
Empir Software Eng (2017) 22:3149–3185
DOI 10.1007/s10664-017-9514-4

What do developers search for on the web?

Xin Xia1,2 ·Lingfeng Bao1 ·David Lo3 ·
Pavneet Singh Kochhar3 ·Ahmed E. Hassan4 ·
Zhenchang Xing5

Published online: 9 April 2017
© Springer Science+Business Media New York 2017

Abstract Developers commonly make use of a web search engine such as Google to locate
online resources to improve their productivity. A better understanding of what developers
search for could help us understand their behaviors and the problems that they meet during
the software development process. Unfortunately, we have a limited understanding of what
developers frequently search for and of the search tasks that they often find challenging.
To address this gap, we collected search queries from 60 developers, surveyed 235 soft-
ware engineers from more than 21 countries across five continents. In particular, we asked

Communicated by: Emerson Murphy-Hill

� Lingfeng Bao
lingfengbao@zju.edu.cn

Xin Xia
xxia@zju.edu.cn; xxia02@cs.ubc.ca

David Lo
davidlo@smu.edu.sg

Pavneet Singh Kochhar
kochharps.2012@smu.edu.sg

Ahmed E. Hassan
ahmed@cs.queensu.ca

Zhenchang Xing
zhenchang.xing@anu.edu.au

1 College of Computer Science and Technology, Zhejiang University, Hangzhou, China

2 Department of Computer Science, University of British Columbia, Vancouver, BC, Canada

3 School of Information Systems, Singapore Management University, Singapore, Singapore

4 School of Computing, Queen’s University, Kingston, ON, Canada

5 Research School of Computer Science, Australian National University, Canberra, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9514-4&domain=pdf
mailto:lingfengbao@zju.edu.cn
mailto:
mailto:davidlo@smu.edu.sg
mailto:kochharps.2012@smu.edu.sg
mailto:ahmed@cs.queensu.ca
mailto:zhenchang.xing@anu.edu.au

3150 Empir Software Eng (2017) 22:3149–3185

our survey participants to rate the frequency and difficulty of 34 search tasks which are
grouped along the following seven dimensions: general search, debugging and bug fixing,
programming, third party code reuse, tools, database, and testing. We find that searching for
explanations for unknown terminologies, explanations for exceptions/error messages (e.g.,
HTTP 404), reusable code snippets, solutions to common programming bugs, and suitable
third-party libraries/services are the most frequent search tasks that developers perform,
while searching for solutions to performance bugs, solutions to multi-threading bugs, public
datasets to test newly developed algorithms or systems, reusable code snippets, best indus-
trial practices, database optimization solutions, solutions to security bugs, and solutions to
software configuration bugs are the most difficult search tasks that developers consider. Our
study sheds light as to why practitioners often perform some of these tasks and why they
find some of them to be challenging. We also discuss the implications of our findings to
future research in several research areas, e.g., code search engines, domain-specific search
engines, and automated generation and refinement of search queries.

Keywords Search task · Understanding · Empirical study · Survey

1 Introduction

In modern software development, developers often refer to web search engines as they seek
pertinent information from large amounts of online resources such as online tutorials, tech-
nology blogs, API documents, social media posts, etc. Search engines such as Google,1

Bing,2 and Baidu3 have become one of the most popular and important tools for devel-
opers to complete different types of software engineering tasks, e.g., fixing unexpected
bugs/exceptions, and understanding unfamiliar code or APIs. Our previous study found
that developers issue more than 20 search queries that are related to software development
everyday (Bao et al. 2015a).

Developers may search for many things for different purposes during different phases
of a project. During the requirement analysis phase, developers may search for explana-
tions of terminologies, or relevant books and tutorials to help them understand business
logic and gain necessary background knowledge. During the development phase, develop-
ers may search for suitable third party libraries, or the usage of specific APIs. During the
maintenance phase, developers may search for solutions of bugs. It may be easy to get
relevant results for some of the search tasks (e.g., search for explanations for unknown ter-
minologies), but it may be hard for others (e.g., search for database optimization solutions).
Moreover, developers might use different search engines such as Google and Bing, or some
domain-specific search engines such as the search engine of Stack Overflow.

A better understanding of what developers search for could help researchers better
understand some of the problems that are faced by developers throughout the software
development process. For example, if we find that developers frequently search for solutions
for a specific type of bugs (e.g., performance bugs), then we can deduce that such types of
bugs maybe hard to fix, that there might not exist good tool support for such bugs, that devel-
opers are not familiar with such types of bugs, or that finding standard solutions for such

1http://www.google.com
2http://www.bing.com
3http://www.baidu.com

http://www.google.com
http://www.bing.com
http://www.baidu.com

Empir Software Eng (2017) 22:3149–3185 3151

bugs is difficult. Thus, the software engineering research community should design more
tools to help developers avoid, detect, and possibly recommend fixes to these bugs. Notice
that the types of bugs that appear frequently in a bug repository do not necessary correlate to
the bugs that developers frequently search. Some types of bugs are easy to fix (e.g., variable
assignment error bugs) which do not require one to search for solutions online, although
such bugs appear frequently in a bug repository (in many ways we believe that developers
are likely to search for solution for rare bugs instead of commonly occurring types of bugs).

In the literature, a number of empirical studies have investigated how developers perform
code search (Sim et al. 1998; Sadowski et al. 2015; Bajracharya and Lopes 2009, 2012).
Sim et al. (1998) found that the most common reasons for code search include: defect repair,
code reuse, program understanding, and feature addition. Sadowski et al. (2015) conducted
a study at Google to learn how developers search for code, in what contexts are code search
tools used, and what are the properties of search queries. Bajracharya and Lopes (2009,
2012) performed a topic modeling analysis on a year long usage log of Koders, one of the
major commercial code search engines, to understand what users of code search engines are
looking for. Prior work has focused primarily on searching for code. Yet, code search is only
one of the search tasks that developers perform. Developers search for many other things.
For example, developers may search for best industrial practices, or how to use a particular
tool.

In this paper, we enumerate the frequency and difficulty of the different web search
tasks that developers perform. We first collected 60 developers’ web search queries for two
weeks by using our ACTIVITYSPACE (Bao et al. 2015a, b), and analyzed them to understand
common search tasks. Next, we interviewed 12 senior software engineers from two software
companies. Though our analysis of the collected queries and interviews, we identified a
set of 34 search tasks that are grouped into several categories: general search, debugging
and bug fixing, programming, third party code reuse, tools, database, and testing. We then
surveyed 235 software engineers across the globe (i.e., 21 countries) who worked in various
small to large companies and organizations (including: Microsoft, Alibaba, and Baidu.) or
were among the top contributors in GitHub. In our survey, we asked participants to rate the
frequency and difficulty of our identified 34 search tasks and to provide their rationale for
rating some search tasks as frequent or difficult. Our key contributions are:

1. We investigate the frequency and difficulty of many web search tasks that developers
perform throughout the software development process. Our study includes an obser-
vational study of 60 developers, interviews of 12 senior software engineers from two
companies, and a survey that is responded by 235 software engineers from 21 countries
and coming from various software companies and open source projects.

2. We provide a ranked list of 34 search tasks. Such a ranked list helps researchers and
practitioners understand the search tasks that are deemed as difficult/very difficult and
which are performed often/very often. We find that participants show differing opin-
ions towards the different search tasks. For some tasks, participants frequently perform
them, or they find it difficult to find desired results; while for other tasks, partici-
pants rarely perform them, or they find it easy to find the desired results. We find that
tasks such as searching for best industrial practice, solutions to configuration, security,
and performance bugs, reusable code snippets, and database optimization solutions, are
frequently performed and for which finding the desired results is difficult.

3. We highlight the rationale for the frequency/difficulty of certain search tasks. We
also discuss the implications of our study on future research, including (1) code
search engines, (2) domain-specific search engines, (3) automated generation and

3152 Empir Software Eng (2017) 22:3149–3185

refinement of search queries, (4) automated prediction of the quality of search results,
(5) configuration, security, and performance bug fixing, and (6) knowledge sharing.

The remainder of this paper is structured as follows. In Section 2, we describe the
methodology of our empirical study. In Section 3, we present the results of our study. In
Section 4, we discuss the implications and the threats to validity of our study. In Section 5,
we briefly mention related work. In Section 6, we conclude our study .

2 Research Methodology

Our study consists of an observational study, open-ended interviews, and a large scale
validation survey. In the observational study (described in Section 2.1), we automatically
collected search queries that were submitted by 60 developers to popular search engines,
and manually analyzed the queries to identify some common search tasks. In the open
ended interviews (described in Section 2.2), we interviewed 12 senior developers to get
their insights into what developers search for during their development activities. At the
end of the observational study and the interviews, we identified a collection of 34 search
tasks. Next, we evaluated the frequency and difficulty of these search tasks by surveying a
large number of software engineers from various backgrounds by means of an online survey
(described in Section 2.3). Each survey respondent spent 10–25 minutes to rate how often
they perform each of the 34 search tasks and how difficult it is for them to get the desired
results for the search tasks. We also asked respondents to provide the rationale behind their
ratings.

2.1 Observational Study

Protocol In the observational study, after seeking and obtaining explicit permissions from
our participants, we installed our data collection tool ACTIVITYSPACE into participants’
computer, and collected their behavior data for two weeks. ACTIVITYSPACE, proposed in
our earlier work (Bao et al. 2015a), uses Windows Accessibility APIs to record developers’
actions. Accessibility APIs are the standard interfaces built in modern desktop operating
systems for assistive applications, such as screen readers, to access the low-level information
of a user interface. Notice in our study, we collected the search queries from search engines
and other online knowledge sites. The search engines include Google,4 Baidu, and Bing.
The other online knowledge sites include Stack Overflow, CSDN,5 Quora,6 and ZhiHu.7

Thus, we did not distinguish the search queries from search engines to other online sites.

Participant Selection We sent emails to all of the developers in two IT companies in
China, namely Insigma Global Service8 and Hengtian.9 Insigma Global Service is an

4Notice although Google is blocked in China, developers can use Google by using agent service such as
Shadowsocks. See https://shadowsocks.com/ for more details.
5CSDN is one of the largest technical blog site in China, see http://www.csdn.net/ for more details.
6https://www.quora.com/.
7Zhihu is one of the largest Q&A site in China, see http://www.zhihu.com/ for more details.
8http://www.insigmaservice.com/.
9http://www.hengtiansoft.com/.

https://shadowsocks.com/
http://www.csdn.net/
https://www.quora.com/
http://www.zhihu.com/
http://www.insigmaservice.com/
http://www.hengtiansoft.com/

Empir Software Eng (2017) 22:3149–3185 3153

outsourcing company which has more than 500 employees, and it mainly does outsourcing
projects for Chinese vendors (e.g., Alibaba, and Baidu). Hengtian is also an outsourcing
company which has more than 2,000 employees, and it mainly does outsourcing projects
for US and European corporations (e.g., State Street Bank, and Cisco). In total, 60 develop-
ers accepted our invitation. These 60 developers are part of different project teams in these
two companies and have different roles. For example, some developers mainly use Java as
their main programming language, while some mainly use .NET or C/C++. Some devel-
opers focus on development, while others focus on testing. Moreover, these 60 developers
have different professional experience. The average number of years that these 60 develop-
ers worked in IT companies is 4.2 ± 2.5 years. 35% of the developers are junior developers
who worked less than 2 years. Including such junior developers into our study provides us
with a wider and more diverse view regarding search tasks since such developers are most
likely the major users of search engines.

Data Analysis In our observation study, we extracted the search queries that are used dur-
ing development activities, and grouped these queries into different categories (i.e., search
tasks). In total, we collected 12,051 queries. Among them, 8,102 queries were written in
English, and 3,949 queries were written by using Chinese. Notice that 4,098 queries (34%)
were extracted from online sites such as Stack Overflow, CSDN, Quaro, and ZhiHu. These
queries are performed by entering search queries in the search box of each of these sites.
From our analysis of these queries, we have the following observations:

• Developers are likely to use search engines to search for code or explanations of excep-
tions. For example, they enter the name of a thrown exception into Google. Yet they
rarely use other sites for such searches. In our observational study, we only find 10
queries which copy code or exception into Stack Overflow or CSDN.

• Even though developers primarily use search engines for such searches, most of the
answers are available on Stack Overflow, CSDN, or ZhiHu.

• Developers often use online sites to search for answers for general questions, e.g., they
search for queries such as “how to use git” in CSDN, and “Java 1.8 new features” in
Stack Overflow.

In this paper, we used a semi-automatic approach by applying Latent Dirichlet Alloca-
tion (LDA) – one topic modelling technique (Blei et al. 2003) to help us identify the topics
among these queries. LDA automatically clusters terms that appear across the extracted
queries into different topics, and each topic may represent a search task that we would
like to investigate. In this paper, we set the number of topic as 50, and we mixed English
and Chinese queries together when running LDA. For each query, we got its topic distri-
bution array, and each value in the array represents the probability that the query belongs
to a corresponding topic. And we classified a query into the topic with the highest prob-
ability. Next, the first and second author worked together to identify the search task that
corresponds to each query, by analyzing the topics and their corresponding terms and
queries. Specially, for each topic, we read the associated terms and queries, and we derived
search tasks.

Table 1 shows 50 topics which were related to our search tasks and their corresponding
top 5 key terms. The key terms from these topics give very useful hints to help us derive
search tasks. For example, we find that developers often use search engines due to excep-
tions or errors that they encounter (Topic 1, 2, 3, 9, 20); Developers also search for code
examples (Topic 5, 7) or libraries (10, 11); Sometimes, developers search for unknown

3154 Empir Software Eng (2017) 22:3149–3185

Table 1 Top 5 key terms for the
20 relevant topics Topic ID Key terms

1 java exception configuration output project

2 java number linux error file

3 wordpress site php error css

4 select sql mysql custom data

5 java time current web transform

6 tutorial code asp development git

7 code java implementation access file

8 time linux set current custom

9 network android background connect error

10 web python library mvc json

11 python data library database according

12 file configuration linux group data

13 wordpress angularj com project page

14 angularj java http tutorial data

15 deep ai cnn neural network

16 currency collateral fund equity bond

17 eclips junit git ant license

18 cloudera manag server json js

19 git data get tutorial use

20 data android exception angular group

21 time content asp group data

22 class btrace com http group

23 tutorial code asp development git

24 url path current custom data

25 nodej post http data phpstorm

26 java android zhejiang group data

27 background css hadoop data database

28 wordpress custom article set open

29 english wordpress page hadoop data

30 file upload zhejiang group custom

31 js access eclips mysql angular

32 linux check site zhejiang current

33 page package asp upload group

34 screen mysql linux number group

35 wordpress article template phpstorm zhejiang

36 php output jqueri mysql warn

37 group net xinji current angular

38 hangzhou net city zhejiang git

39 rsv bp utf baidu tn

40 university zhejiang line college city

41 default mysql password hadoop data

42 hadoop cloudera development group data

43 tomcat primefac eclips time configuration

Empir Software Eng (2017) 22:3149–3185 3155

Table 1 (continued)
Topic ID Key terms

44 cmd linux file path tar

45 version net check zhejiang group

46 webstorm php code svn git

47 springmvc translation angular js data

48 jdk openjdk java version difference

49 sqlserver set manag screen css

50 angularj time tutorial sqlserver git

terminologies (Topic 15) or industrial practices (Topic 1810). At the end of this phase, we
end up with 28 intermediate search tasks.11

We also recorded the percentage of time that developers spent on online searching. To
do so, for each query, we recorded the time when a developer enters a query into a search
engine or online sites such as Stack Overflow and CSDN, and the time that he/she switch
to another task, or closes the web browser, or opens a new website without clicking the
websites that provided by the search engines. The difference of these two times is used as
the time spent on online searching. We also recorded the effective working hours of each
developer. Effective working hours refer to the time during which developers stay in front
of their computer, doing tasks which are related to the project. We excluded the time that
developers spend on personal activities (e.g., eating lunch/dinner), or meetings. To do so,
we did not count the time if a developer did not have any mouse or keyboard actions for
one hour or more. Figure 1 presents the percentage of time that developers spent on online
searching. We notice that the median percentage is 15%, with a maximum value at 35%, and
a minimum value at 5%. We ask the developer who spent only 5% of his time on search, and
he told us that he is a project manager, and during that time, he was extremely busy to design
the detailed project plan, thus he spent less time on searching. Moreover, the developer who
spent 35% of her time on searching told us that she just graduated from university, and it is
the first time that she joined a project team. Thus, she spent a considerable amount of time
searching online for various background knowledge topics such as some introductions for
techniques that are used in the project.

Figure 2 presents the distribution of the number of queries among the 60 developers. We
notice that 16, 32, 10, and 2 developers perform less than 100, 100 to 500, 500 to 1,000, and
more than 1,000 queries. Around half of the developers perform among 100 to 500 queries
in our observational study. We record the data for two weeks, and suppose a developer
would effectively work for 5 hours, then these 32 developers who perform 100–500 queries
in the two weeks, they would perform 2 to 10 queries every day. For the two developers
who perform more than 1,000 queries, we send emails to ask them for the reason. They told
us that they are new employee, and thus they need to get up to speed on many new topics.
Online searching could help them find the desired results fast and efficiency.

10Cloudera is a software company that provides Apache Hadoop-based software, support and services, and
training to business customers (https://www.cloudera.com/).
11We identified another 6 search tasks in the open-ended interviews.

https://www.cloudera.com/

3156 Empir Software Eng (2017) 22:3149–3185

Fig. 1 Percentage of time that
developers spent on online
searching 5% 10% 15% 20% 25% 30% 35%

Time Spent on Online Searching

2.2 Open-Ended Interviews

Protocol The first author conducted face-to-face interviews with 12 senior develop-
ers and team leaders. We interviewed these senior developers and team leaders but not
junior developers since they had more experience on software development and testing,
and they met more problems during the development process and they were likely to
search online more frequently. Each interview was around 30 minutes long. The inter-
views were semi-structured and divided into three parts. In the first part, we asked some
demographic questions such as the experience that the interviewee has on software develop-
ment/testing/project management. In the second part, we asked some open-ended questions
such as what do they typically search for online during software development, and which
search tasks are difficult (i.e., tasks for which it is hard to find relevant results). Specifically,
we asked the following questions:

1. What do you typically search for online using web search engines or on Q&A sites such
as Stack Overflow?

2. What kinds of search tasks or queries for which you find it difficult to find the desired
results?

3. Suppose you are trying to fix a bug, which search queries would you try first, and what
queries do you find it difficult to get the desired results?

4. Suppose you are writing code now, which search queries would you try first, and what
queries do you find it difficult to get the desired results?

5. Suppose you are trying to use some third-party libraries or code, which search queries
would you try first, and what queries do you find it difficult to get the desired results?

0

15

30

45

<100 100-500 500-1,000 >1,000

stnapicitraPforeb
mu

N

Number of Queries

Fig. 2 Distribution of the number of queries among the 60 studied developers

Empir Software Eng (2017) 22:3149–3185 3157

6. Do you use an IDE, or other tools such as Git and Bugzilla? If so, could you describe
which search queries would you try first, and what queries do you find it difficult to get
the desired results?

7. Do you use a database often? If so, could you describe which search queries would you
try first, and what queries do you find it difficult to get the desired results?

8. Suppose you are performing testing now, e.g., unit testing, which search queries would
you try first, and what queries do you find it difficult to get the desired results?

The purpose of this part is to allow the interviewees to speak freely about their search tasks
without any bias. Notice these 8 questions focus on different areas, from code writing to
testing. Notice it is possible that a participant says no to questions (3) to (8). To address
this limitation, in the third part, we discuss with each interviewee the 28 search tasks that
we identified in our observational study in an effort to expand the discussion to wide issues
that are related to web search activities during the process of software development and
maintenance.

Participant Selection We conducted interviews with senior developers and team leaders
at Insigma Global Service and Hengtian. In total, 12 people were interviewed. Eight inter-
viewees were male, and four were female. In the remainder of the paper, we denoted these
12 interviewees as P1 to P12. The average number of years these 12 interviewees worked in
IT companies is 8.3 years and they have diverse experience on different types of projects.
For example, P1 worked in different project teams from financial systems to cloud comput-
ing systems. P5 lead a large testing team which mainly performs outsourced testing for a
commercial bank. P2 worked in an e-commerce project team, and his main responsibility
was to maintain the e-commerce system and fix bugs. P8 lead a project team which focuses
on language transformation, i.e., automated transformation of COBOL to Java. The diversity
of the background and experience of the 12 interviewees helps improve the generalizability
of our results.

Data Analysis After the interviews, we used a transcription service to transcribe the audio
into text. We then read the text to identify additional search tasks that are mentioned by our
interviewees. These additional search tasks did not appear in the search queries we collected
in the observational study, and the identification process is as follows:

• P1 and P8 mentioned that they sometimes needed to confirm whether it is legal to
use or re-use some open-source or commercial projects, or install some open-source or
commercial tools, thus we added “search for laws or regulations about a technology”
as an additional task.

• P1, P4, P8, P9, P11, and P12 all mentioned that it was hard to describe the details
of performance and multi-threading bugs, and also there were not many solutions for
performance and multi-threading bugs online. Thus, we added “search for solutions to
performance bugs” and “search for solutions to multi-threading bugs” as two additional
tasks.

• P5 and P9 who were tasked with standardizing processes across the whole company
mentioned they needed to search for various standards such as code, requirement, and
design standards. Thus, we added “search for standards” as an additional task.

• Only P5 mentioned that he frequently searched for guidance to avoid anti-patterns.
Thus, we added “search for usage examples or guidance on how to avoid an anti-
pattern” as an additional task.

3158 Empir Software Eng (2017) 22:3149–3185

Table 2 List of identified search tasks

General search

T1 Search for explanation for unknown terminologies

T2 Search for background knowledge related to a project (e.g., financial knowledge)

T3 Search for software developers of interest (e.g., well-known developers)

T4 Search for laws or regulations about a technology

T5 Search for the description of a license

T6 Search for best industrial practices

Debugging and bug fixing

T7 Search for explanations for exceptions/error messages (e.g., HTTP 404)

T8 Search for solutions to common programming bugs

T9 Search for solutions to software configuration bugs

T10 Search for solutions to security bugs

T11 Search for solutions to performance bugs

T12 Search for solutions to multi-threading bugs

Programming

T13 Search for usage examples or guidance on how to use a new programming language

T14 Search for usage examples and guidance on how to use a new feature of a programming
language (e.g., how to use Lambda expressions in Java-1.8)

T15 Search for standards (e.g., C++ standard)

T16 Search for usage examples or guidance on how to use a design pattern

T17 Search for examples or guidance on how to avoid an anti-pattern

T18 Search for pseudocode, code example, or principle of an algorithm (e.g., Dijkstra
algorithm)

Third party code reuse

T19 Search for reusable code snippets

T20 Search for suitable third-party libraries/services

T21 Search for usage examples or guidance on how to use third-party libraries/services

T22 Search for configuration script examples of a build system tool

T23 Search for HTML/CSS templates for front end development

Tools

T24 Search for usage examples and guidance on how to use operating system command line
interfaces (e.g., by writing shell scripts)

T25 Search for usage examples and guidance on how to use and customize IDEs (e.g., Eclipse)

T26 Search for usage examples and guidance on how to use version control systems

T27 Search for usage examples and guidance on how to use issue tracking systems (e.g.,
BugZilla)

T28 Search for usage examples and guidance on how to use code review systems (e.g., Gerrit)

Database

T29 Search for usage examples or guidance on how to form SQL statements

T30 Search for usage examples or guidance on how to use a no-SQL database

T31 Search for database optimization solutions

Testing

T32 Search for guidelines on testing methods (e.g., how to perform smoke testing)

T33 Search for usage examples and guidance on how to use an automated testing tool (e.g.,
JUnit, etc.)

T34 Search for public datasets to test a newly developed algorithm or system

Empir Software Eng (2017) 22:3149–3185 3159

• Only P10, who is an algorithm developer, mentioned that he searched for public datasets
to test new algorithms. Thus, we added “search for public datasets to test a newly
developed algorithm or system” as an additional task.

We identified a final set of 34 different search tasks that we group into 7 different dimen-
sions, i.e., general search, debugging and bug fixing, programming, third party code reuse,
tools, database, and testing. Table 2 presents the list of final search tasks that we identified
after the interviews. These search tasks were then feed into the third part of our study.

2.3 Validation Survey

Protocol We designed a survey to rank the 34 search tasks based on their perceived
frequency and difficulty. Our survey has three parts:

1. In the first part of our survey, we asked demographic questions to understand the
participants’ background (e.g., their number of years of professional experience).

2. We then present the tasks and ask our respondents to rank the frequency of them per-
forming these tasks using one of the following ratings: very often, often, sometimes,
rare, and very rare. We also ask respondents to rank the difficulty of getting the
desired results for these tasks using one of the following ratings: very difficult, diffi-
cult, neutral, easy, and very easy. A participant has the option to specify that he/she
prefers not to answer or that he/she does not understand our description of a particular
task. We include this option to reduce the possibility of participants providing arbitrary
answers.

3. Next, for each respondent, we randomly sampled two search tasks that he/she has
ranked as often/very often, and two search tasks that he/she has ranked as difficult/very
difficult, and ask the rationale of such ratings.

Respondent Selection Our goal is to get a sufficient number of software engineers from
diverse backgrounds to rank and comment on the search tasks that we identified. We follow
the following strategy to get respondents:

• First, we contacted professionals from various countries and IT companies and asked
their help to disseminate our survey to some of their colleagues and friends. We sent
emails to our contacts at Microsoft, Baidu, Alibaba, NetEase, Hengtian, IGS, and many
other small to large companies in various countries encouraging them to complete
the survey and disseminate it. This survey recruitment strategy helps us get respon-
dents who are professional developers from diverse organizations and backgrounds in
industry.

• Second, we mined the commit logs of projects that are hosted in GitHub using its
REST APIs, and identified highly active practitioners who have contributed more than
1,000 commits. In total, we identified 1,100 email addresses and we sent invitations
to these addresses, out of which 140 were not delivered, and 80 emails received auto-
matic replies notifying the receiver’s absence. This recruitment strategy helps us get
respondents who are active open source practitioners.

In total, we received 235 responses. These responses were made by respondents from
21 countries across five continents. The top two countries where the respondents reside are
China and the United States. The number of years of professional experience of the 235
respondents varies from 0.3 years to 29 years, with an average of 5.89 years.

3160 Empir Software Eng (2017) 22:3149–3185

Data Analysis We collated the ratings that our respondents provide. We drop “I don’t
understand” and “I prefer not to answer” ratings that form a small minority of all ratings
(less than 3%). Next, we converted these ratings to Likert scores from 1 (very rare\very
easy) to 5 (very often\very difficult). Next, we computed the average Likert score of each
search task. A Likert score is commonly used in surveys when asking respondents to
express their agreement or disagreement about a statement (Wuensch 2005). Furthermore,
we extracted the comments that our survey respondents provided to explain the reason
for a particular search task being performed frequently or it being hard to get the desired
results.

3 Results

In this section, we describe how software engineers rate the 34 search skills that we grouped
into seven dimensions, along with the rationale for performing such tasks frequently or for
considering such tasks difficult. In the remainder of the paper, we use +F and *D to
denote the comments which explain the rationale for frequently performing a specific search
task, and why developers often find it difficult to get desired results for a task, respectively.
We carefully read all the comments from the participants, and manually remove the com-
ments which do not describe the rationale for considering a task as frequent or difficult.
Next, we group the comments which have similar contents, and present only representative
comments from each group.

3.1 Overview

Table 3 presents the average Likert score for the 34 search tasks in terms of frequency and
difficulty, and number of queries in our observational study. On average across the 34 tasks,
the Likert scores 3.14 ± 0.54 and 2.73 ± 0.55 in terms of frequency and difficulty, respec-
tively. The high standard deviation implies that our participants show differing opinions
towards the different search tasks. For some tasks, participants frequently perform them
(e.g., search for explanation for unknown terminologies), or participants consider them to
be difficult to find the desired results (e.g., search for public datasets to test a newly devel-
oped algorithm or system); while for the other tasks, participants rarely perform them (e.g.,
search for laws or regulations about a technology), or participants consider them to be easy
to find the desired results (e.g., search for explanation for unknown terminologies).

To further analyze the results, we apply Scott-Knott Effect Size Difference (ESD) test
(Tantithamthavorn et al. 2017) to group the 34 search tasks into statistically distinct ranks
according to their Likert scores in terms of frequency and difficulty. Scott-Knott ESD test
is a variant of Scott-Knott test (Scott and Knott 1974). Following Tantithamthavorn et al.’s
study (Tantithamthavorn et al. 2017), the Scott-Knott test assumed that the data is nor-
mally distributed, and it might create groups that are trivially different from one another. To
address the limitations of Scott-Knott test, Tantithamthavorn et al. proposed the Scott-Knott
Effect Size Difference (ESD) test to correct the non-normal distribution of an input dataset,
and merge any two statistically distinct groups that have a negligible effect size into one
group (Tantithamthavorn et al. 2017).

Notice that each participant is required to provide the rating on these 34 search tasks in
terms of both frequency and difficulty. We input these ratings into the Scott-Knott ESD test.
Tables 4 and 5 present the 34 search tasks as ranked according to the Scott-Knott ESD test
in terms of frequency and difficulty, respectively. The search tasks in group 1 and 2 have

Empir Software Eng (2017) 22:3149–3185 3161

Table 3 Median Likert score for the 34 search tasks in terms of frequency and difficulty, and number of
queries in our observational study

ID Task Frequency Difficulty No. Queries

General Search

T1 Search for explanations for unknown terminologies 4 2 803

T2 Search for background knowledge related to a project
(e.g., financial knowledge)

4 2 923

T3 Search for software developers of interest (e.g., well-
known developers)

3 2 12

T4 Search for laws or regulations about a technology 2 3 0

T5 Search for the description of a license 3 3 52

T6 Search for best industrial practices 4 4 827

Debugging and Bug Fixing

T7 Search for explanations for exceptions/error mes-
sages (e.g., HTTP 404)

4 2 1,349

T8 Search for solutions to common programming bugs 4 2 1,034

T9 Search for solutions to software configuration bugs 4 4 1,402

T10 Search for solutions to security bugs 3 4 103

T11 Search for solutions to performance bugs 3 4 0

T12 Search for solutions to multi-threading bugs 3 4 0

Programming

T13 Search for usage examples or guidance on how to use
a new programming language

4 2 402

T14 Search for usage examples and guidance on how to
use a new feature of a programming language (e.g.,
how to use Lambda expressions in Java-1.8)

4 2 201

T15 Search for standards (e.g., C++ standard) 3 2 0

T16 Search for usage examples or guidance on how to use
a design pattern

3 3 62

T17 Search for examples or guidance on how to avoid an
anti-pattern

2 3 0

T18 Search for pseudocode, code example, or principle of
an algorithm (e.g., Dijkstra algorithm)

3 3 120

Third Party Code Reuse

T19 Search for reusable code snippets 3 3 1,302

T20 Search for suitable third-party libraries/services 4 2 802

T21 Search for usage examples or guidance on how to use
third-party libraries/services

4 3 423

T22 Search for configuration script examples of a build
system tool

3 3 156

T23 Search for HTML/CSS templates for front end devel-
opment

3 3 45

Tools

T24 Search for usage examples and guidance on how to
use operating system command line interfaces (e.g.,
by writing shell scripts)

4 2 723

3162 Empir Software Eng (2017) 22:3149–3185

Table 3 (continued)

ID Task Frequency Difficulty No. Queries

T25 Search for usage examples and guidance on how to
use and customize IDEs (e.g., Eclipse)

3 2 32

T26 Search for usage examples and guidance on how to
use version control systems

3 2 28

T27 Search for usage examples and guidance on how to
use issue tracking systems (e.g., BugZilla)

2 3 14

T28 Search for usage examples and guidance on how to
use code review systems (e.g., Gerrit)

2 3 6

Database

T29 Search for usage examples or guidance on how to
form SQL statements

4 2 1,532

T30 Search for usage examples or guidance on how to use
a no-SQL database

3 3 54

T31 Search for database optimization solutions 3 4 238

Testing

T32 Search for guidelines on testing methods (e.g., how to
perform smoke testing)

3 3 62

T33 Search for usage examples and guidance on how to
use an automated testing tool (e.g., JUnit, etc.)

3 3 72

T34 Search for public datasets to test a newly developed
algorithm or system

2 4 0

higher median Likert scores than the tasks in the other groups. For example, all the search
tasks in group 1 in Table 4 have a median Likert score of 4 (often).

From Table 4, the search tasks that developers performmost frequently are (i.e., in groups
1 and 2):

• T1: Search for explanations for unknown terminologies
• T7: Search for explanations for exceptions/error messages (e.g., HTTP 404)
• T19: Search for reusable code snippets
• T8: Search for solutions to common programming bugs
• T20: Search for suitable third-party libraries/services
• T13: Search for usage examples or guidance on how to use a new programming

language
• T6: Search for best industrial practices
• T9: Search for solutions to software configuration bugs
• T14: Search for usage examples and guidance on how to use a new feature of a

programming language
• T21: Search for usage examples or guidance on how to use third-party libraries/services
• T2: Search for background knowledge related to a project
• T24: Search for usage examples and guidance on how to use operating system

command line interfaces

From Table 5, the search tasks that developers consider most difficult are (i.e., in groups
1 and 2):

Empir Software Eng (2017) 22:3149–3185 3163

Table 4 The 34 search tasks as
ranked according to the Scott-
Knott Effect Size Difference test
in terms of frequency

Group Task ID Task Name

1 T1 Search for explanations for unknown terminologies

T7 Search for explanations for exceptions/error mes-
sages (e.g., HTTP 404)

T8 Search for solutions to common programming bugs

T19 Search for reusable code snippets

T20 Search for suitable third-party libraries/services

2 T2 Search for background knowledge related to a
project (e.g., financial knowledge)

T6 Search for best industrial practices

T9 Search for solutions to software configuration bugs

T13 Search for usage examples or guidance on how to
use a new programming language

T14 Search for usage examples and guidance on how to
use a new feature of aprogramming language (e.g.,
how to use Lambda expressions in Java-1.8)

T21 Search for usage examples or guidance on how to
use third-party libraries/services

T24 Search for usage examples and guidance on how to
use operating system commandline interfaces (e.g.,
by writing shell scripts)

3 T11 Search for solutions to performance bugs

T29 Search for usage examples or guidance on how to
form SQL statements

4 T10 Search for solutions to security bugs

T15 Search for standards (e.g., C++ standard)

T18 Search for pseudocode, code example, or principle
of an algorithm (e.g., Dijkstraalgorithm)

T26 Search for usage examples and guidance on how to
use version control systems

T31 Search for database optimization solutions

5 T12 Search for solutions to multi-threading bugs

T16 Search for usage examples or guidance on how to
use a design pattern

T22 Search for configuration script examples of a build
system tool

T25 Search for usage examples and guidance on how to
use and customize IDEs (e.g.,Eclipse)

T30 Search for usage examples or guidance on how to
use a no-SQL database

T32 Search for guidelines on testing methods (e.g., how
to perform smoke testing)

T33 Search for usage examples and guidance on how to
use an automated testing tool(e.g., JUnit, etc.)

6 T3 Search for software developers of interest (e.g.,
well-known developers)

T17 Search for examples or guidance on how to avoid
an anti-pattern

3164 Empir Software Eng (2017) 22:3149–3185

Table 4 (continued)
Group Task ID Task Name

T23 Search for HTML/CSS templates for front end
development

T27 Search for usage examples and guidance on how to
use issue tracking systems (e.g.,BugZilla)

7 T34 Search for public datasets to test a newly developed
algorithm or system

• T11: Search for solutions to performance bugs
• T12: Search for solutions to multi-threading bugs
• T34: Search for public datasets to test a newly developed algorithm or system
• T19: Search for reusable code snippets
• T6: Search for best industrial practices
• T31: Search for database optimization solutions
• T10: Search for solutions to security bugs
• T9: Search for solutions to software configuration bugs
• T4: Search for laws or regulations about a technology
• T17: Search for examples or guidance on how to avoid an anti-pattern

3.2 General Search

Explanation for Unknown Terminologies (T1) From our observational study, we
noticed that many queries were related to this task, e.g., search for the definitions of
blockchain, cloud computing, PaaS, and SaaS. From our interview, most of the respon-
dents agreed that it is “one of the most common search tasks” (P1), however “current
search engines provide good support to it” (P10), and “most of the contents can be found
in Wikipedia12 or Baidu Baike13 in Chinn (P5 and P6). We did not receive any comments
which explain why the task is difficult to perform, and the representative comments that we
received which explain the rationale for performing the task frequently are as follows:

+F “I have no formal training, many concepts have ambiguous names. There are too
many ambiguous acronyms!”

+F “Since it is an unknown terminology, I’ve got to know what is all about in order to
tackle some tasks or just to be informed.”

+F “I have an innate desire to fully understand whatever I touch or use. This includes
jargon as well.”

Background Knowledge Related to a Project (T2) Background knowledge is “impor-
tant to a developer to understand the purpose and the scope of a project especially for
newcomers” (P3). Examples of this search task include: searching for the definitions of
Candlestick chart, pension, and Stock exchange processes. It is “quite common to search for
background knowledge when developing financial systems” (P11), and similar to T1, most

12https://www.wikipedia.org/
13https://baike.baidu.com/

https://www.wikipedia.org/
https://baike.baidu.com/

Empir Software Eng (2017) 22:3149–3185 3165

Table 5 The 34 search tasks as
ranked according to the Scott-
Knott Effect Size Difference test
in terms of difficulty

Group Task ID Task name

1 T6 Search for best industrial practices

T9 Search for solutions to software configuration bugs

T10 Search for solutions to security bugs

T11 Search for solutions to performance bugs

T12 Search for solutions to multi-threading bugs

T19 Search for reusable code snippets

T31 Search for database optimization solutions

T34 Search for public datasets to test a newly developed
algorithm or system

2 T4 Search for laws or regulations about a technology

T17 Search for examples or guidance on how to avoid
an anti-pattern

3 T28 Search for usage examples and guidance on how to
use code review systems (e.g.,Gerrit)

4 T5 Search for the description of a license

T16 Search for usage examples or guidance on how to
use a design pattern

T18 Search for pseudocode, code example, or principle
of an algorithm (e.g., Dijkstraalgorithm)

T21 Search for usage examples or guidance on how to
use third-party libraries/services

T22 Search for configuration script examples of a build
system tool

T23 Search for HTML/CSS templates for front end
development

T27 Search for usage examples and guidance on how to
use issue tracking systems (e.g.,BugZilla)

T30 Search for usage examples or guidance on how to
use a no-SQL database

T33 Search for usage examples and guidance on how to
use an automated testing tool(e.g., JUnit, etc.)

5 T2 Search for background knowledge related to a
project (e.g., financial knowledge)

T8 Search for solutions to common programming bugs

T15 Search for standards (e.g., C++ standard)

T20 Search for suitable third-party libraries/services

T25 Search for usage examples and guidance on how to
use and customize IDEs (e.g.,Eclipse)

T26 Search for usage examples and guidance on how to
use version control systems

6 T3 Search for software developers of interest (e.g.,
well-known developers)

T13 Search for usage examples or guidance on how to
use a new programming language

T14 Search for usage examples and guidance on how to
use a new feature of aprogramming language (e.g.,
how to use Lambda expressions in Java-1.8)

T29 Search for usage examples or guidance on how to
form SQL statements

3166 Empir Software Eng (2017) 22:3149–3185

of the search engines provide good support to it. We did not receive comments on the dif-
ficulty of the task, and the representative comments that we received on why some of our
respondents perform this task frequently/very frequently are as follows:

+F “I usually want to know as much as I can, to help me in my work and to just know
more in general. Also because it is fun.”

+F “To understand the requirement of a domain-specific project better.”
+F “Most projects aren’t very transparent; regulations are usually hard to read and/or

ambiguously phrased.”

Software Developers of Interest (T3) From our observational study, we only found 12
queries which search for developers of interest, and queries include searching for Richard
Stallman, Linus Torvalds, and Wensong Zhang.14 The median Likert scores of this task in
terms of frequency and difficulty are 3 (sometimes) and 2 (easy) respectively. We did not
receive any comments on the frequency and difficulty of the task.

Laws or Regulations About a Technology (T4) We did not find the queries related to
laws or regulations about a technology. However, P1 and P8 who have been part of legal
departments in the past pointed out that they performed this task sometimes when a com-
pany plans to re-use some open-source or commercial projects, or install some open-source
or commercial tools, and they needed to ensure whether it is legal to use them across the
company. The representative comments that we received on the difficulty of task T4 are as
follows:

*D “I am not a lawyer and laws scare me. I don’t do it that often, but when I do I’m
often just frustrated.”

*D “I would like to understand easier what laws are in place regarding technology.
But there is no single source of information.”

*D “Because there is usually only ******15 webs reporting about it and there is lot
of bureaucrat language involved.”

*D “Laws and regulations are complex and rarely distilled for consumption by non-
lawyers, making searches for such item especially difficult.”

From the above comments, developers consider this task as difficult because: (1) they
are not professional lawyers, (2) there is no single information source on technology laws
or regulations, and (3) a large amount of “legal Jargon” is used which often impairs
understanding.

Description of a License (T5) The queries of this task included searching for the descrip-
tion of GNU GPL, LGPL, and BSD. Developers search for the description of a license
“when they need to use an open-source project” (P12). However, it takes a great amount of
time and effort to find the desired results, “since they have to ensure whether the licenses
in the open-source projects cause conflicts to the existing projects or tools used in the com-
pany” (P4), and “the licenses may contain ambiguous wording” (P8). The representative
comments that we received on the difficulty of this task are as follows:

14Wensong Zhang is the co-founder of the project Linux Virtual Server, see https://en.wikipedia.org/wiki/
Linux Virtual Server for more details.
15An expletive was masked out.

https://en.wikipedia.org/wiki/Linux_Virtual_Server
https://en.wikipedia.org/wiki/Linux_Virtual_Server

Empir Software Eng (2017) 22:3149–3185 3167

*D “I use CC licenses because they are easy to manage, but software licenses are
complex and sometimes a license cannot be used in specific contexts.”

*D “Most of the licenses I searched are incomplete. And the licenses are hard to
understand.”

Best Industrial Practices (T6) From our observational study, examples of this search
task include: “why OceanBase is successful”, “how to develop a good android app”, “how to
perform performance testing for a mobile application”. Most of our interviewees mentioned
that they frequently search for best industrial practices “when they complete the architecture
design of a project” (P3, P4, and P5), or when they compare a proposed solution with state-
of-the-art solutions (P1, P7, P8, and P9). However, finding the desired results for this task is
really difficult since the returned results are either “incomplete” (P5), or “are not relevant to
what they want” (P1). The representative comments that we received on the frequency and
difficulty of this task are as follows:

+F “To compare the current solution in our project with the state-of-the-art industrial
practice.”

+F “To understand the current industrial situation and development trend.”
+F “Ensure I remain up to date with current methodologies.”
*D “Competing solutions don’t often differ a lot. People who know 2+ solutions are

rare, bloggers are rarer.”
*D “It is hard to judge whether a so called “best industrial practice” is the best.”
*D “Most of the best industrial practice are rarely shared, and often kept as the secret

inside company.”

From the above comments, developers often search for best industrial practices to (1)
compare different solutions, (2) understand industry trends, and (3) ensure that they use
state-of-the-art technologies. However, it is often difficult to get the desired results, since (1)
there are many incomplete solutions, (2) it is hard to judge which practice is a best practice,
and (3) most best practices are not shared.

3.3 Debugging and Bug Fixing

Explanations for Exceptions/Error Messages (T7) A number of queries (i.e.,
1,349 queries) that we collected were related to this task, examples of this search
task include: “FileNotFoundException”, “java.util.concurrent. TimeoutException”, “Sys-
tem.Web.HttpException”. Our interviewees pointed out that it is common to search for
explanations for exceptions, and “developers would directly copy and paste the exception
thrown out by an IDE into a search engine’s query box’ (P7), and “it is easy to find the
desired results since most of the answers can be found in Stack Overflow or other Q&A
sites” (P9). The representative comments that we received on the frequency and difficulty
of this task are as follows:

+F “I primarily program in C++, where error messages can sometimes be very
difficult to understand.”

+F “When an exception occurs, I want to know if it’s only me, or it’s a common
developers problem, and how other developers solve it.”

+F “Trying to debug edge cases, to remember details, to see cause in comments, etc.”
+F “Quick way to diagnose unclear error messages and start working toward a

solution.”

3168 Empir Software Eng (2017) 22:3149–3185

*D “Usually, I’m looking for exceptions I can not debug, and as such exceptions are
rare (usually I can solve them), there’s a high chance the bug is rare enough, so
very few (or none) people stumbled upon it.”

From the above comments, developers often search for explanations for exceptions/error
messages because: (1) exception messages sometimes are hard to understand, (2) they want
to ensure whether an exception is common, and (3) find solutions to solve it. However, in
some cases it is hard to get the desired results if the exception occurs rarely.

Solutions to Common Programming Bugs (T8) Similar to T7, there were a number of
queries (i.e., 1,034 queries) related to finding solutions to common bugs, examples of this
search task include: “c# cannot convert null to int”, “null pointer assignment error”, and
“socket connect timeout”. The representative comments that we received on the frequency
and difficulty of this task are as follows:

+F “It’ll be much cheaper & faster to Google compared to figure it out by myself.”
+F “When I stumble upon a bug that I cannot debug quick enough, I try to find some

more info, so I know if somebody already got a similar problem and how they
solved it.”

+F “ No point re-inventing the wheel if somebody has already solved the bug.”
*D “ Because usually there are no good answers, or not answering the same thing

that I was looking for.”

Solutions to Software Configuration Bugs (T9) In our observational study, we noticed
a number of queries (i.e., 1,402 queries) related to configuration bugs, examples of this
search include: “maven configuration error”, “mvn -DmyVariable”, and “ubuntu php mysql
AllowOverride”. Novice developers “often meet the configuration errors when deploy a
project or install a software” (P6), and it is hard to find the desired results since there are
“too many configuration parameters, it is hard to locate which one is problematic, and too
many noise results online” (P4). The following are the representative comments that we
received on the frequency and difficulty of this task:

+F “Because I face these very often. Software configuration file formats are typically
schemaless (e.g., YAML) so they’re very difficult to get correct without borrowing
heavily from a known good template.”

+F “Some applications that I integrate are configurable and that creates incompati-
bilities.”

*D “Configuration bugs are often elusive and they are system-dependent. There are
multiple solutions and they don’t always work, depending on the conditions.”

*D “There seems to almost be a stigma about discussing and sharing configurations.
I often feel like I am left to my own devices to figure out how to properly configure
something when the default settings are not appropriate.”

From the above comments, developers search for solutions to configuration bugs fre-
quently since (1) they often meet configuration problems, (2) the configuration file formats
are typically schema-less, and (3) most of applications are configurable which causes
incompatibilities problems. However, finding the desired results for this task is difficult
because configuration bugs are often system-dependent, with many online solutions not
always working.

Empir Software Eng (2017) 22:3149–3185 3169

Solutions to Security Bugs (T10) Although there were not that many queries (i.e., 103
queries) related to security bugs in our observational study, most of the queries were hard
to resolve through searching since “it is hard to describe a security problem in several
words” (P9). Examples of this search task include: “security exception java missing required
permissions manifest”, “sql injection prevention”, and “vulnerabilities scanner”. The rep-
resentative comments that we received on the frequency and difficulty of this task are as
follows:

+F “I am not an expert on solving security bugs, and I have to use Google to search
for solutions.”

+F “Security bugs are one of the most common bugs I meet during my development
process, however, the root cause of these bugs are hard to identify and thus I
always search online.”

*D “For the things I’ve searched for they’ve been pretty niche.”
*D “Security bugs are hard to get right; it is seldom you’ll find a solution among the

first several pages of google results that is the best solution for a security issue.”
*D “Many security bugs are complex and not well understood by the general pro-

gramming populace, making finding correct solutions to such bug challenging.”

From the above comments, developers frequently search for solutions to security bugs
since (1) such bugs are common but the root causes are hard to identity, and (2) developers
may not have enough expertise to fix them. However, developers argue that a search for a
desired solution to a security bug is difficult because most of the solutions online are niche,
and the best solution for a security bug is often ranked low in the results of search engines.

Solutions to Performance Bugs (T11) We did not find queries related to performance
bugs in our observational study, however during our interview, some participants pointed
out that although it is not difficult to detect performance bugs (e.g., the machine is suddenly
quite slow), “it is really difficult to describe what is the problem, and which makes it difficult
to find the desired results” (P1). And “most of the solutions found online are too vague,
as they do not provide a detailed solution to a specific problem” (P12). The representative
comments that we received on the frequency and difficulty of this task are as follows:

+F “Performance is super important, and I always suffer from performance bugs, but
not sure how to fix them. ”

*D “It is hard to find general solutions for performance issues, it is usually much
more detailed than that. People almost never blog or write tutorials about fixing
performance bugs.”

*D “Very little is written about front end performance. And when I do find something,
it’s buried in a TL;DR; (too long, didn’t read) article.”

Solutions toMulti-threading Bugs (T12) Similar to T11, we did not find queries related
to multi-threading bugs in our observational study. However, in our interviews, P8 and P9
who joined a flash memory database project considered searching for solutions to multi-
threading bugs as difficult since such bugs were hard to reproduce and hard to describe. The
representative comments that we received on the frequency and difficulty of this task are as
follows:

+F ‘They’re often more subtle than first appears and I want some insight into what to
keep a look out for.”

3170 Empir Software Eng (2017) 22:3149–3185

+F “Because Ruby (my main language) did not provide good support on multi-thread
programming, so sometimes we got some weird bugs that aren’t easy to catch
because of non thread safe third party libraries.”

*D “Multi-threading bugs are very specific to the application’s architecture, and they
are hard to reproduce. Search engines almost never help you solve them.”

*D “Concurrency is an inherently difficult topic. One that is difficult to describe
and one that is difficult to debug. It’s hard to search for solutions to these bugs
mostly just because they are hard to track down and understand. Usually the error
message is a red-herring.”

From the above comments, developers frequently search for solutions to multi-thread
bugs due to some programming languages not supporting multi-thread programming well,
and multi-thread bugs being subtle. However, developers consider it difficult to get the
desired results because multi-thread bugs are specific to the application’s architecture, are
hard to reproduce, and/or are hard to track down and understand.

3.4 Programming

Usage Examples or Guidance on How to use a New Programming Language (T13)
Examples of this search task include: “python tutorial”, “Go Guideline”, and “Scala usage”.
From our interviews, all the participants mentioned that they frequently search for the usage
of a new programming language since “different projects use different programming lan-
guages” (P2), and “they also need to update their knowledge frequently” (P5). Still, it is easy
to find considerable material online since “a lot of geeks like to share their experience” (P1).
The representative comments that we received on the frequency of this task are as follows:

+F “Seeking best practice to avoid developing bad programming habits. And to master
the programming language fast.”

+F “It’s fun to try new languages but sometimes the syntax gets mixed up.”
+F “Whenever I want to try a new programming language, I’m interested in how to

use it for similar use case I would know in other languages.”

Usage Examples and Guidance on How to use a New Feature of a Programming
Language (T14) Examples of this search task include: “Java 8 Advanced Features”, “Java
LAMDA Expression”, and “.Net Remoting”. Our interviewees mentioned that they always
perform this search when they are required to “migrate a project in an old version of a pro-
gramming language to the newest version of the language” (P10), e.g., migrating a project
in Visual Studio 2005 to Visual Studio 2013. The representative comments that we received
on the frequency of this task are as follows:

+F “Because I mainly dabble in web technologies, the usage examples of new
Javascript or CSS features are very well documented and used pretty broadly.”

+F “Due to the evolution of our system, we have to learn how to use the new fea-
tures. Searching for these new features online can help better understand them,
and analyze the impact of them on our system. ”

Standards (T15) From our observational study, we did not find queries related to stan-
dards. But two interviewees (P5 and P9) mentioned that they frequently search for standards
since they are tasked with standardizing processes across the whole company, the standard-
ization process covers code to design standards, as well as requirement standards.We did not

Empir Software Eng (2017) 22:3149–3185 3171

receive any comments on the difficulty of this task, and the following are the representative
comments that we received on the frequency of the task:

+F “I want to see how the standard defines things. I want to see how my programming
language or protocol behaves.”

+F “I prefer to understand a language or technical concepts from first principles. Thus
reading the standard is usually the best way to learn a language.”

+F “Standard compliance is very important for compatibility.”

Usage Examples or Guidance on How to use a Design Pattern (T16) Examples of
this search task include: “Singleton Java code sample”, “simple factory pattern principal”,
and “adapter pattern”. Some interviewees mentioned that design pattern are frequently used
for legacy projects which require a considerable amount of refactoring effort. From our sur-
vey, respondents considered that they sometimes perform this task and finding the desired
results for this task is relatively not difficult. The median Likert scores of this task in terms
of frequency and difficulty are 3 and 3 respectively. The following are the representative
comments that we received on the frequency of the task:

+F ‘I search for usage example of design patterns so that I can use them well.”
+F “I want to ensure I am doing things the right way, and compare various design

patterns to decide which is the best in each situation.”
+F “Looking for alternative thought processes to my own, “Devil’s advocate” for a

second point of view on a problem.”

Usage Examples or Guidance on How to Avoid an Anti-pattern (T17) We did not
find queries related to anti-patterns from our observational study, and only one intervie-
wee (P5) mentioned that he frequently searches for guidance to avoid anti-patterns. The
representative comments that we received on the difficulty of this task are the following:

*D “Most of the search results on anti-pattern are hard to understand and useless.”
*D “Since I don’t know much about anti-pattern, even if I find something, I am not

sure whether I can apply it in my program.”

Pseudocode, Code Example, or Principle of an Algorithm (T18) Examples of this
search include: “dynamic programming Java code”, “shortest distance graph”, and “.Net
sorting”. We did not receive any comments for this task.

3.5 Third Party Code Reuse

Reusable Code Snippets (T19) In our observational study, we noticed 1,302 queries that
are related to reusable code snippets, Examples of this search task include: “login page
template”, “java crawler code”, and “decision tree implementation code in java”. From our
survey, some participants expressed that they frequently search for code snippets “since they
may forget how to call a sequence of an API to implement a functionality” (P4), and they
considered it as a difficult task since “general search engines cannot understand the purpose
of the query, and most of the time the participants just want a reference example” (P5). The
representative comments that we received on the frequency and difficulty of this task are as
follows:

+F “To reduce the development time, especially when I cannot find a library.”
+F “I want to reuse code so that I don’t reinvent the wheel.”

3172 Empir Software Eng (2017) 22:3149–3185

*D “Most search engines ignore the symbols (e.g.,∧, !, &, etc) that are crucial in code
snippets since they’re not as important in written text, so getting exact matches
can be a pain.”

*D “There can be many snippets of code found on the web, but most are not
reusable. Many pieces of code are badly written or follow bad practices, are not
maintainable, and are not extensible. ”

*D “Because it’s hard to explain in a sentence what the code snippet you’re looking
for should do.”

*D “There are too many possibilities for code snippets, it’s easier to just write what
I need or find code I’ve already written myself (and can be confident about), than
to find someone else’s snippet... And hard to be able to trust it. Also hard to find
an exact match; usually I want/need something custom.”

From the above comments, developers often search for reusable code snippets to reduce
their development time and effort. However, it is a difficult task because: (1) current search
engines such as Google do not provide good support for code searching, (2) many snippets
that are found on the web are not reusable and are often of low quality, (3) hard to express
what developers want to search in several words, and (4) hard to trust the found online code.

Suitable Third-Party Libraries/Services (T20) In our observational study, we noticed
802 queries related to third-party libraries/services, Examples of this search task include:
“machine learning library Java”, “algorithm library”, and “opencv”. Different from T19,
although most of the respondents agreed that they often search for suitable third-party
libraries/services, they can easily get the desired results. The median Likert scores of this
task in terms of frequency and difficulty are 4 (often) and 2 (easy) respectively. The follow-
ing are the representative comments that we received on the frequency and difficulty of this
task:

+F “Because using libraries a lot of time to do a big part of the work.”
+F “To see how other people have solved problems, and as help in solving problems

I have. Also because it is fun.”
+F “Because it may save me a lot of time and I generally try to fight with NIH (not

invented here) syndrome.”
+F “The framework I use the most has a large addon ecosystem and chances that

someone already created an addon for your use case are typically high.”
*D “Too many libraries that do the same, hard to measure library quality.”

From the above comments, developers often search for third party libraries/services to
save development time, and check how other developers solve similar problems. However,
since there are too many libraries with similar functionalities, it is hard to measure the
quality of these libraries.

Usage Examples or Guidance on How to use Third-Party Libraries/Services (T21)
In our observational study, we noticed 423 queries related to guidance on third-party
libraries/services. Examples of this search task include: “weka how to write a classi-
fier”, “dom4j analyze XML”, and “log4J new user”. The representative comments that we
received on the frequency of this task are the following:

+F “The first thing I’m looking for when I use a new library is how all the pieces fit
together so that I can understand the suitability of the third party library for my
purpose.”

Empir Software Eng (2017) 22:3149–3185 3173

+F “It can be difficult to find an entry point to third party libraries. Examples make it
obvious and give you a place to expand outwards from.”

+F “It’s hard to use a library without documentation. Very often, common libraries
have very poor documentation so one needs to search for it. Also, even for project
which do have good documentation, it’s often faster to use Google find the right
part of the docs to read than using their own index.”

+F “I find that there is frequently a good open-source library to help me build a new
feature, so I tend to use them.”

Configuration Script Examples of a Build System Tool (T22) In our observational
study, we notice 156 queries related to this task. Examples of this search task include: “ant
pom.xml example”, “Makefile example”, and “.Net build system script”. We did not receive
any comments for this task.

HTML/CSS Templates for Front End Development (T23) In our observational study,
we noticed 45 queries related to this task. Examples of this search task include: “php
forum template”, “css blog style template”, and “wordpress template”. The following are
the representative comments that we received on the frequency and difficulty of this task:

+F “Since there are a lot of frameworks for front end development, reuse them can
improve the productivity. ”

*D “Too many low quality HTML/CSS templates, which make it difficult to find the
useful one.”

3.6 Tools

Usage Examples and Guidance on How to use Operating System Command Line
Interfaces (T24) In our observational study, we noticed 723 queries related to this task.
Examples of this search task include: “apt-get options”, “Windows ipconfig”, and “mkdir”.
Most of the interviewees mentioned that they frequently search for usage examples of the
operating system command line interfaces since “there are too many options for a command,
and they cannot remember all of them” (P4 and P9). The following are the representative
comments that we received on the frequency and difficulty of this task:

+F “I have little experience with the shell and only use it for git and cmake primarily
- for anything else, I have to look up how to accomplish my task.”

+F “A lot of commands are rare enough that they’re hard to memorize, so searching
is the usual method of learning/remembering how to use them (man is usually a
bad explanation).”

+F “I practically live in my terminal so I’m always finding/learning about new CLI
tools that I can use to accomplish a task, hence I search for usage details.”

*D “Because OS stuff is usually not targeted for beginners (except Stack Overflow
answers).”

From the above comments, developers often search for the usage of operating system
command line interfaces because: (1) they may have little experience on commands, (2)
there are many rare commands that are hard to memorize, and (3) they search and learn
new command line interface to help them during their development process. The main com-
plaint on the difficulty to get desired results is that some tutorials or advice are not easily
understood by beginners.

3174 Empir Software Eng (2017) 22:3149–3185

Usage Examples and Guidance on How to use and Customize IDEs (T25) In our
observational study, we noticed 32 queries related to this task. Examples of this search task
include: “Eclipse how to debugging”, “how to auto-complete code in Eclipse”, and “how to
add a third-party JAR in Eclipse”. Our interviewees considered this task as a frequent task
“especially for new developers who have never used Eclipse or Visual Studio before” (P5),
and finding the results for this task was not difficult “since there are many technical blogs
on this topic already” (P4). We did not receive any comments for this task.

Usage Examples and Guidance on How to use Version Control Systems (T26)
In our observational study, we noticed 28 queries related to this task. Examples of this
search task include: “Git log”, “SVN conflicts resolve”, and “git clone”. The representative
comments that we received on the frequency of this task are the following:

+F “Well, it’s hard to memorize all options of a version control tool.”
+F “Git. Need I say more? That thing is impossible to use without constantly searching

for recipes.”
+F “Git’s command-line interface is hard to drive even when you understand the

principles, if you don’t invest in a study of it, which I haven’t.”

Usage examples and guidance on how to use issue tracking systems (T27) In our
observational study, we noticed 14 queries related to this task. Examples of this search task
include: “How to assign severity in Bugzilla”, “Crawler Bugzilla bug report”, and “JIRA
guideline”. We receive only one comment in support of the difficulty of this task:

*D “Such info is usually buried inside issue tracker’s help system, which is often not
indexed good enough.”

Usage Examples and Guidance on How to use Code Review Systems (T28) In our
observational study, we noticed six queries related to this task. Examples of this search task
include: “Gerrit usage”, “gerrit git pull”, and “approve code review Gerrit”. We did not
receive any comments for this task.

3.7 Database

Usage Examples or Guidance on How to Form SQL Statements (T29) In our obser-
vational study, we noticed 923 queries related to this task. Examples of this search task
include: “how to write store procedure in mysql”, “sql delete one column”, and “group
statement sql”. Ten out of 12 interviewees mentioned that they frequently search for the
formation of SQL statements since “it is hard to remember so many statements” (P9), and
finding the results for this task is easy since “there are plenty of well-documented blogs or
posts online” (P5). The representative comments that we received on the frequency of this
task are the following:

+F “SQL isn’t my strong point so I generally need help when I’m trying to formulate
advanced queries.”

+F “I use SQL databases in my work and the query syntax is a little tedious and hard
to remember, so I end up googling around for it.”

Usage Examples or Guidance on How to use a no-SQL Database (T30) In our
observational study, we noticed 54 queries related to this task. Examples of this search task

Empir Software Eng (2017) 22:3149–3185 3175

include: “mongoDB install”, “mongoDB select count”, and “mongoDB turotial”. We did
not receive any comments for this task.

Database Optimization Solutions (T31) In our observational study, we noticed 238
queries related to this task. Examples of this search task include: “mysqlcheck options”,
“index mysql create optimization”, and “optimization strategies sql server”. Five out of the
12 interviewees considered this task as difficult since most of the database optimization
solutions found online cannot be directly used to solve the problems that they face. The rep-
resentative comments that we received on the frequency and difficulty of this task are as
follows:

+F “The database used in our project contains TB data, the search speed is too slow,
thus we always search for optimization solution to increase the search speed in the
database.”

+F “It is important and common to optimize the database if you use distributed
database (e.g., HBase) or real-time database.”

*D “Most of database optimization solutions I want to search are often very specific,
which make it difficult to get the one I want.”

*D “Often I notice there are a number of noise during my search, a lot of arti-
cle with the title “database optimization” actually have nothing about database
optimization.”

*D “Hard to describe what I want to search in several words by using Google.”

From the above comments, developers often search for database optimization solutions
since their databases are too large and they must do the optimization, and some specific type
of databases (e.g., distributed database and real-time database) need to be optimized often.
However, it is difficult to get the desired results because: (1) the target amount of noise
in the search results, (2) hard to formulate the search query about a database optimization
solution, and (3) the solution for which they are searching is too specific which in turn leads
to no results matching.

3.8 Testing

Guidelines of Testing Methods (T32) In our observational study, we noticed 62 queries
related to this task. Examples of this search task include: “junit turotial”, “test case genera-
tion”, and “smoke test”. The representative comments that we received on the frequency of
this task are as follows:

+F “I do not generally engage in this behaviour and so am not familiar with the
terminology.”

+F “Because the current test method used in my project are incomplete and inaccu-
racy.”

Usage Examples and Guidance on How to use an Automated Testing Tool (T33)
In our observational study, we noticed 72 queries related to this task. Examples of this
search task include: “WebDriver script”, “LoadRunner Replay”, and “Jmeter tutorial”. The
representative comments that we received on the frequency of this task are as follows:

+F “I have been using Jasmine and Protractor for Angular.js and need to learn some
portions of it.”

3176 Empir Software Eng (2017) 22:3149–3185

+F “I’m a test enthusiast. Since I code in many programming languages and my
memory keeps deceiving me, I’m always searching for better ways to test my code.”

+F “Best practice in this area are moving quickly; lots of new (free for OS projects)
CI services are becoming available.”

From the above comments, developers often search for usage example and guidance on
how to use an automated testing tool because: (1) they often use automated testing tool
in practice, (2) they always search for better automated testing tools to ensure that their
code is bug-free, and (3) they plan to integrate automated testing tools into their continuous
integration (CI) process.

Public Datasets to Test a Newly Developed Algorithm or System (T34) We did
not find a query related to this task in our observational study. However, during our inter-
view, P10, who is an algorithm developer, pointed out that he frequently searches for public
datasets to test new algorithms, but it was difficult to find the desired results since people
are not likely to share their datasets and some datasets may leak private information.” The
representative comments that we received on the difficulty of this task are the following:

*D “Test datasets are often not linked to algorithm implementations.”
*D “Finding good and useful datasets turned out to be cumbersome. I guess this is

mostly because companies don’t like to share many information.”
*D “Good public datasets are rare, period. Once you think you found one, it’s 1)

incomplete, or 2) outdated/ unmaintained.”
*D “Useful datasets are often very domain specific.”
*D “A newly designed system by definition doesn’t fit an existing data set, so not only

do you need to find that data, you need to find it in a way that is manageable to
manipulate.”

From the above comments, we notice that developers find it difficult to find public
datasets to test their newly developed algorithms or systems because: (1) good public
datasets are rare, and most of them are incomplete or outdatad, and (2) the datasets for
which they are searching are domain specific.

4 Discussion

4.1 Implications

Code Search Engines From our survey, some respondents mentioned that current search
engines such as Google do not provide good support for code search. Also, we found that
search for reusable code snippets (T19) is both a frequent and difficult search task for
developers. The following are some comments that we collected related to code search:

* “Google obviously doesn’t always handle code well, e.g. underscores etc. It would
be useful if it stopped autocorrecting that, or if there was something you can e.g.
append to the URL.”

* “Allow special characters in search queries! When I search for C++, don’t search
for C with two spaces after it!”

* “Allow me to search in all worldwide open source code by writing code expressions.
Allow me to search in all code repositories together with one simple textbox. Allow

Empir Software Eng (2017) 22:3149–3185 3177

me to search for weird symbols and operators treating them literally. Show good
code search results prioritizing things that semantically make sense in code – if I
search for a method name within a repository, show me the method definition, not
the use.”

* “Improve tools for searching code online. All software hosting sites (i.e.
Github/Bitbucket/grepcode/etc.) have very poor tools for searching code. Provide a
way to jump directly from a stack trace to the matching code (same revision/file/line
number) if the code is hosted online Provide tools for “jump to definition” in online
code browsers. Basically make online code as easy to browse as within an IDE.”

From the above comments, a developer-friendly web search engine should have the
following functionalities: (1) support web search with software engineering (SE) related
symbols and terminologies, (2) allow developers to specify that search results should origi-
nate from code repositories and SE related websites, (3) integrate search functionalities into
IDEs, and (4) prioritize search results by considering their semantic meanings relative to the
particular context in which a developer is working.

Past studies (e.g., Krugle 2014; Koders 2016; Lemos et al. 2007; Bajracharya et al. 2006;
Linstead et al. 2009) also try to develop code search engines to help developers to improve
their search efficiency. Our findings support these existing research studies, and it would be
interesting to integrate these code search engines into some general search engines such as
Google.

Notice our findings are also consistency with Sim et al.’s findings (Sim et al. 2011, 2012).
Sim et al. found that code search engines worked better in searches for subsystems such
as implementation and usage examples, but general search engines, e.g., Google, worked
better on searches for blocks such as code lines or blocks (Sim et al. 2011). Notice Sim et
al.’s findings are based on a controlled experiments of 36 participants, while our study is
based on a large-scale empirical study of developers’ perceptions of their online searching
activities.

Moreover, from the comments, we also found that IDEs has shortcoming on information
seeking and there is a need to design next-generation IDEs that can help developers to do
what they want without the need for constant switching between search engines and the
IDE. Past studies (e.g., Ponzanelli et al. 2013; Rahman et al. 2014) also investigate how
to integrate search engines or Stack Overflow into IDEs. Our findings support these recent
research studies and the need for further advances in this direction.

Domain-specific Search Engines From our observational study, interview, and survey,
we noticed that most of the developers use general search engines such as Google or Bing to
search. However, general search engines fail in many instances to return the desired results,
and they are not fulfilling all needs. For example, participants found it difficult to find pub-
lic datasets to test a newly developed algorithm or system, since general search engine are
not able to locate domain-specific datasets (T34). Thus, developing domain-specific search
engines might be one solution to help address the limitations of general search engines.
Such a domain-specific search engine should understand software engineering terminology
and domain concepts, and be able to disambiguate query terms and web site contents based
on these terminology and concepts. It should also automatically identify useful software
information sites, and prioritize results from these sites while ignoring sites containing con-
tent that is irrelevant to software development. Of course, if relevant content does not exist
online, no search engines can find it.

3178 Empir Software Eng (2017) 22:3149–3185

Automated Generation and Refinement of Search Queries For some search tasks
(e.g., search for reusable code snippets (T19), and search for database optimization solutions
(T31)), some respondents mentioned that it is often difficult to formulate their search in a
few words. Hence, researchers should explore automated ways to interactively elicit search
requirements (e.g., by asking some questions and allowing developers to provide simple
answers), and/or automatically generate and refine search queries based on the context in
which a developer is working (i.e., by monitoring the state of his/her IDE). Some related
research tools have been proposed in the literature to reformulate search queries for text
retrieval in software engineering (e.g., Haiduc et al. 2013), but more work is needed to build
a solution that can effectively help developers with online searching. For example, Haiduc et
al. propose Refoqus that can refine a user query based on the top-k (e.g., k = 10) documents
that are retrieved by a query (Haiduc et al. 2013). However, it would be possible that all
top-k documents are irrelevant to the query, and for such cases, there is a need to investigate
other ways to refine user queries.

Quality Prediction for Search Results From our survey, a number of respondents men-
tioned that due to a number of low quality online posts and blogs (e.g. low quality code
snippets (T19) and HTML/CSS template (T23)), it costed them much time to find their
desired results. One way to cope with low quality online content is to indicate the quality
of each search results when they are displayed. Some comments that we collected from our
respondents on this point are as follows:

* “Some weighing of the quality of search results. E.g. stackoverflow is full of low-
quality answers.”

* “Quality analysis for libraries, something like Google’s PageRank but for
libraries.”

* “Filtering out results that are known of low quality.”
* “Being able to determine if a specific search result actually contains a solution to

a problem. Far too often you search for an error message and the top 5 hits all
contain just a question on various forums, but not actual solutions.”

* “Another problem for error messages is that you often end up with lots of spam
results, e.g., sites that simply copy questions from forums into blog posts. The forum
might not have been indexed by Google, but the spam posts were. Thus, you end up
finding the question, but not the answers.”

Configuration, Security, and Performance Bug Fixing In our observational study, we
noticed there are a number of queries related to configuration and security bugs (1,402 and
103 queries, respectively). From our survey, most of the respondents also mentioned that
they often search for solutions to configuration, security, and performance bugs (T9, T10,
and T11). But it is often difficult to get the desired results, for example, configuration bugs
are often system-dependent, with many online solutions not always working. Our findings
highlight the importance of these three types of bugs. Future research efforts should develop
more tools to support the fixing of these three types of bugs, or develop a specific search
engine which can index and allow developers to effectively search for solutions to such
types of bugs.

Knowledge Sharing and Community Building Our survey shows that some developers
like to share their programming experience (T13), but some respondents also mentioned
that some knowledge is not very easy to find, e.g. good industry practice (T6) and public

Empir Software Eng (2017) 22:3149–3185 3179

dataset (T34). So, Some respondents highlighted the need for more developers to share their
knowledge, experience, and know-how online, and more online communities in order to
provide high-quality information and support related to various technical topics:

* “I think the information available on the internet depends heavily on the commu-
nity. I found the JavaScript developer community to be very beginner friendly. I’ve
recently started to learn a bit Haskell and found the information on the internet to
be very hard to understand. ”

* “Encourage more people to share their excellent experience & solutions can help
to improve the search efficiency. ”

Stack Overflow, which is one of the largest question and answering (Q&A) site focus-
ing on software development, has provided a platform for many developers to share. From
our observational study, we find that developers frequently use Stack Overflow to find the
desired results, and 63% of the searches ended up with a visit to Stack Overflow. Thus,
Stack Overflow is a great start but there exists many challenges ahead of us as a community.

4.2 Threats to Validity

Internal Validity It is possible that some of our survey respondents do not understand
some of the descriptions of the 34 search tasks well enough. To reduce this threat to valid-
ity, we provided “I do not understand / I prefer not to answer” option in our survey, and we
found that the number of respondents who choose this option to be small (less than 3%). We
also translated our survey to Chinese to ensure that respondents from China can understand
our survey well. We only have our survey in two languages (English and Chinese) since
these two are the languages that are spoken by most people in the world16. It is also possible
that we drawed wrong conclusions about participant’s perceptions from their comments. To
minimize this threat, we read the interview transcripts many times, and we also checked the
survey results and the corresponding comments several times. Moreover, in our observa-
tional study, to reduce personal bias and errors in our manual analysis of the search queries,
we applied a semi-automated approach which leverages LDA to automatically extract topics
from the queries, then we manually analyzed the topics to derive search tasks.

Another internal threat relates to the tool ActivitySpace that we used to collect the search
queries from developers, which may bias the generalizability of our 34 search tasks. To
address this threat, we installed ActivitySpace into 60 developers’ desktop computers, and
these 60 developers were of different professional experience, and worked on projects which
cover a wide topics. Moreover, we collected and analyzed the queries from various search
engines and online sites which are the main sites that developers would refer to when they
search online, including Google, Baidu, Bing, Stack Overflow, CSDN, Quora, and Zhihu. In
our paper, we did not capture what developers might ask during coding (Sillito et al. 2006),
and developers may also use other search engines or online tools to perform search task.

External Validity To improve the generalizability of our findings, we performed an obser-
vational study with 60 developers tracking their web search behaviors during two weeks,
interviewed 12 senior developers from two companies, and surveyed 235 respondents from
more than 21 countries across five continents working for various companies (including

16https://en.wikipedia.org/wiki/List of languages by total number of speakers

https://en.wikipedia.org/wiki/List_of_languages_by_total_number_of_speakers

3180 Empir Software Eng (2017) 22:3149–3185

Microsoft, Baidu, Alibaba, NetEase, Hengtian, IGS and many other small to large com-
panies) or contributing to open source projects hosted on GitHub. Still, our findings may
not generalize to represent the perception of all software engineers. Moreover, we only
considered 34 search tasks which are categorized into seven dimensions.

Another threat is that all the participants in observational study and interviews are from
two Chinese companies, and thus probably have Chinese as their first language. This may
hinder their search effectiveness, as most Q&A sites related to software are in English, and
Google is blocked in China. However, from the 12,051 queries that we collected in the
observational study, 8,102 queries were written using English, and 3,949 queries were writ-
ten using Chinese. It is common for Chinese developers to use English Q&A sites such as
Stack Overflow, and Google can be accessed using special settings. Moreover, to reduce this
threats due to the participants being all from China in the observational study and interviews,
we perform a large-scale survey study that involves a total of 235 developers across 21 dif-
ferent countries. In our survey, 82 developers are from North America (US and Canada), 51
are from Europe, 15 are from Australia and New Zealand, and 87 are from Asia (including
75 developers from China). The diversity of the respondents helps us combat this threat.

5 Related Work

There are many studies on code searching which is one specific search task that devel-
opers perform. Previous researchers have investigated developer code search practices by
conducting surveys (Sim et al. 1998; Stolee et al. 2014). Sim et al. found that the most com-
mon motivators behind code search are defect repair, code reuse, program understanding,
feature addition, and impact analysis (Sim et al. 1998). Stolee et al. found that 59% of the
surveyed developers perform code search daily (Stolee et al. 2014). Search logs are also a
good dataset to study the search behavior of developer. By analyzing search logs, Brandt
et al. found that 48% of the queries contain just code, 38% contain just natural language,
and 14% contain a mix of both (Brandt et al. 2009). Sadowski et al. conducted a study at
Google by surveying developers and analyzing search logs to learn how developers search
for code (Sadowski et al. 2015). Their study investigated the time when developers form a
search, search scope, query properties and the search context. Bajracharya et al. conducted
an analysis of the usage log of Koders (2016), a source code search engine, over a period of
one year using topic modelling to understand what users of code search engines are look-
ing for (Bajracharya and Lopes 2009, 2012). Treude et al. categorized the kinds of question
that are asked on Stack Overflow and explore which questions are answered well and which
ones remain unanswered (Treude et al. 2011). In this study, we investigate web search tasks
that developers perform throughout the software development process. Developers search
for not only code but also many other things, e.g., best industrial practices, and how to use a
particular tool. Moreover, we extract and analyze search tasks not only from search engines
such as Google, but also from other online sites such as Stack Overflow.

A number of researchers have performed user studies in controlled settings to better
understand developers’ search behavior when they create a new software program (Brandt
et al. 2009), maintained existing software system (Li et al. 2013; Ko et al. 2006), test a
piece of code (Lemos et al. 2007), and questions that asked during software evolution tasks
(Sillito et al. 2006). For instance, Li et al. observed the development process of 24 devel-
opers and then divided the process into several search sessions (Li et al. 2013). They found
that developers perform 4.3 and 6.6 web searches on average in each search session of
two maintenance tasks respectively. Ko et al. found that developers start maintenance tasks

Empir Software Eng (2017) 22:3149–3185 3181

by searching for relevant code using their IDE (40/48 participants) or Google (8/48 par-
ticipants) (Ko et al. 2006). Sillito et al. conducted two qualitative studies of programmers
performing change tasks to medium-size and large-size programs, and they categorize 44
different kinds of questions that are asked by participants (Sillito et al. 2006).

Although these studies give us a deeper understanding of how developers search dur-
ing software development, maintenance and testing, there are some shortcomings, such as,
small number of participants, no professional developers participating in the study, and user
study not being performed in a real working environment. Moreover, these studies have not
investigated the frequency and difficulty of the specific 34 search tasks that we consider in
our paper along with the rationale on the frequency and difficulty of these tasks.

A number of studies have been conducted to investigate the behaviors of common users
of general-purpose web search engines (Jansen et al. 2000; Spink et al. 2002; Silverstein
et al. 1999; Lee et al. 2005). Broder classified web queries according to their intents into
three classes: navigational, informational and transactional (Broder 2002), while Rose
and Levinson concluded three user goals in web search: navigational, informational and
resource (Rose and Levinson 2004). Cutrell and Guan used eye tracking technology to
explore the effects of changes in the presentation of search results (Cutrell and Guan 2007).
Different from the above studies, our study focuses on web search activities that developers
perform related to their software engineering tasks.

6 Conclusion

In this work, we surveyed 235 practitioners from diverse backgrounds to better understand
what developers search for on the Web. We investigated a total of 34 search tasks which are
grouped into seven dimensions, and asked the practitioners to rate the frequency and dif-
ficulty of these search tasks and to provide the rationale of their ratings. We summarized
the practitioner responses and highlighted opportunities for future research to better sup-
port developers’ online searching activities. Specifically, we highlighted the importance of
(1) developing domain-specific search engines, (2) automated generation and refinement of
search queries, (3) automated prediction of the quality of search results, (4) configuration,
security, and performance bug fixing, and (5) knowledge sharing and community build-
ing. Moreover, our findings are consistent with previous studies on code search engines.
We hope that our studies would inspire more studies on developing efficient and effective
domain-specific search engines and code search engines, to help developer improve their
productivity.

Acknowledgments The authors thank to all the developers who participated in this study. This research is
supported by NSFC Program (No.61602403) and National Key Technology R&D Program of the Ministry
of Science and Technology of China under grant 2015BAH17F01.

References

Krugle (2014) http://opensearch.krugle.org/projects/
Koders (2016) http://www.koders.com
Bajracharya S, Ngo T, Linstead E, Dou Y, Rigor P, Baldi P, Lopes C (2006) Sourcerer: a search engine

for open source code supporting structure-based search. In: Proceedings of the 21st ACM SIGPLAN
symposium on object-oriented programming systems, languages, and applications, ACM, pp 681–682

http://opensearch.krugle.org/projects/
http://www.koders.com

3182 Empir Software Eng (2017) 22:3149–3185

Bajracharya SK, Lopes CV (2009) Mining search topics from a code search engine usage log. In: Proceedings
of the 6th international working conference on mining software repositories (MSR), IEEE

Bajracharya SK, Lopes CV (2012) Analyzing and mining a code search engine usage log. Empir Softw Eng
17(4-5):424–466

Bao L, Xing Z, Wang X, Zhou B (2015a) Tracking and analyzing cross-cutting activities in developers’
daily work. In: Proceedings of the 30th IEEE/ACM international conference on automated software
engineering (ASE), pp 277–282

Bao L, Ye D, Xing Z, Xia X,Wang X (2015b) Activityspace: a remembrance framework to support interappli-
cation information needs. In: Proceedings of the 30th IEEE/ACM international conference on automated
software engineering (ASE), IEEE, pp 864–869

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022
Brandt J, Guo PJ, Lewenstein J, Dontcheva M, Klemmer SR (2009) Two studies of opportunistic program-

ming: interleaving web foraging, learning, and writing code. In: Proceedings of the SIGCHI conference
on human factors in computing systems, ACM, pp 1589–1598

Broder A (2002) A taxonomy of web search. In: ACM SIGIR Forum, ACM, vol 36, pp 3–10
Cutrell E, Guan Z (2007) What are you looking for?: an eye-tracking study of information usage in web

search. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM,
pp 407–416

Haiduc S, Bavota G, Marcus A, Oliveto R, Lucia AD, Menzies T (2013) Automatic query reformulations for
text retrieval in software engineering. In: Proceedings of the 35th international conference on software
engineering (ICSE), pp 842–851

Jansen BJ, Spink A, Saracevic T (2000) Real life, real users, and real needs: a study and analysis of user
queries on the web. Inf Process Manag 36(2):207–227

Ko AJ, Myers BA, Coblenz MJ, Aung HH (2006) An exploratory study of how developers seek, relate,
and collect relevant information during software maintenance tasks. IEEE Trans Softw Eng (TSE)
32(12):971–987

Lee U, Liu Z, Cho J (2005) Automatic identification of user goals in web search. In: Proceedings of the 14th
international conference on world wide web (WWW), ACM, pp 391–400

Lemos OAL, Bajracharya SK, Ossher J, Morla RS, Masiero PC, Baldi P, Lopes CV (2007) Codegenie:
using test-cases to search and reuse source code. In: Proceedings of the 22nd IEEE/ACM international
conference on automated software engineering (ASE), ACM, pp 525–526

Li H, Xing Z, Peng X, Zhao W (2013) What help do developers seek, when and how? In: Proceedings of the
20th working conference on reverse engineering (WCRE), IEEE, pp 142–151

Linstead E, Bajracharya S, Ngo T, Rigor P, Lopes C, Baldi P (2009) Sourcerer: mining and searching
internet-scale software repositories. Data Min Knowl Disc 18(2):300–336

Ponzanelli L, Bacchelli A, Lanza M (2013) Seahawk: Stack overflow in the ide. In: Proceedings of the 2013
international conference on software engineering, IEEE Press, pp 1295–1298

Rahman MM, Yeasmin S, Roy CK (2014) Towards a context-aware ide-based meta search engine for recom-
mendation about programming errors and exceptions. In: Software evolution week-IEEE conference on
software maintenance, reengineering and reverse engineering (CSMR-WCRE), 2014, IEEE, pp 194–203

Rose DE, Levinson D (2004) Understanding user goals in web search. In: Proceedings of the 13th
international conference on world wide web (WWW), ACM, pp 13–19

Sadowski C, Stolee KT, Elbaum S (2015) How developers search for code: a case study. In: Proceedings of
the 10th joint meeting on foundations of software engineering (FSE), ACM, pp 191–201

Scott AJ, Knott M (1974) A cluster analysis method for grouping means in the analysis of variance.
Biometrics 30(3):507–512

Sillito J, Murphy GC, De Volder K (2006) Questions programmers ask during software evolution tasks.
In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software
engineering, ACM, pp 23–34

Silverstein C, Marais H, Henzinger M, Moricz M (1999) Analysis of a very large web search engine query
log. In: ACM SIGIR Forum, ACM, vol 33, pp 6–12

Sim SE, Clarke CL, Holt RC (1998) Archetypal source code searches: a survey of software developers and
maintainers. In: Proceedings of the 6th international workshop on program comprehension (IWPC),
IEEE, pp 180–187

Sim SE, Umarji M, Ratanotayanon S, Lopes CV (2011) How well do search engines support code retrieval
on the web? ACM Trans Softw Eng Methodol (TOSEM) 21(1):4

Sim SE, Philip K, Umarji M, Agarwala M, Gallardo-Valencia R, Lopes CV, Ratanotayanon S (2012) Soft-
ware reuse through methodical component reuse and amethodical snippet remixing. In: Proceedings of
the ACM 2012 conference on computer supported cooperative work, ACM, pp 1361–1370

Empir Software Eng (2017) 22:3149–3185 3183

Xin Xia received his PhD degree in computer science from the College of Computer Science and Technology,
Zhejiang University, China in 2014. He is currently a post-doc research fellow in the software practices lab at
the University of British Columbia, Canada. His research interests include software analytic, empirical study,
and mining software repository.

Lingfeng Bao is currently a Postdoc in the College of Computer Science and Technology, Zhejiang Univer-
sity. He received his B.E. and PhD degrees from the College of Software Engineering, Zhejiang University in
2010 and 2016. His research interests include software analytics, behavioral research methods, data mining
techniques, and human computer interaction.

Spink A, Jansen BJ, Wolfram D, Saracevic T (2002) From e-sex to e-commerce: Web search changes.
Computer 35(3):107–109

Stolee KT, Elbaum S, Dobos D (2014) Solving the search for source code. ACM Trans Softw Eng Methodol
(TOSEM) 23(3):26

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017) An empirical comparison of model
validation techniques for defect prediction model. IEEE Trans Softw Eng (TSE) 43(1):1–18

Treude C, Barzilay O, Storey MA (2011) How do programmers ask and answer questions on the web?:
Nier track. In: Proceedings of the 33rd international conference on software engineering (ICSE), IEEE,
pp 804–807

Wuensch KL (2005) What is a likert scale? and how do you pronounce’likert?’. East Carolina University

3184 Empir Software Eng (2017) 22:3149–3185

David Lo received his PhD degree from the School of Computing, National University of Singapore in
2008. He is currently an Associate Professor in the School of Information Systems, Singapore Management
University. He has close to 10 years of experience in software engineering and data mining research and has
more than 200 publications in these areas. He received the Lee Foundation Fellow for Research Excellence
from the Singapore Management University in 2009, and a number of international research awards including
several ACM distinguished paper awards for his work on software analytics. He has served as general and
program co-chair of several prestigious international conferences (e.g., IEEE/ACM International Conference
on Automated Software Engineering), and editorial board member of a number of high-quality journals (e.g.,
Empirical Software Engineering).

Pavneet Singh Kochhar is a PhD candidate in School of Information Systems at Singapore Management
University. He has previously done summer internship at Microsoft Research and an exchange programme at
Carnegie Mellon University. His research interests involve empirical software engineering, mining software
repositories, software testing and bug localization. His work has been published in many international con-
ferences and journals such as ASE, ISSTA, EMSE, SANER, ICST, MSR and QSIC. He has also served as
an external reviewer for many conferences and journals.

Empir Software Eng (2017) 22:3149–3185 3185

Ahmed E. Hassan is the Canada Research Chair (CRC) in Software Analytics, and the NSERC/BlackBerry
Software Engineering Chair at the School of Computing at Queen’s University, Canada. His research inter-
ests include mining software repositories, empirical software engineering, load testing, and log mining. He
received a PhD in Computer Science from the University of Waterloo. He spearheaded the creation of the
Mining Software Repositories (MSR) conference and its research community. He also serves on the editorial
boards of IEEE Transactions on Software Engineering, Springer Journal of Empirical Software Engineering,
and PeerJ Computer Science. Contact ahmed@cs.queensu.ca. More information at: http://sail.cs.queensu.ca/

Zhenchang Xing is the senior lecturer at the research school of computer science, Australian National
University, Australia. Dr. Xing’s research interests include software engineering and human-computer inter-
action. His work combines software analytics, behavioral research methods, data mining techniques, and
interaction design to understand how developers work, and then build recommendation or exploratory search
systems for the timely or serendipitous discovery of the needed information.

http://sail.cs.queensu.ca/

	What do developers search for on the web?
	Abstract
	Introduction
	Research Methodology
	Observational Study
	Protocol
	Participant Selection
	Data Analysis

	Open-Ended Interviews
	Protocol
	Participant Selection
	Data Analysis

	Validation Survey
	Protocol
	Respondent Selection
	Data Analysis

	Results
	Overview
	General Search
	Explanation for Unknown Terminologies (T1)
	Background Knowledge Related to a Project (T2)
	Software Developers of Interest (T3)
	Laws or Regulations About a Technology (T4)
	Description of a License (T5)
	Best Industrial Practices (T6)

	Debugging and Bug Fixing
	Explanations for Exceptions/Error Messages (T7)
	Solutions to Common Programming Bugs (T8)
	Solutions to Software Configuration Bugs (T9)
	Solutions to Security Bugs (T10)
	Solutions to Performance Bugs (T11)
	Solutions to Multi-threading Bugs (T12)

	Programming
	Usage Examples or Guidance on How to use a New Programming Language (T13)
	Usage Examples and Guidance on How to use a New Feature of a Programming Language (T14)
	Standards (T15)
	Usage Examples or Guidance on How to use a Design Pattern (T16)
	Usage Examples or Guidance on How to Avoid an Anti-pattern (T17)
	Pseudocode, Code Example, or Principle of an Algorithm (T18)

	Third Party Code Reuse
	Reusable Code Snippets (T19)
	Suitable Third-Party Libraries/Services (T20)
	Usage Examples or Guidance on How to use Third-Party Libraries/Services (T21)
	Configuration Script Examples of a Build System Tool (T22)
	HTML/CSS Templates for Front End Development (T23)

	Tools
	Usage Examples and Guidance on How to use Operating System Command Line Interfaces (T24)
	Usage Examples and Guidance on How to use and Customize IDEs (T25)
	Usage Examples and Guidance on How to use Version Control Systems (T26)
	Usage examples and guidance on how to use issue tracking systems (T27)
	Usage Examples and Guidance on How to use Code Review Systems (T28)

	Database
	Usage Examples or Guidance on How to Form SQL Statements (T29)
	Usage Examples or Guidance on How to use a no-SQL Database (T30)
	Database Optimization Solutions (T31)

	Testing
	Guidelines of Testing Methods (T32)
	Usage Examples and Guidance on How to use an Automated Testing Tool (T33)
	Public Datasets to Test a Newly Developed Algorithm or System (T34)

	Discussion
	Implications
	Code Search Engines
	Domain-specific Search Engines
	Automated Generation and Refinement of Search Queries
	Quality Prediction for Search Results
	Configuration, Security, and Performance Bug Fixing
	Knowledge Sharing and Community Building

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Conclusion
	Acknowledgments
	References

