comparable to SVM. Thus, SVM is not a strict choice for
choosing the classifier of the preemptive system. SVM performs a kernel trick to project
the feature space into a suitable higher dimensional space where linear classification is
possible, while RDF combines the classification results of multiple individual classi-
fiers making the classification decision robust. The logistic function of the regression
classifier tries to fit a linear boundary in the provided feature space, thus, can lead to an
approximate classification. Hence, logistic regression performs poorly when compared
with SVM and RDF. Since a sparse feature representation is obtained from the bag-of-
words model, models such as naive Bayes perform poorly in trying to fit a distribution
for the data.

3. Figure 6 shows the ROC curve plotted between the false accept rate (in log scale) and
true accept rates, comparing the performance of SVM and RDF classifiers across all
information needs. The ROC curve shows the trade off between sensitivity (also called
recall) and specificity, providing the number of true detects for a given number of fall-
outs. For all the information needs, it can be observed that SVM performs better than
RDF by correctly detecting more than 95% of the test cases.

4. It is to be noted that the test data is an unseen data for the classifier. Thus, the perfor-
mance of the classifier, as shown using the test data, is equivalent to the performance
of the classifier as deployed in a real-time environment.

We have made the trained preemptive model and code publicly available (Gupta 2017) and
they can be used by other researchers in their experiments.

8.4 Detection Model

Set of rules is derived iteratively for each of the five categories using the approach suggested
in Section 6. For example, rule for category transfer is comment description should be like
’*transfer to* or ’*assign to*’. Example keywords in generating rules for each category are
shown in Table 9 and the complete set of rules for reference are made publicly available
(Gupta 2017). The given data set, that is, 77,333 analyst comments corresponding to 96,756
closed tickets for subcategory install are classified using the designed rule based classifier.
We perform stemming, case folding of comments to ensure that matching is case insensitive
and remove special characters. The total number of data points classified to each of the
categories is summarized in Table 9. Around 42.52% of the total user input requests are
classified to one of the five listed categories. Managers expressed that while it is very useful
to know comments from Contact Me category, it needs to be tackled differently as compared
to other tactical categories. This is because they believe that while no direct information is

Table 9 Categories in tactical user input requests with total comments in each class, percent of total
comments, and example keywords

Class #Comments % of comments Example keywords

Temporize 6272 8.11% in progress, working, will do it

Invalid 645 0.83% No alphanumeric character

Will Transfer 482 0.62% transfer to, assign to

Contact Me 21081 27.26% ping me when free, call me @

Done So Check 4414 5.70% Installed, Completed, Check

Empir Software Eng (2018) 23:1 –1664 7031692

Table 10 Real example comments for each category of tactical user input requests

Class Example Comments

Temporize “We are trying to find the solution for the problem.We shall get back you soon.”

“Please provide sometime it will be done asap”

“Will check and update the status.”

Invalid “...”, “-”, “ ”

Will Transfer “Will Assigned to L1 Team. They will reach you shortly.”

“Transferring to concerned person.”

“This request is not under my scope of work. I will contact admin and transfer it to

correct analyst.”

Contact Me “Please ping me when you are available.”

“Please Ping/Call me once you are at your desk and free so that we can work on your request.”

“You seem offline. Please contact me once you are available.”

Done So Check“The requested software has been installed. Please check and close the request.”

“Please check and update.”

“It has been done. Kindly check it.”

asked in such comments, the analyst asked user to contact them. Therefore, there is high
possibility that the analyst asked for inputs in follow up communication with the user over
phone or chat. Hence, whether it is truly tactical or not also depends on the reason for asking
user to contact them which is not captured in the comment therefore, cannot be concluded as
clear case of tactical. As a result, comments from other four categories constituting around
15.27% of the total user input requests are considered as tactical. The most frequent tactical
category is temporize constituting 8.11% of the total of user input requests. Interestingly,
645 input requests consist of non-alphanumeric characters such as dash, periods, and NULL.
Table 10 presents some of the comments from the IT support system which are classified in
the presented classes using the proposed detection model.

For evaluation, we requested two managers with experience (as manager in the same
organization) of 3–5 years to independently and randomly pick around 100 comments each
from the classified ones. They are requested to make sure that the sample contains com-
ments from all the five categories shown in Table 10. They manually inspected the sampled
comments and indicated if the comment is wrongly classified to a category. In all cases the
managers agreed that the comment classified to a category indeed belongs to the same. Both
the managers mentioned that it is really useful to have categories within tactical because
each category may need to be tackled differently. Though the completeness is not guaran-
teed with this evaluation, the detection model precisely classifies comments to categories of
tactical requests which can be handled accordingly.

9 Destination State Analysis

We analyze the comments classified to one of the tactical categories and the ones not clas-
sified to any tactical class (referred to as real user input request) for the destination state.
Table 11 presents transition of different user input request types to most frequent destination
states. We test if there exists relationship between user input request type and destination
state using chi-square test for independence because both are categorical variables and every

Empir Software Eng (2018) 23:1 –1664 703 1693

Ta
bl
e
11

D
es

tin
at

io
n

st
at

e
tr

an
si

tio
n

an
al

ys
is

fo
r

di
ff

er
en

tt
yp

es
of

us
er

in
pu

tr
eq

ue
st

s.
M

os
tf

re
qu

en
td

es
tin

at
io

n
st

at
e

fo
r

ea
ch

ty
pe

of
us

er
in

pu
tr

eq
ue

st
is

hi
gh

lig
ht

ed
in

bo
ld

U
se

r
U

pd
at

e
N

o
U

pd
at

e

Ty
pe

of
us

er
in

pu
tr

eq
ue

st
/d

es
t.

st
at

e
U

se
r

In
pu

tR
ec

ei
ve

d
A

tta
ch

do
c

C
lo

se
d

R
es

ol
ve

d
A

U
I

-
A

ut
oc

lo
su

re
T

ra
ns

fe
r

1.
R

ea
lu

se
r

in
pu

tr
eq

ue
st

(4
44

39
)

18
22
4
(4
1.
0%

)
43

40
(9

.8
%

)
74

29
(1

6.
7%

)
56

78
(1

2.
8%

)
44

32
(1

0.
0%

)
22

22
(5

.0
%

)

2.
C

on
ta

ct
M

e
(2

10
81

)
54

69
(2

6.
0%

)
18

6
(0

.9
%

)
30

93
(1

4.
7%

)
92
02

(4
3.
6%

)
11

43
(5

.4
%

)
11

91
(5

.6
%

)

3.
D

on
e

So
C

he
ck

(4
41

4)
94

1
(2

1.
3%

)
58

(1
.3

%
)

15
17

(3
4.
4%

)
14
66

(3
3.
2%

)
22

6
(5

.1
%

)
97

(2
.2

%
)

4.
In

va
lid

(6
45

)
16

0
(2

4.
8%

)
4

(0
.6

%
)

29
(4

.5
%

)
36
2
(5
6.
1%

)
8

(1
.2

%
)

62
(9

.6
%

)

5.
Te

m
po

ri
ze

(6
27

2)
18

73
(2

9.
9%

)
84

(1
.3

%
)

51
4

(8
.2

%
)

25
69

(4
1.
0%

)
28

9
(4

.6
%

)
71

5
(1

1.
4%

)

6.
W

ill
T

ra
ns

fe
r

(4
82

)
46

(9
.5

%
)

4
(0

.8
%

)
27

(5
.6

%
)

21
(4

.4
%

)
12

(2
.5

%
)

35
0
(7
2.
6%

)

Empir Software Eng (2018) 23:1 –1664 7031694

cell has expected value more than 5. The p-value for the significance test is too low to be
computed (less that 0.01) thus, the two variables are significantly related to each other. From
Table 11, we make the following observations:

– Most frequent destination state (highlighted with bold) for tactical categories (2–5 in
Table 11) is from No Update that is, Resolved, AUI-Autoclosure, and Transfer. How-
ever, most frequent destination for real user input requests is from User Update. This
validates our conjecture that if no update from user for a user input request then it is
more likely to be tactical and if user provides any update then it is more likely to be a
real user input request.

– For real user input requests, user inputs are received for majority (around 41%) of the
cases. In some cases (around 17%), tickets are closed by users without getting resolved.

– For Contact Me user input requests, either the user gave some inputs (as destination
state is User Input Received for 26.0% comments) or the ticket was Resolved (for
43.6% cases) based on interaction between the user and the analyst outside ticketing
system (not recorded in database).

– Done So Check type user input requests have Closed (34.4%) and Resolved (33.2%)
as most frequent destination state. Closed indicates that the user was satisfied with the
resolution hence closed. Many a times, user confirms with a comment in response to
this input request, hence, User Input Received is also quite frequent destination state.
Apart from this, Resolved is frequent state indicating that the user did not confirm the
resolution and analyst marked it as Resolved in sometime.

– For Invalid user input requests which are clear case of tactical input requests, the most
frequent destination state is Resolved (around 56.1%). In cases where the destination
state is User Input Received, the input from user is an expression of displeasure.

– For Temporize user input requests, maximum transitions are to state Resolved (for
around 41.0% times), that is, analyst actually needed no information and misused the
label. For instances with the destination state as User Input Received, users mostly
clarify with analysts the information they are supposed to provide.

– Will Transfer user input requests are often followed by Transfer (for 72.6% times) of
ticket with few exceptions.

The p-value (less than 0.01) and above observations validate our conjecture that destination
state gives an indication about the type of user input requests. Therefore, manager can lever-
age the transition pattern (output of process mining) to decide if there is a need to reduce
real or tactical or both type of user input requests.

10 Discussion

Based on organization size, culture and needs, the information from the proposed preemp-
tion and detection model can be leveraged in different ways.

10.1 Applications of Preemptive Model

Some of the applications of the proposed preemptive model are as follows:

– Recommendation System: The user is preempted with the potential information needs.
However, it is up to the user to choose to provide the suggested information or not. If

Empir Software Eng (2018) 23:1 –1664 703 1695

user provides the information on preemption, it can reduce delay due to later user input
requests by analyst.

– Mandatory System: The user is not allowed to submit the ticket without providing all
the preempted information. This guarantees reduction in user input requests because
it is not left on the user to choose if (s)he wants to act on the preempted information.
However, such a strict system makes it difficult for a user to report an issue if some of
the preempted information is not available in hand. Also for such a system it is crucial
to achieve very high precision.

– Feedback for Template Improvement: If the system preempts specific information needs
more often, it is likely that the field to collect that information is either missing or
not clear in the initial ticket template. Therefore, the team can use this information to
upgrade the template for more efficient ticket reporting.

10.2 Applications of Detection Model

Detection of tactical user input requests can be utilized in the following ways:

– Notification System: The manager is notified if the system detects that an analyst is
trying to make a tactical user input request. The manager can look at the comment and
if it is confirmed to be tactical, suitable actions (such as reassign the ticket) are taken
based on the organizational policies. However, it is difficult for a manager to manually
inspect all such suspicious cases for large organizations.

– Logging System: No immediate action is taken for the detected tactical user input
requests, rather a log is maintained along with the analysts’ information. It is analyzed
by manager on a monthly or quarterly basis to understand if practice of making tactical
user input requests is specific to some individuals or spans to a majority of analysts,
and thus, to take appropriate actions. In the first case, analysts who make such requests
more often are handled at individual level. In the other case, the information can be
used by service level management to better estimate feasible service level resolution
time and negotiate with clients accordingly.

– Blocking System: If the system detects a tactical user input request, it is blocked and not
sent to the user. It ensures that no such requests degrade user experience. However, if a
request is wrongly detected as tactical, the analyst is forced to paraphrase the comment
such that it clearly seeks information.

Reduction in ticket resolution time depends on the application of a preemptive and detec-
tion model thus, we cannot estimate effective reduction in resolution time. However, given
the observation that user input requests cause user experienced resolution to be much higher
than measured service resolution time, reduction in user input requests will definitely lead
to significant reduction in resolution time.

In case of the preemptive model, we achieve very high accuracy using SVM and RDF
but it is not overfitting because the test data is different from the training data. This perfor-
mance is achieved after fine tuning the parameters to optimal values for given data otherwise
for some parameter values, the performance was no better than naive Bayes and logistic
regression.

It is possible that an analyst seeks information which is not really required to resolve a
ticket. However, it looks like a real user input request because in the given solution only non-
information seeking user input requests are detected as tactical. Such cases go undetected
with the given solution.

Empir Software Eng (2018) 23:1 –1664 7031696

11 Threats to Validity

The threats for the presented work are as follows:

– Threats to external validity: External validity is concerned with the generalizability of
the results to other settings (Shull et al. 2008; Wohlin et al. 2012). Following are the
threats to external validity for each element of the approach:

– Process mining of Ticket Data: We analyze the transition pattern for await-
ing user inputs and conjecture that there are both real and tactical user input
requests. Tactical user input requests are observed in Volvo IT organization
ticket data (van Dongen et al. 2013) and the data for the large global IT
company investigated as part of this case study. However, tactical user input
requests can be very rare or not present in other IT support ticket data for other
organizations with different characteristics (such as small sized, less work
load, and lenient service level resolution time limit).

– Survey of Users and Analysts: We surveyed participants, that is, users from
diverse project types and analysts working on different category of tickets.
Nevertheless, they are part of the same organization using similar processes
and guidelines. Though having diverse participants from the same organiza-
tion enables to explore experiences from several perspectives, organizational
culture may create a bias.

– Preemptive Model: We evaluated performance of the preemption model for
install subcategory within software category on real data for a large global IT
company. Proposed model needs to be trained separately for each subcategory
because different subcategories have different information requirements. The
performance of the preemption model may vary with different ticket dataset.
More so because performance of a classier strongly depends on the value of
its input parameters, whose optimal choice heavily depends on the data being
used. Therefore, the proposed preemptive model may preempt information
needs in different contexts less accurately leading to smaller reduction in later
user input requests.

– Detection Model: The detection model classifies user input requests to refined
tactical classes. However, the list of classes is not exhaustive and can vary with
the organization.

– Threats to conclusion validity: Conclusion validity refers to whether the conclusions
reached in the study are correct (Shull et al. 2008; Wohlin et al. 2012). Threats to
conclusion validity of the presented work are as follows:

– Preemptive Model: Evaluation of the preemptive model is done on the test
data but not in production. Since test data is unseen, we believe that the perfor-
mance is close to reality and the model efficiently reduces user input requests.
However, it depends on the way the preemptive model is applied in practice.
For instance, if applied as recommendation system then there will be a performance
improvement only if users choose to provide the preempted information.

– Detection Model: While the detection model has high precision, it is difficult
to guarantee high recall because it is possible that some infrequent tactical
request classes are missed out.

Empir Software Eng (2018) 23:1 –1664 703 1697

– Threats to construct validity: Construct validity refers to the degree to which the
factors under consideration in the designed experiment simulate the real conditions
of their use (Shull et al. 2008; Wohlin et al. 2012). While IT information system
is the recommended communication channel between analysts and users, there can
be communication over chat and telephone. The data for the communication over
those channels is not accessible for analysis because of confidentiality and privacy
reasons.

We distinguish between analysts requesting information outside the ITIS and users
proving the information outside the ITIS. The former is unlikely to happen as the SLA
clock would not be affected. The latter would not affect the detection model, as the
detection model analyzes the comments made when the analysts mark a ticket as Await-
ing User Inputs. However, the validity of preemption model might have been affected
as follows:

– Preemption Model: Preemption model inherently reflects the data it has been
trained upon and since no information is available about the communication
outside ticket tracking system, the preemptive model might not adequately
reflect the information needs expressed in such communication.

12 Conclusions and Future Work

We analyzed ticket data to capture the process reality more specifically user input requests
made during ticket resolution life cycle by applying process mining. Also we studied the
impact of user input requests on overall user experienced resolution time. There is a need to
ensure that the information required for ticket resolution is collected from the user upfront
thus, reducing real user input requests. However, users do not have a clear idea on what
information will be required for resolving a specific ticket. Therefore, an SVM classifier
based preemptive model was learnt to preempt users with the need for additional informa-
tion during the time of ticket submission. Also we noticed non-information seeking, tactical
user input requests for the sake of service level compliance. The rule based detection model
identifies such input requests, thus can be discouraged. Performance of the proposed pre-
emptive model and detection model on the real world data for a large global IT company
shows the effectiveness of our solution approach in reducing the number of user input
requests in tickets’ life cycle.

In the existing approach, every information seeking user input request is considered as
real irrespective of whether it is really required to resolve the ticket or not. In the future we
plan to extend the detection model to also identify the cases where unnecessary information
is asked, which is another way of making tactical requests. It requires further investigation
of user input requests and understanding of information actually being used for resolving
the ticket.

Acknowledgements The work presented in this paper is supported by Prime Minister’s Fellowship, SERB,
CII, and Infosys Limited. The authors are thankful to the participants of both the surveys and Charlotte
Ramon, an intern at Infosys Ltd. for help with conducting the survey. Thanks to Dr. Anush Sankaran for
help with the preemptive model. We thank Prof. Tom Mens for his feedback on the early version of this
manuscript. We acknowledge Prof. Pankaj Jalote, the PhD adviser of first author, and Dr. Anjaneyulu Pasala,
the industry mentor of first author for the valuable feedback.

Empir Software Eng (2018) 23:1 –1664 7031698

References

Addy R (2007) Effective IT service management: to ITIL and beyond! Springer-Verlag New York, Inc.
Akman B, Demirors O (2009) Applicability of process discovery algorithms for software organizations. In:

35th Euromicro conference on software engineering and advanced applications. IEEE, pp 195–202
Anderson J, Salem S, Do H (2015) Striving for failure: an industrial case study about test failure prediction.

In: 37th International conference on software engineering, vol 2. IEEE, pp 49–58
Anvik J, Hiew L, Murphy GC (2006) Who should fix this bug? In: 28th International conference on software

engineering. ACM, pp 361–370
April A, Hayes JH, Abran A, Dumke R (2005) Software maintenance maturity model (SMmm): the software

maintenance process model. J Softw Maint Evol Res Pract 17(3):197–223
Barash G, Bartolini C, Wu L (2007) Measuring and improving the performance of an IT support organization

in managing service incidents. In: International workshop on business-driven IT management. IEEE, pp
11–18

Bartolini C, Stefanelli C, Tortonesi M (2009) Business-impact analysis and simulation of critical incidents in
IT service management. In: International symposium on integrated network management. IEEE, pp 9–16

Bartsch C, Mevius M, Oberweis A (2008) Simulation of IT service processes with Petri-nets. In: International
conference on service-oriented computing. Springer, pp 53–65

Bavota G, De Lucia A, Marcus A, Oliveto R (2014) Automating extract class refactoring: an improved
method and its evaluation. Empir Softw Eng 19(6):1617–1664

Begel A, Zimmermann T, Khoo YP, Venolia GD (2015) Discovering and exploiting relationships in software
repositories, September 8 US Patent 9,129,038

Bettenburg N, Just S, Schröter A, Weiss C, Premraj R, Zimmermann T (2008) What makes a good bug
report? In: International symposium on foundations of software engineering. ACM, pp 308–318

Bishop CM (2006) Pattern recognition. Mach Learn 128
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Breu S, Premraj R, Sillito J, Zimmermann T (2010) Information needs in bug reports: improving cooperation

between developers and users. In: Proceedings of the 2010 ACM conference on computer supported
cooperative work. ACM, pp 301–310

Caldeira J, Brito e Abreu F (2008) Influential factors on incident management: lessons learned from a
large sample of products in operation. In: International conference on product focused software process
improvement. Springer, pp 330–344

Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol
2(3):1–27

Crowther PS, Cox RJ (2005) A method for optimal division of data sets for use in neural networks. In: Inter-
national conference on knowledge-based and intelligent information and engineering systems. Springer,
pp 1–7

Daniel F, Barkaoui K, Dustdar S (eds) (2012) Business process management workshops - BPM 2011 inter-
national workshops, Clermont-Ferrand, France, August 29, 2011, revised selected papers, Part I, volume
99 of lecture notes in business information processing. Springer, Berlin

De Weerdt J, Vanden Broucke S, Vanthienen J, Baesens B (2012) Leveraging process discovery with trace
clustering and text mining for intelligent analysis of incident management processes. In: Congress on
evolutionary computation. IEEE, pp 1–8

Elish KO, Elish MO (2008) Predicting defect-prone software modules using support vector machines. J Syst
Softw 81(5):649–660

Ferreira DR, Da Silva MM (2008) Using process mining for ITIL assessment: a case study with incident
management. In: 13th Annual UKAIS conference, pp 1–16

Gachechiladze D, Lanubile F, Novielli N, Serebrenik A Anger and its direction in collaborative software
development. ICSE NIER, pp 11–14

Garousi V, Ergezer EG, Herkiloġlu K (2016) Usage, usefulness and quality of defect reports: an industrial
case study. In: Proceedings of the 20th international conference on evaluation and assessment in software
engineering, number 39. ACM, pp 1–6

Günther CW, Disco AR (2012) Discover your processes. BPM (Demos) 940:40–44
Günther CW, van der Aalst W (2007) Fuzzy mining–adaptive process simplification based on multi-

perspective metrics. In: Business process management. Springer, pp 328–343
Guo PJ, Zimmermann T, Nagappan N, Murphy B (2010) Characterizing and predicting which bugs get fixed:

an empirical study of microsoft windows. In: 32nd international conference on software engineering,
vol 1. IEEE, pp 495–504

Gupta M (2017) Artifacts for ITIS ticket analysis. https://github.com/Mining-multiple-repos-data/
TicketExperimentalDataset. Accessed: June 1 2017

Empir Software Eng (2018) 23:1 –1664 703 1699

https://github.com/Mining-multiple-repos-data/TicketExperimentalDataset
https://github.com/Mining-multiple-repos-data/TicketExperimentalDataset

Gupta M, Sureka A (2014) Nirikshan: mining bug report history for discovering process maps, inefficiencies
and inconsistencies. In: 7th India software engineering conference. ACM, pp 1–10

Gupta M, Sureka A, Padmanabhuni S (2014) Process mining multiple repositories for software defect res-
olution from control and organizational perspective. In: 11th Working conference on mining software
repositories. ACM, pp 122–131

Harrell FE (2013) Regression modeling strategies: with applications to linear models, logistic regression, and
survival analysis. Springer Science & Business Media

He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284
Herbsleb JD, Kuwana E (1993) Preserving knowledge in design projects What designers need to know. In:

Proceedings of the INTERACT’93 and CHI’93 conference on human factors in computing systems.
ACM, pp 7–14

Ho TK (1998) The random subspace method for constructing decision forests. Trans Pattern Anal Mach
Intell 20(8):832–844

Hsu C-W, Chang C-C, Lin C-J (2003) A practical guide to support vector classification
Hüttermann M (2012) DevOps for developers. Apress
Japkowicz N (2000) The class imbalance problem: significance and strategies. In: International conference

on artificial intelligence
Joachims T (1998) Text categorization with support vector machines: learning with many relevant features.

In: European conference on machine learning. Springer, pp 137–142
Jolliffe I (2002) Principal component analysis. Wiley Online Library
Kang CJ, Kang YS, Lee YS, Noh S, Kim HC, Lim WC, Kim J, Hong R (2013) Process mining-based

understanding and analysis of Volvo IT’s incident and problem management processes. In: BPIC@ BPM
Kindler E, Rubin V, Schäfer W (2006) Activity mining for discovering software process models software

engineering. Fachtagung des GI-Fachbereichs Softwaretechnik 79:175–180
Knab P, Pinzger M, Gall HC (2010) Visual patterns in issue tracking data. In: New modeling concepts for

today’s software processes. Springer, pp 222–233
Ko AJ, Myers BA, Chau DH (2006) A linguistic analysis of how people describe software problems. In:

VL/HCC IEEE symposium on visual languages and human-centric computing, 2006. IEEE, pp 127–134
Kotsiantis S, Kanellopoulos D, Pintelas P et al (2006) Handling imbalanced datasets: a review. GESTS Int

Trans Comput Sci Eng 30(1):25–36
Li TH, Liu R, Sukaviriya N, Li Y, Yang J, Sandin M, Lee J (2014) Incident ticket analytics for IT application

management services. In: International conference on services computing. IEEE, pp 568–574
Maita AR, Martins LC, Paz CR, Peres SM, Fantinato M (2015) Process mining through artificial neural

networks and support vector machines: a systematic literature review. Bus Process Manag J 21(6):1391–1415
Moraes A, Silva E, da Trindade C, Barbosa Y, Meira S (2010) Recommending experts using communication

history. In: International workshop on recommendation systems for software engineering. ACM, pp
41–45

Oliveira DC, Filho RH (2009) A time and financial loss estimation using a highly parallel scheduling model
for IT change management. In: International symposium on integrated network management-workshops.
IEEE, pp 1–9

Palshikar GK, Vin HM, Mudassar M, Natu M (2010) Domain-driven data mining for IT infrastructure
support. In: International conference on data mining workshops, pp 959–966

Palshikar GK, Mudassar M, Vin HM, Natu M (2012) Streamlining service levels for IT infrastructure support.
In: International conference on data mining workshops, pp 309–316

Paszkiewicz Z, Picard W (2013) Analysis of the volvo IT incident and problem handling processes using
process mining and social network analysis. In: BPIC@ BPM

Phillips S, Ruhe G, Sillito J (2012) Information needs for integration decisions in the release process of
large-scale parallel development. In: Proceedings of the ACM 2012 conference on computer supported
cooperative work. ACM, pp 1371–1380

Pletea D, Vasilescu B, Serebrenik A (2014) Security and emotion: sentiment analysis of security discussions
on github. In: Proceedings of the 11th working conference on mining software repositories. ACM, pp
348–351

Poncin W, Serebrenik A, van den Brand MGJ (2011a) Mining student capstone projects with FRASR and
ProM. In: International conference companion on object oriented programming systems languages and
applications companion. ACM, pp 87–96

Poncin W, Serebrenik A, van den Brand MGJ (2011b) Process mining software repositories. In: European
conference on software maintenance and reengineering, pp 5–14

Porter MF (1980) An algorithm for suffix stripping. Program 14(3):130–137
Robillard MP, Maalej W, Walker RJ, Zimmermann T (2014) Recommendation systems in software

engineering. Springer

Empir Software Eng (2018) 23:1 –1664 7031700

Roehm T, Tiarks R, Koschke R, Maalej W (2012) How do professional developers comprehend software?
In: Proceedings of the 34th international conference on software engineering. IEEE Press, pp 255–265

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empir Softw Eng 14(2):131–164

Samalikova J, Kusters RJ, Trienekens JJM, Weijters AJMM (2014) Process mining support for capability
maturity model integration-based software process assessment, in principle and in practice. J Softw Evol
Process 26(7):714–728

Schröter A, Kwan I, Panjer LD, Damian D (2008) Chat to succeed. In: International workshop on
recommendation systems for software engineering. ACM, pp 43–44

Scott S, Matwin S (1999) Feature engineering for text classification. Int Conf Mach Learn 99:379–388
Shull F, Singer J, Sjøberg DIK (2008) Guide to advanced empirical software engineering, vol 93. Springer
Sillito J, Murphy GC, De Volder K (2006) Questions programmers ask during software evolution tasks.

In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software
engineering. ACM, pp 23–34

Sillito J, Murphy GC, De Volder K (2008) Asking and answering questions during a programming change
task. IEEE Trans Softw Eng 34(4):434–451

Sun C, Lo D, Wang X, Jiang J, Khoo S-C (2010) A discriminative model approach for accurate duplicate bug
report retrieval. In: 32nd international conference on software engineering vol 1. ACM, pp 45–54

Sunindyo W, Moser T, Winkler D, Dhungana D (2012) Improving open source software process quality
based on defect data mining. In: Software quality. Process automation in software development. Springer,
pp 84–102

Sureka A, Jalote P (2010) Detecting duplicate bug report using character n-gram-based features. In: 2010
Asia Pacific software engineering conference. IEEE, pp 366–374

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016) Automated parameter optimization
of classification techniques for defect prediction models. In: Proceedings of the 38th international
conference on software engineering. ACM, pp 321–332

Treeratanaporn T (2015) Information technology service management (ITSM) in education. Walailak J Sci
Technol 12(9):739–747

Van den Spiegel P, Dieltjens L, Blevi L (2013) Applied process mining techniques for incident and problem
management. In: BPIC@ BPM

van der Aalst W (2011) Process mining - discovery, conformance and enhancement of business processes.
Springer

van der Aalst W, Reijers HA, Weijters T, Dongen BF, de Medeiros AKAl, Song M, Verbeek E (2007)
Business process mining: an industrial application. Inf Syst 32(5):713–732

van der Werf JMEM, van Dongen BF, Hurkens CAJ, Serebrenik A (2008) Process discovery using integer
linear programming. In: International conference on applications and theory of petri nets. Springer, pp
368–387

van Dongen BF, Weber B, Ferreira DR, De Weerdt J (2013) Business process intelligence challenge
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software

engineering. Springer Science & Business Media
Xu Q-S, Liang Y-Z (2001) Monte Carlo cross validation. Chemom Intell Lab Syst 56(1):1–11
Xuan J, Jiang H, Ren Z, Zou W (2012) Developer prioritization in bug repositories. In: 34th International

conference on software engineering. IEEE, pp 25–35
Yusop NSM, Grundy J, Vasa R (2016) Reporting usability defects: do reporters report what software develop-

ers need? In: Proceedings of the 20th international conference on evaluation and assessment in software
engineering, number 38, pp 1–10

Zhang Y, Jin R, Zhou Z-H (2010) Understanding bag-of-words model: a statistical framework. J Mach Learn
Cybern 1(1-4):43–52

Zhang C, Yang J, Zhang Y, Fan J, Zhang X, Zhao J, Ou P (2012) Automatic parameter recommendation for
practical API usage. In: 34th International conference on software engineering. IEEE Press, pp 826–836

Empir Software Eng (2018) 23:1 –1664 703 1701

Monika Gupta is pursuing PhD in IIIT Delhi, India under the guidance of Prof. Pankaj Jalote, IIIT Delhi, and
Dr. Alexander Serebrenik, TU/e, The Netherlands. Her research interests include process mining, empirical
software engineering, mining software repositories, and applications of machine learning and deep learn-
ing. She has been a recipient of the prestigious Prime Minister’s Research Fellowship from 2013 to 2017.
She has published papers in various peer-reviewed conferences such as MSR, ICSME and APSEC. She got
Best Poster Award in the Gracehopper Conference India in 2016. She was awarded Microsoft travel grant,
ACM travel grant, IARCS travel grant and GHCI scholarship. Currently, she is working as a post-doctoral
researcher at IBM India Research Labs.

Allahbaksh Asadullah is Principal Product Architect at Corporate Technology Unit, Infosys Limited. He is
responsible for design and development of software platforms and tools. The primary goal of the tools is to
reduce the time to develop the software artifacts. Allahbaksh has designed and developed software platforms
for many of the fortune 500 clients. He has 7 granted patent in the area of software design and maintenance.

Empir Software Eng (2018) 23:1 –1664 7031702

Srinivas Padmanabhuni (PhD, University of Alberta, Edmonton 2000; M.Tech, IIT Bombay, India, 1993)
is the chief Mentor for Tarah technologies, an AI consulting company and is Governance Board mem-
ber of Totalstart, an entrepreneurship development organization. He specializes in technology research and
innovation areas such as software engineering, services computing, business process management, artificial
intelligence, big data and machine learning. He has delivered over 100 invited talks, has around 7 granted and
15 filed patents, over 70 international referred publications, and one published book by Wiley to his credit.
He has won several awards including the excellence award for Innovation at Infosys, Research excellence
award at University of Alberta, and Merit award at IIT Kanpur.

Alexander Serebrenik (PhD, K.U. Leuven, Belgium 2003; MSc, Hebrew University, Israel, 1999) is an
Associate Professor of software evolution at Eindhoven University of Technology. His research covers a wide
range of topics, from source code analysis, to collaborative and human aspects of software engineering. He
has co-authored a book “Evolving Software Systems” (Springer Verlag, 2014), more than 100 scientific
papers and articles. He is the steering committee chair of ICSME, has been the general chair of ICSM 2013,
and a program chair of SANER 2015 and ICPC 2017. He has won Distinguished Paper awards at ICSE 2017
and QUATIC 2014, and served on the PCs of such software engineering conferences as ICSE, ICSM(E),
SANER and ICPC, winning several Distinguished Reviewer awards.

Empir Software Eng (2018) 23:1 –1664 703 1703

	Reducing user input requests to improve IT support ticket resolution process
	Abstract
	Introduction
	Real Motivating Example
	Research Contributions

	Background and Related Work
	ITIS Process Improvement
	Process Mining of Software Repositories
	Application of Recommendation Systems in Software Engineering
	Information Needs in Software Engineering

	Proposed Approach
	Process Mining of Ticket Data: for User Input Request Analysis
	Data Extraction and Preprocessing to Derive Event Log
	Process Discovery
	Performance Analysis

	Preemptive Model: for Real User Input Requests
	Ground Truth
	Comment Annotation Using Keywords-based Approach
	Evaluate Keywords-based Annotation

	Ticket Preprocessing
	Feature Extraction
	Training and Preemption
	Evaluation

	Detection Model: for Tactical User Input Requests
	Case Study: IT Support System of a Large Global IT Company
	Experimental Results
	Process Mining of Ticket Data
	Transition Pattern Analysis
	Incoming Edges to Awaiting User Inputs
	Outgoing Edges from Awaiting User Inputs
	Performance Analysis

	Survey of Users and Analysts
	Analysis of Users' Survey
	Analysis of Analysts' Survey

	Preemption Model
	Detection Model

	Destination State Analysis
	Discussion
	Applications of Preemptive Model
	Applications of Detection Model

	Threats to Validity
	Conclusions and Future Work
	Acknowledgements
	References

