
Empir Software Eng (2017) 22:2095–2126
DOI 10.1007/s10664-016-9480-2

Studying the urgent updates of popular games
on the Steam platform

Dayi Lin1 ·Cor-Paul Bezemer1 ·Ahmed E. Hassan1

Published online: 13 December 2016
© Springer Science+Business Media New York 2016

Abstract The steadily increasing popularity of computer games has led to the rise of a
multi-billion dollar industry. This increasing popularity is partly enabled by online digital
distribution platforms for games, such as Steam. These platforms offer an insight into the
development and test processes of game developers. In particular, we can extract the update
cycle of a game and study what makes developers deviate from that cycle by releasing so-
called urgent updates. An urgent update is a software update that fixes problems that are
deemed critical enough to not be left unfixed until a regular-cycle update. Urgent updates
are made in a state of emergency and outside the regular development and test timelines
which causes unnecessary stress on the development team. Hence, avoiding the need for an
urgent update is important for game developers. We define urgent updates as 0-day updates
(updates that are released on the same day), updates that are released faster than the regular
cycle, or self-admitted hotfixes. We conduct an empirical study of the urgent updates of
the 50 most popular games from Steam, the dominant digital game delivery platform. As
urgent updates are reflections of mistakes in the development and test processes, a better
understanding of urgent updates can in turn stimulate the improvement of these processes,
and eventually save resources for game developers. In this paper, we argue that the update
strategy that is chosen by a game developer affects the number of urgent updates that are
released. Although the choice of update strategy does not appear to have an impact on the

Communicated by: Emerson Murphy-Hill

� Dayi Lin
dayi.lin@cs.queensu.ca

Cor-Paul Bezemer
bezemer@cs.queensu.ca

Ahmed E. Hassan
ahmed@cs.queensu.ca

1 Queen’s University, Kingston, ON, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-016-9480-2&domain=pdf
http://orcid.org/0000-0002-4034-6650
mailto:dayi.lin@cs.queensu.ca
mailto:bezemer@cs.queensu.ca
mailto:ahmed@cs.queensu.ca

2096 Empir Software Eng (2017) 22:2095–2126

percentage of updates that are released faster than the regular cycle or self-admitted hotfixes,
games that use a frequent update strategy tend to have a higher proportion of 0-day updates
than games that use a traditional update strategy.

Keywords Update cycle · Update strategy · Urgent update · Computer games · Steam

1 Introduction

The steadily increasing popularity of computer games has led to the rise of a multi-billion
dollar industry, reaching an estimated revenue of $91.5 billion in 2015 (Sinclair 2015).
The scale of this industry is demonstrated by the number of players which reaches almost
900,000 players per day for popular games such as the Dota 2 game (Gray 2016).

The wide-spread availability of increasingly fast Internet connections has opened up a
range of new opportunities for game developers, such as subscription-based gaming and a
changing distribution strategy from offline physical distribution (e.g., through brick-and-
mortar stores) to online digital distribution (e.g., through the Xbox Game Store (Microsoft
2015) or Steam (Valve 2016b)). Digital distribution allows game developers to easily dis-
tribute game updates and new content to the players through online gaming communities,
such as the Steam Community (Valve 2016a). Games purchases on digital distribution
platforms reached a revenue of $61 billion (SuperData 2015) in 2015.

In many cases, developers advertise the update notes of new updates of their games
through online gaming communities to reach the game players. As such, these update notes
offer a valuable insight into the update behavior of a game developer. In particular, we can
infer the update cycle of a game, which in turn allows us to identify urgent updates.

Urgent updates are deemed critical enough to not be left unreleased until an upcoming
regular-cycle update. As urgent updates are usually released in a state of emergency, i.e.,
to quickly respond to critical errors that are introduced by a previous game update, urgent
updates cause unnecessary stress on developers. The stress of these so-called “fire-fighting
conditions” can not only lead to inefficient problem solving, but also introduce changes that
can easily create new problems (Bohn 2000), and hence such updates should be avoided by
game developers.

In this paper, we perform an empirical study on urgent updates of the 50 most popular
games on Steam (Valve 2016b), a popular digital game distribution platform. Our goal is
to help game developers understand the causes behind urgent updates, and in turn stimulate
the improvement of the development and test processes of games. First, we study the update
frequency, update consistency and update strategy of the studied games in a preliminary
study. Our preliminary study shows that while 32 % of the games follow a frequent update
strategy, 68 % of the studied games follow a build-up candidate update strategy. Games that
follow a build-up candidate update strategy hold off their updates until they release a major
update which contains many minor updates. Then, we examine the following questions:

How often do developers release urgent updates?We consider 0-day updates, updates
that are released faster than the regular cycle and self-admitted hotfixes to be urgent
updates. 80 % of the studied games have urgent updates. Games that use a fre-
quent update strategy have a higher proportion of 0-day updates than games that use
a build-up candidate update strategy. 46 % of the studied games have self-admitted
hotfixes.

Empir Software Eng (2017) 22:2095–2126 2097

Why do developers release urgent updates? 36 % of the urgent updates are released to
make changes to the rules of a game. Feature malfunctions, crashing games and visual
bugs are the most commonly-given reasons for releasing urgent updates.

Prior work on urgent updates focuses on urgent updates that are released to patch security
vulnerabilities in software (Arora et al. 2010; Kim et al. 2011). In addition, Hassan et al.
(2016) study urgent updates for mobile apps. We are the first, to the best of our knowledge,
to empirically study the interesting phenomenon of urgent updates for games.

Paper Organization The rest of this paper is organized as follows. Section 2 provides
background information on the Steam platform, on update strategies and related work.
Section 3 presents the methodology that we use in our empirical study. Section 4 presents
our preliminary study. Section 5 presents the findings of our empirical study. Section 6
discusses the threats to the validity of our study. Finally, Section 7 concludes the paper.

2 Background

In this section, we give background information for our study. First, we briefly describe the
Steam Gaming Platform and the release strategies that we study. Then, we discuss related
work.

2.1 Steam Gaming Platform

Steam is a digital game platform, developed by Valve Software, that helps users with the
installation, updates and management of their computer games. There are currently over
8,100 games available through Steam and the platform has over 142 million active users
(Galyonkin 2016).

Steam acts as a digital game library, as it helps users track their games. For example,
users can install the games, that they own, on multiple computers through Steam. Steam
helps users to handle ownership logistics, such as storing the license keys that are needed to
play a game. In addition, Steam manages the update process for those games, if necessary.
Another advantage of Steam is that it provides a unified platform for users of different
operating systems, such as Windows and Linux.

Users can buy and download Steam games from the Steam Store (Valve 2016b) or from
third-party vendors. To play a Steam game, users must register the game on the Steam plat-
form and install the Steam client. The game is then playable once the user logs into Steam
using the client. The Steam client will verify ownership of the game and automatically
install any available updates. It is mandatory to install the latest update in order to play a
game through Steam. As a result, players are always using the latest version of a game, even
if the last update was a buggy update. There is no option for undoing or skipping an update
of a Steam game.

In addition, users can enjoy social network-like features such as friends lists and chat
functionality through the Steam Community. The Steam Community publishes statistics for
games and players. Game developers and journalists can publish news updates for games
on so-called channels. Table 1 lists all available channels with a brief description of the
content of each channel. Various third-party dashboards, such as SteamSpy (Galyonkin
2016), collect a plethora of aggregated information from the Steam Community about Steam
games.

2098 Empir Software Eng (2017) 22:2095–2126

Table 1 All available Steam channels

Channel Contents Used in our study

Announcements General updates including promotions

Client Updates Steam Client updates

Eurogamer Reviews of games

Kotaku Reviews of games

Left 4 Dead Official Blog Updates for the Left 4 Dead game

PC Gamer Reviews of games

Portal 2 Official Blog Updates for the Portal 2 game

Press Releases Press releases for Valve games

Product Releases New game releases �
Product Updates Game updates �
Rock, Paper, Shotgun Reviews of games

Shacknews Reviews of games

Steam Blog General updates including promotions

Steam Community Announcements Updates for games and promotions �
TF2 Official Blog Updates for the Team Fortress 2 game

In general, developers post announcements about game updates to one or more channels,
e.g., to the Product Update channel. However, while installing the latest game update on
Steam is mandatory for users, developers do not necessarily need to announce all updates
that they make. Instead, they may choose to silently update a game. Nevertheless, developers
do often post news updates about their games to keep users informed about the latest news
about their games.

2.2 Update Strategies

In this paper, we classify each studied game into one of two classes, based on the update
strategy that the game uses. The first class contains games that follow a traditional update
strategy, i.e., these games hold off their updates until they release a major update which
contains many minor updates. In this paper, we call this strategy the build-up candidate
strategy, to emphasize that the developer ‘builds up’ a release candidate. A characteristic of
the build-up candidate strategy is that the number of days between updates is often large (in
the order of months or even years).

The second class contains games that release updates frequently. These games release
an update as soon as a feature or fix is finished. Hence, the update timeline of these games
is filled with minor updates. The characteristic of the frequent update strategy is that the
number of days between updates is often small (in the order of days or weeks).

For both update strategies, the number of days between updates may increase as the game
matures, for several reasons. For example, a developer may focus on developing new prod-
ucts, while updating older products only when absolutely necessary. Because the number of
days between updates may increase over time, we cannot simply classify the games based
on the number of days between updates only. In Section 4, we discuss our classification of
games based on their update strategy.

Empir Software Eng (2017) 22:2095–2126 2099

2.3 Related Work

In the remainder of this section, we discuss prior research that is related to our work.

2.3.1 Mining Digital Gaming Platforms

Mining data from digital gaming platforms is an area that has been gaining attention
recently. Most research in this area is focused on Steam or the Steam community.

Chambers et al. (2005) analyzed two years of game traffic on several gaming platforms,
including Steam. They demonstrate the difficulty of providing enough resources at launch
time of a game and they show that gamers are extremely difficult to please.

Several empirical studies have examined the social network of the Steam Community.
Blackburn et al. (2011) study cheaters in the Steam Community. They analyze more than
12 million player profiles of which 700,000 are flagged as cheater and show that the social
network of a player (e.g., whether a player has cheating friends) plays an important role in
whether a player becomes a cheater. Becker et al. (2012) analyze the evolution of the Steam
Community social network and examine user groups in the Steam community. Sifa et al.
(2015) studied cross-game behaviour of players in the Steam Community. They analyze
how players that play multiple games on Steam divide their playtime and which games are
played by them.

Huang et al. (2013) analyzed gameplay data for Halo Reach, a popular Xbox game, to
investigate what differentiates the best players (players with the highest TrueSkill ratings, a
Bayesian scoring system similar to the Elo rating in chess) from regular players.

Our work is the first, to the best of our knowledge, that uses a digital gaming platform,
i.e., the Steam platform, to analyze urgent updates of games from a software engineering
perspective.

2.3.2 Software Engineering and Games

Several studies have examined various software engineering aspects of game development.
Ampatzoglou and Stamelos (2010) examine how software engineering practices are used

in game development. They show that game developers adjust traditional software engi-
neering methods to make them fit for game development. Apostolos et al. propose the
employment of more elaborate empirical methods, i.e., controlled experiments and case
studies, in game development research. Murphy-Hill et al. (2014) perform a study with 14
interviewees and 364 survey respondents to elicite substantial differences between video
game development and traditional software development practices. Murphy-Hill et al. find
that game developers are hesitant to use automated testing because these tests limit the
creativity of game designers, as designers must adhere to the limitations of automated
testing.

Washburn Jr et al. (2016) study 155 postmortem retrospectives from game development
in which game developers discuss what went wrong and what went right during the devel-
opment of a game. Washburn Jr et al. extract a set of best practices and pitfalls for game
development. They show that planning at the early stage of game development is important.

Most prior work of software engineering practices in a games context focuses on the
differences between software engineering practices for traditional software and for games.
While we focus on urgent updates in games, we find that prior work on update strategies
does not necessarily hold for game development.

2100 Empir Software Eng (2017) 22:2095–2126

Lewis et al. (2010) present a taxonomy of 11 types of failures in video games by survey-
ing game failure videos on YouTube. We compare Lewis et al.’s taxonomy with the reasons
we identify for releasing urgent updates in Section 5.

2.3.3 Empirical Studies on Urgent Updates

The majority of empirical studies on urgent updates focus on so-called patch updates, which
are updates for security vulnerabilities (Arora et al. 2010; Kim et al. 2011). Arora et al.
(2010) show that the release time of a security hotfix is heavily impacted by how fast a
competitor that suffers from the same vulnerability addresses the issue. As the release of
the hotfix of the competitor also discloses the vulnerability, it becomes essential for others
to fix that vulnerability as well.

Arora et al. (2006) show that releasing software faster than a competitor can lead to
financial benefit despite the high cost of hotfixes.

Kerzazi and Adams (2016) study 345 releases of a large e-commerce web application and
identify 17 recurrent root causes of botched releases, classified into four major categories.
Hassan et al. (2016) study 1,000 emergency updates of over 10,000 mobile apps in the
Google Play Store. Hassan et al. identify 8 patterns of emergency updates and categorize
along two dimensions “Updates due to deployment issues” and “Updates due to source code
changes”. Hassan et al. suggest that app developers should carefully avoid these patterns.

Our work is the first, to the best of our knowledge, that conducts an empirical study of
urgent updates of games.

2.3.4 Empirical Studies on Update Strategies

Prior work has studied the release strategies of various types of software, for example,
mobile apps (Nayebi et al. 2016; McIlroy et al. 2016). Mobile apps are distributed through
mobile app stores, which are similar to digital game distribution platforms, as mobile app
stores allow users to download, update and comment on mobile apps in one centralized loca-
tion. Nayebi et al. (2016) show that while mobile app developers mostly prefer frequently
releasing updates for an app, users of the app have mixed feelings about frequent updates.
As a result, only half of the users automatically install new updates. It is an interesting ques-
tion whether game users share the same mixed feelings about frequent updates. However,
installing a game update is mandatory in Steam, hence these mixed feelings are hard to ver-
ify. Nevertheless, having to frequently wait for an update to download and install before one
can play a game is likely to frustrate gamers.

McIlroy et al. (2016) show that 45 % of the updates of frequently-updated mobile apps
(i.e., at least bi-weekly) do not provide a rationale for updating. In addition, McIlroy et al.
show that only 1 % of the apps is updated at least once a week. In our study, we observe
that a large portion (44 %) of the games are updated frequently, i.e., often within a week.
The most important reason for frequent updates in mobile apps is to fix a bug, which is a
consistent observation with our observations about urgent updates for games.

Mäntylä et al. (2013) conduct a case study on Mozilla Firefox about the changes in soft-
ware testing effort after moving to a rapid release strategy (i.e., releases every six weeks).
Mäntylä et al. state that rapid releases lead to a narrower development scope, which allows
deeper testing of features and regressions with the highest risk. In addition, the required
number of specialized testers grows, in order to sustain testing effort in the rapid release
model. Mäntylä et al. conclude that the rapid release strategy does not have a significant
impact on the product quality. Souza et al. (2015) study how transitioning to a rapid release

Empir Software Eng (2017) 22:2095–2126 2101

strategy changed the backout rate for Mozilla Firefox. The backout rate describes the rate
of patches that are reverted after their release. Souza et al. find that the overall backout rate
increased under rapid releases but that this increased rate has no effect on users’ percep-
tion of product quality. da Costa et al. (2016) conduct an empirical study of the impact of
Mozilla Firefox switching to a rapid release strategy on the integration delay of addressed
issues. da Costa et al. show that a rapid release strategy may not be able to deliver addressed
issues to users faster than through a traditional release strategy. Khomh et al. (2012) empir-
ically studied the development process of Mozilla Firefox during its transition to a rapid
release cycle. Khomh et al. find that although with shorter release cycles, users do not expe-
rience significantly more post-release bugs and the bugs are fixed faster, users experience
these bugs earlier during software execution. Khomh et al. later extend their work (Khomh
et al. 2015) and suggest that one of the major challenges when switching to rapid releases
is to automate the release engineering process. We are the first to study update strategies
for games and in particular we examine how the frequency of releasing updates affects the
number of urgent updates.

3 Methodology

In this section, we introduce the methodology of our empirical study of urgent updates of
popular games. We detail how we select our subject systems and extract the needed data to
conduct our study. Figure 1 gives an overview of our methodology.

3.1 Selecting Subject Systems

We select the 50 most popular games on Steam on January 12, 2016. The list of top 50
games is provided by Steam Charts (Gray 2016), a website that ranks games by the number
of players on that day. Table 2 shows details about the 50 games that we selected for our
study.

3.2 Collecting Update Notes

We use the update notes that are posted on the channels in the Steam Community to infer
the update cycles of each studied game. As mentioned in Section 2, developers do not nec-
essarily need to announce all updates that they make. We use the published update notes to
get a lower bound of the number of updates for each of the studied games.

Although the Steam Community has a special channel available for update notes, called
the Product Updates channel, we find that many update notes are not posted on that chan-
nel but on other channels instead (e.g., the Community Announcements channel). To avoid
missing any update notes, we extract all information across all news channels for all studied
games. The ‘Related news’ page of a game in the Steam Store1 aggregates all news updates
that are related to that game from all available Steam Community channels. These news
updates include for example game announcements, promotions and update notes. Table 3
shows an example of an update note for the Team Fortress 2 game.

We extract all 11,970 news updates for the studied games using a custom-written crawler.
We perform the following steps to extract update notes from the news updates:

1E.g., related news for Dota 2: http://store.steampowered.com/news/?appids=570.

http://store.steampowered.com/news/?appids=570

2102 Empir Software Eng (2017) 22:2095–2126

Selecting Subject Systems

Collecting Update Notes

Identifying the Update Notes
Updates

Steam Charts
Select subject

systems

Extract
news

updateswebsite

Extract
update
notes

Identify the
update notes

50 studied
games

Update
notes

The update
notes

Preliminary study
of update cycles

(Section 4)

Urgent update
reasons

(Section 5.2)

Identify the
update notes
for off-cycle

updates

The update
notes for off-
cycle updates

Urgent update
frequency

(Section 5.1)

Fig. 1 Overview of our study

1. We keep all news updates that are posted on the Product Release or Product Update
channel.

2. For the remainder of the news updates, we remove all news updates that are posted on
the Steam client announcements channel, or channels that are related to game reviews,
or channels that are known to contain only crossposts.

3. We remove all news updates of which the title does not contain the words update,
release, patch, hotfix, change log OR a version number.

4. The news updates that are left, together with the news updates from step 1 are
considered as update notes.

Empir Software Eng (2017) 22:2095–2126 2103

Table 2 Basic information about the studied games on Steam, sorted by the number of players (as of January
12, 2016)

Title Developer Genre Release # of Early

year players access2

Dota 2 Valve Strategy 2013 858,890

Counter-Strike: Valve Action 2012 563,938

Global Offensive

Football Manager 2016 SPORTS Sports 2015 68,949

INTERACTIVE

Fallout 4 Bethesda Game Studios RPG 2015 61,214

Grand Theft Auto V Rockstar North Adventure 2015 56,419

Team Fortress 2 Valve Action 2007 56,390

ARK: Survival Evolved Studio Wildcard RPG 2015 50,522 �
Sid Meier’s Civilization V Firaxis Games Strategy 2010 45,352

Garry’s Mod Facepunch Studios Simulation 2006 39,694

The Elder Scrolls V: Skyrim Bethesda Game Studios RPG 2011 36,107

Warframe Digital Extremes Action 2013 35,983

Rust Facepunch Studios RPG 2013 35,128 �
Rocket League Psyonix Sports 2015 34,342

Arma 3 Bohemia Interactive Strategy 2013 32,294

Counter-Strike Valve Action 2000 26,814

H1Z1 : Just Survive Daybreak Game Adventure 2015 24,577 �
Company

Euro Truck Simulator 2 SCS Software Simulation 2013 21,689

Call of Duty: Black Ops III Treyarch Adventure 2015 21,643

Terraria Re-Logic RPG 2011 20,594

Unturned Smartly Dressed Games Casual 2014 20,466 �
PAYDAY 2 OVERKILL - a RPG 2013 17,064

Starbreeze Studio.

SMITE Hi-Rez Studios Action 2015 16,510

The Witcher 3: Wild Hunt CD PROJEKT RED RPG 2015 14,415

War Thunder Gaijin Entertainment Simulation 2013 14,364

Path of Exile Grinding Gear Games RPG 2013 14,159

Left 4 Dead 2 Valve Action 2009 13,866

Europa Universalis IV Paradox Development Strategy 2013 13,112

Studio

Counter-Strike: Source Valve Action 2004 13,068

Tom Clancy’s Rainbow Ubisoft Montreal Action 2015 12,742

Six Siege

DayZ Bohemia Interactive Action 2013 11,505 �
Total War: ROME II - Creative Assembly Strategy 2013 10,795

Emperor Edition1

Trove Trion Worlds RPG 2015 10,216

Mount & Blade: Warband TaleWorlds Entertainment RPG 2010 9,976

Don’t Starve Together Klei Entertainment Simulation 2014 9,876 �

2104 Empir Software Eng (2017) 22:2095–2126

Table 2 (continued)

Title Developer Genre Release # of Early

year players access2

Borderlands 2 Gearbox Software RPG 2012 9,720

METAL GEAR SOLID V: Konami Digital Adventure 2015 9,513

THE PHANTOM PAIN 1 Entertainment

XCOM: Enemy Unknown Firaxis Games Strategy 2012 9,253

Age of Empires II HD Skybox Labs Strategy 2013 8,523

7 Days to Die The Fun Pimps Simulation 2013 8,253 �
Cities: Skylines Colossal Order Ltd. Strategy 2015 7,369

Company of Heroes 2 Relic Entertainment Strategy 2013 7,074

Arma 2: Operation Arrowhead Bohemia Interactive Strategy 2010 7,023

AdVenture Capitalist Hyper Hippo Games Casual 2015 6,946

Total War: ATTILA Creative Assembly Strategy 2015 6,843

Hurtworld Bankroll Studios Simulation 2015 6,806 �
Undertale tobyfox RPG 2015 6,748

Brawlhalla Blue Mammoth Games Action 2015 6,530 �
Just Cause 3 Avalanche Studios Adventure 2015 6,518

Dying Light: The Following - Techland RPG 2015 6,360

Enhanced Edition1

DARK SOULS II: Scholar FromSoftware, Inc RPG 2015 6,342

of the First Sin1

1We will use shortened game names throughout the rest of the paper for brevity in the tables
2Early access games allow customers to purchase the game during its public beta period while developers
continue working on the game

We must perform step 2 because posts in these channels can contain a review of another
update, which will negatively affect the precision of step 3. We manually identify the fol-
lowing channels that are related to game reviews and the Steam client: Rock. Paper. Shotgun,

Table 3 Update note for the Team Fortress 2 game

Title Team Fortress 2 Update Released

Channel Product Updates

Date 12 Oct, 2015

An update to Team Fortress 2 has been released. The update will be applied automatically when you

restart Team Fortress 2. The major changes include:

- Fixed a client crash related to the contract menu.

- Fixed an issue where some players could not use some of the crafting recipes

- Running in textmode now places the client in insecure mode

- Updated the localization files

Empir Software Eng (2017) 22:2095–2126 2105

PC Gamer, Shacknews, Kotaku, Eurogamer, Announcements, Steam Blog, Press Releases,
Client Updates. In addition, we manually identified the following channels that contain only
crossposts: TF2 Official Blog, Left 4 Dead Official Blog, Portal 2 Official Blog. As these
channels are for games developed by Valve, i.e., the developer of Steam, update notes are
posted to the Product Update channel as well. We removed all news updates that are posted
on irrelevant channels. Table 1 gives an overview of the channels that are relevant to our
study.

We identify 2,672 update notes for the 50 studied games. In order to validate the precision
and recall of our extraction steps, we manually analyze a statistically-representative random
sample of 372 news updates (95 % confidence level and 5 % confidence interval, taken
from the 11,970 news updates of the studied games) and count the news updates that do
not contain update notes. The manual analysis of the representative sample shows that our
extraction steps have a precision of 88 % and a recall of 87 %. In order to further enhance
the precision of our data, we manually check the identified update notes and remove 253
news updates that do not contain update notes, leaving 2,419 update notes for our study.

3.3 Identifying the Update Notes for Hotfixes and Off-cycle Updates

We distinguish two types of irregular updates in this paper:

1. Self-admitted hotfixes: Game updates that are described by developers as hotfixes.
2. Off-cycle updates: Game updates that are released outside the regular update cycle of

a game.

We identify update notes for self-admitted hotfixes using the regular expression
(hot.?fix)2 on the titles and contents of update notes. Using this regular expression, we iden-
tify 163 update notes for self-admitted hotfixes. We manually check all of them and exclude
15 wrongly identified update notes, leaving 148 update notes for self-admitted hotfixes. The
wrongly identified update notes are regular update notes that contain a statement such as
“We will keep monitoring feedbacks and push hotfixes if necessary”.

To identify off-cycle updates, we calculate the days-between-updates for all adjacent
updates for all games. We then use the Median Absolute Deviation (MAD) to identify
the outliers of the days-between-updates, i.e., updates that take a statistically significantly
longer or shorter period than is usual for that game. The MAD is a robust statistic which
measures the variability of a univariate sample of quantitative data. The MAD is defined
as the median of the absolute deviations from the data’s median. We use the MAD to iden-
tify outliers as suggested by Leys et al. (2013), who show that using the absolute deviation
around the median outperforms using the standard deviation around the mean when detect-
ing outliers. Generally, if a value is a certain number of MAD away from the median of
the residuals, that value is classified as an outlier. However, Fig. 4 shows that the distribu-
tions of days-between-updates are highly unsymmetric. We address this problem by using
the Double MAD as suggested by Rosenmai (2013), i.e., we calculate the MAD for the left
and right side of the median of the distribution, and use the left MAD to identify outliers on
the left tail, while using the right MAD to identify outliers on the right tail. Miller (1991)
proposes that depending on the stringency of the researcher’s criteria, the threshold for the

2We attempted to extend this regular expression with more terms such as ‘patch’ and ‘emergency’, however,
we found that these terms incorrectly match too many update notes that are not for hotfixes.

2106 Empir Software Eng (2017) 22:2095–2126

Days-between-updates

F
r
e
q
u
e
n
c
y

0 20 40 60 80 100

0
2

4
6

8
1
0

1
2

Median

(8)

Right

threshold

(28)
Left threshold: 2x Left MAD (1.5) from the median

Right threshold: 2x Right MAD (10) from the median

Left

threshold

 (5)

Outliers

Regular updates

Fig. 2 An example of detecting outliers for the Warframe game

number of MADs can be 3 (very conservative), 2.5 (moderately conservative) or 2 (poorly
conservative). After a preliminary experiment on the days-between-updates in our dataset,
we select 2 as the threshold for our dataset. Figure 2 shows an example of detecting outliers
for theWarframe game using the Double MAD. We identified 411 off-cycle updates in total.

3.4 Dataset Description

Table 4 presents the description of our collected dataset.

4 Preliminary Study of the Update Cycles of the Studied Steam Games

In this section, we present our preliminary study of the update cycles of the studied games.
The goal of the preliminary study is to get a better understanding of the update cycle of the
studied games by identifying their update frequency, update cycle consistency and update
strategy. First, we explain our approach, then we present the findings of our preliminary
study.

Table 4 Dataset description
of studied games 50

of news updates 11,970

of update notes for:

All game updates 2,419

Self-admitted hotfixes 148

Off-cycle updates 411

0-day updates 162

Empir Software Eng (2017) 22:2095–2126 2107

Approach Because developers are not obliged to publish update notes for a game update,
nor does Steam provide an exhaustive list of game updates, we use the published update
notes to get a lower bound of the number of updates for each of the studied games.

To study update frequency, we first remove games with less than 3 updates, as such games
do not provide enough information to infer their update cycle. We calculate the median and
mode of the days-between-updates (i.e., the days-between-updates that occur most often) of
all the studied games as metrics for update frequency.

To study update cycle consistency, we calculate Fisher’s kurtosis (Zwillinger and
Kokoska 1999) of the days-between-updates. Kurtosis expresses the peakedness of a distri-
bution. The normal distribution has a kurtosis of 3, and a kurtosis higher than 3 indicates
that the distribution has a higher peak than the normal distribution. A higher kurtosis of the
days-between-updates indicates that the game has a more consistent update cycle, as the
days-between-updates are then centered around a single value.

Table 5 shows the update frequency and update cycle consistency metrics for all studied
games. We use these metrics to manually classify all the games into two classes: games that
follow a frequent update strategy, and games that use a build-up candidate update strategy.
For each studied game, we:

1. Examine the median and mode of the days-between-updates, and compare those
numbers with the total number of updates.

2. Examine the update timeline of the game. Figure 3 shows the update timeline of the
War Thunder game as an example.

3. Examine the update notes when necessary.
4. Classify the game into the frequent update strategy or the build-up candidate update

strategy based on the information that is obtained from step 1 to 3.

To verify our classification, the first and the second author of this paper both did the
classification independently, and then compared the results. Only 5 games were classified
differently by the two authors, and the differences were easy to resolve after discussion.
There was one game (the War Thunder game) which was classified into both classes.
Figure 3 shows the update timeline of the War Thunder game. From Fig. 3, we can con-
clude that between December 2014 and June 2015 the game appears to follow a frequent
update strategy, while the game follows a build-up candidate update strategy during other
time periods. One possible explanation is that the developer was experimenting with the fre-
quent update strategy for half a year and decided to switch back to the build-up candidate
update strategy after that. Another explanation is that the developer did not publish update
notes for all updates outside the frequent update period. Because we were unable to find the
explanation even after a manual study of the update notes, we decided to classify the War
Thunder game into both update strategies. We do not consider the data for theWar Thunder
game in the rest of our calculations to avoid confusion.

For each studied game, we calculate the percentage of faster off-cycle updates, i.e., off-
cycle updates that take less time to release compared to the regular update cycle, and slower
off-cycle updates, i.e., off-cycle updates that take more time to release compared to the
regular update cycle.

We use the Wilcoxon signed-rank test and Wilcoxon rank sum test to decide whether
the distributions of the metrics of update cycles are significantly different. The Wilcoxon
signed-rank test is a paired, non-parametric statistical test of which the null hypothesis is
that two input distributions are identical, while theWilcoxon rank sum test is unpaired. If the
p-value computed by a test is smaller than 0.05, we conclude that the two input distributions

2108 Empir Software Eng (2017) 22:2095–2126

Table 5 Updates of studied games on Steam, sorted by the kurtosis of days-between-updates (as of January
12, 2016)

Days-between-updates1

Title Updates % Self.adm % Off-cycle Median Mode3 Kurtosis

hotfixes updates2

Team Fortress 2 464 0 13 3.0 1(100) 82.51

Don’t Starve Together 91 43 15 3.0 1(25) 55.27

Unturned 158 1 20 2.0 1(64) 46.41

Counter-Strike: Source 84 0 21 7.0 0(7) 43.04

Left 4 Dead 2 134 0 21 7.0 7(23) 30.83

Borderlands 2 32 3 19 19.0 1,2,5,9,27,28(2) 22.09

Counter-Strike 29 0 17 2.0 1(10) 20.46

7 Days to Die 68 28 13 5.0 1(11) 18.35

Company of Heroes 2 26 0 15 13.0 0(8) 17.67

Arma 2: Operation Arrowhead 19 5 11 53.5 16(2) 13.61

Counter-Strike: Global Offensive 90 0 52 7.0 7(29) 13.28

Path of Exile 70 9 13 6.0 3(8) 12.82

DayZ 25 48 4 15.0 0,2,28(3) 12.46

Garry’s Mod 66 3 17 13.0 3(8) 11.64

Dota 2 281 0 12 3.0 1(77) 11.12

Brawlhalla 75 0 8 6.0 1(13) 10.29

Dying Light: The Following - E. E. 17 12 12 13.0 4,11(2) 9.48

Euro Truck Simulator 2 33 9 15 21.5 7(3) 9.04

Arma 3 20 5 35 21.0 15,21(2) 8.88

Terraria 12 0 25 13.0 8(2) 8.78

Warframe 58 10 22 8.0 7(11) 8.57

Rust 12 0 17 12.0 6(2) 7.89

Age of Empires II HD 22 5 14 13.0 6,7(2) 7.41

War Thunder 60 2 22 5.0 1(9) 6.78

Trove 42 31 7 4.0 1(9) 6.66

PAYDAY 2 148 19 19 3.0 1(39) 6.53

Sid Meier’s Civilization V 37 14 38 22.0 22(3) 5.76

Mount Blade: Warband 29 10 14 25.5 3,12(2) 5.40

AdVenture Capitalist 9 0 22 24.0 37(2) 5.16

The Witcher 3: Wild Hunt 17 6 24 4.0 0(6) 5.08

Just Cause 3 7 0 14 9.0 3(2) 3.97

Call of Duty: Black Ops III 8 0 13 5.0 0(2) 3.51

Europa Universalis IV 23 35 17 10.5 0(4) 3.47

H1Z1 : Just Survive 61 10 18 5.5 7(9) 2.92

XCOM: Enemy Unknown 10 0 20 34.0 −4 2.71

The Elder Scrolls V: Skyrim 10 0 10 49.0 −4 2.64

Total War: ROME II - E. E. 15 0 13 13.5 7(2) 2.50

Rocket League 13 8 8 13.0 20(2) 2.36

Hurtworld 5 0 0 5.5 −4 2.28

Empir Software Eng (2017) 22:2095–2126 2109

Table 5 Updates of studied games on Steam, sorted by the kurtosis of days-between-updates (as of January
12, 2016) (continued)

Days-between-updates1

Title Updates % Self.adm % Off-cycle Median Mode3 Kurtosis

hotfixes updates2

Total War: ATTILA 6 17 17 48.0 −4 1.92

Fallout 4 6 0 17 5.0 9(2) 1.62

Cities: Skylines 6 0 0 11.0 −4 1.62

Tom Clancy’s Rainbow Six Siege 4 0 0 6.0 −4 1.50

Grand Theft Auto V 5 0 0 44.5 −4 1.44

ARK: Survival Evolved 6 0 0 20.0 −4 1.43

Football Manager 2016 2 0 - - - -

SMITE 2 0 - - - -

METAL GEAR SOLID V: THE P. P. 1 0 - - - -

Undertale5 0 - - - - -

DARK SOULS II: S. of the F. S. 1 0 - - - -

1The days-between-updates metrics are not calculated for games with less than 3 updates
2The off-cycle updates are not identified for games with less than 3 updates
3Between parentheses we show the numbers of times that the mode occurred. It is possible to have multiple
modes with the same number of occurrences
4All days-between-updates of that game occur once, hence there is no mode
5No metrics are calculated for this game because it has no released updates on Steam

are significantly different. On the other hand, if the p-value is larger than 0.05, the difference
between the two input distributions is not significant.

The Wilcoxon tests determine only whether two distributions are different, but not the
magnitude of the difference. Therefore, we compute Cliff’s delta d (Long et al. 2003)
effect size to quantify the difference of the distributions. We use the following threshold for
interpreting d, as proposed by Romano et al. (2006):

Effect size =

⎧
⎪⎪⎨

⎪⎪⎩

negligible(N), if |d| ≤ 0.147.
small(S), if 0.147 < |d| ≤ 0.33.
medium(M), if 0.33 < |d| ≤ 0.474.
large(L), if 0.474 < |d| ≤ 1.

4.1 Update Frequency

Many studied games have periods in which they release frequently Table 5 shows
that 20 out of 45 (44 %) of the studied games have a median days-between-updates that is

Oct

2013

Jan

2014

Apr Jul Oct Jan

2015

Apr Jul Oct Jan

2016

Fig. 3 Update timeline of theWar Thunder game. Each vertical line represents an update

2110 Empir Software Eng (2017) 22:2095–2126

equal to or less than 7 days, i.e., at least 50 % of the updates of these games are released
within a week after the previous update. Moreover, in 81 % of the studied games, at least
one of the modes of the days-between-updates is smaller than 7, indicating that these games
have periods in which they release frequently.

One possible explanation for the high number of frequent updates is the rich interaction
between game developers and players. Games tend to have a more engaged and interac-
tive ecosystem than traditional software or mobile apps through channels such as discussion
lists, Twitter, YouTube videos, Twitch.tv, the Steam Community, official websites of games
and fan websites. Hence, the gaming community is able to provide feedback to game devel-
opers quickly, and game developers tend to address such community feedback in a quick
pace as well.

 kurtosis:82.51

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
20

40
60

80
10

0

 kurtosis:55.27

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

 kurtosis:46.41

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
20

40
60

80
10

0
 kurtosis:43.04

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30
 kurtosis:30.83

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

 kurtosis:22.09

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

 kurtosis:20.46

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

 kurtosis:18.35

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

 kurtosis:17.67

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

 kurtosis:13.61

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

 kurtosis:13.28

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

 kurtosis:12.82

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

 kurtosis:12.46

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

 kurtosis:11.64

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

 kurtosis:11.12

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
20

40
60

80
10

0

(a) Team Fortress 2 (b) Don't Starve Together (c) Unturned (d) Counter-Strike: Source

(e) Left 4 Dead 2 (f) Borderlands 2 (g) Counter-Strike (h) 7 Days to Die

(i) Company of Heroes 2 (j) Arma 2: Operation Arrowhead (k) Counter-Strike: Global Offensive (l) Path of Exile

(m) DayZ (n) Garry's Mod (o) Dota 2 (p) Brawlhalla
 kurtosis:10.29

Days-between-updates

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

Fig. 4 Histogram of the days-between-updates of the 16 games with the highest kurtosis for that metric.
days-between-updates greater than 100 are removed for clarity

Empir Software Eng (2017) 22:2095–2126 2111

4.2 Update Consistency

Most studied games do not have a consistent update cycle Figure 4 shows the distri-
bution of the days-between-updates of the 16 games that have the highest kurtosis for the
days-between-updates metric. Table 5 shows that only 7 of 45 (16 %) of the games have
a kurtosis that is higher than 20, and only 16 (36 %) of the games have a kurtosis that is
higher than 10. Figure 4f indicates that even for games with a kurtosis that is higher than
20, the update cycle may not be consistent. We look into the days-between-updates of the
Borderlands 2 game and find that one update has a days-between-updates of 394, while the
kurtosis of the Borderlands 2 game is 22.09. The reason for the high kurtosis despite the
large value of days-between-updates is that the long tail makes the distribution look more
peaked. Hence, kurtosis alone is not enough to describe the consistency of the update cycle
of a game.

16 % of the games often update on a specific day Figure 4e and k hint at an update
cycle that is different from most other stable games. The Left 4 Dead 2 game and the
Counter-Strike: Global Offensive game have a mode of the days-between-updates of 7. In
addition, the second-most occurring days-between-updates of the Left 4 Dead 2 game is 14
days. We manually look into these two games and find that most releases of the Left 4 Dead
2 game are released on Fridays, and most releases of the Counter-Strike: Global Offensive
game are released on Wednesdays.

Table 5 shows that there are 7 of 45 (16 %) games for which one of the most occurring
values of the days-between-updates is 7 days, indicating that 16 % of the games often update
on a specific day.

4.3 Update Strategy

68 % of the studied games use a build-up candidate update strategy Table 6 shows
the results of our update strategy classification. 68 % of the studied games follow the more
traditional build-up candidate update strategy. 32 % percent of the games release updates
frequently.

Games from the same developers follow the same update strategy The Left 4 Dead
2 game and the Counter-Strike: Global Offensive game mentioned above are both devel-
oped by Valve. Table 6 shows that all games developed by Valve (i.e., the Team Fortress 2
game, the Left 4 Dead 2 game, the Counter-Strike game, the Counter-Strike: Source game,
the Counter-Strike: Global Offensive game, and the Dota 2 game) use the frequent update
strategy.

In addition, both the Sid Meier’s Civilization V game and the XCOM: Enemy Unknown
game from Firaxis Games use the build-up candidate update strategy. The same phe-
nomenon can be observed from other games that are developed by the same developers
(i.e., Facepunch Studios, Creative Assembly, Bohemia Interactive, Bethesda Game Studios),
suggesting that games from the same developer follow the same update strategy.

The studied games have a median of 15 % off-cycle updates Table 5 shows the per-
centage of off-cycle updates of each studied game. Figure 5 shows the distribution of the
percentage of off-cycle updates for all the studied games. Although the percentage of off-
cycle updates for games varies from 0 % to 52 %, half of them are between 12 % to 20 %,

2112 Empir Software Eng (2017) 22:2095–2126

Table 6 Update strategies and off-cycle updates of studied Steam games, sorted by the number of players
(as of Jan 12, 2016)

Update strategy

Title Frequent Build-up % Faster % Slower off- % 0-day

update candidate off-cycle cycle updates2

updates2 updates2

Dota 2 � 0 12 6

Counter-Strike: Global Offensive � 21 31 3

Football Manager 20161 - - - - 0

Fallout 4 � 17 0 0

Grand Theft Auto V � 0 0 0

Team Fortress 2 � 0 13 11

ARK: Survival Evolved � 0 0 0

Sid Meier’s Civilization V � 19 19 5

Garry’s Mod � 0 17 0

The Elder Scrolls V: Skyrim � 0 10 0

Warframe � 10 12 2

Rust � 0 17 8

Rocket League � 0 8 0

Arma 3 � 5 25 0

Counter-Strike � 0 17 7

H1Z1 : Just Survive � 3 15 3

Euro Truck Simulator 2 � 0 15 0

Call of Duty: Black Ops III � 0 13 25

Terraria � 8 17 0

Unturned � 0 20 1

PAYDAY 2 � 0 19 11

SMITE1 - - - - 0

The Witcher 3: Wild Hunt � 0 24 35

War Thunder � � 0 22 10

Path of Exile � 0 13 3

Left 4 Dead 2 � 6 15 6

Europa Universalis IV � 0 17 17

Counter-Strike: Source � 0 21 8

Tom Clancy’s Rainbow Six Siege � 0 0 0

DayZ � 0 4 12

Total War: ROME II - E. E. � 0 13 0

Trove � 0 7 2

Mount Blade: Warband � 0 14 0

Don’t Starve Together � 0 15 5

Borderlands 2 � 0 19 3

METAL GEAR SOLID V: THE P. P.1 - - - - 0

XCOM: Enemy Unknown � 0 20 0

Age of Empires II HD � 0 14 5

Empir Software Eng (2017) 22:2095–2126 2113

Table 6 (continued)

Update strategy

Title Frequent Build-up % Faster % Slower off- % 0-day

update candidate off-cycle cycle updates2

updates2 updates2

7 Days to Die � 0 13 0

Cities: Skylines � 0 0 0

Company of Heroes 2 � 0 15 31

Arma 2: Operation Arrowhead � 0 11 5

AdVenture Capitalist � 11 11 0

Total War: ATTILA � 0 17 0

Hurtworld � 0 0 0

Undertale1 - - - - 0

Brawlhalla � 0 8 13

Just Cause 3 � 0 14 0

Dying Light: The Following - E. E. � 0 12 6

DARK SOULS II: S. of the F. S.1 - - - - 0

1The metrics are not calculated for games with less than 3 updates
2Percentage of all updates

with a median of 15 % off-cycle updates. The game with the highest percentage (52 %) of
off-cycle updates is the Counter-Strike: Global Offensive game. Figure 6 shows the release
timeline of the Counter-Strike: Global Offensive game. For clarity, we highlight the faster
and slower off-cycle updates on separate timelines. We observe that the update cycle of the
Counter-Strike: Global Offensive game is fairly consistent. However, there are several peri-
ods in which the developers do not release updates. All updates that are released after such
an inactive period, are slower off-cycle updates, explaining the relatively large number of
slower off-cycle updates that are identified by our approach.

Most off-cycle updates are slower off-cycle updates Table 6 shows the percentage of
slower and faster off-cycle updates for each of the studied games. Figure 7 shows the dis-
tribution of the percentage of slower and faster off-cycle updates for all studied games. All
the studied games have at least as many slower off-cycle updates as faster off-cycle updates.

0 10 20 30 40 50

Percentage of off−cycle updates

Fig. 5 Distribution of the percentage of off-cycle updates of studied games. Each data point represents a
studied game

2114 Empir Software Eng (2017) 22:2095–2126

All

Faster

Slower

Apr

2012

Jul Oct Jan

2013

Apr Jul Oct Jan

2014

Apr Jul Oct Jan

2015

Fig. 6 Release timeline of the Counter-Strike: Global Offensive game. Each vertical line represents an
update. There were no updates in 2015 and 2016, hence we omitted these years from the timeline for clarity

The Wilcoxon signed-rank test shows that the difference between the two distributions is
significant with a large effect size.

A possible explanation is that games require less updates as they mature. Hence, the
days-between-updates increases with time, causing these updates to be identified as slower
off-cycle updates. We study the faster off-cycle updates in Section 5.1 and Section 5.2, and
we discuss slower off-cycle updates in Section 5.4.

There is no difference in the percentage of off-cycle updates or hotfixes between
games that follow a frequent update strategy and games that follow a build-up
candidate update strategy Figure 8 shows the distribution of the percentage of faster off-
cycle updates (of all updates). Figure 9 shows the distribution of the percentage of slower
off-cycle updates. The Wilcoxon rank sum test shows that the distributions of faster and
slower off-cycle updates of the two update strategies are not significantly different. In addi-
tion, the Wilcoxon rank sum test also shows that the distributions of hotfixes of the two
update strategies are not significantly different, indicating that the choice of update strategy
does not appear to have an impact on the percentage of off-cycle updates or hotfixes.

5 Urgent Updates of Popular Steam Games

In this section, we study the urgent updates of popular Steam games. First, we explain the
motivation and approach of our empirical study. Finally, we present our findings.

0 5 10 15 20 25 30

% of off−cycle updates

Slower off−cycle updates
Faster off−cycle updates

Fig. 7 Distribution of the percentage of off-cycle updates (of all updates) of each studied game. The vertical
lines represent the median. The distributions are significantly different with a large effect size

Empir Software Eng (2017) 22:2095–2126 2115

0 5 10 15 20
% of faster off−cycle updates

Frequent update
Build−up candidate

Fig. 8 Distribution of the percentage of faster off-cycle updates (of all updates) of each studied game. The
vertical lines represent the median. The distributions are not significantly different (p > 0.05)

Motivation Urgent updates are updates that are released to fix an urgent issue that is intro-
duced in the previous botched update. Urgent updates are usually released in a state of
emergency and developed outside of the regular update cycle. Therefore, urgent updates
tend to be costly (Tassey 2002), and should be avoided by game developers.

In this study, we consider 0-day updates (i.e., updates with a days-between-updates of 0),
off-cycle updates that are released faster than the regular cycle, and self-admitted hotfixes
as urgent updates. We study the reasons given in the update notes of urgent updates to get
a better understanding of what drives game developers to release urgent updates. With this
understanding, game developers can pay more attention to issues that are likely to lead to
urgent issues, in order to avoid the need for urgent updates at a later stage.

Approach First, we study the frequency of urgent updates. To study frequency, we analyze
the data that we collected as described in Section 3. Second, we study the reasons that
are given by developers in their update notes for releasing urgent updates. We manually
extract and categorize the reasons for urgent updates from their update notes. We perform an

0 5 10 15 20 25 30

% of slower off−cycle updates

Frequent update
Build−up candidate

Fig. 9 Distribution of the percentage of slower off-cycle updates (of all updates) of each studied game. The
vertical lines represent the median. The distributions are not significantly different (p > 0.05)

2116 Empir Software Eng (2017) 22:2095–2126

iterative process that is similar to Coding (Seaman et al. 2008; Seaman 1999) for identifying
which reasons lead to urgent updates. The procedure is shown in Listing 1.

We manually examine the update notes for 162 0-day releases, 47 faster off-cycle
updates, and 148 self-admitted hotfixes. We read all release notes and label them with one or
more reasons for releasing the urgent update. For example, if an urgent update contains a fix
for an issue that is related to crashes and performance, we label the urgent update with both
the ‘CrashingGame’ and ‘Performance’ reasons. Note that we only focus on the changes
in the update notes that fix issues rather than those that add features, as the fixes are more
likely to help us understand the reasons that drive developers to release urgent updates.

During our analysis, we identify 11 reasons from the update notes of urgent updates.
Table 7 shows all reasons with their description and an example that is taken from a stud-
ied update note. The second author of the paper has manually validated the first author’s
analysis of reasons that are given in the update notes for urgent updates. The second author
tagged a statistically-representative random sample of 76 update notes (95 % confidence
level, 10 % confidence interval, out of 357 update notes) with reasons from the set of rea-
sons that were identified by the first author. Both authors disagreed on only 5 out of the 76
update notes. All disagreements were for update notes that contained a very game-specific
description of the update, which were misinterpreted by the second author. Hence, after a
short discussion, the disagreements were straightforward to resolve.

5.1 Urgent Update Frequency

80 % of the studied games have urgent updates 40 out of 50 (80 %) of the studied
games have urgent updates, while the other 10 games all have less than 7 updates (making
it difficult to identify urgent updates for these games). The high percentage of games that
have urgent updates shows that urgent updates are a common phenomenon across popular
games.

Games that use a frequent update strategy tend to have a higher proportion of
0-day updates than games that use a build-up candidate update strategy As men-
tioned in Section 4, the number of off-cycle updates or hotfixes is not impacted by the
choice of update strategy. However, the Wilcoxon rank sum test shows that the difference
between the distributions of the percentage of 0-day releases of games using different update

Empir Software Eng (2017) 22:2095–2126 2117

Table 7 Identified reasons for releasing urgent updates

Reason Description Example

Functional Feature malfunctions “Fixed save game does not save your minibike”

CrashingGame Game crashes “Client crashes on some PC’s with intel

video card have been fixed.”

RuleLoophole Loophole in a rule of the game “Overlords of colonies and Protectorates

(i.e., a ‘bug’ in a rule) can no longer transfer trade power”

RuleChange Change of numerical parameter “Lowered dog chase give up time to

in a rule of the game 18 seconds”

Content Fix for an element in the game “Fixed the Sobek and Torid weapons

(e.g. map or weapon) so that they can be fired when

coming out of a sprint”

Visual Bug related to visual effects “Fixed rain striped effect on surfaces”

Sound Bug related to sound effects “Flash thunder and weather sounds on

entering game fixed”

UserInteraction User interaction related bug “The ‘End Turn’ button incorrectly

displays ‘Please Wait’ rather than

‘Unit Needs Orders’”

Performance CPU, network, memory, “Fixed a dedi server taking full CPU time of a

or disk performance related issues single core even if no user was connected”

(including online gaming issues such as

desynchronization or network lag)

Localization Error related to languages or regions “Fixed a localization issue in English”

Security Security vulnerability “Fixes the steam ID spoofing or account

hijacking bug”

strategies is significant, with a medium effect size. Figure 10 shows the distribution of the
percentage of 0-day updates. 60 % of the games that use a build-up candidate update strat-
egy have no 0-day updates, while 93 % of the games that use a frequent update strategy

0 10 20 30

% of 0−day updates

Frequent update

Build−up candidate

Fig. 10 Distribution of the percentage of 0-day updates (of all updates) of each studied game. The vertical
lines represent the median. The distributions are significantly different with a medium effect size

2118 Empir Software Eng (2017) 22:2095–2126

have at least one 0-day update. 57 % of the games that use a frequent update strategy have
at least 5 % 0-day updates.

It is interesting to observe that games that follow a build-up candidate update strategy
either have very robust updates, i.e., updates that do not require urgent updates, or hold off
their fixes until the next update candidate. Another possibility is that the development pro-
cesses of games that use a build-up candidate update strategy are not suitable for releasing an
update so shortly after the previous update (e.g., because the update process is too tedious).

46 % of the studied games have self-admitted hotfixes Table 5 shows that 23 out of
50 (46 %) of the studied games have self-admitted hotfixes. In addition, in 12 of these 23
games more than 10 % of the updates are self-admitted hotfixes.

Table 5 shows that the DayZ game and the Don’t Starve Together game are the games
with the highest percentage of self-admitted hotfixes (i.e., more than 40 % of the total num-
ber of updates). The high percentage of self-admitted hotfixes for the DayZ game and the
Don’t Starve Together game can be explained by the fact that these games are early access
games3. Early access games allow customers to purchase the game during its public beta
period while developers continue working on the game. Developers of early access games
can receive crucial feedback and bug reports directly from their target community in the
earlier state of development. Hence, developers may frequently release self-admitted hot-
fixes to respond to the received customer feedback. The other early access games that we
studied follow a strategy that appears to be less focused on hotfixes, as the percentage of
self-admitted hotfixes for those games varies from 0 % to 23 %. We look into the early
access games and find that the Rust game publishes its update notes on Twitter. We manually
inspected the Twitter account of Rust and found that its developer releases small updates fre-
quently, often within a week of the previous update, which may be the reason for publishing
release notes through informal Twitter updates instead of formal Steam updates.

Although almost half of the studied games have self-admitted hotfixes, Table 5 shows
that the seven most popular games do not release self-admitted hotfixes. In total, 27 out of
50 games never release self-admitted hotfixes. Moreover, only 10 % of the 0-day updates
are self-admitted hotfixes. We manually look into the update notes of 0-day updates which
are not self-admitted hotfixes. In most cases, Developers do not give an explanation as to
why they are releasing the urgent update within the same day as the previous update. The
lack of an explanation and the self-admittance that an update is an urgent update, suggests
that developers might be trying to hide their botches.

An interesting observation is that while non-game software developers tend to avoid fre-
quent updates because of customer complaints (e.g., Microsoft’s ‘Patch Tuesday’ (Microsoft
2003)), game developers do not seem to care as much about avoiding frequent updates. The
explanation could be that the impact of frequent updates on the player of a game is much
smaller than on users of non-game software applications, as these are often used in enter-
prise situations in which updating software requires much effort (e.g., for testing interactions
with other applications and the need for carefully planned rollouts of updates).

5.2 Reasons for Releasing Urgent Updates

36 % of the urgent updates are released to make changes to the rules of a game
Table 8 shows the frequency of each reason given in the update notes of urgent updates.

3http://store.steampowered.com/earlyaccessfaq/.

http://store.steampowered.com/earlyaccessfaq/

Empir Software Eng (2017) 22:2095–2126 2119

Table 8 Reasons given in the update notes for urgent updates (separated by urgent update type, ordered by
% of update notes)

0-day updates Faster off-cycle updates Self.adm. hotfixes All urgent updates

Reason % Reason % Reason % Reason %

Functionality 59 Functionality 71 Functionality 64 Functionality 64

CrashingGame 32 UserInteraction 49 CrashingGame 46 CrashingGame 39

Visual 26 Visual 37 Visual 35 Visual 32

UserInteraction 22 RuleChange 34 RuleLoophole 27 UserInteraction 27

RuleChange 21 CrashingGame 29 UserInteraction 25 RuleChange 25

Content 19 RuleLoophole 24 RuleChange 25 RuleLoophole 23

RuleLoophole 18 Performance 24 Performance 25 Performance 22

Performance 16 Content 20 Content 20 Content 19

Sound 9 Sound 15 Sound 11 Sound 11

Localization 4 Localization 5 Localization 4 Localization 4

Security 3 Security 0 Security 4 Security 3

Note that these percentages do not add up to 100 % as multiple reasons can be given in the
update notes of a single update

While the identified most commonly-given reasons for releasing urgent updates apply to
software in general, the rule-changing urgent updates are specific to games. We calculate
that 36 % of the urgent updates are labelled as RuleLoophole or RuleChange (or both).
On the one hand, loopholes in the rules (23 %) must be rapidly fixed in order to prevent
cheating. For example, in the Brawlhalla game, an urgent update was released to address
the following: “Dodging in the same direction of an item will not provide dodge forgiveness
immunity. Ex: Dodging away from a throw means you will be immediately vulnerable to a
weapon thrown directly at you.” On the other hand, developers can decide to make the game
more playable by slightly changing the rules of a game by modifying the value of particular
parameter settings (25 %). For example, in the same game, an urgent update was released
to make items spawn faster after a game starts: “Community Request: - Lowered the delay
at the start of the game until items begin spawning by 750ms”. Both of the aforementioned
urgent updates for Brawlhalla were released in response to player requests.

Feature malfunctions, crashing games and visual bugs are the most commonly
given reasons for releasing urgent updates Table 8 shows that 64 % of the update notes
mention a functional issue as a reason for releasing the urgent update. Moreover, a functional
issue is also the top reason for releasing the three kinds of urgent updates. While the other
reasons that we identified relate to issues that negatively impact the gaming experience,
feature malfunctions, crashing games and visual bugs are issues that can actually render a
game unplayable.

The major difference between the reasons that are given across the two update strategies
is that games that use a build-up candidate update strategy release a higher percentage of
urgent updates because of a RuleChange. Table 9 compares the frequency of each reason
across the two update strategies. As stated by the League of Legends game, an imbalance
in the rules of a game is a type of issue that requires an immediate fix (Lesensmer 2013),
as it directly affects gameplay. Because the days-between-updates is higher for games that
use a build-up candidate update strategy, these games need to release an urgent update to

2120 Empir Software Eng (2017) 22:2095–2126

Table 9 Reasons given in the update notes for urgent updates (seperated by update strategy, ordered by %
of update notes)

Frequent update Build-up candidate

Reason % % Reason

Functionality 61 Functionality 72

CrashingGame 39 RuleChange 38

Visual 31 CrashingGame 35

UserInteraction 26 Visual 35

RuleChange 21 RuleLoophole 35

RuleLoophole 20 UserInteraction 29

Performance 20 Performance 26

Content 18 Content 23

Sound 10 Sound 14

Localization 3 Localization 5

Security 2 Security 5

Note that these percentages do not add up to 100 % as multiple reasons can be given in the update notes of a
single update

immediately address a RuleChange issue, while games that use a frequent update strategy
are more likely to be able to include the fix in a regular update.

Localization and security are the least commonly-given reasons for releasing
urgent updates Although it is understandable that localization issues are not deemed
urgent, in only 3 % of the analyzed update notes, security is given as a reason for releasing
the urgent update. This may seem as a surprisingly low number, considering the possible
impact of security vulnerabilities and the urgent need for a quick solution. In online games,
security vulnerabilities are often related to cheating. Cheating allows players to break game
rules, which in turn may lead to financial benefit (McGraw and Hoglund 2007), e.g., by ille-
gally obtaining access to high-level gaming profiles or rare in-game items. Motoyama et al.
(2011) show that Steam accounts are the second most popular trading item on underground
forums, beating credit cards in popularity. In addition, hacking Steam accounts has been
offered as an on-demand service on underground forums (Stone 2016). We expect that the
low number of security-related urgent updates is because developers do not give security as
a reason, but explain such urgent updates instead as for example, fixes for functional issues
or loopholes in the rules of the game. Another possible explanation is that some urgent
updates that are related to security issues can be fixed (or at least temporarily addressed)
through server-side changes only. Hence, there are no update notes for these urgent updates
as there is no downloadable component (Wiki 2009).

Not all urgent updates address issues that are caused by the previous update 12
(4 %) of the studied update notes advertise the release of new downloadable content. A
possible explanation is that the development of new downloadable content is done in parallel
with the regular update cycle of games.

In addition, the developers of the Rust game explain that an unexpected urgent update
is due to a request from the Steam platform to add a censorship module to the game, as
Steam does not want players to “flood the rest of Steam with pictures of cavemen genitalia”

Empir Software Eng (2017) 22:2095–2126 2121

(RUBAT 2013). The Rust case suggests that external pressure to the developers can also be
a reason of interrupting their usual update cycle.

5.3 Comparison with Previous Work

As mentioned in Section 2.3, Lewis et al. identified 11 types of failures in video games
by surveying game failure videos on YouTube. Table 10 shows a mapping of Lewis et al.’s
taxonomy and the reasons that we found for releasing urgent updates. An interesting obser-
vation is that some of the reasons that we found for releasing urgent updates are difficult
to observe from game failure videos (e.g., CrashingGame and Security). Therefore, Lewis
et al.’s and our taxonomy are complementary to each other.

5.4 Discussion

As mentioned in Section 4, slower off-cycle updates are commonly identified in the stud-
ied games. In this section, we discuss the possible reasons for slower off-cycle updates. We
study the update timeline of all studied games and we observe that many games take longer
to release an update as the age of the game increases. Figure 11 shows the update timeline
of the Left 4 Dead 2 game as an example. As shown in the figure, the game updates very
frequently at the beginning of its lifetime. However, after July 2013 (approximately three
years after the initial release), the days-between-updates significantly increases. Hence,

Table 10 Mapping between Lewis et al.’s categories (Lewis et al. 2010) and the reasons for releasing urgent
updates that are identified in this paper

This paper Lewis et al. (2010)

Functional Invalid value change, Artificial stupidity,

Information, Action, Invalid position over time,

Invalid context state over time, Interrupted event

CrashingGame −1

RuleLoophole Invalid value change, Object out of bounds, Action

RuleChange Invalid event occurrence over time

Content Object out of bounds

Visual Invalid graphical representation, Information,

Implementation response issues

Sound Interrupted event

UserInteraction −1

Performance Implementation response issues

Localization −1

Security −1

1We do not find any Lewis et al.’s category which maps this reason

2122 Empir Software Eng (2017) 22:2095–2126

Jul

2010

Jan

2011

Jul Jan

2012

Jul Jan

2013

Jul Jan

2014

Jul Jan

2015

Jul Jan

2016

Fig. 11 Update timeline of the Left 4 Dead 2 game. Each vertical line represents an update

most updates after July 2013 are slower off-cycle updates. A possible explanation is that,
after a certain time period, games reach maturity and require maintenance updates only.
Another possible explanation is that a game developer focuses on releasing updates for other
games (e.g., a new version of the game) and releases only updates that are necessary to keep
the game playable.

6 Threats to Validity

In this section, we present the threats to the validity of our findings.

6.1 Internal Validity

A threat to the validity of our findings is that it is not necessary for game developers to
publish update notes for a game update to one of the Steam channels. Hence, all numbers
that we give in this paper may be low bound estimates of the actual number of updates.

In our study, we assume that a problemwhich later leads to an urgent update is introduced
by the update preceding that urgent update. While this assumption may threaten the validity
of our findings, we encountered only a very small portion (i.e., approximately 4 %, the
downloadable content and the censorship updates) of urgent updates that exhibited proof
against this assumption during our analysis.

6.2 External Validity

In our empirical study, we studied the 50 most popular games on Steam. The findings of our
study may not generalize to other games with different distribution mechanisms. However,
as stated in Section 2, Steam is the largest digital distribution platform for PC gaming.
Hence, popular Steam games are representative for a large number of games.

6.3 Construct Validity

We identify off-cycle updates with a threshold of 2 times MAD4. Although we conduct a
preliminary experiment to find the threshold that works best for our data, it is possible that
some off-cycle updates are not identified by this threshold.

We manually validated our approach for collecting update notes for self-admitted hot-
fixes and found that our approach has a precision of 88 % and a recall of 87 %, as described
in Section 3.2.

4Median Absolute Deviation, see Section 3.

Empir Software Eng (2017) 22:2095–2126 2123

7 Conclusion

In this paper, we study the urgent updates of popular games on Steam. Urgent updates fix
issues that are deemed critical enough to not be left unfixed until the next regular update.

We conduct an empirical study on 2,419 update notes of the 50 most popular games on
the Steam platform, a popular platform for digital game distribution. We use update notes
to 1) identify the update strategy that is followed by each game, 2) identify and study urgent
updates and 3) study the reasons for releasing urgent updates. The most important findings
of our study are:

1. 80 % of the studied games have urgent updates. Games that use a frequent update
strategy have a higher proportion of 0-day updates than games that follow a build-up
candidate update strategy.

2. 46 % of the studied games have self-admitted hotfixes. Only 10 % of the 0-day updates
are self-admitted hotfixes, which suggests that developers try to hide their mistakes.

3. 36 % of the urgent updates are released to make changes to the rules of a game.
4. Feature malfunctions, crashing games and visual bugs are the most commonly given

reasons for releasing urgent updates.

The most important contribution of our paper is the finding that the choice of update
strategy seems to affect the proportion of 0-day updates that developers have to release.
We observe that games that release frequently also release a higher proportion of 0-day
updates than games that use a traditional build-up candidate update strategy. Our findings
are consistent with the findings of Souza et al. (2015), who show that releasing frequently
leads to a higher proportion of patches that must be reverted.

Prior work (Khomh et al. 2012; Khomh et al. 2015; da Costa et al. 2016) on update strate-
gies focuses mostly on the Mozilla Firefox project, in which the update strategy changed
from traditional build-up candidate updates to frequent updates (i.e., every six weeks). In
this paper, we show that most games update much more frequently than once every six
weeks, a phenomenon that was recently observed for mobile apps (McIlroy et al. 2016). The
unique distribution mechanism (e.g. online store) of games and mobile apps allows devel-
opers to release updates for their software at an increasingly rapid pace. Future research
efforts need to carefully reconsider how such rapid pace of updating software influences our
well-established understandings of software engineering practices and theories.

References

Ampatzoglou A, Stamelos I (2010) Software engineering research for computer games: a systematic review.
Inf Softw Technol 52(9):888–901

Arora A, Caulkins JP, Telang R (2006) Research note: sell first, fix later: Impact of patching on software
quality. Manag Sci 52(3):465–471

Arora A, Krishnan R, Telang R, Yang Y (2010) An empirical analysis of software vendors’ patch release
behavior: impact of vulnerability disclosure. Inf Syst Res 21(1):115–132

Becker R, Chernihov Y, Shavitt Y, Zilberman N (2012) An analysis of the Steam community network evo-
lution. In: Proceedings of the 27th convention of electrical & electronics engineers in Israel (IEEEI).
IEEE, pp 1–5

Blackburn J, Simha R, Kourtellis N, Zuo X, Long C, Ripeanu M, Skvoretz J, Iamnitchi A (2011) Cheaters in
the Steam community gaming social network. arXiv preprint arXiv:11124915

http://arxiv.org/abs/11124915

2124 Empir Software Eng (2017) 22:2095–2126

Bohn R (2000) Stop fighting fires. Harv Bus Rev 78(4):82–91
Chambers C, FengWC, Sahu S, Saha D (2005) Measurement-based characterization of a collection of on-line

games, USENIX Association
da Costa DA, McIntosh S, Kulesza U, Hassan AE (2016) The impact of switching to a rapid release cycle

on the integration delay of addressed issues: an empirical study of the Mozilla Firefox project. In: Pro-
ceedings of the 13th international workshop on mining software repositories (MSR). ACM, pp 374–385

Galyonkin S (2016) SteamSpy - All the data and stats about Steam games. http://steamspy.com/, (last visited:
Jul 16, 2016)

Gray J (2016) Steam Charts - Tracking What’s Played. http://steamcharts.com/, (last visited: Jul 16, 2016)
Hassan S, Shang W, Hassan AE (2016) An empirical study of emergency updates for top Android mobile

apps. Empir Softw Eng:1–42
Huang J, Zimmermann T, Nagapan N, Harrison C, Phillips BC (2013) Mastering The art of war: how patterns

of gameplay influence skill in Halo. In: Proceedings of the SIGCHI conference on human factors in
computing systems (CHI). ACM, pp 695–704

Kerzazi N, Adams B (2016) Botched releases: do we need to roll back? Empirical study on a commer-
cial web app. In: Proceedings of the 23rd international conference on software analysis, evolution, and
reengineering (SANER), vol 1. IEEE, pp 574–583

Khomh F, Dhaliwal T, Zou Y, Adams B (2012) Do faster releases improve software quality? an empirical
case study of mozilla firefox. In: 2012 9th IEEE working conference on mining software repositories
(MSR). IEEE, pp 179–188

Khomh F, Adams B, Dhaliwal T, Zou Y (2015) Understanding the impact of rapid releases on software
quality. Empir Softw Eng 20(2):336–373

Kim BC, Chen PY, Mukhopadhyay T (2011) The effect of liability and patch release on software security:
the monopoly case. Prod Oper Manag 20(4):603–617

Lesensmer (2013) Hotfix - League of Legends Wiki - wikia. http://leagueoflegends.wikia.com/wiki/Hotfix/,
(last visited: Jul 16, 2016)

Lewis C, Whitehead J, Wardrip-Fruin N (2010) What went wrong: a taxonomy of video game bugs. In: Pro-
ceedings of the 5th international conference on the foundations of digital games (FDG). ACM, pp 108–
115

Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: do not use standard deviation around
the mean, use absolute deviation around the median. J Exp Soc Psychol 49(4):764–766

Long JD, Feng D, Cliff N (2003) Ordinal analysis of behavioral data. John Wiley & Sons, Inc
Mäntylä MV, Khomh F, Adams B, Engström E, Petersen K (2013) On rapid releases and software testing.

In: Proceedings of the 29th international conference on software maintenance (ICSM). IEEE, pp 20–29
McGraw G, Hoglund G (2007) Online games and security. IEEE Secur Priv 5(5):76–79
McIlroy S, Ali N, Hassan AE (2016) Fresh apps: an empirical study of frequently-updated mobile apps in

the Google Play store. Empir Softw Eng 21(3):1346–1370
Microsoft (2003) Understanding patch and update management: Microsoft’s software update strategy. https://

msdn.microsoft.com/en-us/library/cc768045.aspx, (last visited: Jul 16,2016)
Microsoft (2015) Xbox Game Store. http://marketplace.xbox.com, (last visited: Jul 16, 2016)
Miller J (1991) Short report: Reaction time analysis with outlier exclusion: bias varies with sample size. Q J

Exp Psychol 43(4):907–912
Motoyama M, McCoy D, Levchenko K, Savage S, Voelker GM (2011) An analysis of underground forums.

In: Proceedings of the 2011 SIGCOMM conference on internet measurement conference (IMC). ACM,
pp 71–80

Murphy-Hill E, Zimmermann T, Nagappan N (2014) Cowboys, ankle sprains, and keepers of quality: how is
video game development different from software development? In: Proceedings of the 36th international
conference on software engineering. ACM, pp 1–11

Nayebi M, Adams B, Ruhe G (2016) Release practices for mobile apps – what do users and developers think?
In: Proceedings of the 23rd international conference on software analysis, evolution and reengineering
(SANER). IEEE, pp 552–562

Romano J, Kromrey JD, Coraggio J, Skowronek J, Devine L (2006) Exploring methods for evaluating group
differences on the NSSE and other surveys: are the t-test and Cohen’s d indices the most appropriate
choices. In: Annual meeting of the Southern association for institutional research

Rosenmai P (2013) Using the median absolute deviation to find outliers. http://eurekastatistics.com/
using-the-median-absolute-deviation-to-find-outliers/, (last visited: Jul 16, 2016)

http://steamspy.com/
http://steamcharts.com/
http://leagueoflegends.wikia.com/wiki/Hotfix/
https://msdn.microsoft.com/en-us/library/cc768045.aspx
https://msdn.microsoft.com/en-us/library/cc768045.aspx
http://marketplace.xbox.com
http://eurekastatistics.com/using-the-median-absolute-deviation-to-find-outliers/
http://eurekastatistics.com/using-the-median-absolute-deviation-to-find-outliers/

Empir Software Eng (2017) 22:2095–2126 2125

RUBAT (2013) Censorship update. http://steamcommunity.com/games/252490/announcements/detail/
1478602529560858502, (last visited: Jul 16, 2016)

Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans Softw Eng
25(4):557–572

Seaman CB, Shull F, Regardie M, Elbert D, Feldmann RL, Guo Y, Godfrey S (2008) Defect categorization:
making use of a decade of widely varying historical data, ACM

Sifa R, Drachen A, Bauckhage C (2015) Large-scale cross-game player behavior analysis on Steam. In:
Proceedings of the 11th artificial intelligence and interactive digital entertainment conference (AIIDE).
AAAI

Sinclair B (2015) Gaming will hit $91.5 billion this year. http://www.gamesindustry.biz/articles/
2015-04-22-gaming-will-hit-usd91-5-billion-this-year-newzoo, (last visited: Jul 16, 2016)

Souza R, Chavez C, Bittencourt RA (2015) Rapid releases and patch backouts: a software analytics approach.
IEEE Softw 32(2):89–96

Stone J (2016) New ’Steam stealer’ malware gives hackers access to 77k users’ games, credit card num-
bers every month. http://www.ibtimes.com/new-steam-stealer-malware-gives-hackers-access-77k-users-
games-credit-card-numbers-2337423/, (last visited: Jul 16, 2016)

SuperData (2015) Worldwide digital games market. https://www.superdataresearch.com/blog/us-digital-
games-market/, (last visited: Jul 16, 2016)

Tassey G (2002) The economic impacts of inadequate infrastructure for software testing. National Institute
of Standards and Technology

Valve (2016a) Steam community. http://steamcommunity.com/, (last visited: Jul 16, 2016)
Valve (2016b) Steam Store. http://store.steampowered.com/, (last visited: Jul 16, 2016)
Washburn Jr M, Sathiyanarayanan P, Nagappan M, Zimmermann T, Bird C (2016) “What went right and

what went wrong”: an analysis of 155 postmortems from game development. In: Proceedings of the 38th
international conference on software engineering (ICSE). IEEE/ACM, pp 280–289

Wiki W (2009) Hotfix - Vanilla WoW Wiki - Wikia. http://vanilla-wow.wikia.com/wiki/Hotfix, (last visited:
Jul 16, 2016)

Zwillinger D, Kokoska S (1999) CRC standard probability and statistics tables and formulae. Crc Press

Dayi Lin is a Ph.D. student in the Software Analysis and Intelligence Lab (SAIL) at Queen’s University,
Canada. His research interests include mining software repositories and empirical software engineering,
in particular, Software Engineering related aspects on PC games. His research aims at providing a bet-
ter understanding of Software Engineering aspects on PC games, to help game developers produce games
with better quality and player satisfaction. Contact him at dayi.lin@cs.queensu.ca. More information
at http://lindayi.me.

http://steamcommunity.com/games/252490/announcements/detail/1478602529560858502
http://steamcommunity.com/games/252490/announcements/detail/1478602529560858502
http://www.gamesindustry.biz/articles/2015-04-22-gaming-will-hit-usd91-5-billion-this-year-newzoo
http://www.gamesindustry.biz/articles/2015-04-22-gaming-will-hit-usd91-5-billion-this-year-newzoo
http://www.ibtimes.com/new-steam-stealer-malware-gives-hackers-access-77k-users-games-credit-card-numbers-2337423/
http://www.ibtimes.com/new-steam-stealer-malware-gives-hackers-access-77k-users-games-credit-card-numbers-2337423/
https://www.superdataresearch.com/blog/us-digital-games-market/
https://www.superdataresearch.com/blog/us-digital-games-market/
http://steamcommunity.com/
http://store.steampowered.com/
http://vanilla-wow.wikia.com/wiki/Hotfix
http://lindayi.me

2126 Empir Software Eng (2017) 22:2095–2126

Cor-Paul Bezemer currently works as a postdoctoral research fellow in the Software Analysis and Intelli-
gence Lab (SAIL) at Queen’s University in Kingston, Canada. His research interests cover a wide variety
of software engineering and performance engineering-related topics, including repository mining and per-
formance regression analysis. His work has been published at premier software engineering venues such
as the ESEC-FSE, ICSME, ICPE and SANER conferences. He was born in The Hague (Den Haag) in the
Netherlands. Before moving to Canada, he studied at Delft University of Technology, where he received
his BSc (2007), MSc (2009) and PhD (2014) degree in Computer Science. The title of his PhD thesis was
“Performance Optimization of Multi-Tenant Software Systems”.

Ahmed E. Hassan is the Canada Research Chair (CRC) in Software Analytics, and the NSERC/BlackBerry
Software Engineering Chair at the School of Computing at Queen’s University, Canada. His research interests
include mining software repositories, empirical software engineering, load testing, and log mining. Hassan
received a PhD in Computer Science from the University of Waterloo. He spearheaded the creation of the
Mining Software Repositories (MSR) conference and its research community. Hassan also serves on the
editorial boards of IEEE Transactions on Software Engineering, Springer Journal of Empirical Software
Engineering, Springer Journal of Computing, and PeerJ Computer Science. Contact ahmed@cs.queensu.ca.
More information at: http://sail.cs.queensu.ca/.

http://sail.cs.queensu.ca/

	Studying the urgent updates of popular games on the Steam platform
	Abstract
	Introduction
	Paper Organization

	Background
	Steam Gaming Platform
	Update Strategies
	Related Work
	Mining Digital Gaming Platforms
	Software Engineering and Games
	Empirical Studies on Urgent Updates
	Empirical Studies on Update Strategies

	Methodology
	Selecting Subject Systems
	Collecting Update Notes
	Identifying the Update Notes for Hotfixes and Off-cycle Updates
	Dataset Description

	Preliminary Study of the Update Cycles of the Studied Steam Games
	Approach
	Update Frequency
	Many studied games have periods in which they release frequently

	Update Consistency
	Most studied games do not have a consistent update cycle
	16 % of the games often update on a specific day

	Update Strategy
	68 % of the studied games use a build-up candidate update strategy
	Games from the same developers follow the same update strategy
	The studied games have a median of 15 % off-cycle updates
	Most off-cycle updates are slower off-cycle updates
	There is no difference in the percentage of off-cycle updates or hotfixes between games that follow a frequent update strategy and games that follow a build-up candidate update strategy

	Urgent Updates of Popular Steam Games
	Motivation
	Approach

	Urgent Update Frequency
	80 % of the studied games have urgent updates
	Games that use a frequent update strategy tend to have a higher proportion of 0-day updates than games that use a build-up candidate update strategy
	46 % of the studied games have self-admitted hotfixes

	Reasons for Releasing Urgent Updates
	36 % of the urgent updates are released to make changes to the rules of a game
	Feature malfunctions, crashing games and visual bugs are the most commonly given reasons for releasing urgent updates
	Localization and security are the least commonly-given reasons for releasing urgent updates
	Not all urgent updates address issues that are caused by the previous update

	Comparison with Previous Work
	Discussion

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusion
	References

