Empir Software Eng (2017) 22:2892-2936 @ CrossMark
DOI 10.1007/510664-016-9491-z

Managing the requirements flow from strategy to release
in large-scale agile development: a case study at Ericsson

Ville T. Heikkili! © . Maria Paasivaara! -
Casper Lasssenius! - Daniela Damian? -

Christian Engblom?

Published online: 10 January 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In a large organization, informal communication and simple backlogs are
not sufficient for the management of requirements and development work. Many large
organizations are struggling to successfully adopt agile methods, but there is still lit-
tle scientific knowledge on requirements management in large-scale agile development
organizations. We present an in-depth study of an Ericsson telecommunications node
development organization which employs a large scale agile method to develop telecom-
munications system software. We describe how the requirements flow from strategy to
release, and related benefits and problems. Data was collected by 43 interviews, which
were analyzed qualitatively. The requirements management was done in three different
processes, each of which had a different process model, purpose and planning horizon.
The release project management process was plan-driven, feature development process was
continuous and implementation management process was agile. The perceived benefits

Communicated by: Daniel Amyot

>4 Ville T. Heikkila
ville.t.heikkila@aalto.fi

Maria Paasivaara
maria.paasivaara@aalto.fi

Casper Lasssenius
casper.lassenius @aalto.fi

Daniela Damian
damian.daniela@gmail.com

Christian Engblom
christian.engblom @ericsson.com

1 Aalto University, PO Box 15400, FI-00076, Aalto, Finland
2 University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada

3 Oy LM Ericsson AB, Kirkkonummi, Finland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-016-9491-z&domain=pdf
http://orcid.org/0000-0002-1181-1533
mailto:ville.t.heikkila@aalto.fi
mailto:maria.paasivaara@aalto.fi
mailto:casper.lassenius@aalto.fi
mailto:damian.daniela@gmail.com
mailto:christian.engblom@ericsson.com

Empir Software Eng (2017) 22:2892-2936 2893

included reduced development lead time, increased flexibility, increased planning effi-
ciency, increased developer motivation and improved communication effectiveness. The
recognized problems included difficulties in balancing planning effort, overcommitment,
insufficient understanding of the development team autonomy, defining the product owner
role, balancing team specialization, organizing system-level work and growing technical
debt. The study indicates that agile development methods can be successfully employed
in organizations where the higher level planning processes are not agile. Combining agile
methods with a flexible feature development process can bring many benefits, but large-
scale software development seems to require specialist roles and significant coordination
effort.

Keywords Scaling agile software development - Requirements management - Scrum -
Large projects - Telecommunications software

1 Introduction

The traditional, plan-driven product and project management models are not well suited
for agile development organizations where scoping decisions must be made frequently
and requirements engineering is performed concurrently with implementation (Jantunen
et al. 2011). If the requirements management processes do not support the agile devel-
opment organization, it is difficult for the development organization to work efficiently
towards the high level goals of the company. Due to the short history of agile meth-
ods use in large organizations, reports on the best practices of agile development in
large organizations are lacking and many large organizations are struggling to imple-
ment efficient requirements processes (Laanti et al. 2011; Wiklund et al. 2013; Cao
et al. 2004). Although there is an increasing number of empirical studies of large-scale
agile development (e.g., Korhonen 2013; Laanti et al. 2011; Heikkil4d et al. 2015b; Moe
et al. 2014; Bass 2015; Eckstein 2014), there is little research on requirements manage-
ment in large-scale agile development organizations (Heikkild et al. 2015a; Inayat et al.
2015). Furthermore, most of the existing empirical research has focused on method pro-
posal and evaluation instead of understanding the phenomenon (Heikkild et al. 2015a).
Subsequently, more research is warranted in order to identify the contextual factors that
affect the success or failure of specific ways of requirements management in large orga-
nizations that employ agile development methods. Moreover, requirements engineering
activities are complex and intertwined with other development and management processes
in the organization (Damian and Chisan 2006), equally affected by human, organizational
and political aspects that surround them (Maiden 2012). Furthermore, detailed informa-
tion on requirements engineering practice in large organizations, in general, is scarce
(Maiden 2012).

Our goal is to describe the requirements processes on the release and implementation
management levels, and the interactions between the levels in a large organization that
develops telecommunications network software and uses agile practices in its software
development. We aim to reach this goal by studying the case organization and answering
the following research questions:

RQ1: How is the requirements flow from the strategy to a release managed?

RQ1.1: What are the organizational roles involved in the requirements flow?

@ Springer

2894 Empir Software Eng (2017) 22:2892-2936

RQ1.2: What are the processes of the requirements flow?

RQ2: What are the perceived benefits of the requirements management processes?
RQ3: What are the perceived problems related to the requirements management
processes?

The main contribution of this research is the in-depth description of these management
processes in the case organization. The existing literature on requirements engineering in
agile development is largely based on the single-team, single customer context (Heikkild
et al. 2015a; Inayat et al. 2015). To the best of our knowledge, our work is among the first
to uncover requirements engineering practices as embedded through the feature develop-
ment as well as the release project management and implementation management processes
of a large-scale agile development organization. Those aspects of large-scale agile develop-
ment that are not directly related to requirements management are out of the scope of our
research. These include, but are not limited to, communication tools, coaching, continuous
improvement, agile culture and agile contracts.

In a previous publication, we gave a preliminary description of how release planning was
conducted in the case organization (Heikkild et al. 2013b). This paper considerably expands
that publication both by scope and by depth and also contains data from four additional
interviews. The scope of this paper is expanded to include the interfaces between the dif-
ferent management levels, and it focuses on the requirements engineering practices that are
embedded within these levels. We provide an in-depth description of the actors, artifacts and
processes involved in the management of requirements and release projects, and analyze
both new and previously identified problems and benefits in more detail than in our previous
publication.

We have also studied the implementation planning process of the case organization
(Heikkild et al. 2013a), identifying quantitatively and explaining qualitatively the discrep-
ancies between the implementation planning process of the development teams in the case
organization and the normative Scrum process (Schwaber and Beedle 2002). Paasivaara
et al. (2013) described how global sites were included in the agile transformation at Eric-
sson. Paasivaara et al. (2014) studied how defining common values supported the agile
transformation at Ericsson. The focus and goals of this paper are considerably different from
these previous publications.

The rest of the paper is organized as follows: Section 2 discusses related work in order
to provide background knowledge and position our study. Section 3 describes our data col-
lection and data analysis methods. Section 4 provides background information on the case
organization. Section 5 presents the findings of the study. The findings, limitations and
threats to validity are discussed in Section 6. Finally, Section 7 concludes the paper and
gives directions for future work.

2 Background and Related Work

In this section, we review related work in order to position our research in the field of
requirements management and software engineering research. We also present background
information that is beneficial for understanding our case study and its relation to pre-
vious research. First, we summarize two recent secondary studies on agile requirements
engineering. Second, we discuss research on organizing and managing large-scale agile
development. Third, we review three models proposed for scaling agile development in
order to provide a point of comparison to our case.

@ Springer

Empir Software Eng (2017) 22:2892-2936 2895

2.1 Agile Requirements Engineering

Secondary studies on agile requirements engineering have been recently conducted by
Inayat et al. (2015) and Heikkili et al. (2015a). Their findings are summarized below.

There is no universally accepted definition of agile requirements engineering (agile RE)
(Heikkild et al. 2015a). Inayat et al. (2015) identified the following 17 RE practices that
were adopted in agile software development: Face-to-face communication between the agile
team members and client representatives, customer involvement and interaction, user sto-
ries as specifications of the customer requirements, iterative requirements that emerge over
time, iterative requirements prioritization, challenge management, cross-functional teams,
prototyping, test-driven development, requirements modeling, requirements management
with a product backlog, review meetings and acceptance tests, code refactoring, shared
conceptualizations, retrospectives, continuous planning and pairing for requirements anal-
ysis. According to Heikkild et al. (2015a), the activities performed in agile and traditional
RE have similar goals, but the methods and emphases are different, since traditional RE
emphasizes processes and documents while agile RE emphasizes reactivity and informal
communication.

Both articles identified benefits that agile RE has been claimed to have over traditional
RE (Heikkild et al. 2015a; Inayat et al. 2015). Agile RE is claimed to decrease process
overheads! due to the smaller amount of required requirements and system documenta-
tion. The frequent requirements and system validation by the customer(s) and the frequent
face-to-face communication are claimed to improve the understanding about requirements
and prevent communication gaps. Agile RE practices are claimed to reduce overallocation
of development resources. Agile RE is claimed to be more responsive to changes in the
environment or in the customers’ needs. Finally, agile RE is claimed to improve customer
relationships.

Both articles also identify challenges in the agile RE approach (Heikkil4 et al. 2015a;
Inayat et al. 2015). Agile RE relies on the availability of the customers, but due to cost, time
and trust issues the access to the customers or customer representatives is often limited.
Furthermore, the customers or the customer representatives may have conflicting needs,
they may be unwilling to prioritize requirements or they may not accurately represent the
needs of the customers’ organizations. The reliance on the simple user story format for
requirements documentation is problematic when requirements need to be communicated to
off-site stakeholders and the user story format may be insufficient for complex, large-scale
systems development. Since most requirements knowledge is tacit in agile RE, personnel
turnover is problematic. Non-functional requirements and system improvements may be
understated due to the customer value emphasis of agile RE. The de-emphasis of planning
and the short planning time horizon in agile RE may result in an inappropriate architecture
and technical debt. Precise budget and schedule estimation required by development con-
tracts is difficult without extensive planning, but due to the volatility of agile RE, extensive
planning is not considered worthwhile.

Solutions to the aforementioned problems are discussed in the articles (Heikkild et al.
2015a; Inayat et al. 2015), but most solutions are on the level of a proposal and the validation

UIn this paper, overhead refers to the effort spent on work that does not directly contribute to the end product,
but is necessary nevertheless. For example, learning or creating infrastructure are usually considered overhead
when learning or infrastructure are not the end product.

@ Springer

2896 Empir Software Eng (2017) 22:2892-2936

of the proposed solutions is lacking (Heikkili et al. 2015a). Typically, the proposed solutions
are based on the re-introduction of traditional RE practices, roles or artifacts.

2.2 Planning in Large-Scale Agile Development

One way to scale an agile development organization is to employ multiple small teams
that collaborate and share a common goal (Leffingwell 2011; Schwaber 2007; Augustine
2008). In a such organization, the product roadmaps are agnostic towards the development
methodology (Lehtola et al. 2005) and the development teams can employ any suitable agile
method. However, the release planning process must support the agile development teams
by providing goals and direction on what should be constructed (Rautiainen et al. 2002) and
by assisting in the inter-team coordination (Maglyas et al. 2012). On the other hand, the
release management process must take into account the realized development progress and
communicate it to the strategic management in order to give a realistic picture of the status
of the software development.

There is some evidence that adoptions to agile development life-cycle models must be
made in order to make them work well in a large-scale, multi-team development organi-
zation. Cao et al. (2004) reported changes to Extreme Programming (Beck and Andres
2004) that were made to adopt it to a large-scale development organization in a financial
application development context. The system architecture was planned six-months up-front,
instead of expecting the architecture to emerge during the development and the develop-
ers employed a limited number of predefined design patterns, instead of designing and
developing everything from scratch. Heikkild et al. (2015a) found that large organizations
developing complex software systems cannot rely solely on face to face communication and
simple, user story based requirements documentation when they adopt agile development
methods.

In consumer market software product development, the success of the product is tied
to the completion of the right set of requirements by the time of the public release
(Svahnberg et al. 2010; Fogelstrom et al. 2010; Chow and Cao 2008) and the release
schedule may be tied to dates mandated by trade shows, holiday seasons or competitors’
releases, for example. Software releases in telecommunications network software devel-
opment have traditionally been sparser due to the high fixed cost often associated with
version updates, and due to a risk averse attitude that follows from the mission critical
nature of lots of the software. However, the ability to respond to customer requests for new
or improved functionality in a timely fashion creates a competitive advantage also in the
telecommunications network software development context. Furthermore, the recent rise of
software-defined telecommunications networks emphasizes the importance of the software
side of the networks development (Batista et al. 2015).

There is a notable lack of empirical research on requirements management in large-scale
agile organizations that develop large, complex and hardware dependent software systems
such as telecommunications network software. In contrast to consumer market applications,
telecommunications software controls devices and mostly communicates with other devices
or software systems instead of a human user (Taramaa et al. 1996; Lee 2002). The soft-
ware development organization in such an environment is often an internal producer for
the more extensive systems development organization and the software is only one part of
the system or service that is provided for the customers. Unlike in consumer market soft-
ware product development, the requirements for the telecommunications network software
stem from a wide variety of sources in the encompassing systems development organi-
zation. In addition, telecommunications network software often requires customization in

@ Springer

Empir Software Eng (2017) 22:2892-2936 2897

order to fit the customers’ environment due to technical and regulatory reasons. These
aspects make telecommunications network software development inherently different from
consumer market application development.

2.3 Large-Scale Agile Development Organization Models

Although research literature on large-scale agile development organizational models is
scarce, many consultants and practitioners have proposed different kinds of models for
scaling agile development based on their experiences. We briefly review three notably dif-
ferent prescriptive models to provide an overview of the subject and to allow comparisons
to our case. The model proposed by Schwaber (2007) has been included because Ken
Schwaber is considered the most influential figure in the creation of the original Scrum
method (Schwaber and Beedle 2002). At the time of writing, two popular commercial scaled
agile frameworks are Large-Scale Scrum (LeSS)? and Scaled Agile Framework (SAFe)?,
both being prescriptive models. Figure 1 illustrates the different proposed development
organizations.

Schwaber (2007) suggests organizing development using a tree structure of multiple lev-
els of integration Scrum teams in the branch nodes and (development) Scrum teams in the
leaf nodes. The integration Scrum teams do not develop functional software, but instead
integrate, build and test the software implemented by the (development) Scrum teams. Both
kinds of Scrum teams have a dedicated product owner. All requirements are listed in a prod-
uct backlog as user stories. The branch node product owners are responsible for assigning
sections of the product backlog to the lower level teams. Release planning is performed
by the root node product owner by selecting a subset of the product backlog as the release
product backlog.

Larman and Vodde (2010) propose a two-layer model for scaling a large-scale devel-
opment organization. The further elaborations and extensions of this model have been
commercialized in the Large-Scale Scrum (LeSS) framework. Development teams are
arranged as feature teams that work on a single feature at a time and the team composition
persists over time. Feature teams are grouped into technical product areas. Each product
area is managed by an area product owner, who in turn are managed by a product owner.
The product owner manages the product backlog and assigns backlog items to the product
areas. Features are large backlog items that describe functionality that is valuable for the
customer. Features are split into smaller backlog items which can be implemented during
a single sprint. Only the dates of the external releases are planned, and the content of the
release is defined by what is ready at the time of the release.

Leffingwell (2011) suggests a three-layer model of the agile enterprise. A more detailed
version of this framework has been commercialized as the Scaled Agile Framework (SAFe).
The three layers are the portfolio, the program and the team layer. The portfolio layer
is planned with epics which are “large-scale development initiatives” that span multiple
releases and that are stored in the epic backlog. Epics are split into features which are
planned on the program layer and stored in the feature backlog. Features are descriptions
of system behavior that can be developed in a single release project. Product management
is responsible for managing the program backlog which contains the Features. Features
are split into stories which can be implemented in a single development Iteration. The

2See http://less.works/
3See http://www.scaledagileframework.com/

@ Springer

http://less.works/
http://www.scaledagileframework.com/

2898

Empir Software Eng (2017) 22:2892-2936

Release :
backlog Integration Scrum team
Backlog Software Integrators
items
|

Integration
backlog

Integration .
Integration Scrum team

R | :

Integration Scrum team

backlog

Software Integrators

Software Integrators

Team

Team

Team

Development Scrum team
(Product Owner)

backlog El

Development Scrum team
(Product Owner)

Team
backlog

Development Scrum team
(Product Owner)

Development Scrum team
(Product Owner)

(Software Developers) (Software Developers) (Software Developers) (Software Developers)

(a) Schwaber (2007)

Product T——
backlog | ==
fr— Product Owner
Features ‘ Features

Technical product area Technical product area

Area Product Owner Area Product Owner

Feature team
(Software Developers)

Feature team
(Software Developers)

Feature team
(Software Developers)

Feature team
(Software Developers)

(b) Larman and Vodde (2010)

bacElpoic — Portfolio
S| = Portfolio Management layer
Epicsl——
Pbmglzlam Program
acklog Product Management layer
Features
Team ¥ Team il'cam
backlog| == backlog backlog backlog ayer
Stories Ll —— Stories Stories Ll —— Stories Ll ——
Agile team Agile team Agile team Agile team
(Product Owner) (Product Owner) (Product Owner) (Product Owner)
(Software Developers) (Software Developers) (Software Developers) (Software Developers)

(c) Leffingwell (2011)

Fig. 1 Organization of large-scale agile development by (a) Schwaber, (b) Larman and Vodde and (c)

Leffingwell (figures originally from Heikkild (2015) reproduced with permission)

@ Springer

Empir Software Eng (2017) 22:2892-2936 2899

developers are organized in independent teams that each have a dedicated product owner.
Release planning is performed in release planning events where all stakeholders of the
product assemble to plan the next release together. A case study of release planning using
Leffingwell’s ideas has been published by Heikkili et al. (2015b).

Although these models are purportedly based on experiences in real software develop-
ment organizations, the empirical validation of the models is weak. As Fig. 1 illustrates,
the structure of the organization differs between the models considerably, as do the require-
ments management processes. Clearly more empirical research on planning, organizing
development and managing requirements is required to evaluate the benefits and problems
of different agile scaling models, as well as to study to what kind of circumstances each is
best suitable.

3 Research Methods

This study employed the case study method (Yin 2009), which is the most appropriate when
a contemporary phenomenon is studied in its real-life context (Yin 2009), as was the case
in our study. Data was collected with interviews. The data was analyzed with the qualitative
content analysis approach (Patton 2002; Hsieh and Shannon 2005; Elo and Kyngis 2008).
Below, we first describe our data collection in detail. Second, we describe how the data was
analyzed.

3.1 Data Collection

Ericsson was purposefully selected as the subject of our case study, as it provided an oppor-
tunity to perform an information rich study (Patton 2002; Yin 2009) in a large organization
with a long history of developing a complex software system. The company was globally
distributed and developed large telecommunications infrastructure systems that consisted
of both software and hardware. Our study was focused on the software development in an
Ericsson telecommunications node development organization.

We conducted three rounds of interviews. Details of the data collection are shown in
Table 1. The two first interview rounds were conducted in spring 2011 and the third round
in spring 2013. Eight interviewees were selected for the first interview round with the help
of a case organization representative in order to get a good overview of the organization.
These eight interviewees were our key informants (Yin 2009). They were selected based on
their long software engineering experience, experience in the case organization and based

Table 1 Details of the data collection

Interview round Focus Interviewees Roles
1. Mar 2011) Organization and Finland: 8 6 Managers, Chief Product
process overview Owner, Scrum Master
2. (Jun 2011) Deeper understanding of Finland: 19, 13 Development team members,
the management processes Hungary: 11 2 Managers, 7 Product Owners,
5 Technical specialists, 5 Scrum
Masters*
3. (Apr 2013) Development teams’ oper- Finland: 5 Product Owner, 4 Developers™*

ational management pro-
cesses

@ Springer

2900 Empir Software Eng (2017) 22:2892-2936

on their ability to provide an overview of the organization history, goals, growth, structure
and the requirements management processes used in the organization. The details of the key
informants’ roles, software engineering experience and backgrounds are shown on Table 2.
To build deeper understanding of the case organization and to enable the triangulation of
data sources (Patton 2002), we performed the second round of interviews by interviewing
19 persons in Finland and 11 persons in Hungary. The goal of this second interview round
was to interview multiple people, if available, with the same role in the organization in order
to triangulate data sources (Yin 2009; Patton 2002) and improve construct validity. Almost
all interviews were conducted by two interviewers in co-operation. After a careful analysis
of the data from the first two interviews rounds, we found that we needed to deepen our
understanding of the team-level practices in the case organization and decided to perform
an additional interview round. This third round was focused on how the development teams
managed requirements. We interviewed one product owner and four developers from three
different development teams in Finland.

We selected the general interview guide approach (Patton 2002) in order to maintain
adaptability to the roles and individual experiences of the interviewees while simultane-
ously making sure that the relevant topics were explored. We updated the interview guide
constantly based on new insights from the previous interviews (Patton 2002). An overview
of the questions asked in the interviews can be found in Appendix. We began each interview
by explaining who we were and what was the purpose of the interview. Then we asked the
interviewee to describe his or her history with the company and the current role in the orga-
nization. The rest of the questions asked from each interviewee were based on the role of the
interviewee and on the subjects we wanted to know more about. Thus, the set of questions
asked from each interviewee differed somewhat. Most interviews were conducted by two
interviewers. One interviewer asked most of the questions and the other took detailed notes
and asked additional questions whenever he or she thought that the some topic needed addi-
tional information. All interviews were voice-recorded and extensive notes on the questions
and answers were taken during the interviews.

Table 2 Details of the key informants

Current role Experience Work history

Development process manager > 30 years Software development, testing, product
management, line management

Portfolio manager ~ 20 years Software development, project manage-
ment, line management

Product manager ~ 25 years Product marketing, product manage-
ment

Continuous integration manager ~ 10 years Testing, test management

Chief Product Owner ~ 20 years Software architect, project manage-
ment, line management, testing

Site manager ~ 17 years Software development, system archi-
tect, project management, line manage-
ment

Program manager ~ 10 years Software development, QA manager,

project management, line management

Scrum Master ~ 20 years Software development, project manage-
ment, QA manager

@ Springer

Empir Software Eng (2017) 22:2892-2936 2901

3.2 Data Analysis

The first, informal steps in the analysis process were taken already during the interviews
when we decided which questions to ask from each interviewee based on the previous
answers and interviews. Since we used the general interview guide approach (Patton 2002),
these decisions were made on the spot.

The interview records were transcribed by a professional transcription company. We ana-
lyzed the interviews with the inductive qualitative content analysis method (Patton 2002;
Hsieh and Shannon 2005; Elo and Kyngis 2008). The qualitative content analysis method
aims to identify core consistencies and meanings in qualitative data. We took the induc-
tive analysis approach in order to avoid forcing the data into any preconceived conceptual
framework or theory. The inductive approach is the most suitable when there is no former
knowledge on the topic of the study or the knowledge is fragmented (Elo and Kyngés 2008).
Based on secondary studies by Heikkild et al. (2015a); Inayat et al. (2015), this indeed is the
state of knowledge regarding requirements management in large-scale agile development
organizations.

The transcripts were imported into Atlas.ti, which is a qualitative data analysis program.
The research questions were used to sensitized us to identify passages of text that were
relevant to our goal. These included passages that somehow described the requirements
flow (RQ1), passages where the interviewee described a benefit in the requirements man-
agement processes (RQ2) and passages where the interviewee described a problem in the
requirements management processes (RQ3). We coded the transcripts using the constant
comparison method: We begun to read from the beginning of the first transcript and iden-
tify potential codes based on passages of text, which were then coded using the identified
codes. As we continued to read the transcripts, we compared new passages of text with the
existing codes. A passage could then either indicate a new code, reinforce an existing code
or indicate that an existing code does not describe the phenomenon very well and a new
code needs to be identified to replace it.

As the number of codes increased, we began to identify potential categories that
encompassed multiple codes. Using the constant comparison method, the categories were
constantly reviewed based on codes and altered, combined or removed if the data did not
support the categories. The categories had three functions. They helped to keep the code
book in order and within a manageable size by grouping similar codes that could be poten-
tially combined, they gave the codes additional meaning (such as the category Work Item
giving meaning to the code Epic) and they sensitized us to identify new codes that could
potentially fit the existing categories. The categories and concepts identified in the analy-
sis are shown in Table 3. We coded a total of 625 passages from the first and second round
interviews and 79 passages from the third round interviews.

The construction of the case description was an iterative process. We extracted passages
of text related to a code or a combination of codes of interest. The extracted passages were
read and the description of the case was augmented with the information from the excerpts.
During the process, new queries were constructed in order to clarify or extend parts of
the case description. For example, we identified an organizational unit that was called the
product owner team. In order to construct the description of the product owner team, we
extracted passages of text coded with “chief product owner” OR “product owner” and re-
read them.

Figure 2 illustrates, as an example, how the description of One Pager was constructed
from the excerpts. In total, 42 passages of text were coded with the code “One Pager” and
these all contributed to the description of how the One Pagers were created, processed and

@ Springer

2902

Empir Software Eng (2017) 22:2892-2936

Table 3 Categories and codes that were identified in the interview coding process

Category

Definition

Codes

Action

Planning artifact

Planning horizon

Process description

Stakeholder

Work item

Attitude

Actions that alter a requirement or a
property of a requirement, for exam-
ple the splitting or prioritization of a
requirement.

Artifacts that are created and/or
employed in the planning processes.

Distinct stretches of the temporal
dimension that have a specific purpose
in the planning processes.

Events or properties of events that have
a distinct purpose in the planning pro-
cesses.

Roles or organizational units that affect
or are affected by the planning pro-
cesses.

Embody work that needs to be com-
pleted, for example a requirement or a
bug report.

Expressions of attitudes towards some-
thing.

Assigning/selecting work items, Esti-
mating work items, Prioritizing work
items, Splitting work items

Backlog, Feature concept study, One
pager, Requirements specification,
Roadmap

Daily, Release/project, Strategic

Backlog grooming, Early phases, F-
Decisions, P-Decisions, Portfolio meet-
ing, Quality status meeting, Scrum
of Scrums, Sprint planning, Sprint
review/retrospective, Status meeting,
Steering group, Tollgate decision

Capability management, Development
team, Early phases program, Line orga-
nization, Node architect, Chief product
owner, Portfolio management, Product
owner, Product management, Program
manager, Project manager, Release
management, Scrum master, Technical
management

Change request, Epic, Feature, Require-
ment, Bug report, User story

Benefit, Problem, Motive

used. Section 5 contains several excerpts from the interviews. The specific excerpts are
included only as exemplars of the data that was used to construct the section.

4 The Case Organization

The studied Ericsson node development unit develops a large systems product consisting of
both software and hardware, responsible for handling a specific type of traffic in telecom-
munications networks. In 2013, the development of this product had been going on for over
twelve years and further development of the product still continued. The product is used by
over 300 telecommunications operators all over the world.

The organization begun a process improvement initiative in 2009. The existing, plan-
driven process worked quite well, but the management wanted to decrease the requirements
development lead time, improve flexibility and increase the motivation of the develop-
ers. The management studied different options and initially chose Scrum as the best
fit for the organization’s needs. They also studied the agile scaling ideas proposed by
Larman and Vodde (2009). Thus, the scaling practices were inspired by the ideas that were

@ Springer

Empir Software Eng (2017) 22:2892-2936 2903

Code "One pager"

“First we have the one pagers which, in
principle, have the idea that they are an
estimate of why the supposed feature is
good. ... Then the F-decision has been
made where we decide if it will be
created ...” — Technical Specialist, 2011

““... with this one pager we get the work
triggered ja then it goes in a way to a team
for a feature concept study ... So we can
make a decision if there is a case [for the
feature] or not.”

— Manager A, 2011

"The portfolio steering group decides to
refine the feature idea further or to drop it
(the FO-decision). In the former case,

the early phases program manager selects
a technical specialist who is responsible
for writing a One Pager. ... The purpose
of the One Pager is to give an initial idea
of what the feature is and how much it
would cost to implement."

— from pages 18 - 19

“... we have this [node] portfolio handling
meeting ... The one pager is brought there
and the product management is invited
there ... and we discuss if based on these
costs, should we proceed [with the
feature] ...” — Manager B, 2011

““... the technical management organiza-
tion prepares these one pagers. They are
one page high level descriptions. What
could be the new functionality and,
possibly on an abstract level, some kind of
effort estimate ...” — PO, 2011

\\//

38 additional excerpts of interview data

Fig. 2 An example of the data analysis process of the code “One pager” in the category “Planning artifact”

later on commercialized by Larman & Vodde as the Large Scale Scrum (LeSS) frame-
work. Initially, a pilot Scrum team tried out the approach. Soon after, a few more teams
were created and in quick succession the rest of the developers formed Scrum teams. The
transformation did not stop there and the way of working was continuously improved, as
reflected by the interviewees who called the transformation a journey”. The individual
development teams had broad authority to change their team-specific operational manage-
ment process. By 2013, many teams had made changes to the by-the-book Scrum process
(Schwaber and Beedle 2002) to better suit their way of working. Details of the operational
level requirements management process can be found in Section 5.4. A detailed analysis
of the operational level requirements management process and its discrepancies with the
prescribed Scrum process can be found in our previous publication (see Heikkild et al.
2013a).

Before the transformation, the development had been arranged as a traditional plan-
driven project organization. The requirements management process had followed the
waterfall model: The release planning began two years before the date of the next release
when the scope of the release was decided by the product management. Technical special-
ists then created an implementation plan for the requirements and the plans were handed
to the developers for implementation. When the implementation was ready, the software
passed through multiple testing and verification stages, and was finally shipped as a part of
generally available products and as software updates.

@ Springer

2904 Empir Software Eng (2017) 22:2892-2936

5 Findings

In this section, we first answer RQ1.1, What are the organizational roles involved in the
requirements flow? by describing the case organization structure, and in particular the roles
and their responsibilities in the requirements flow. Second, we answer RQ1.2, What are
the processes of the requirements flow? by describing how requirements flow thorough
three processes: The release project management process provides information for require-
ments elicitation and analysis, new requirements are created and elaborated in the feature
development process and the requirements are further elaborated and implemented in the
implementation management process. The release project management process connects the
release project to the strategy of the organization. Feature development is a continuous pro-
cess that runs parallel to the release project management process. Due to the links between
the two processes, the descriptions of the processes are somewhat interleaved. The imple-
mentation management process varies slightly between the different development teams and
features, and thus the description should be considered an abstraction of the most common
case. Third, we answer RQ2, What are the perceived benefits of the requirements man-
agement processes? by describing the requirements management process related benefits,
and fourth, we answer RQ3, What are the perceived problems related to the requirements
management processes? by describing the problems.

Product Management Portfolio Management

(Product Manager) (Portfolio Manager)

Technical Management
(Technical Specialists % ... --{Early Phases Manager)

{ Capability Manager)

{ Node Architect)

JPtiad " | Development ---(Chief Product Owner) N
Pt Organization ‘\
Development
Organization ———1Product backlog
PO T - Ju—
ca (Chlef Product Owner) —— |Features, Epics, User stories

% Small features @ Large feature % Large feature
(Product Owner) (2-3 Product Owners b (2-3 Product Owners)

Epic

Epi Epi
Development team) pics DICS

Epic .____(Development team) {2-5 development teams% 2-5 development teamsb

Fig. 3 The case organization

@ Springer

Empir Software Eng (2017) 22:2892-2936 2905

5.1 Case Organization Structure

In this section, we describe the roles and responsibilities of the members of the case orga-
nization in the requirements flow. We begin by introducing the hierarchical requirements
model employed by the organization. Following that, we describe the organization of the
product owners and the development teams. Then, we describe the organization of the other
stakeholders. The organization of the stakeholders is illustrated in Fig. 3. Table 4 summa-
rizes the stakeholders’ roles and their responsibilities in the requirements flow. In addition
to the formal organizational structure and communication channels, the case organization
utilizes less formal communities of practice for knowledge sharing, coordination, technical
work and organizational development. For more information on the communities of practice
in the case organization, please see the case study by Paasivaara and Lassenius (2014).

5.1.1 Requirements Model

The case organization employs a hierarchical requirements model that has three layers of
requirements. The requirements model is illustrated in Fig. 4. Requirements on all lay-
ers are stored in an electronic backlog management tool. Features are the highest level
requirements. They have value to the customers independent of the other features. The
implementation effort of a feature varies from a couple of months by a single team to imple-
ment to a year for ten teams to develop. Epics are split from the features. They are large,
semi-independent functional requirements that create value to the customers on their own.

Table 4 Roles and responsibilities

Role Responsibilities

Product manager Long term product planning; Steering the feature development front
end (as a member of the portfolio steering group); Steering the feature
development (as a member of the development steering group); Release
project planning (as a member of the product council)

Portfolio management Refining long-term product plans; Managing the feature development
front end (as a member of the portfolio steering group); Release project
planning (as a member of the product council)

Chief Product Owner Leading the PO team; Product backlog management and prioritization;
Creating and prioritizing epics (as a member of the PO team); Manag-
ing and synchronizing the work of the development teams (as a member
of the PO team); Steering the feature development front end (as a mem-
ber of the portfolio steering group); Steering the feature development
(as a member of the development steering group)

Product Owner Managing and synchronizing the work of development teams (as a
member of the PO team); Guiding development teams; Creating and
prioritizing epics (as a member of the PO team); Creating, splitting and
estimating user stories (with the developers)

Technical specialist Supporting development teams; Managing the feature development
front end (as a member of the portfolio steering group); Steering
the feature development (as a member of the development steering
group); Writing one pagers; Writing feature concept studies (with the
developers)

Developer Software development; Writing feature concept studies (with the tech-
nical specialists); Creating, splitting and estimating user stories (with
the product owners), Unit testing

@ Springer

2906 Empir Software Eng (2017) 22:2892-2936

A requirement that can

Feature be marketed to a customer
independent of the other
1 features
n

A cohesive and mostly
Epic independent requirement
that creates value on its own

1
n
A detailed functional
User story | requirement

Fig. 4 The requirements model employed by the case organization

User stories are split from epics. They are the most detailed functional requirements and are
mostly used by the development teams.

5.1.2 Product Owner Team

The organization of product owners deviates from the basic Scrum model (Schwaber and
Beedle 2002). Instead of having team-specific product owners, a product owner team (PO
team) was created to accommodate the large number of teams and requirements and the
globally distributed structure of the organization. The PO team consists of a chief prod-
uct owner (Chief PO) and ten product owners (POs). In order to mitigate personnel risks,
the whole PO team is jointly responsible for the requirements and for managing and
synchronizing the work of the development teams.

If we want to know ... how our development is progressing with the different backlog
items, it is the PO team that pulls them together. ... when we have several teams that
are working towards the same functionality, they [the PO team] provide the big picture
of how we are progressing — A Manager, 2011

The Chief PO is responsible for leading the PO Team. He acts as an arbiter between
the development organization and the stakeholders external to the development organiza-
tion. The PO team is responsible for managing the product backlog, which contains the
requirements.

The POs rotate between teams when features are completed. Based on the size of the
features, one PO might work with two cross-functional teams when both teams are devel-
oping their own small features, or a group of two to three POs might take the collective
responsibility for one large feature developed by several teams.

5.1.3 Development Teams
The developers are organized in Scrum-inspired (Schwaber and Beedle 2002) teams of 6-7
persons. During the transformation, the previous function-based organization was disman-

tled and the members of the functional areas were assigned to the cross-functional teams.
The team compositions were relatively permanent, although natural personnel change did

@ Springer

Empir Software Eng (2017) 22:2892-2936 2907

occur due to people leaving the organization, and due to layouts and recruitments. The
intention was that the members of each team would gradually broaden their knowledge and
eventually any cross-functional team could be assigned to develop any requirement. How-
ever, the managers soon realized that this goal is very challenging to achieve with a large,
over ten-year-old product, since many areas of the product required very specific techni-
cal knowledge. Thus, the development teams, in practice, are usually assigned to work on
requirements that best suit their competencies and previous experience.

If the starting point is an organization with long history, naturally you have many kinds
of skills and skill profiles in there, it is not irrelevant how you form the teams. Having
an organization with 10, 20, maybe even more teams that are equally super skilled, it
is a kind of utopia. — A Manager, 2011

5.1.4 Product Management

A product management function is responsible for the long term planning of the product
from the business perspective, and crucial in aligning new requirements to the product strat-
egy. A single product manager (PM) is responsible for the software part of the product and
she is also the main point of contact between the development organization and the prod-
uct management. The main communication channel between the development organization
and the PM is the Chief PO. The other members of the development organization may con-
tact the PM directly, if needed. The product manager communicates the product roadmap,
which shows the long term plans for new requirements, to the development organization.

...the product management ... their job includes going around the clients and sales
and marketing organizations so they can get input on what the customer wants and
needs . .. Furthermore, they create the roadmap which in practice shows for a couple
of years what features are coming in what releases. — A Manager, 2011

5.1.5 Technical Management

Technical specialists support the product management in technical aspects of their product
plans and have an important role in the front end of the requirements flow (see Section 5.2).
The technical specialists also support the development teams and help them to plan and
understand the technical aspects of the requirements. The technical specialists are people
with extensive knowledge of telecommunication technology and each has a specific area of
expertise, for example security or user interfaces.

...our node architecture is divided into functions that each have a responsible [techni-
cal specialist]. ... we have seen that it is necessary to hold on to these certain roles to
keep the product sound. — A Manager, 2011

5.1.6 Portfolio Management

A portfolio management function refines the strategic, long-term plans created by the
product management into concrete requirements development plans for the development
organization. The portfolio management is led by a portfolio manager and it has the follow-
ing members: An early phases program manager, a capability manager, a node architect and
the chief product owner who is a member of the portfolio management function in addition
to belonging to the product owner team.

@ Springer

2908 Empir Software Eng (2017) 22:2892-2936

Implementation

N
Select technical'\ Create one F 1 Add to product
specialist pager backlog

14

cid
wiﬁ;‘li> Create FCS

Wait for
resources,

Fig. 5 The feature development process

...portfolio management . ..1is really an interface between the product management
and R&D. [The portfolio management] consolidates what features are needed and
what they cost and how much we can do and so forth. — A Manager, 2011

5.2 Feature Development Process

The feature development is a continuous, iterative and incremental process. The whole
process is illustrated in Fig. 5. During the process the feature decisions are made in five
feature-decision (F-decision) points numbered from FO to F4. The front end of the feature
development process spans from the feature idea to the F2-decision. The front end is called
the early phases in the case organization. During the front end, the feature idea is refined
and evaluated. The decisions FO, F1 and F2 are made by the portfolio steering group which
consists of the product manager, the chief product owner, the portfolio management, the
technical management, a release verification organization representative and representatives
from various integration testing organizations. The steering group meets once a week and
decisions that are related to any number of features can be made in a single meeting.

After the front end, during the feature implementation, the feature decisions F3 and F4
are made by the development steering group. It consist of the chief product owner, the
product manager and testing and integration function representatives. Other stakeholders
and product owners can participate when deemed useful. The planning artifacts created and
used in the feature development planning process are summarized in Table 5. In the rest
of this section we describe the process in detail. The numbers in parentheses refer to the
process steps shown in Fig. 5.

Table 5 Planning artefacts

Artifact Creator(s) Contents
One Pager The early phases program manager Purpose of the feature
A technical specialist Tentative release target

Technical impact

Rough cost estimate

Feature Concept Study A technical specialist Cost estimate
A product owner Estimate of the required resources
A virtual team of developers Rough implementation and testing model

Tentative implementation schedule

@ Springer

Empir Software Eng (2017) 22:2892-2936 2909

5.2.1 The Front End

The front end cycle is illustrated in Fig. 6. The whole process begins when the early phases
program manager decides to propose a new feature idea (1). The portfolio steering group
decides to refine the feature idea further or to drop it (the FO-decision). In the former case,
the early phases program manager selects a technical specialist who is responsible for writ-
ing a One Pager (2). The length of the One Pager is limited to a single presentation slide
and the maximum time given to writing it is two weeks. The purpose of the One Pager is to
give an initial idea of what the feature is and how much it would cost to implement.

...[after] the One Pager request it is approximately two weeks when it should be
ready. ... we have a portfolio meeting where we go thorough the One Pagers and make
the F1-decision, [to decide if] will we process this [feature]. — A Manager, 2011

When the One Pager is ready, it is presented in a portfolio steering group meeting (3).
The steering group decides to either take it into further refinement or to drop it (the F1-
decision). In the former case, the feature is added to the product backlog. The chief product
owner then prioritizes the feature against the other features in the product backlog (4). If he
decides that the priority is low and there are no available resources, the feature has to wait
until resources become available. If the feature is of high priority or when resources become
available, the chief product owner selects a development team or teams and a product owner
who are responsible for creating a Feature Concept Study (FCS). A virtual team consisting
of members from the team(s) and the product owner is formed. They are supported by a

Cycle time 1-2 weeks

pagers

Tech.

specialist
Weekly
Feature portfolio
u teeri
ideas steering group

meeting
(FO, F1,
F2)

From an idea to the beginning of
implementation in 2-4 weeks

Fig. 6 The feature development front end cycle

@ Springer

2910 Empir Software Eng (2017) 22:2892-2936

technical specialist. The virtual team begins to write the FCS, which depicts information
required to decide to develop the feature or not.

... [FCS] contains requirements, high level implementation model, feasibility, testing
stuff. Checking these kinds of things. And naturally the costs. So we can come to this
F2-point, where we see if we can implement it . .. — A Manager, 2011

When the Feature Concept Study is ready, it is presented in a portfolio steering group
meeting (5). Based on the information in the FCS, the steering group decides to invest in
the development of the feature or to drop it (the F2-decision). In the former case, the devel-
opment of the feature can begin. If the Chief PO decides that the feature has high priority
and development resources are available, the development begins immediately. Otherwise,
the feature has to wait until development resources become available (6).

...F2 is a permission to begin [the implementation], but it does not necessarily mean
we begin. ... It [the feature] might be so small that we will not do anything with it for
half a year. Let it wait on a shelf. Because we have seen already here that it is so small
we can fit it in at some point nearer the end [the release]. — A Manager, 2011

5.2.2 Implementation

During the implementation, epics are split from the feature by the product owner team.
The product owner team together with the developers, technical specialists and, often, the
product manager estimate the epics and prioritize them into two categories which are the
minimum scope and the full scope. Minimum scope contains epics that are mandatory for
the feature to be publishable, and the full scope contains epics that are valuable but not
mandatory. The set of epics in the minimum scope is called the minimum marketable feature
(MMF) scope. The epics are then assigned to teams based on the technical competencies
in the teams. To avoid integration problems and to reduce coordination effort, the epics are
typically team specific.

...we are talking about this minimum marketable feature, MMF, ...what is really
important and there we often talk on the epic level but also about individual user
stories. ... Often we have product management there to instruct what is important and
what is not that critical at the beginning. — A Manager, 2011

The Feature Concept Study and the product owners primarily guide the implementation,
but the teams are also supported by other stakeholders, when needed. When the feature is
relatively large, the development is initiated by several teams. More teams are added and
more epics are created as the development progresses. When the feature is nearly com-
pleted, the number of teams is reduced, leaving a few teams to finalize the feature. When
the chief product owner considers that a feature has progressed enough, he proposes an
F3-decision in a development steering group meeting (7). Based on the progress informa-
tion on the feature, the chief product owner proposes a date when he believes the feature
will be completed. This also means that the chief product owner can commit the feature
to a release. The main goal is to communicate the feature development progress to the
product manager. If the feature does not pass the F3-decision, the feature requires further
development.

...we have F3 ... when we are quite far in the development we can, from the devel-
opment side, say that we are going to get this feature done by a certain time so it will
make it into the next release. — A Manager, 2011

@ Springer

Empir Software Eng (2017) 22:2892-2936 2911

After the feature has been implemented, tested, integrated, verified and documented, the
chief product owner proposes an F4-decision in a development steering group meeting (8).
Based on the progress information, the steering group can then decide that the feature is
ready to be included in a release. Otherwise the feature requires more finalization work.

5.3 Release Project Management Process

The release project management process is completed once for each version of the soft-
ware. Figure 7 illustrates the process. The capital letters in the figure are referred to in the
explanation below. Two simultaneous releases are usually under development at the same
time. One release is more focused on new functionality and the other is more focused on
maintenance, but both contain new functionality and updates. In total, two update versions
and two maintenance versions are released every year. The organization is capable of doing
more frequent software releases, but due to the high price associated with the localization
and configuration of the system for the customers, some customers do not want to update
their systems more often than every two or three years. Subsequently, the current release
schedule is considered appropriate.

The planning of a new version release officially begins with a meeting of the product
council (A), which consists of product managers and portfolio managers. The meeting is
held approximately two years before the date of the release. The key inputs to this meeting
are the financial information and the product roadmap (B). Based on the inputs, and on
the information on the previous and ongoing release projects, the product council decides
the tentative release budget and release scope for the release (C). The release scope also
inspires feature ideas for the release.

...[The product council considers] what we can create by the release date and how
much it costs. On the other hand our capability and the costs. ... with the product man-
agement we make sure that we produce the input that they [the product management]
need. — A Manager, 2011

Four to six months before the release date the release project management process enters
the next stage. The product council decides what features should be included in the next
release (D). This decision is based on what features have passed the F3-decision (E). Fea-
tures that have not yet passed the F3-decision can be also included if the development
progress information implies that the features will be completed in time for the release.
Teams from less important features can be moved to more important features that are behind
the schedule, but this is rarely necessary. After this stage, the release can be made public
and the marketing of the new features can begin (F).

N

Start the sales of Release the new
the features of version of the
the release software

V

Decide \(ooooooooooo
the tentative
scope and budget
of the release

Decide
which features
are included in
the release

Feature
development

Financial
information

Product
roadmap

Development
progress

Feature
ideas

Fig. 7 The release project management process

@ Springer

2912 Empir Software Eng (2017) 22:2892-2936

... after the decision [(D)], we can start marketing the release .. .then we can include
in the release features that have reached the F3-status ...in practice, we have not
always reached [the F3-status] but we have a risk level .. . that we will mostly make it
[ready in time for the release]. — A Manager, 2011

Two to three months before the release date the product council decides which features
will be included in the release (G). All included features must have passed the F4-decision
(H). After this stage, the included features can be sold and binding contracts regarding the
release can be made (I). The final step in the release project management process is the
release of the software (J). After this step, the responsibility for the released features is
officially transferred from the node development organization to the support organization.

5.4 Implementation Management Process

The development teams utilize a Scrum-inspired implementation management process.
Development is paced by two-week long development iterations (a.k.a. sprints). Figure 8
illustrates the schedule of the development sprints. The Roman numbers in the figure refer
to the process description steps that are explained below. The first step of the process is the
assignment of epics from the product backlog to the development teams (I).

In a way we have Scrum, we have epics and then epics are split into smaller user
stories. When they are approaching the time of implementation, they are split and
elaborated and possibly split [further]. — A Developer, 2013

At the beginning of the development of a new feature, the product owner(s) conduct a
backlog grooming session (II) with the team(s) working on the feature. The purpose of this
grooming session is to create user stories based on the epics and to coordinate the develop-
ment of the epics between the teams. During the development of a feature, each development
team has a backlog grooming session on every other Wednesday. In the grooming sessions,
the product owner(s) and the team members elaborate, estimate and prioritize user stories.
The goal is to have at least two sprints worth of work for each team in their team backlog at
all times.

...in halfway into the sprint ... we estimate upcoming work and possibly we groom
the upcoming user stories, so if we have some epic which needs to be implemented

Epi Product
backlog
FRI ; MON @ Epic
Team @ THU TUE Team
backlog o T g Y backlog
: Sprin fo} ; acklog 4 U tori
[T T~ planning (WEDI{ A %,) JIWED Erﬁ(?glﬁi’r’,’gﬁ [User stories]
TUE . THU
MON | FRI

©

i

Fig. 8 The implementation management process

@ Springer

Empir Software Eng (2017) 22:2892-2936 2913

we splitit...we try to create user stories that are sensible, that we roughly know what
they include. — A Developer, 2013

Sprint planning (III) is conducted on every other Wednesday alternating with the backlog
grooming sessions. Sprint planning is conducted in two parts. The first part is akin to a
development status meeting of the teams assigned to the feature. Each team conducts the
second part individually. In the second part, the teams split their user stories into concrete
development tasks which are then added to the team’s backlog.

... [the first part] is like a traditional project meeting, everyone goes there and lis-
tens what is coming next. [In the] second part ...we split [the work] and so on
— A Developer, 2013

The teams’ work is not strictly tied to the sprint cycle. The goal is to minimize the lead
time by having as few user stories simultaneously in progress as is practical. Additional user
stories can be added at any time if there is not enough work for every member of the team
av).

User stories are typically demonstrated to the product owner and closed as soon as they
are ready (V). This enables the development of any dependent user stories to begin imme-
diately and makes the completed user story a part of “the legacy”,* which means that the
team is no longer responsible for solving integration issues that affect the user story.

5.5 Benefits
5.5.1 Reduced Development Lead Time

In the previous model, the release planning was conducted during the first six months
of each approximately two-year release project. The changes that could be made to the
release after the first six months were typically very small. If a requirement missed the
release planning window, the lead time from a customer request to a public release of a
new requirement could be over three years. After the transformation, the amount of plan-
ning and research before requirement implementation was drastically reduced, which also
contributed to reducing the lead time. Changes to the requirements (features, epics and user
stories) could be made flexibly by the corresponding decision makers.

... [previously] releasing one package took 18-24 months. In the beginning we per-
formed this system planning which took maybe half a year. And if you did not get the
right contents in the release during the first half a year . . . it was immensely difficult to
get any changes into the project. ...If some essential functionality was missing from
it, we missed the train, I had to wait to the end of the current project and then the two
years after [that]. Which was a very long time. — Product Manager, 2011

5.5.2 Increased Flexibility
The new process was seen as an improvement to the flexibility of development. The new

release management process allowed changes in the contents of a release relatively near the
release date. The feature development schedule was no more tied to the release schedule,

4A term employed by the interviewees.

@ Springer

2914 Empir Software Eng (2017) 22:2892-2936

which immensely decreased the lead time of the feature development. The portfolio man-
agement could control the release schedule of requirements by adjusting the minimum
marketable scope and by re-assigning development resources.

Now it is like, okay, let’s add it to the list. And no worries about where we are going
with the change. It’s there and in a way nothing was changed even though a new thing
was added to the list. I think it is a really good improvement. The flexibility is on
another level. — Product Manager, 2011

5.5.3 Improved Planning Process Efficiency

During the FO-F2 steps in the feature development process, the sunk costs were relatively
small and the early identification of unprofitable or otherwise infeasible features saved
development resources. In addition, by employing the minimum marketable feature con-
cept, the case organization was able to concentrate on developing the most important parts
of the features.

What is good in it [the F-decision process] is that . ..it in a way divides the decision
making, which is a good thing. We can cut it [the feature] at any point, ...if we see
that the feature passes the time window or otherwise. It gives structure to the decision
making and enables us to make smaller decisions and in that way separate the feature
decision from the release decision. — Manager, 2011

5.5.4 Increased Developer Motivation

Three aspects of the new development and requirements management processes contributed
to the increased motivation of the developers. First, the development teams were empowered
to change and improve their team-internal work practices and to prioritize their work on the
task level. Second, the developers had more opportunities to broaden their areas of technical
competence than in the previous model. Third, the developers were included in the feature
planning already at the front end, which allowed them to contribute to the planning and gave
them visibility to the purpose of the feature.

...the gang is excited that they get to try out something new. That is, at least as long as
the whole user story is not in a completely new area, that there is just some small part,
for example, from some new area to work on. ... — Product Owner, 2011

...one person from the product management involved in [the feature] traveled from
here to [Hungary] and had a one-day workshop. Why [the feature] is needed for the
customer, what information they get, what kind of reasoning [is] behind this feature.
... It was a motivation boost for the team, to see that what they are doing ... means
something for [the customers]. — Developer, 2011

5.5.5 Direct and Efficient Communication

In the previous, plan-driven process the requirements related communication was hierarchi-
cal and mostly based on e-mails and documents. In the new requirement management pro-
cess, the members of the development organization communicate directly with their peers
and other stakeholders. Face-to-face communication was considered to be a much more
efficient way to communicate requirements information between the different stakeholders
than the previous way.

@ Springer

Empir Software Eng (2017) 22:2892-2936 2915

You can ...just walk in and ask that what is this thing. Compared to [the previ-
ous situation] where our tester sat in a department and we, the design, sat here. The
distance to there was so long that you never walked there. Communication was dif-
ficult because it was always based on an e-mail or something and it didn’t work.

— Product Owner, 2011

5.6 Problems
5.6.1 Overcommitment Caused by Pressure from the Product Management

According to the interviews, the product management still worked in the “old world” way.
They requested long-term requirements development plans from the PO team, which were
not available in the new release management process, and pressured them to give premature
commitments when the release date was approaching. This caused overcommitment by the
development organization, which left very little leeway in the development schedule and
decreased the flexibility of the development.

...perhaps the product management is not in the new way of working, it easily goes
with the old model that we plan one big release ...it feels like we plan a big future
release and see what can fit in it. And then what happens along the way is that all
the time new things are coming in which don’t fit in the scope. And then we need
to remove something. It perhaps leads to a spiral where we feel that we are late all
the time and we must leave something undone because we don’t leave any buffer any
more. — Product Owner, 2011

The case organization tried to mitigate this issue in two ways. First, they tried to improve
the predictability of the development by increasing the detail level of FCSs and by increas-
ing the amount of slack in effort estimates. Second, they had created the concept of a
minimum marketable feature, which was the set of epics they could commit to delivering
by the next release on a high probability level.

5.6.2 Balancing Planning Effort

The case organization had difficulties balancing the effort spent on planning the require-
ments and the demands from the development teams for more comprehensive implemen-
tation guidance. After the transformation, the estimation accuracy was initially quite low,
as the features were only estimated very superficially. However, this resulted in the notable
underestimation of effort of some features and massive over-estimation of others.

The organization tried to mitigate this by creating detailed feature concept studies.
Detailed FCS provided the teams with information on how the feature should be imple-
mented, which also improved effort estimates. On the other hand, creating a detailed FCS
took effort and time, which was against the original purpose of the whole front end process,
and the stakeholders had difficulties understanding the feature when the FCS contained
many implementation details. Identifying the right level of detail for feature concept studies
was an ongoing issue in the case organization during the case study.

...we have had an overcommitment phenomenon. ...because of weak analysis.
Because we pulled these estimates out of a hat. ...but now we have identified it and
found a cure for the next round, we will make this Feature Concept Study before we
start. — Product Owner, 2011

@ Springer

2916 Empir Software Eng (2017) 22:2892-2936

5.6.3 System-Level Planning, Documentation and Problem Solving

In the previous, plan-driven development model, the project managements’ responsibilities
were clearly defined and the role of a project office was very central. The project mangers
and technical specialists of the project office had precise responsibilities in the projects.
In the new model, the PO team assumed the responsibility for directing the development
teams, but it was unclear who took care of the problem solving and other tasks the project
office previously handled. Many of those tasks were originally out of the scope of the PO
team’s responsibilities, but had to be addressed somehow. The tasks included system plan-
ning guidance, non feature-specific problem reports, system documentation and external
change requests. In order to address these tasks, the PO team had initiated an additional
bi-weekly meeting. In addition, the managers were planning to start organizing communi-
ties of practice (Paasivaara and Lassenius 2014) around the system-level topics in order to
mitigate the problem.

... We do not have anything else than these cross-functional teams and this [the docu-
mentation] is not related to any feature . .. things are falling between the chairs all the
time. It is a problem. ... This allows us to see things that must be done, of those that
we did previously. Most of them were mandatory, it seems. ...they come as bit of a
surprise, that hasn’t anyone handled even this thing. — Product Owner, 2011

5.6.4 Defining the Responsibilities of Product Owners

The product owners came from varying backgrounds. Some had been in a more technical
role before the transformation while others had had a more business-oriented role. After
the transformation, the POs had, in theory, a very business-oriented role. Nevertheless, the
development teams expected their PO(s) to help them also in the technical implementation
planning but some POs did not have sufficient technical knowledge to be of assistance. This
was considered a challenge by the developers and the POs, but the Chief PO was of the
opinion that the different backgrounds of the POs made the PO team more capable overall.
At the end of our case study period, the case organization was still trying to overcome this
challenge.

Another thing that is challenging is that, in this Scrum world, the Product Owner
should not need to be a very technically skilled person, in principle. But with us, in
practice, they must have [a] very good technical background. Otherwise it doesn’t
work with the way we are doing things now. ...Because they are the only persons
who have the big picture. If that person does not have technical knowledge he cannot
see what kind of problems might be coming. And even defining and splitting user
stories will be difficult if you do not know enough about the area. ... And the other
thing is communication, if that guy does not understand the questions that the team is
discussing then he cannot help. — Developer, 2011

5.6.5 Growing Technical Debt

There were signs that the technical debt in the system was growing after the agile trans-
formation. The developers were focused on quickly producing the individual user stories
during the two-week sprints and less emphasis was given to the overall internal quality of
the system. The development teams also lacked the skills to do long-term technical and
architectural planning. Before the agile transformation, the technical specialists did the

@ Springer

Empir Software Eng (2017) 22:2892-2936 2917

technical work that was not requirement-specific and performed long-term technical plan-
ning. Following the transformation, the technical management function was considerably
cut down and the remaining technical specialists did not have time to perform these tasks.
Initially, technical specialists and architects were considered redundant in the new organi-
zation, but the managers soon realized that the roles were required in order to guide the
overall development of the system and to upkeep the consistency of the system architecture.
As the developers become more capable of doing requirement-specific technical planning,
the technical specialists focused more on the consistency of the system architecture.

We don’t want it to occur that when our features are developed our cross-functional
teams create them quickly, and then we notice two years later that our architecture
is such a mess that adding anything to it is very expensive. Using these specific
roles [technical specialists and architects] we strive to maintain the consistency
of the architecture because this [development] organization won’t do it any more.
— Portfolio Manager, 2011

5.6.6 Balancing Between Development Efficiency and Building Generalist Teams

Initially in the agile transformation, the goal of the development organization was to create
cross-functional generalist teams that could implement requirements in all components of
the software. However, the managers quickly realized that many components were techni-
cally very difficult and required years of experience to completely understand. This had, in
several occasions, caused very long lead times (up to one year) before a team could imple-
ment anything useful in a component in which they had no preexisting experience in. It
had also resulted in features that were not technically sound. Balancing between the devel-
opment efficiency and building generalist teams was seen as difficult especially near the
release date when the pressure to get features completed was mounting. The portfolio steer-
ing group had started mostly assigning epics to the teams that had preexisting competency
in the affected components.

... building the competencies has been one of the biggest challenges. ... we have very
difficult products where the transfer [of knowledge] is very challenging, it cannot be
done in a couple of sprints, it requires several months, in practice. We’ve had to yield
in that, we had to give it to the best [team] ... — Scrum Master, 2011

For example in this [feature] we have observed that if the POs allocate these user
stories randomly to the five teams it leads into a situation where the initiation cost, that
you learn the thing and the part you should change, it becomes excessively hefty and
costly. And following that we do increasingly so that the teams ...concentrate on the
epic level on certain things. — Portfolio Manager, 2011

5.6.7 Insufficient Understanding about the Development Team Autonomy

Many developers in the case organization expected that their product owners or Scrum mas-
ter would provide detailed directions on what they should work on. The developers also
expected that they would be given detailed requirements specifications. However, in the new,
agile organization they were expected to find out the information themselves or ask for help.
Initially, many developers were not interested in improving their work practices and tools.
On the other hand, the product owners tended to prioritize new features over system
improvement and the developers did not have time to do improvement work in addition to

@ Springer

2918 Empir Software Eng (2017) 22:2892-2936

implementing the features. The development organization attempted to mitigate this issue
by making each team take in at least one system improvement user story every sprint.
These issues started to alleviate when the development teams and product owners got more
experience in the agile way of working.

...if everything that must be completed comes from the Product Owner’s backlog, the
people [developers] are not in a good place. ...If I am in a team and I think creating
test automation is the most important thing in the world because it eases my work so
much [that] it is worth doing now, then if the only way to get it done is to get it into the
backlog where it is prioritized wearing a business manager hat, probably to a very low
priority level, then the team empowerment pretty much fails. — Developer, 2011

6 Discussion

In this section, we first discuss the answers to our research questions and compare them with
the previous research. Following that, we discuss the contributions we make to practitioners.
Finally, we discuss the limitations and the threats to the validity of our research.

6.1 RQ1: How is the Requirements Flow from the Strategy to a Release
Managed?

The case organization employed a multi-level requirements management process in which
each level had a different planning horizon, purpose and decision makers. On each level, the
decision makers with the most knowledge on that planning level made the decisions. The
release project management process put the long-term strategy of the company into opera-
tion by deciding the tentative scope of the next release and by identifying ideas for potential
new requirements. The feature development process was a continuous process in which the
requirements were prioritized, resourced and scheduled. The implementation management
process was inspired by the single-team Scrum process, but the Scrum rules were not strictly
followed. In a previous study (Heikkil4 et al. 2013a), we analyzed the implementation man-
agement process quantitatively. Please see that study for a detailed discussion on the reasons
the implementation management process did not strictly follow Scrum. Figure 9 illustrates
the three management processes and the main information flows between them.

The interfaces between the different levels of management were implemented by roles
that had responsibilities on adjacent levels. The product council was responsible for imple-
menting the product development roadmap. The portfolio management was the interface
between the release project management and the feature development process. The chief
product owner, who belonged to the portfolio management, conveyed the requirements deci-
sions and feature information to the product owners in the PO team and the product owners
conveyed the information to the development teams. In addition, the technical special-
ists conveyed technical information on the feature development and implementation levels.
Requirements implementation progress information flowed from the development teams to
the feature development process, and from the feature development process to the release
project management process.

According to Vihiniitty (2012), several authors have proposed that a hierarchical model
for requirements is necessary in a large-scale agile development organization. The hierar-
chical model has been proposed to provide several benefits over a simple, list-based product
backlog (Véhiniitty 2012; Leffingwell 2011). Hierarchical requirements can be split into

@ Springer

Empir Software Eng (2017) 22:2892-2936 2919

Release project management (Section 5.3)

________ N
Implementation Decision> Sales > Release
-------- |4

Feature progress

Feature ideas ? h
information

Release scope
G Sl)
14 14 14 14 '
Feature development management (Section 5.2)

Feature

Feature
b . progress
information information

Implementation
management
(Section 5.4)

Fig. 9 The management processes and main information flows

smaller parts that can be prioritized against each other, which allows the development to
focus on the most important parts of each higher-level requirement. A hierarchical back-
log is more manageable than a long flat list of requirements that are of different sizes and
have been elaborated to different levels. Managers can more easily prioritize and elaborate
high abstraction level requirements, while detailed, low abstraction level requirements are
understood more easily by the developers. Although the hierarchical requirements model
seemed to be well suited for managing the functional requirements, the management of the
system-planning, documentation and problem solving was a problem, as such work could
not be associated with a single requirement. Our case study supports the previous find-
ings that hierarchical requirements models are applicable and beneficial in large-scale agile
development organizations. However, we also find that special attention must be paid to the
management of work that is not requirement specific.

The hierarchical requirements model used by the case organization was similar to the one
proposed by Leffingwell (2011). However, the framework proposed by Leffingwell (2011)
is based on nested layers of iterative and incremental planning. In his framework, release
project planning is performed every 2-3 months and the goal is to tentatively plan the con-
tents of the next potentially shippable increment (PSI). Each PSI should be of shippable
quality, but the actual shipping date of the software is based on a product roadmap. Unlike
in our case organization, features or epics are not assigned to specific teams. The split-
ting and assignment of epics and features are done in release project planning events where
the whole development organization gathers to plan the next PSI. Compared with Leffing-
well’s framework, the management model in our case organization was asynchronous and
flexible. The feature development was decoupled from the release schedule although the
release plans affected the feature priorities. The decoupling allowed the feature development

@ Springer

2920 Empir Software Eng (2017) 22:2892-2936

process decision makers to be more flexible in the scheduling, prioritization and resourcing
of features. Our findings indicate that this method of requirements management and plan-
ning was considered quite suitable for the organizational and technical context of the case
organization.

The organization of the development teams and product owners was similar to the one
proposed by Larman and Vodde (2010) but the organizational structure in the case orga-
nization was less rigid than theirs. Instead of a strict division into technical product areas
and feature teams, the case organization had more flexible organization consisting of fea-
ture specific groups of teams and a product owner team. However, due to the challenges
the teams had with the learning overhead, the portfolio steering group had begun to assign
teams to features on technical areas they had previous knowledge of. This made the de facto
organization of development teams somewhat similar to the one proposed by Larman and
Vodde (2010). Our findings suggest that the division of development teams into technical
areas may be beneficial to avoid excessive learning overhead when the system is large and
technically complex.

In rare cases, additional teams were assigned to develop features that were not progress-
ing as expected. According to Brooks’ Law, “Adding manpower to a late software project
makes the project later” (Brooks Jr. 1975). As Brooks himself states, the law is an out-
rageous oversimplification. Brooks’ Law considers a scenario where new developers are
added to an existing project team, the development process follows the waterfall model and
the development tasks are highly dependent and require intricate coordination between the
old and new developers. The epics in the case organization’s requirements hierarchy were
semi-independent and mostly team-specific, which reduced the need for inter-team commu-
nication. Instead of assigning individuals to work on specific projects, teams were assigned
to work on features. Most of the time, teams were assigned to work on features that did not
require excessive amount of learning. A reasonable amount of learning effort was consid-
ered an acceptable cost of expanding the teams’ knowledge. The team compositions were
not changed in order to rush features. Furthermore, the organization did not follow the
waterfall model. These aspects might explain why Brooks’ Law was not seen as a problem
in the case organization regardless of the overscoping that was still a problem.

Inayat et al. (2015) identified the following 17 requirements engineering practices that
were adopted in agile software development: 1. Face-to-face communication, 2. customer
involvement, 3. user stories, 4. iterative requirements, 5. requirements prioritization, 6.
change management, 7. cross-functional teams, 8. prototyping, 9. testing before coding, 10.
requirements modeling, 11. requirements management, 12. review meetings and acceptance
tests, 13. code refactoring, 14. shared conceptualization, 15. pairing for requirements anal-
ysis, 16. retrospectives and 17. continuous planning. We identified many of these practices
in the case organization, but most were adapted to the large scale of the organization. The
developers did not typically communicate requirements knowledge face-to-face with the
customers (1, 2). Instead, the product owners and the product manager represented the cus-
tomers. The development teams managed requirements as user stories (3), but requirements
were also managed on higher abstraction levels in the form of epics and features. Instead of
the simple iterative elaboration of user stories (4), the features were iteratively elaborated in
the development front end and after they were split into epics and user stories. Requirements
prioritization was performed on the user story level (5), but also on the feature and epic lev-
els. Change management (6) was based on the flexibility of the feature development process.
The case organization strove to create cross-functional teams (7), but only in a specific tech-
nical area. The requirements were managed with a product backlog (11), but instead of using
only index cards or user stories, the case organization employed a three-level requirements

@ Springer

Empir Software Eng (2017) 22:2892-2936 2921

model. Instead of pairing for requirements analysis (15), the requirements were analyzed by
many different stakeholders, including product owners, developers and the product manager.
Continuous planning (17) was performed in the feature development process on the feature
level and in the implementation management process on the epic and user story levels.

6.2 RQ2: What are the Perceived Benefits of the Requirements Management
Processes?

The new way of working created most of the benefits the case organization was expecting.
The benefits are summarized and compared to previous work in Table 6. The main goals
the organization had were to improve the flexibility of the development organization and to
improve the motivation of the developers.

Detailed predevelopment requirements studies had been replaced by the stepwise elab-
oration of requirement information in the new feature development process. This had
drastically reduced the lead time from a minimum of two years to a minimum of a few
months. The new requirements management process increased the flexibility of the feature
development. This allowed the product council to flexibly react to changes in the market and
change the emphasis of the feature development. This was viewed as a major improvement
especially by the product management. Furthermore, the recent rise of software-defined
telecommunications networks is expected to further emphasize the competitive advantage
created by short development lead times (Batista et al. 2015). Korhonen (2013) also found
that the flexibility of the organization improved during the agile transformation of a large
organization. In a survey study of a large organization, Laanti et al. (2011) identified the
increased flexibility as one of the top benefits from agile development. Increased respon-
siveness to change has been claimed to be a benefit from agile RE in general (Heikkili et al.
2015a; Inayat et al. 2015). Although the case study indicated that the organization con-
sidered the new requirements management process a success, we cannot say whether the

Table 6 Summary of the benefits from our study and related work

Benefit Description Related work

Software-defined telecommu-
nications networks emphasize
the advantage of short lead
times (Batista et al. 2015).

Agile transformation increases
flexibility (Korhonen 2013; Laanti
et al. 2011). Agile RE improves
responsiveness to change (Heikkild
et al. 2015a; Inayat et al. 2015).

The time from a feature idea to
feature release is much shorter.

Reduced lead time

Increased flexibility Changes to feature plans and prior-

ities can be made efficiently.

Improved planning process
efficiency

Improved developer motivation

Improved communication
effectiveness

Infeasible or unprofitable features
are dropped early.

Empowerment, learning and visi-
bility increase developers’ motiva-
tion.

Emphasis is on efficient face-to-face
communication instead of documen-
tation.

Agile RE reduces process over-
heads (Heikkilid et al. 2015a; Inayat
et al. 2015).

Developers are more motivated in
an agile than in a plan driven orga-
nization (Noordeloos et al. 2012;
Korhonen 2013).

Agile RE reduces communication
problems (Inayat et al. 2015).

@ Springer

2922 Empir Software Eng (2017) 22:2892-2936

selection of features was better than before the agile transformation, as such data was not
available to us.

An additional benefit from the new feature development process was the improvement
of the planning efficiency, since unprofitable or otherwise infeasible requirements could be
identified and discarded before much effort was spent on studying and specifying them. The
findings support the previous research on agile RE (Heikkild et al. 2015a; Inayat et al. 2015)
that claims that agile RE reduces process overheads. The de-emphasis of the predevelop-
ment requirements specification and documentation also forced the development teams to
improve their understanding about the requirements and the overall system, which created
some learning overhead. However, the learning overhead was expected by the case organi-
zation as a cost of reduced lead time and increased flexibility. The case organization did not
measure developers’ use of time for learning. Subsequently, the quantitative analysis of the
requirements planning efficiency was not possible.

One of the basic agile principles is the empowerment of the development teams to form
their own team work practices and to collectively take responsibility for planning and man-
aging their work (Moe et al. 2010). According to software engineering research (Verner
et al. 2014; Beecham et al. 2008), many factors of software engineers’ motivation are culture
and context dependent. However, existing literature also suggests that there are factors that
are cross-cultural and applicable to all knowledge-intensive work (Pink 2011). These fac-
tors can be summarized as autonomy, mastery and purpose. These factors may explain why
the developer’s motivation was clearly improved following the agile transformation and the
new requirements management process. The teams were given the autonomy to change their
work practices on the team level, they were given opportunities to learn and master new
areas of the system and by including them in the front end of the feature development, they
were given better visibility to the purpose of the upcoming requirements. Previous stud-
ies on agile transformations have identified the increased developer motivation as a benefit
from the transformation from a plan-driven to agile organization (Noordeloos et al. 2012;
Korhonen 2013). The findings of our case study support the previous findings, which sug-
gests that increased developer motivation is a significant effect of a transformation from a
plan-driven to an agile development process.

Different theories, such as the media richness theory (Daft and Lengel 1984) and the
media synchronity theory (Dennis and Valacich 1999), have been proposed to explain the
differences in communication efficiency when different tools and mediums are used. In gen-
eral, such theories agree on that face-to-face communication is the most effective way to
convey complex and contemporary information. These theories also explain why the change
from the previous, document-driven requirements process to the new, agile process was per-
ceived to improve the effectiveness of communication in the case organization. Although the
increased reliance on face-to-face communication may introduce information bottlenecks,
we did not identify such problem in the case organization. Inayat et al. (2015) found that
agile methods, in general, reduce requirements communication problems due to the frequent
face-to-face communication and iterative requirements elaboration, which also supports our
findings.

6.3 RQ3: What are the Perceived Problems Related to the Requirements
Management Processes?

The problems we identified in the case study are summarized and compared to previous

work in Table 7. Several problems were caused by the previous, plan-driven way of working.
Developers had had quite a narrow area of expertise and a limited knowledge of the overall

@ Springer

Empir Software Eng (2017) 22:2892-2936

2923

Table 7 Summary of the problems in our study and related work

Problem

Description

Related work

Balancing planning effort

Overcommitment caused
by the product manage-
ment

Insufficient understanding
of the development team
autonomy

Defining the role of prod-
uct owners

Balancing between gener-
alist and specialist teams

System-level planning,
documentation and
problem solving

Growing technical debt

Detailed planning takes too much
effort, but stakeholders request
detailed plans.

Product management pressurizes
the development to create unrealis-
tic plans.

Both managers and developers
have difficulties in understanding
the additional responsibilities the
teams have.

High level of technical and
business-oriented knowledge is
required from the POs who rarely
have both.

Learning overhead is too high in
some technical areas, but special-
ization decreases flexibility.

No official way to handle planning,
documentation and problem solv-
ing that is not team specific.

Teams do not have the time or skills
to do long term system planning.

Requirements management and
iterative planning are difficult
in large-scale agile development
(Laanti et al. 2011).

Agile RE reduces overscoping
(Inayat et al. 2015; Heikkild et al.
2015a).

The role of middle management is a
challenge in large-scale agile trans-
formations. Team autonomy and
empowerment are success factors
in large-scale agile transformations.
(Dikert et al. 2016)

Split the PO role between a tech-
nical and a business person (Paasi-
vaara et al. 2012a). Create a cross-
functional product owner team that
shares the responsibilities for tech-
nical and business guidance (Bass
2015).

Limited specialization is benefi-
cial in large-scale agile devel-
opment organizations (Leffingwell
2011; Augustine 2008; Larman and
Vodde 2010; Moe et al. 2014).

Dependency coordination is chal-
lenging in large agile organizations
(Wiklund et al. 2013; Laanti et al.
2011). PO teams may have to coor-
dinate requirements management
and planning (Bass 2015; Eckstein
2014).

Explicit system-level planning may
be required to avoid growing tech-
nical debt in agile development
(Korhonen 2013; Heikkild et al.
2015a; Inayat et al. 2015). A spe-
cial role might be needed for the
management of the internal quality
(Moe et al. 2014).

system, and the product management had employed detailed schedules and effort estimates.
The case organization had difficulties in finding a good balance in planning effort. On the
one hand, developers requested more detailed plans and the product management requested
more detailed estimates, and on the other hand, the case organization wanted to keep the
detail level of plans low in order to keep the feature development flexible and the lead time
short. A similar problem was identified by Laanti et al. (2011) in a survey study of opinions
towards agile development in a large organization. They found that the respondents per-
ceived performing requirements management and iterative planning as the second biggest
challenge, the deployment of agile methods being the biggest challenge.

@ Springer

2924 Empir Software Eng (2017) 22:2892-2936

In our case organization, especially when the date of an external release was approaching,
the development organization made overcommitments caused by the external pressure from
the product management, which led to unexpected scope changes late in the release project.
Reduced overscoping has been proposed to be a benefit from agile requirements engineering
due to the constant interaction with the customer (Inayat et al. 2015; Heikkil4 et al. 2015a).
In our case, the pressure to overscope came from outside of the development teams and
could not be completely mitigated by the agile method employed by the teams.

Due to the pretransformation, plan-driven process where implementation plans were
handed down to the developers, some development teams had insufficient understanding
about the development team autonomy. They still expected that detailed implementation
specifications were handed to them by the product owners. However, this was against the
role the product owners had in the organization. Dikert et al. (2016) identified that the role
of middle management is a challenge in large-scale agile transformations. They recognized
that middle managers have to resist the tendency to command and control development
teams. They also found that the team autonomy was an important success factor in agile
transformations. Their findings support our findings on the importance of understanding
the development team autonomy and empowering them to manage requirements on the
development team level.

The developers’ requests for detailed implementation guidance combined with the rel-
ative recent agile transformation created a problem with defining the role of product
owners, since product owners, according to Scrum, have a very business-oriented role.
They are not supposed to give developers detailed technical tasks and are not expected to
be knowledgeable of the implementation details. Paasivaara et al. (2012a) describe how
one large organization solved the problem by dividing the product owner role between
two people. One had more technical skills and the other more business-oriented skills.
Bass (2015) found that despite receiving support from a technical architect, develop-
ment teams had to put lots of effort into understanding the product architecture. These
results suggest that a technically skilled product owner role is beneficial even in mature
large-scale agile development organizations despite the original, business-oriented pur-
pose of the role in the Scrum literature. However, people with both skills are very rare
and more often the issue is solved with a cross-functional product owner team or by
splitting the product owner role between multiple people with different responsibilities
(Bass 2015).

The rest of the problems were related to the need to adapt the agile ways of working to a
large organization and a complex system that was developed. The case organization found
that cross-functional teams capable of developing any feature in end-to-end fashion were
infeasible and struggled to find a good balance between development efficiency and building
generalist teams. Although the authors of early Scrum literature were quite determined that
the cross-functional end-to-end team was the only option (Schwaber and Beedle 2002),
later authors have accepted that there is a need for limited specialization on both the system
and team level, especially in large development organizations (Leffingwell 2011; Augustine
2008; Larman and Vodde 2010). The solution proposed by Larman and Vodde (2010) is
to divide the development organization into technical areas based on the structure of the
system and allow specialization between those technical areas. This kind of arrangement
was empirically studied by Moe et al. (2014) and found to be quite successful. Heikkilé et al.
(2015b) studied a large, agile development organization where the teams were divided into
two technical areas that mirrored the structure of the system. All teams performed release
planning together in release planning events, which helped them to coordinate the work
between the two technical areas.

@ Springer

Empir Software Eng (2017) 22:2892-2936 2925

In the agile single-team, single project sweet spot, the team (including the product
owner) takes responsibility for all work, including the system-level planning, documen-
tation and problem solving. In a large organization that is developing a complex system
with a massive legacy, there are many cross-feature or feature-independent tasks that need
to be coordinated. In our case organization, the development teams focused on develop-
ing features and they lacked knowledge of the system-level work. The product owner team
sought to solve the problem by taking the lead in the coordination of the cross-feature or
feature-independent work. Wiklund et al. (2013) and Laanti et al. (2011) also identified the
coordination of dependencies and co-operation as challenges in large agile organizations.
Previous research on coordination needs in large-scale agile development organizations has
identified that product owner teams have coordination tasks regarding requirements gath-
ering and prioritization, architectural planning and release planning (Bass 2015; Eckstein
2014). Noordeloos et al. (2012) identified the lack of decision and design documentation as
a significant problem in an agile transformation, as reversing incorrect decisions was diffi-
cult without decision documentation. Our findings suggest that product owner teams might
be required to also coordinate system-level documentation and problem solving in addition
to managing the requirements.

Our findings and the previous research (Wiklund et al. 2013; Laanti et al. 2011) suggest
that inter-team coordination and communication are major problems that a large organi-
zation adopting agile methods needs to solve. Our case study implies that these problems
can be mitigated by establishing requirements oriented and technology-oriented coordina-
tion organs above the individual team level. In our case, these coordination organs were,
respectively, the product owner team and the technical specialists. On a more general level,
Scrum-of-Scrums (Schwaber 2007) and communities of practice (Larman and Vodde 2010)
have been proposed as solutions for inter-team coordination in large agile organizations.
The efficiency of Scrum-of-Scrums to coordinate work has been found to be insufficient
beyond a certain size limit due to the large number of participants and the divergence of the
topics that are covered (Paasivaara et al. 2012b). The case organization had also employed
communities of practice to mitigate the problem and the results have been quite promising
(Paasivaara and Lassenius 2014). Employing communities of practice is also better aligned
with the principle of self-organization in comparison to the centralized coordination by a
product owner team.

Our findings support the previous research (Korhonen 2013; Heikkild et al. 2015a; Inayat
et al. 2015) that suggests that explicit architectural and system-level planning may be
required to avoid growing technical debt in agile development. The case organization tried
to mitigate this problem by partially restoring the technical specialist positions that had been
deemphasized in the initial agile transformation. The case organization also employed com-
munities of practice to mitigate this problem (Paasivaara and Lassenius 2014). However,
since communities of practice are self-organizing, their success is closely tied to the enthu-
siasm of the members of the organization. Moreover, if developers do not have knowledge
of the growing technical debt, they cannot organize a community of practice to mitigate
the issue. Thus, architect or technical specialist positions may be needed to raise aware-
ness of the problem and to initiate communities of practice to solve it. Moe et al. (2014)
described how an Ericsson subsystem development organization (that does not overlap with
our case organization) in Sweden and China employed special Technical Area Responsi-
ble (TAR) role to manage the internal quality of the subsystem and for technical inter-team
coordination. The most experienced developers were assigned the TAR role. Their results
indicate that the TAR role was an effective way to manage internal quality and techni-
cal inter-team coordination, but it was quite burdensome for the individuals who had the

@ Springer

2926 Empir Software Eng (2017) 22:2892-2936

role. The TAR role was quite similar to the role the technical specialists had in our case.
The main difference is that the TARs were developers that were given managerial respon-
sibilities while, in our case, the technical specialists needed to work more closely with the
developers.

6.4 Practical Implications

Based on the existing literature and our case study, we can put forward the following three
initial implications for applying agile development methods and agile requirements manage-
ment in large organizations: 1. Agile methods can work on the team-level in collaboration
with less-agile, long term requirements planning processes. 2. Conway’s law (MacCor-
mack et al. 2012) also affects large agile development organizations. 3. Lehman’s Law of
Increasing Complexity (Lehman 1979) needs to be taken into account in large-scale agile
development organizations. These implications are discussed in detail below.

1.) Our findings indicate that agile development organizations can effectively and effi-
ciently work with medium and long term requirements planning processes and
organizations that do not work using an agile life-cycle model. Subsequently, it is not
necessary to completely disassemble and reorganize the whole organization in order to
gain the benefits of agile development on the team level. However, based on our case,
some adaptations are necessary in the team-level agile method and in the long-term
requirements planning processes. On the team-level, the teams had to accept that they
were assigned to develop a specific feature by the feature development process instead
of negotiating the requirements selection with their product owner, as is the case in
Scrum (Schwaber and Beedle 2002). The long-term planning process was adapted to
not create precise long-term plans and expect that those plans are executed precisely.
Instead, the release project planning process created constraints for the project, that is,
the tentative release budget and feature content. The tentative constraints and feature
ideas were then given as an input to the feature development process. Instead of prede-
termining the release contents at the beginning of the release project, the contents were
determined based on what features were ready in time for the release. Although this
reduced the predictability of the release scope, which had been quite high in the previ-
ous, plan-driven release planning process, it also increased the flexibility of the release
scope and reduced the feature development lead time, which were major benefits from
the new way of working.

2.) It seems that regardless of the agile ideal of anyone can do anything (Schwaber 2007;
Beck and Andres 2004), Conway’s law (MacCormack et al. 2012) should be observed
also in large agile development organizations. An initial cross-case analysis between
our case and existing literature (Moe et al. 2014; Larman and Vodde 2010; Leffingwell
2011; Augustine 2008; Heikkild et al. 2015b) suggests that, especially when the system
is large and technically complex, it may be beneficial to divide an agile development
organization into technical areas that mirror the structure of the system. The teams can
then be allowed to specialize in a technical area but should be generalists enough to
be able to develop any part of that technical area and preferably in an end-to-end fash-
ion. The work in and between the technical areas can be planned and coordinated in
common release planning events (Heikkild et al. 2015b), by technical area responsible
people (Moe et al. 2014) or by teams of technical specialists and product owners and
by communities of practice (Paasivaara and Lassenius 2014), as in our case. However,
due to the limited amount of empirical research on large-scale agile development in

@ Springer

Empir Software Eng (2017) 22:2892-2936 2927

general, the results on the applicability of different planning mechanisms in different
contexts are not conclusive.

3.) In early agile development texts, system level work is not explicitly covered and it
was expected to be handled by the development team as a part of their daily work
(Schwaber and Beedle 2002; Beck and Andres 2004). However, it seems that agile
methods, at least in the context of large systems, cannot avoid Lehman’s Law of
Increasing Complexity (Lehman 1979). In large agile organizations, system level plan-
ning, documentation and problem solving needs to be explicitly taken care of. If these
issues are not explicitly managed, there is some evidence that agile methods might
cause increasing technical debt (Korhonen 2013). We suggest, that when adopting
agile in the large-scale, initially the management of system-level work and technical
debt might be handled by specialists such as technical product managers or architects
together with product owners (Korhonen 2013; Moe et al. 2014). When the develop-
ment teams have reached a good level of understanding about the agile principles of
autonomy and self-organization, the responsibility can be transferred to self-organizing
communities of practice that are assisted by the specialist (Paasivaara and Lassenius
2014).

6.5 Limitations and Threats to Validity

In the discussion about the validity of this research, we rely on the definitions of validity
and reliability proposed by Yin (Yin 2009). The construct validity of a case study concerns
the accuracy of the constructs created in the analysis to reflect the reality (Yin 2009). In
order to increase the construct validity, we used triangulation of data sources and investi-
gators (Yin 2009; Patton 2002). We triangulated the data sources by interviewing multiple
persons holding each role in the case organization, when possible. We triangulated the inves-
tigators by having the first three authors perform the interviews, and by having almost all
interviews conducted by two interviewers co-operatively. The interviews were coded by
the first three authors and analyzed by the first author, but the second and the third author
reviewed the analysis. Furthermore, the fifth author of this article was one of our key infor-
mants and he also reviewed the findings. The interview data collection method may induce
many kinds of biases to the collected data (Shadish et al. 2001). Such biases could be mit-
igated by triangulating the interview data with data from project artifacts such as meeting
memos and requirements documents. Unfortunately, due to confidentiality reasons, we did
not have the possibility to study project artifacts qualitatively. However, the large num-
ber of interviewees and roles they had somewhat limits this threat to the construct validity.
Based on the aforementioned triangulation, we can be quite confident that our findings
accurately reflect the perceptions of the members of the case organization. However, we
did not collect quantitative data on the changes in the development lead time, flexibility,
planning efficiency or technical debt before and after the agile transformation. Subse-
quently, we cannot provide information about how much the transformation affected such
indicators.

There was an approximately two year long gap between the first two interview rounds in
2011 and the third round in 2013. The data does not indicate significant differences between
the team level requirements management practices in 2011 and 2013. Subsequently, com-
bining the data on the team level requirements management practices from all interview
rounds is not a significant threat to the construct validity of our findings on the team level
practices.

@ Springer

2928 Empir Software Eng (2017) 22:2892-2936

Internal validity is concerned with the validity of causal relationships and it is only rele-
vant to explanatory or causal results (Yin 2009). In the findings, we describe several causal
relationships that were purported by the interviewees or otherwise identified by us. Due to
the nature of a descriptive case study, the internal validity of the findings cannot be assessed
accurately. There is a large number of threats to internal validity that cannot be removed in
a descriptive case study, such as maturation and temporal ambiguity (Shadish et al. 2001).
Thus, the findings of this study regarding causal relationships should be considered only
tentative.

In order to increase the validity of our findings and to give feedback to the case orga-
nization, we presented the findings from the first and second interview rounds to the case
organization in a feedback session conducted in December 2011 in Finland. All inter-
viewees, as well as all interested case organization members were invited to the session.
Approximately half of the interviewees participated in the session either locally or via
a telecommunications system. Although there was a lot of discussion and questions, no
corrections to our findings were necessary based on the feedback session.

The external validity of a case study concerns the context which the findings can be
generalized to (Yin 2009), which is known as the analytical generalization of a case study
(Yin 2009). The main question we need to address is as follows: If another organiza-
tion adopted the processes and organizations described in this case, which characteristics
must the organization share with our case for our findings to hold? Based on our study,
we can create a hypothesis of the significant characteristics of the context. First, the sys-
tem under development was large, multifaceted and technically demanding. Second, the
number of development teams was relatively large. Third, there were three different lev-
els of planning and management that had a different purpose, process and stakeholders.
Different findings specific to each of these layers may be generalizable in isolation from
the other layers if the result in question does not have significant dependencies to the
other layers. On the other hand, the generalizability of the findings regarding the inter-
faces between the layers may demand that both layers are similar to those in our case.
To increase the analytical generalizability of a descriptive single case study, the case
study description must be detailed enough to allow analytical comparisons and synthesis
with other studies on similar subjects (Yin 2009). We have striven to provide suffi-
cient amount of details on the most significant findings to allow later comparisons and
synthesis.

The reliability of research concerns the repeatability of the research (Yin 2009). If other
researchers had conducted the same study, had they arrived at the same findings? The main
threat to the reliability (Yin 2009) of this research is the variability in the data collec-
tion. The data collection was conducted using the general interview guide approach (Patton
2002), which introduced variability to the topics discussed in the interviews. However, the
large number of interviewees and multiple interviewers allowed data source and investigator
triangulation (Patton 2002) which increased the reliability of the findings.

7 Conclusions and Future Work
The applicability of agile methods to large development organizations has been a con-
tentious issue in the practitioner literature. Our case study describes how agile methods

were employed on a team level in a large organization, how the longer-term processes,
the release project management process and the feature development process, interfaced

@ Springer

Empir Software Eng (2017) 22:2892-2936 2929

with the agile development organization and how requirements flowed between the different
levels. Although the case organization had problems with adopting agile practices at a large
scale and with the transition from a plan-driven to an agile way of working, overall the new
way of working was considered a success. On the development team level, the main benefit
was the increased motivation. On the release project management level, the main bene-
fit was the significantly shorter development lead time and the increased flexibility of the
development. On the feature development process level, the main benefit was the improved
efficiency due to the incremental feature elaboration process. Especially, since large and
agile telecommunications system software development organizations have not been widely
studied beforehand, our in-depth case study allows comparisons to future research and
different contexts to build more general theories regarding requirements management in
large-scale agile organizations.

Our study was a qualitative, descriptive case study. Our approach was appropriate since
the phenomenon we studied was not well known. The results indicated many changes to
the performance of the case organization that were created by the agile transformation.
However, our results are based on the perceptions of the case organization members. Now
that many suggested benefits from the agile way of working have been identified, there is a
need for further quantitative studies that study the actual effect size of these benefits to the
overall performance of the organization. Our findings and the related work can be used as a
basis for such quantitative studies. The proposed benefits of the agile way of working that
need to be quantitatively studied include the following: effectiveness and efficiency of the
selection of features, internal quality and technical debt, communication effectiveness and
efficiency, the effects of the fast time-to-market, and the overall efficiency and effectiveness
of the agile way of working.

Until recently, most literature on large-scale agile development was written by practi-
tioners and consultants and the empirical evaluation of their proposed models and practices
has been weak (Dikert et al. 2016). In addition to our case study, a few empirical studies
have been recently published regarding the organizational structure of a large-scale agile
development organization and the inter-team coordination and communication problems
and practices. Different communication and coordination mechanisms, such as scrum-of-
scrums, communities of practice and product owner teams, have been proposed in the
research literature. This subject area would be a good target for a systematic literature
review and meta-analysis to identify the contextual factors that affect the applicability of the
different coordination mechanisms. Another interesting subject area is the study of the adap-
tations that had to be made to agile practices in order to scale agile methods to a large-scale
organization.

Our case study is an additional contribution to the growing scientific knowledge base on
agile development at scale. Our study extends this knowledge base by providing a detailed
description of the requirements flow in the context of telecommunications software devel-
opment in a large organization that employs an agile development method. In the future, we
plan to concentrate on cross-case analysis of evidence from large-scale agile development
in order to build generalizable knowledge and solid theoretical base for large-scale agile
software development practice.

Acknowledgments We would like to thank Oy LM Ericsson Ab for making this study possible, all the
anonymous interviewees for providing valuable contributions to this research and Kaisa Kettunen for review-
ing the manuscript. This research was financially supported by TEKES (the Finnish Funding Agency for
Innovation) as a part of the Cloud Software Finland program of DIGILE and the Need for Speed program of
DIMECC.

@ Springer

2930 Empir Software Eng (2017) 22:2892-2936

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Interview Questions

1. Background

— What is your role, background and experience at Ericsson?
— What kind of training have you had on Lean and Agile software development?
Would you have needed more training?

2. Agile and Lean Transformation

— Why was the transformation started?

— Explain the timeline of the transformation.

— Why did you choose Scrum? Why Lean?

— What comes from Scrum in your way-of-working? What comes from Lean in
your way-of-working?

— What is still left from the waterfall model?

— What kind of training have you arranged? By whom? To whom?

— What are you still planning to change / improve?

— What is your general feeling of the transformation? Good / bad / challenges? How
have you solved the challenges?

— What would you have done differently? How?

— Has Lean and Agile solved the challenges you wanted to solve by this change?

— How have you measured the change? What have you exactly measured? How does
this change look according to your measurements?

3. Organization structure

— How does your organization look like? (draw a picture!)

— How has the agile transformation affected the roles and responsibilities?

— What roles do you currently have in your organization? Are the following roles
and their responsibilities clear: Project Manager vs. Scrum Master vs. Product
Owner vs. Proxy Product Owner vs. Program Manager? Are the roles roles clear
in your organization? Are there challenges / improvement needs regarding these
roles or their application?

— Comment on the organization structure: Good? / Improvement needs? Do you still
plan to change something regarding the organization structure?

— How many persons do you have at the moment at each site? How many teams at
each site? What are the team sizes at the different sites?

— How are responsibilities divided between the different sites? Do you have dif-
ferent kind of tasks / roles at different sites? When did Hungary join in?
Why?

— How do you take care of the collaboration, communication and division of tasks
between the sites? How does it work? Good? / Improvement needs?

— Do different teams have different roles?

— Feature teams: What kind of knowledge / “roles” do you have in each team?
Good? / Challenges? What have you done to solve the challenges?

@ Springer

http://creativecommons.org/licenses/by/4.0/

Empir Software Eng (2017) 22:2892-2936 2931

10.

Coaching

— External coaching: What kind of coaching / consulting have you had to support
the transformation?

— What kind of training have you arranged?

— Have you had internal coaches? If yes, tell more about their role and tasks.

Team-level Scrum practices

— Your own team: team size, what does your team do, connections to other teams?

— Scrum practices of your team (explain all Scrum practices your team uses)

— Whatis the length of your iterations? What is your opinion on the iteration length?
Explain.

— Cross-functional teams: How has the idea of the cross-functional teams worked
out? Why? / Why not?

— Tell about the communication inside your team. Good / bad / improvement needs?

— How and when do you communicate with other teams?

— Do you know enough on what is happening in the other teams / elsewhere in the
project? Is there something that you would need to know more? What? Why?

— How does the global distribution affect your daily work?

— What is working well in you team / regarding your team practices? What are the
biggest problems? What should be improved? How?

Improvement suggestions

— Is there something that should be improved in this project?
— How?

Tools

— What are the most important tools that you use?
— Tell a bit about each tool (for what is it used, who are using it, etc.) Good? / Bad?

Scaling agile / Cross-team coordination practices

— What are your current scaling / cross-team coordination practices?

— Scrum-of-Scrums? CoPs? Feature Owners? Tell about each practice.

— How have you taken into account the global distribution in cross-team coordina-
tion? How do you handle communication? Tools used to support the communica-
tion and coordination? What kind of challenges have you experienced?

Measuring

— What do you measure?

— How do you measure quality? Productivity? How has this changed compared to
the way of working before the transformation?

— What should be measured? Why?

Product management

— How is product management taken care of?

— Where do you receive the requirements? Describe the whole flow from the
customer request to the requirement being part of the product.

— How is customer communication taken care of?

— What does the Product Owner do? What does the Proxy Product Owner do?

— Communication between the Product Owners/ Proxy Product Owners? Commu-
nication with the teams?

— How is work divided between teams? Who does that?

@ Springer

2932 Empir Software Eng (2017) 22:2892-2936

— What are the current challenges of Product Management?
11. Opinions

— How do you think that the Lean and Agile transformation has succeeded?

— How do you think that Lean and Agile software development fits in your organiza-
tion? What are the benefits is brings? What are the challenges? Has your opinion
towards the Lean and Agile changed somehow during the transformation?

— What advice would you give others considering the application of Lean and Agile
to a similar situation?

— What are your expectations towards our research?

References

Augustine S (2008) Managing Agile Projects. Prentice Hall Professional Technical Reference Upper Saddle
River. NJ, USA

Bass JM (2015) How product owner teams scale agile methods to large distributed enterprises. Empir Softw
Eng 20(6):1525-1557

Batista DM, Blair G, Kon F, Boutaba R, Hutchison D, Jain R, Ramjee R, Rothenberg CE (2015) Perspectives
on software-defined networks: interviews with five leading scientists from the networking community.
Journal of Internet Services and Applications 6(1):1-10

Beck K, Andres C (2004) Extreme programming explained : embrace change, 2nd edn. Addison-Wesley,
Boston, MA, USA

Beecham S, Baddoo N, Hall T, Robinson H, Sharp H (2008) Motivation in software engineering: A
systematic literature review. Inf Softw Technol 50(9-10):860-878

Brooks Jr. FP (1975) The Mythical Man-Month, Essays on Software Engineering

Cao L, Mohan K, Xu P, Ramesh B (2004) How extreme does eXtreme Programming have to be? Adapting
XP practices to large-scale projects. In: Proceedings of the Hawaii International Conference on System
Sciences, vol 37, pp 1335-1344

Chow T, Cao DB (2008) A survey study of critical success factors in agile software projects. J Syst Softw
81(6):961-971

Daft RL, Lengel RH (1984) Information richness: a new approach to managerial behavior and organizational
design. Res Organ Behav 6:191-233

Damian D, Chisan J (2006) An empirical study of the complex relationships between requirements engi-
neering processes and other processes that lead to payoffs in productivity, quality, and risk management.
IEEE Trans Softw Eng 32(7):433—453

Dennis AR, Valacich JS (1999) Rethinking media richness: towards a theory of media synchronic-
ity. In: Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences
(HICSS-32)

Dikert K, Paasivaara M, Lassenius C (2016) Challenges and success factors for large-scale agile transforma-
tions: A systematic literature review. J Syst Softw 119:87

Eckstein J (2014) Architecture in large scale agile development. In: Dingsgyr T, Moe N, Tonelli R, Counsell
S, Gencel C, Petersen K (eds) Agile Methods. Large-Scale Development, Refactoring, Testing, and Esti-
mation, Lecture Notes in Business Information Processing, vol 199. Springer International Publishing,
pp 21-29

Elo S, Kyngis H (2008) The qualitative content analysis process. J Adv Nurs 62(1):107-115

Fogelstrom ND, Gorschek T, Svahnberg M, Olsson P (2010) The impact of agile principles on market-driven
software product development. J Softw Maint Evol Res Pract 22(1):53-80

Heikkild VT (2015) Case studies on release planning in agile development organizations. PhD thesis, Aalto
University, http://urn.fi/URN:ISBN:978-952-60-6046-0

Heikkild VT, Paasivaara M, Lassenius C (2013a) ScrumBut, but does it matter? A mixed-method study of
the planning process of a multi-team Scrum organization. In: O’Conner L (ed) Proceedings of the 2013
ACM / IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM
2013). IEEE Computer Society, pp 85-94

Heikkild VT, Paasivaara M, Lassenius C, Engblom C (2013b) Agile Processes in Software Engineering and
Extreme Programming, Lecture Notes in Business Information Processing. In: Baumeister H, Weber
B (eds), vol 149. Springer, Berlin Heidelberg, pp 195-209

@ Springer

http://urn.fi/URN:ISBN:978-952-60-6046-0

Empir Software Eng (2017) 22:2892-2936 2933

Heikkild VT, Damian D, Lassenius C, Paasivaara M (2015a) A mapping study on requirements engineering in
agile software development. In: Proceedings of the 41st Euromicro Conference on Software Engineering
and Advanced Applications (EUROMICRO SEAA 2015), pp 199-207

Heikkild VT, Paasivaara M, Rautiainen K, Lassenius C, Toivola T, Jérvinen J (2015b) Operational release
planning in large-scale Scrum with multiple stakeholders — a longitudinal case study at F-Secure
Corporation. Inf Softw Technol 57:116-140

Hsieh HF, Shannon SE (2005) Three approaches to qualitative content analysis. Qual Health Res 15(9):1277—
1288

Inayat I, Salim SS, Marczak S, Daneva M, Shamshirband S (2015) A systematic literature review on agile
requirements engineering practices and challenges. Computers in Human Behavior 51. Part B:915-929

Jantunen S, Lehtola L, Gause DC, Dumdum UR, Barnes RJ (2011) The challenge of release planning. In:
Proceedings of the Fifth International Workshop on Software Product Management, pp 36-45

Korhonen K (2013) Evaluating the impact of an agile transformation: a longitudinal case study in a distributed
context. Softw Qual J 21(4):599-624

Laanti M, Salo O, Abrahamsson P (2011) Agile methods rapidly replacing traditional methods at Nokia: A
survey of opinions on agile transformation. Inf Softw Technol 53(3):276-290

Larman C, Vodde B (2009) Scaling lean andamp; agile development: thinking and organizational tools for
large-scale scrum. Addison-Wesley Upper Saddle River, NJ, USA

Larman C, Vodde B (2010) Practices for scaling lean & agile development: large, multisite, and offshore
product development with large-scale Scrum. Addison-Wesley Upper Saddle River, NJ, USA

Lee EA (2002) Embedded software. In: Zelkowitz MV (ed) Advances in Computers, vol 56. Elsevier, pp 55—
95

Leffingwell D (2011) Agile software requirements : lean requirements practices for teams, programs, and the
enterprise. Addison-Wesley Upper Saddle River, NJ, USA

Lehman M (1979) On understanding laws, evolution, and conservation in the large-program life cycle. J Syst
Softw 1:213-221

Lehtola L, Kauppinen M, Kujala S (2005) Linking the business view to requirements engineering: long-
term product planning by roadmapping. In: Proceedings of the 13th IEEE International Conference on
Requirements Engineering, pp 439-443

MacCormack A, Baldwin C, Rusnak J (2012) Exploring the duality between product and organizational
architectures: A test of the “mirroring” hypothesis. Res Policy 41(8):1309-1324

Maglyas A, Nikula U, Smolander K (2012) What do practitioners mean when they talk about product man-
agement? In: Proceedings of the 20th IEEE International Requirements Engineering Conference (RE,
vol 2012, pp 261-266

Maiden NAM (2012) Exactly how are requirements written? IEEE Softw 29(1):26-27

Moe NB, Dingsgyr T, Dyba T (2010) A teamwork model for understanding an agile team: A case study of a
Scrum project. Inf Softw Technol 52(5):480-491

Moe NB, Smite D, Sablis A, Borjesson AL, Andréasson P (2014) Networking in a large-scale distributed
agile project. In: Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM ’14), ACM, New York, NY, USA, pp 12:1-12:8

Noordeloos R, Manteli C, van Vliet H (2012) From RUP to Scrum in global software development: A case
study. In: Proceedings of the Seventh International IEEE Conference on Global Software Engineering
(ICGSE’12), pp 31-40

Paasivaara M, Lassenius C (2014) Communities of practice in a large distributed agile software development
organization — Case Ericsson. Inf Softw Technol 56(12):1556-1577

Paasivaara M, Heikkild VT, Lassenius C (2012a) Experiences in scaling the product owner role in large-scale
globally distributed Scrum. In: Proceedings of the Seventh IEEE International Conference on Global
Software Engineering (ICGSE 2012), pp 174-178

Paasivaara M, Lassenius C, Heikkild VT (2012b) Inter-team coordination in large-scale globally distributed
Scrum: do Scrum-of-Scrums really work? In: Proceedings of the ACM-IEEE international symposium
on Empirical software engineering and measurement (ESEM’12), ACM, New York, NY, USA, pp 235-
238

Paasivaara M, Lassenius C, Heikkild VT, Dikert K, Engblom C (2013) Integrating global sites into the lean
and agile transformation at ericsson. In: Proceedings of the IEEE 8th International Conference on Global
Software Engineering, pp 134-143

@ Springer

2934 Empir Software Eng (2017) 22:2892-2936

Paasivaara M, Viittinen O, Hallikainen M, Lassenius C (2014) Supporting a large-scale lean and agile
transformation by defining common values. In: Dingsgyr T, Moe NB, Tonelli R, Counsell S, Gencel
C, Petersen K (eds) Agile Methods. Large-Scale Development, Refactoring, Testing, and Estimation:
XP 2014 International Workshops, Revised Selected Papers, Springer International Publishing, Lecture
Notes in Business Information Processing, vol 199, pp 73-82

Patton MQ (2002) Qualitative research and evaluation methods, 3rd edn. Sage Publications, Thousand Oaks,
CA, USA

Pink DH (2011) Drive: The Surprising Truth About What Motivates Us. Riverhead Books

Rautiainen K, Lassenius C, Sulonen R (2002) 4CC: A framework for managing software product develop-
ment. Eng Manag J 14(2):27-32

Schwaber K (2007) The enterprise and Scrum. Microsoft Press Redmond, WA, USA

Schwaber K, Beedle M (2002) Agile software development with Scrum

Shadish WR, Cook TD, Campbell DT (2001) Experimental and quasi-experimental designs for generalized
causal inference. Houghton Mifflin, Boston, MA, USA

Svahnberg M, Gorschek T, Feldt R, Torkar R, Saleem SB, Shafique MU (2010) A systematic review on
strategic release planning models. Inf Softw Technol 52(3):237-248

Taramaa J, Seppdnen V, Miékérdinen M (1996) From software configuration to application management—
improving the maturity of the maintenance of embedded software. J Softw Maint Res Pract 8(1):49—
75

Verner JM, Babar MA, Cerpa N, Hall T, Beecham S (2014) Factors that motivate software engineering teams:
A four country empirical study. J Syst Softw 92:115-127

Vihiniitty J (2012) Towards agile product and portfolio management. PhD thesis, Aalto University, http://
urn.fi/URN:ISBN:978-952-60-4506- 1

Wiklund K, Sundmark D, Eldh S, Lundqvist K (2013) Impediments in agile software development: An empir-
ical investigation. In: Heidrich J, Oivo M, Jedlitschka A, Baldassarre M (eds) Product-Focused Software
Process Improvement, Lecture Notes in Computer Science, vol 7983. Springer Berlin Heidelberg,
pp 35-49

Yin RK (2009) Case study research : design and methods, 4th edn. Sage Publications, Thousand Oaks, CA,
USA

Ville T. Heikkili is a postdoctoral researcher at Aalto University, Finland. His specific research interests
include agile and lean methods, requirements engineering, DevOps and continuous software development.
He also conducts research on serious games for software engineering education. He has a D.Sc. degree from
Aalto University, Finland.

@ Springer

http://urn.fi/URN:ISBN:978-952-60-4506-1
http://urn.fi/URN:ISBN:978-952-60-4506-1

Empir Software Eng (2017) 22:2892-2936 2935

Maria Paasivaara is a research fellow at Aalto University. Her research interests include agile and lean
software engineering, scaling agile to large and globally distributed projects, global software engineering,
and software engineering education. She has a D.Sc. degree from Aalto University.

Casper Lassenius is an associate professor of software engineering at the Aalto University, Finland. His
research is conducted empirically in close collaboration with industrial partners, trying to minimize the gap
between industry and academia. His more specific interests include software product development, agile
methodologies, global software engineering, and software testing and quality assurance. He has a PhD in
Computer Science from Helsinki University of Technology, Finland.

@ Springer

2936 Empir Software Eng (2017) 22:2892-2936

Daniela Damian is a Professor of Software Engineering in University of Victoria’s Department of Computer
Science, where she leads research in the Software Engineering Global interAction Laboratory (SEGAL, the-
segalgroup.org). Her research interests include Empirical Software Engineering, Requirements Engineering,
ComputerSupported Cooperative Work. Her recent work has studied the developers’ sociotechnical coor-
dination in large, geographically distributed software projects, as well as stakeholder management in large
software ecosystems. Daniela has served on the program committee boards of several software engineering
conferences, and recently was the Co-Chair for the Software Engineering in Society Track at ICSE 2015. She
is currently serving on the editorial boards of Transactions on Software Engineering, the Journal of Require-
ments Engineering, is the Requirements Engineering Area Editor for the Journal of Empirical Software
Engineering, and the Human Aspects Area Editor for the Journal of Software and Systems.

Christian Engblom is a member of the Ericsson Finland R&D management team. After joining Ericsson in
1979 he has held roles of project manager, product manager and line manager within the R&D, as well as the
market unit areas. Currently he holds a position as driver for the Lean and Agile transformation within the
R&D organization in Finland and is actively involved in Lean & Agile change wave going through the entire
Ericsson R&D world. His professional interests include agile and lean software development.

@ Springer

	Managing the requirements flow from strategy to release in large-scale agile development: a case study at Ericsson
	Abstract
	Introduction
	Background and Related Work
	Agile Requirements Engineering
	Planning in Large-Scale Agile Development
	Large-Scale Agile Development Organization Models

	Research Methods
	Data Collection
	Data Analysis

	The Case Organization
	Findings
	Case Organization Structure
	Requirements Model
	Product Owner Team
	Development Teams
	Product Management
	Technical Management
	Portfolio Management

	Feature Development Process
	The Front End
	Implementation

	Release Project Management Process
	Implementation Management Process
	Benefits
	Reduced Development Lead Time
	Increased Flexibility
	Improved Planning Process Efficiency
	Increased Developer Motivation
	Direct and Efficient Communication

	Problems
	Overcommitment Caused by Pressure from the Product Management
	Balancing Planning Effort
	System-Level Planning, Documentation and Problem Solving
	Defining the Responsibilities of Product Owners
	Growing Technical Debt
	Balancing Between Development Efficiency and Building Generalist Teams
	Insufficient Understanding about the Development Team Autonomy

	Discussion
	RQ1: How is the Requirements Flow from the Strategy to a Release Managed?
	RQ2: What are the Perceived Benefits of the Requirements Management Processes?
	RQ3: What are the Perceived Problems Related to the Requirements Management Processes?
	Practical Implications
	Limitations and Threats to Validity

	Conclusions and Future Work
	Acknowledgments
	Open Access
	Appendix I Interview Questions
	References

