
Empir Software Eng (2017) 22:1903–1935
DOI 10.1007/s10664-016-9469-x

Are delayed issues harder to resolve? Revisiting
cost-to-fix of defects throughout the lifecycle

Tim Menzies1 · William Nichols2 · Forrest Shull2 ·
Lucas Layman3

Published online: 14 November 2016
© Springer Science+Business Media New York 2016

Abstract Many practitioners and academics believe in a delayed issue effect (DIE); i.e. the
longer an issue lingers in the system, the more effort it requires to resolve. This belief is
often used to justify major investments in new development processes that promise to retire
more issues sooner. This paper tests for the delayed issue effect in 171 software projects con-
ducted around the world in the period from 2006–2014. To the best of our knowledge, this
is the largest study yet published on this effect. We found no evidence for the delayed issue
effect; i.e. the effort to resolve issues in a later phase was not consistently or substantially
greater than when issues were resolved soon after their introduction. This paper documents
the above study and explores reasons for this mismatch between this common rule of thumb
and empirical data. In summary, DIE is not some constant across all projects. Rather, DIE
might be an historical relic that occurs intermittently only in certain kinds of projects. This
is a significant result since it predicts that new development processes that promise to faster
retire more issues will not have a guaranteed return on investment (depending on the context
where applied), and that a long-held truth in software engineering should not be considered
a global truism.

Communicated by: Per Runeson

� Tim Menzies
tim.menzies@gmail.com

William Nichols
wrn@sei.cmu.edu

Forrest Shull
fjshull@sei.cmu.edu

Lucas Layman
llayman@cese.fraunhofer.org

1 CS, North Carolina State University, Raleigh, NC, USA

2 Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA

3 Fraunhofer CESE, College Park, MD, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-016-9469-x&domain=pdf
http://orcid.org/0000-0002-5040-3196
mailto:tim.menzies@gmail.com
mailto:wrn@sei.cmu.edu
mailto:fjshull@sei.cmu.edu
mailto:llayman@cese.fraunhofer.org

1904 Empir Software Eng (2017) 22:1903–1935

Keywords Software economics · Phase delay · Cost to fix

1 Introduction

In 2013-2014, eleven million programmers (Avram 2014) and half a trillion dollars (Gartner
Inc 2014) were spent on information technology. Such a large and growing effort should
be managed and optimized via well-researched conclusions. To assist in achieving this,
there has been a growing recognition within the software engineering research community
of the importance of theory building (Sjøberg et al. 2008; Paivarinta and Smolander 2015;
Stol and Fitzgerald 2015). A good theory allows empirical research to go beyond simply
reporting observations and instead provides explanations for why results are observed (Stol
and Fitzgerald 2015). This occurs by testing theories against data from multiple sources; by
reconciling similarities and differences in results it can be determined what factors need to
be accounted for in a theory (Shull and Feldmann 2008). Theory-building needs to be an
iterative process, in which results from practice are used to refine theories and theories are
used to inform future observation and data collection (Paivarinta and Smolander 2015; Stol
and Fitzgerald 2015). It is no coincidence that it is standard practice in other fields, such
as medicine, to continually revisit old conclusions in the light of new theories (Prasad et al.
2013).

Accordingly, this paper revisits the commonly held theory we label the delayed issue
effect (hereafter, DIE): more effort is required to resolve an issue the longer an issue lingers
in a system. Figure 1 shows an example of the delayed issue effect (relating the relative cost
of fixing requirements issues at different phases of a project). As a falsifiable theory, the
DIE can be compared to empirical data and, if inconsistencies are observed, refinements to
the theory may be generated that better describe the phenomenon under observation (Popper
1959).

The DIE theory is worth examination since it has been used as the basis for decision-
making in software engineering. For example, Basili and Boehm comment that, since the
1980s, this effect

Fig. 1 A widely-recreated chart of the DIE effect. Adapted from Boehm’81 (Boehm 1981)

Empir Software Eng (2017) 22:1903–1935 1905

“...has been a major driver in focusing industrial software practice on thorough
requirements analysis and design, on early verification and validation, and on up-
front prototyping and simulation to avoid costly downstream fixes” (Boehm and Basili
2001).

Like any good theory, DIE includes a rationale for why the expected results would be
seen. McConnell mentions it as a “common observation” in the field and summarizes the
intuitive argument for why it should be so:

“A small mistake in upstream work can affect large amounts of downstream work.
A change to a single sentence in a requirements specification can imply changes in
hundreds of lines of code spread across numerous classes or modules, dozens of test
cases, and numerous pages of end-user documentation” (McConnell 2001).

Glass also endorses this rationale, asserting that “requirements errors are the most expensive
to fix when found during production but the cheapest to fix early in development” is “really
just common sense” (Glass 2002). Other researchers are just as adamant in asserting that the
delayed issue effect is a generally useful law of software engineering. For example, what
we call the delayed issued effect was listed at #1 by Boehm and Basili in their “Top 10 list”
of “objective and quantitative data, relationships, and predictive models that help software
developers avoid predictable pitfalls and improve their ability to predict and control efficient
software projects” (Boehm and Basili 2001).

In analyzing data from a contemporary set of software development projects, however,
we did not find results to corroborate these claims. While the delayed issue effect might
have been a dominant effect decades ago, this does not mean that it is necessarily so for 21st

century software development. The delayed issue effect was first reported in 1976 in a era of
punch card programming and non-interactive environments (Boehm 1976). In the 21st cen-
tury, we program in interactive environments with higher-level languages and better source
code control tools. Such tools allow for the faster refactoring of existing code– in which
case, managing the changes required to fix (say) an incorrect requirements assumption is
far less onerous than before. Further, software engineering theory and practice has evolved
into new paradigms focused on rapid feedback and delivery, enabled by significant techno-
logical advances in the past 40 years. There is little empirical evidence for the delayed issue
effect since its initial observation, no doubt due in part to DIE being “just common sense”
as Glass states (Glass 2002).

This article explores the currency of the delayed issue effect. After some initial defini-
tions, we discuss the value of checking old ideas. Next, we present a survey of industrial
practitioners and researchers that documents the widespread belief that delayed issues have
a negative impact on projects. After that, we analyze 171 software projects developed in the
period 2006–2014 and find no evidence of the delayed issue effect. Finally, we discuss the
validity and implications of our results, as well as possible reasons for the lack of observed
effect given the state of the practice - reasons which, when subjected to further testing,
may prove useful for refining the theory. To ensure reproducibility, all the data used in this
study is available in the PROMISE repository at openscience.us/repo. To the best of our
knowledge, this the largest study devoted the delayed issue effect yet conducted.

1.1 Preliminaries

Before beginning, it is appropriate to make the following full disclosure statement. All 171
software projects studied here were developed using the Team Software Process (TSPSM),

1906 Empir Software Eng (2017) 22:1903–1935

which is a software development methodology developed and promulgated by the employer
of the second and third author of this paper (for more details on TSP, see Section 5.1).

We argue that TSP is not such a radical change to software development that it can stamp
out a supposedly rampant problem like the delayed issue effect. We view TSP as a better way
to monitor the activities of existing projects. TSP does not significantly change a project– it
just offers a better way to log the activity within that project. The limitations of our sample
drawing from TSP projects are discussed more thoroughly in the Threats to Validity section.

2 Definitions & Claims

This paper uses the following definitions:

– The delayed issue effect: it is very much more difficult to resolve issues in a software
project, the longer they remain.

– Longer time is defined as per Boehm’81 (Boehm 1981); i.e. the gap between the phases
where issues are introduced and resolved.

– We say that a measure m collected in phase 1, ., i, ..j is very much more when that
measure at phase j is larger than the sum of those measures in the earlier phases; i.e.
∑j−1

i=1 mi .
– Issues are more difficult when their resolution takes more time or costs more (e.g. needs

expensive debugging tools or the skills of expensive developers).

Note that this definition of “difficult to resolve” combines two concepts: time to change
and cost to change. Is it valid to assume the equivalence of time and cost? Certainly, there
are cases where time is not the same as cost. Consider, for example, if debugging required
some very expensive tool or the services or a very senior (and hence, very expensive) devel-
oper. Under those circumstances, time does not equate to cost. Having documented the
above issues, we assert that they are unlikely to be major issues in the study. One of us
(Nichols) was closely associated with many of the projects in our sample. He is unaware of
any frequent use of exorbitantly expensive tools or people on these projects. For more on
the validity of this definition of “difficult to resolve” see Section 6.3.

This paper defends the following claim and hypothesis. The hypothesis is defended using
some statistical significance tests while the claim is supported via a variety of arguments.

Claim: “DIE” is a Commonly Held, Yet Poorly Documented Belief We examine
the literature promoting the DIE and find that most reference a few primary sources. Many
of the papers reporting the DIE either (1) are quite old (papers dating from last century);
(2) quote prior papers without presenting new data; (3) or cite data sources that can no
longer be confirmed. We follow-up with a short survey that finds that DIE appears as the
most strongly-held belief among software engineers in our sample.

Hypothesis: Delayed Issues are not Harder to Resolve In our sample of 171 commer-
cial software projects, we offer a statistical analysis showing that, in overwhelming majority
of our results, there is no significant increase in the time to resolve issues as they are delayed
across multiple phases.

Empir Software Eng (2017) 22:1903–1935 1907

3 Reassessing Old Truisms

General theories of software engineering principles are common to both research and prac-
tice, although not always explicitly stated. Such theories underlie lists of proposed general
“best practices” for effective software development, such as the IEEE 1012 standard for
software verification (IEEE-1012 1998). Endres & Rombach offer empirical observations,
theories, and laws1 (Endres and Rombach 2003). Many other commonly cited researchers
do the same, e.g., Glass (2002), Jones (2007), and Boehm et al. (2000). Budgen & Kitchen-
ham seek to reorganize SE research using general conclusions drawn from a larger number
of studies (Kitchenham et al. 2004; Budgen et al. 2009).

In contrast, there are many empirical findings that demonstrate the difficulty in finding
general truisms in software engineering, even for claims that seem intuitive:

1. Turhan (Menzies et al. 2013) lists 28 studies with contradictory conclusions on the
relation of object-oriented (OO) measures to defects. Those results directly contradict
some of the laws listed by Endres and Rombach (2003).

2. Ray et al. (2014) tested if strongly typed languages predict for better code quality. In
728 projects, they found only a modest benefit in strong typing and warn that the effect
may be due to other conflating factors.

3. Fenton and Neil (2000) and Fenton and Ohlsson (2000) critique the truism that “pre-
release fault rates for software are a predictor for post-release failures” (as claimed
in Dunsmore (1988), amongst others). For the systems described in Fenton and Pfleeger
(1997), they show that software modules that were highly fault-prone prior to release
revealed very few faults after release.

4. Numerous recent local learning results compare single models learned from all avail-
able data to multiple models learned from clusters within the data (Bettenburg et al.
2014; Ye et al. 2011; Yang et al. 2013; Minku and Yao 2013; Menzies et al. 2013; Men-
zies et al. 2011; Bettenburg et al. 2012; Posnett et al. 2011). A repeated result in those
studies is that the local models generated the better effort and defect predictions (better
median results, lower variance in the predictions).

The dilemma of updating truths in the face of new evidence is not particular to software
engineering. The medical profession applies many practices based on studies that have been
disproved. For example, a recent article in the Mayo Clinic Proceedings (Prasad et al. 2013)
found 146 medical practices based on studies in year i, but which were reversed by sub-
sequent trials within years i + 10. Even when the evidence for or against a treatment or
intervention is clear, medical providers and patients may not accept it (Aschwanden 2010).
Aschwanden warns that “cognitive biases” such as confirmation bias (the tendency to look
for evidence that supports what you already know and to ignore the rest) influence how we
process information (Aschwanden 2015).

The cognitive issues that complicate medicine are also found in software engineering.
Passos et al. (2011) warn that developers usually develop their own theories of what works
and what doesn’t work in creating software, based on experiences from a few past projects.

1Endres & Rombach note that these are not laws of nature in the scientific sense, but theories with repeated
empirical evidence.

1908 Empir Software Eng (2017) 22:1903–1935

Too often, these theories are assumed to be general truisms with widespread applicability
to future projects. They comment “past experiences were taken into account without much
consideration for their context” (Passos et al. 2011). The results of Jørgensen and Gruschke
(2009) support Passos et al. In an empirical study of expert effort estimation, they report
that the experts rarely use lessons from past projects to improve their future reasoning in
effort estimation (Jørgensen and Gruschke 2009). They note that, when the experts fail
to revise their beliefs, this leads to poor conclusions and software projects (see examples
in Jørgensen and Gruschke 2009). A similar effect is reported by Devanbu et al. (2016) who
examined responses from 564 Microsoft software developers from around the world; they
found that “(a) programmers do indeed have very strong beliefs on certain topics; (b) their
beliefs are primarily formed based on personal experience, rather than on findings in empir-
ical research; (c) beliefs can vary with each project, but do not necessarily correspond with
actual evidence in that project.” Devanbu et al. further comment that “programmers give
personal experience as the strongest influence in forming their opinions.” This is a trou-
bling result, especially given the above comments from Passos et al. (2011) and Jørgensen
and Gruschke (2009) about how quickly practitioners form, freeze, and rarely revisit those
opinions.

From all we above we conclude that, just as in medicine, it is important for our field to
regularly reassess old truisms like the delayed issue effect.

4 Motivation: “DIE” is Commonly Held, Yet Poorly Documented

One reason that industrial practitioners and academics believe so strongly in the delayed
issue effect is that it is often referenced in the SE literature. Yet when we look at the litera-
ture, the evidence for delayed issue effect is both very sparse and very old. As shown in this
section, a goal of agile methods is to reduce the difficulty associated with making changes
later in the lifecycle (Beck 2000). Yet, as shown below, relatively little empirical data exists
on this point.

We examined the literature on the delayed issue effect through a combination of snow-
ball sampling (Wohlin 2014) and database search. We searched Google Scholar for terms
such as “cost to fix” and “defect cost” and “software quality cost”. The majority of the
search results discuss quality measurements, quality improvement, or the cost savings of
phase-specific quality improvement efforts (e.g., heuristic test case selection vs. smoke test-
ing). A systematic literature review of software quality cost research can be found in Karg
et al. (2011). Relatively few articles discuss cost-to-fix as a function of when the defect
was injected or found. We also conducted a general Google search for the above terms. We
found a number of website articles and blog postings on this topic, e.g., IfSQ (2013), Soni
(2016), Parker (2013), and Gordon (2016). From these, we gathered additional citations for
the delayed issue effect, the vast majority of which were secondary sources, e.g., Leffin-
gwell (1996), Mead et al. (2004), McConnell (1996), McConnell (2001), Tassey (2002),
and Boehm (2012). Our literature search is not exhaustive, but our results yielded an obvi-
ous trend: nearly every citation to the delayed issue effect could be traced to the seminal
Software Engineering Economics (Boehm 1981) or its related works (Boehm and Papaccio
1988; Boehm and Basili 2001).2

2For example, popular sources such as Pressman (2005), Boehm and Basili (2001), Glass (2002), and Endres
and Rombach (2003), with a combined citation count of over 14,500 on Google Scholar, can all trace their
evidence to Software Engineering Economics (Boehm 1981).

Empir Software Eng (2017) 22:1903–1935 1909

Ultimately, we identified nine sources of evidence for the delayed issue effect based
on real project data: the original four (Fagan 1976; Boehm 1976; Daly 1977; Stephenson
1976) reported in Software Engineering Economics (Boehm 1981), a 1995 report by Baziuk
(1995) on repair costs at Nortel, a 1998 report by Willis et al. (1998) on software projects at
Hughes Aircraft, a 2002 experiment by Westland (2002) to fit regression lines to cost-to-fix
of localization errors, a 2004 report by Stecklein et al. (2004) on cost-to-fix in five NASA
projects, and a 2007 survey by Reifer on CMMI Level 5 organization (Reifer 2007).

Figure 2 shows the DIE as reported in Software Engineering Economics (Boehm 1981)
based on data from large systems in the late 70s from IBM (Fagan 1976), TRW (Boehm
1976), GTE (Daly 1977), and Bell Labs (Stephenson 1976). We note that it is unclear from
the text in Daly (1977) and Boehm (1976) if cost is defined in terms of effort, or in actual
cost (i.e., labor, materiel, travel, etc). The data points from these studies are not published
for analysis. Baziuk (1995) reports an exponential increase in the cost to patch software in
the field versus system test, and Stecklein et al. (2004) produce a cost-to-fix curve (as price)
that fits precisely with Fig. 2. Westland (2002) finds that the cost to fix engineering errors
is exponentially related to the cost of the overall cost of a case study project. Reifer (2007)
confirms the exponential increase in the DIE in 19 CMMI Level 5 organizations though this
appears to be based on survey rather than empirical data.

Shull et al. (2002) conducted a literature survey and held a series of e-workshops with
industry experts on fighting defects. Workshop participants from Toshiba and IBM reported
cost-to-fix ratios between early lifecycle and post-delivery defects of 1:137 and 1:117 for

Fig. 2 Historical cost-to-fix curve. Adapted from Boehm (1981), p. 40

1910 Empir Software Eng (2017) 22:1903–1935

large projects respectively (Shull et al. 2002) – but the raw data points were not provided and
thus cannot be confirmed. Elssamadisy and Schalliol (2002) offer an anecdotal report on the
growing, high cost of rework in a 50 person, three-year, 500KLOC Extreme Programming
project as the project grew in size and complexity– but again we cannot access their exact
figures. This was a common theme in the literature reviewed for this paper– i.e. that it was
no longer possible to access the data used to make prior conclusions.

Some studies report smaller increases in the effort required to fix delayed issues. Boehm
(1980) provides data suggesting that the cost-to-fix curve for small projects is flatter than
for large projects (the dashed line of Fig. 2). Data from NASA’s Johnson Space Flight Cen-
ter, reported by Shull et al. (2002), found that the cost to fix certain non-critical classes of
defects was fairly constant across lifecycle phases (1.2 hours on average early in the project,
versus 1.5 hours late in the project). Royce (1998) studied a million-line, safety-critical
missile defense system. Design changes (including architecture changes) required approxi-
mately twice the effort of implementation and test changes, and the cost-to-fix in implemen-
tation and test phases increased slowly. Boehm (2010) attributes this success to a develop-
ment process focused on removing architecture risk early in the lifecycle. Willis et al. (1998,
page 54) provide tables summarizing the effort to fix over 66,000 defects as a function of
lifecycle phase injected and removed from multiple projects. The tables are partly obscured,
but seem to provide the first large scale evidence that a) DIE need not be exponential and
b) DIE need not be monotonically increasing. Again, the data points from these studies are
not available, and thus newer evidence both in favor of and contrary to the DIE cannot be
evaluated.

To gain a sense of how current the perception of the DIE is, we conducted two surveys
of software engineers. The surveys collected data on software engineers’ views of the DIE
and other commonly held software engineering “laws”. The surveys were conducted using
Amazon’s Mechanical Turk. The first survey was conducted only with professional soft-
ware engineers. Participants were required to complete a pretest to verify their status as a
professional or open source software developer and to confirm their knowledge of basic
software engineering terminology and technology. The second survey was conducted with
Program Committee members of the ESEC/FSE 2015 and ICSE 2014 conferences solicited
via email.

The practitioner survey presented the following law: “requirements errors are the most
expensive to fix when found during production but the cheapest to fix early in development”
(from Glass 2002 p.71 who references Boehm & Basili 2001). We abbreviate this law as
RqtsErr.3 The PC member survey presented the RqtsErr law and an additional law on the
DelayedIssueEffect: “In general, the longer errors are in the system (requirements errors,
design errors, coding errors, etc.), the more expensive they are to fix”. The respondents
answered two questions in response to each law:

– Agreement: “Based on your experience, do you agree that the statement above is cor-
rect?” A Likert scale captured the agreement score from Strongly Disagree to Strongly
Agree. A text box was provided to explain the answer.

– Applicability: “To the extent that you believe it, how widely do you think it applies
among software development contexts?” The possible answers were: -1: I don’t know,

3We use the RqtsErr formulation since this issue typically needs no supportive explanatory text. If we had
asked respondents about our more general term “delayed issue effect”, we would have had to burden our
respondents with extra explanations.

Empir Software Eng (2017) 22:1903–1935 1911

0: this law does not apply at all, ..., 5: always applies. Respondents were required to
explain the applicability score in a text box.

Summary statistics for the agreement and applicability scores for the RqtsErr and
DelayedIssueEffect laws are presented in Fig. 3. Responses whose Applicability response
was ”I don’t know” are omitted from analysis. Laws other than RqtsErr and DIE are not
relevant to this paper, but are shown for comparison.

Both practitioners and researchers strongly believed in RqtsErr. In both sets of responses,
RqtsErr received scores higher than most other laws. Overall, the RqtsErr law was the most
agreed upon and most applicable law of 11 surveyed amongst practitioners, and the second
most agreed upon law amongst researchers. From the free response texts, we note that the
researchers who disagreed with RqtsErr generally asserted that requirements change can be
expensive, but that the effect depends on the process used (e.g., agile vs. waterfall) and the
adaptability of the system architecture.

The above arguments provide evidence to the claim that the DIE is both poorly doc-
umented yet (still) widely believed. The comments of Glass (2002), that the DIE is “just
common sense”, suggest that DIE may be the target of confirmation bias. An example of
this is Fig. 4 from Stecklein et al. (2004), which purports to show nine references to “stud-
ies [that] have been performed to determine the software error cost factors”. Only one of
these sources, Software Engineering Economics (Boehm 1981), is based on real project data.
Despite a lack of recent evidence, the perception of the DIE persists today among both the
software engineers sampled in our survey and in popular literature. In the intervening years,
many advances in software technology and processes have been made precisely to deal with
risks such as the DIE. Thus, it is appropriate to ask the question, does the DIE still exist?

agreement applicability
Practitioner survey N med mode med mode
Rqts errors are most expensive... 16 5 5 4 5
Inspections can remove 90% of defects 18 4 5 4 5
80-20 rule (defects to modules) 12 4 5 4 5
Most time is spent removing errors 16 4 4 4 5
Process maturity improves output 17 4 4 4 4
Missing reqts are hardest to fix 17 4 4 4 4
Reuse increases prod. and qual. 16 4 4 4 4
OO-programming reduces errors 13 4 4 4 3
Adding manpower to alate project 15 4 4 4 4
Smaller changes have higher error density 14 3 3 3.5 5
A developer is unsuited to test own code 17 3 1 4 5

Researcher survey
Process maturity improves output 4 4 4 4 5
Rqts errors are moste xpensive... 30 4 4 4 4
Delayed Issue Effect 30 4 4 – –
Reuse increases prod. and qual. 6 4 4 4 4
80-20 rule (defects to modules) 6 4 4 4 3
Missing reqts are hardest to fix 7 4 4 4 3
OO-programming reduces errors 6 4 4 3 4
Inspections can remove 90% of defects 7 4 4 3 3
Adding man power to alate project 4 3 4 4 3
Most timeis spent removing errors 6 3 3 4 4
Smaller changes have higher error density 4 3 – 4 4
A developer is unsuited to test own code 7 2 1 3 3

Fig. 3 Agreement and applicability of SE axioms

1912 Empir Software Eng (2017) 22:1903–1935

Phase Requirements Issue Found
Cited source Requirements Design Code Test Data sources used to determine DIE

[14] 1 5 10 50 Multiple projects
Hoffman, 2001 1 3 5 37 Unknown - no bibliography entry

[23] 1 3 7 51 Extrapolated from defect counts for a one project
[81] 5 33 75 Fictitious example

[81] Case B 10 40 Fictitious example
[81] Case C 10 40 Fictitious example

[82] 1 20 45 250 Fictitious example
[74] 1 10 100 1000 None provided
[62] 5 50 Pen & paper exercise - no real data

Fig. 4 Confirmation bias – sources for DIE cited in Table 1 of Stecklein et al. (2004). Note that all of these
are cited as “studies [that] have been performed to determine the software error cost factors”, but only one,
Boehm (1981), is backed by actual data

4.1 Early Onset of the DIE Effect

One feature of the the DIE literature is important to our subsequent discussion: the onset of
DIE prior to delivery.

– Figure 1 reports a 40-fold increase in effort requirements to acceptance testing
– Figure 2 reports a 100-fold increase (for the larger projects) before the code is delivered

Any manager noticing this early onset of DIE (prior to delivery, during the initial devel-
opment) would be well-justified in believing that the difficulty in resolving issues will get
much worse. Such managers would therefore expect DIE to have a marked effect post-
deployment. We make this point since, in the new project data presented below, we focus
on DIE pre-delivery.

5 Delayed Issues are not Harder to Resolve

The above analysis motivates a more detailed look at the delayed issued effect. Accordingly,
we examined 171 software projects conducted between 2006 and 2014.

These projects took place at organizations in many countries and were conducted using
the Team Software Process (TSPSM). Since 2000, the SEI has been teaching and coaching
TSP teams. One of the authors (Nichols) has mentored software development teams and
coaches around the world as they deploy TSP within their organizations since 2006. The
most recent completions were in 2015.

The projects were mostly small to medium, with a median duration of 46 days and a
maximum duration of 90 days in major increments. Several projects extended for multiple
incremental development cycles. Median team size was 7 people, with a maximum of 40.
See Fig. 5 for the total effort seen in those projects. Many of the projects were e-commerce
web portals or banking systems in the US, South Africa, and Mexico. There were some
medical device projects in the US, France, Japan, and Germany as well as a commercial
computer-aided design systems, and embedded systems. A more thorough characterization
of the projects providing data is provided in Section 5.4.

An anonymized version of that data is available in the PROMISE repository at open-
science.us/repo. For confidentiality restrictions, we cannot offer further details on these
projects.

Empir Software Eng (2017) 22:1903–1935 1913

Fig. 5 Distribution of effort
(which is team size times days of
work). For example, if 10
programmers work for 10 days,
then the effort is 100 days. The
median value in this plot 271 days

 1

 10

 100

 1000

 10000

 100000

0% 50% 100%

y
=

 d
ay

s*
st

af
f

x = projects sorted by y

5.1 About TSPSM

TSP is a software project management approach developed at the Software Engineering
Institute (SEI) at Carnegie Mellon University (Humphrey 2000). TSP is an extension of the
Personal Software Process (PSPSM) developed at the SEI by Watts Humphrey (Humphrey
2000).

Common features of TSP projects include planning, personal reviews, peer inspections,
and coaching. A TSP coach helps the team to plan and analyze performance. The coach is
the only role authorized to submit project data to the SEI. Before reviewing data with the
teams, therefore before submission, these coaches check the data for obvious errors.

During Planning, developers estimate the size of work products and convert this to a
total effort using historical rates. Time in specific tasks come from the process phases and
historical percent time in phase distributions. Defects are estimated using historical phase
injection rates and phase removal yields. Coaches help the developers to compare estimates
against actual results. In this way, developers acquire a more realistic understanding of their
work behavior, performance, and schedule status.

Personal review is a technique taken from the PSP and its use in TSP is unique. Devel-
opers follow a systematic process to remove defects by examining their own work products
using a checklist built from their personal defect profile. This personal review occurs after
some product or part of a product is considered to be constructed and before peer reviews
or test.

Peer inspection is a technique in traditional software engineering and is often called peer
review. Basili and Boehm commented in 2001 (Boehm and Basili 2001) that peer reviews
can catch over half the defects introduced into a system. Peer inspection can be conducted
on any artifact generated anywhere in the software lifecycle and can quickly be adapted to
new kinds of artifacts. TSP peer reviews follow the Fagan style in which the reviewer uses
a checklist composed of common team defects prior to a review team meeting.

Overall, the effort associated with adding TSP to a project is not onerous. McHale
reports (McHale 2002):

– The time spent tracking time, defects, and tasks requires less than 3 % of a developer’s
time. Weekly team meetings require at most an hour, which is only 2.5 % of a 40 hour
work week.

– Team launches and replans average about 1 day per month or 5 % planning overhead.

It is true that one staff member is needed as a “coach” to mentor the teams and certify and
monitor that data collection. However, one of us (Nichols) has worked with dozens of TSP

1914 Empir Software Eng (2017) 22:1903–1935

teams. He reports that one trained coach can support 4 or 6 teams (depending upon team
experience).

5.2 Data Collection and Definitions

Organizations using TSP agree to provide their project data to the SEI for use in research.
In return the SEI agrees that data must not be traceable to its source. The data are collected
at major project events: launch, interim checkpoints, and at project completion. The data
from these TSP projects were collected and stored in the Software Engineering Measured
Process Repository (SEMPR) at the SEI.

As of November 2014, the SEI TSP database contained data from 212 TSP projects. The
projects completed between July 2006 and November 2014; they included 47 organizations
and 843 people. The database fact tables contain 268,726 time logs, 154,238 task logs,
47,376 defect logs, and 26,534 size logs. In this paper, we exclude 41 of the 212 that had
too few defects (less than 30), leaving 171 projects included in the analysis.

5.2.1 Definition: Time for Plan Item

Using a tool supporting the SEI data specification, developers keep detailed time-tracking
logs. The time-tracking logs record work start time, work end time, delta work time, and
interruption time. Software engineers are often interrupted by meetings, requests for techni-
cal help, reporting, and so forth. These events are recorded, in minutes, as interruption time.
In TSP, time logs are recorded against plan items. A planned item is a specific task assigned
to a specific developer, such as resolving a defect, coding a feature, performing an inspec-
tion or writing a test. Each work session includes a start time, an end time, and interruption
time. The active time, or actual time for the plan item is calculated by summing the active
time durations for all work sessions on that task.

actual time for plan item := SUM(end time − start time − interruption time)

Time is tracked per person per plan item in the time-tracking logs, e.g. a 30 minute design
review session involving 3 people will have three time log entries summing to 90 minutes.
Time includes the time to analyze, repair, and validate a defect fix.

5.2.2 Definition: Defects and Time-to-Fix

In the TSP, a defect is any change to a product, after its construction, that is necessary to
make the product correct. A typographical error found in review is a defect. If that same
defect is discovered while writing the code but before review, it is not considered to be a
defect. SEI TSP defect types are:

– Environment: design, compile, test, other support problems
– Interface: procedure calls and reference, I/O, user format
– Data: structure, content
– Documentation: comments, messages
– Syntax: spelling, punctuation typos, instruction formats
– Function: logic, pointers, loops, recursion, computation
– Checking: error messages, inadequate checks
– Build: change management, library, version control

Empir Software Eng (2017) 22:1903–1935 1915

– Assignment: package declaration, duplicate names, scope
– System: configuration, timing, memory

In our TSP data, the relative frequencies of these defect types are shown in Fig. 6. Around
a quarter of the fixes were simple documentation changes. That said, 75 % of the changes
are quite elaborate; e.g. fixes to function necessitates a careful reflection of the purpose of
the code.

Individual defects are recorded as line items in the defect logs uploaded to the SEMPR
at the SEI. The defect entry includes the time and date a defect was discovered, the phase
in which that defect was injected, the development phase in which it was removed, the time
(in minutes) required to find and fix the defect, and the categorical type.

In the TSP, defect data includes the affected artifact, the estimated developer fix effort
(find and fix), the lifecycle phases in which the defect was injected and removed, and the
developer who implemented the fix. In the database, the task is associated with a plan item.
Defects (one or more) are recorded in the defect log and associated with the plan item (task)
in the time tracking logs. For example, a review session, an inspection meeting, or a test
would be plan items associated with some product component. When defects are found and
fixed, the time recorded in the time-tracking logs against the plan items includes the direct
effort time (stop watch rather than wall clock time) required to (a) collect data and realize
there is an error, (b) prepare a fix, and (c) apply some validation procedure to check the fix
(e.g. discuss it with a colleague or execute some tests). Although we have explicit estimates
of ”find and fix” effort for each defect, this fails to account for the full costs (e.g. meeting
time or test execution). Because the vast majority of defects are removed in explicit removal
phases, we chose to estimate defect cost using the entire time in removal phases divided by
the number of defects. We recognize that this approach can exaggerate cost per defect for
cases with few defects and large overhead effort, such large test suites or slow running tests
that require continuous developer attention. Nonetheless, this approach provides a better
comparison between early removals from inspections later removals from test. The result
will be a time per defect that is greater than the directly measured ”find and fix” time, but
smaller than the wall clock or calendar time.

Fig. 6 Relative frequencies of these defect types seen in our TSP data

1916 Empir Software Eng (2017) 22:1903–1935

Since multiple defects can be recorded against a plan item, the time-to-fix a defect is
defined as:

time-to-fix a defect := time for defect plan item

of defects in plan item

5.2.3 Definition: Development Phase

The development phases against which plan items are logged in the data are shown in
Fig. 7. Although the representation suggests a waterfall model, the SEI experience is that
the projects follow a spiral approach or perform the work in iterative and/or incremental
development cycles. The phases are thus the logical stages through which each increment
must progress during development.

One special feature of Fig. 7 is the before phase, in which the TSP team assures that man-
agement has clearly identified cost, schedule, and scope goals appropriate to the upcoming
development activities, often including a conceptual model (Humphrey 2005). For exam-
ple an architecture team must have sufficient requirements to reason about, prototype, and

Fig. 7 Phases of our data. Abbreviations: Before= before development; Reqts = requirements; HLD = high-
level design; IntTest = Integration testing (with code from others); SysTest = system test (e.g. load stress
tests); AcceptTest = acceptance testing (with users); review = private activity; inspect = group activity

Empir Software Eng (2017) 22:1903–1935 1917

specify an architecture (Bachmann et al. 2013) while a coding only team within a larger
project would have more precisely defined requirements and high level design.

Note that, in Fig. 7, several phases in which the product is created have sub-phases of
review and inspect to remove defects. As discussed in Section 5.1, individuals perform
personal reviews of their work products prior to the peer review (which TSP calls the inspec-
tion). Testing activities are divided as follows. Developers perform unit test prior to code
complete. After code complete a standard phase is integration, which combines program
units into a workable system ready for system test. Integration, system test, and acceptance
test are often performed by another group.

5.3 Data Integrity

A common property of real-world data sets is the presence of noisy entries (superfluous or
spurious data). The level of noise can be quite high. For example, as reported in Shepperd
et al. (2013), around 10 to 30 % of the records in the NASA MDP defect data sets are
affected by noise.

One reason to use the SEI data for the analysis of this paper is its remarkably low level
of noise. Shirai et al. (2014) report that the noise levels in the SEI TSP data are smaller than
those seen in other data sets. They found in the SEI TSP data that:

– 4 % of the data was incorrect (e.g. nulls, illegal formats);
– 2 % of the data has inconsistencies such as timestamps where the stop time was before

the start time;
– 3 % of the data contained values that were not credible such as tasks listed in one day

that took more than six hours for a single developer.

One explanation for this low level of noise is the TSP process. One the guiding principles
of TSP was that people performing the work are responsible for planning and tracking the
work. That is, all the data collected here was entered by local developers, who use the data
for planning and tracking their projects. This data was then checked by local coaches before
being sent to the SEI databases. While coaches are certified by demonstrating competent
use of the TSP process with the artifacts and data, project success or performance is not a
criterion. The use of certified local coaches within each project increases the integrity of
our data.

5.4 Project Descriptive Characteristics

In this section we provide some descriptive statistics, discuss the projects from which this
data was drawn, summarize some additional contextual information. The project contexts
describe the conditions under which these measures were obtained, help determine rele-
vance of the results, and may guide future data analysis with segmentation. Key attributes
of the context include the business and application domains, product size, project duration,
work flows, team size, team management, development and integration approaches, orga-
nization size, location or distribution, certifications, developer experience, programming
languages and tools used.

We are unable at this time to provide all individual context data for each of the projects
for several reasons. While the development data was recorded in tools and submitted in a
structured form, context data was collected in less structured project questionnaires, site
questionnaires, team member surveys, launch presentations and reports, post mortem pre-
sentations and reports. This data has not yet been mined from the submissions 1) because of

1918 Empir Software Eng (2017) 22:1903–1935

Country % of projects
China 1.0 %
France 10.0 %
Mexico 41.0 %
South Africa 4.0 %
UK 1.5 %
US 42.5 %

Application Domain count
91noitaivA
32gniknaB

Business intelligence 19
Construction Support tools 3
Consumer applications 24
Custom Applications 1
Embedded systems 2
Engineering Design Tools 21
Geography and Mapping 2

5tnemnrevoG
Human Resources Management 3
Information Technology 1

3gnirutcafunaM
Medical Devices 15

2rehtO
Payroll services 1
Solutions Integration 1
Web applications 13
Wholesale or retail trade 9

Fig. 8 Project nationality and application domain

the cost and effort required, 2) we are obligated to avoid providing any data that can iden-
tify projects (that is, the data must remain anonymous), and 3) the unstructured data may
not be complete when submitted. Gathering more projects will make it easier to anonymize
the data and overcome missing data problems. Interest in the data sets by the community
may encourage our sponsor to fund additional data mining. Nonetheless, much context is
available from the project data and we provide some additional context not included within
the fact sheets.

The projects included come from 45 unique organizations from 6 countries. Figure 8
shows the country of origin and application domains for the projects. Figure 9 shows the
number of projects from each organization.

The most common countries of origin are the US and Mexico. Not apparent in this dis-
play is that the US companies tend to be fewer and larger with many projects while the
Mexican companies are more likely to have one to several projects. Several companies,
typically larger companies, are international with development teams in the US and either
France or China.

The most common project application domains are banking, consumer applications,
engineering design tools, and medical devices. The data for programming languages is

Fig. 9 Number of projects per development organization

Empir Software Eng (2017) 22:1903–1935 1919

Begin Phase Final Phase Count
Requirements Unit Test 12
Requirements Build and Integration Test 19
Requirements System Test 36

3tseTtinUngiseDleveLhgiH
High Level Design Build and Integration Test 10
High Level Design System Test 9
Detailed Level Design Unit Test 18
Detailed Level Design Build and Integration Test 24
Detailed Level Design System Test 17

Fig. 10 Earliest and latest process phases used by the projects

incomplete, with most projects using more than one language, but few reporting program-
ming language by component or size. The list of languages includes ABAP, ADA, Alpha,
C, C++, C#, ASP.net, Delphi, Gauss, Genexus, Hotware, HTML, Java, JavaScript, PHP,
PLSQL, Ruby, SQL, and Visual Basic.

The specific process work flows and practices are developed by the development team
personnel who have received specific training on defining work processes as part of their
Personal Software Process training. The process data was collected by the team members to
self-manage their personal and team work. The members also exhibited self-management
behavior by estimating planning and scheduling the work tasks (Figure 10).

While the processes and work flows among these projects can vary, the logical order
described in Section 5.2.3 is followed. Development tasks such as requirements devel-
opment, design, or code, are typically followed by an appraisal phase such as personal
review or inspection. Effort and effectiveness of these activities vary among projects and
developers.

The project schedule, cost, and scope are characterized by calendar duration, develop-
ment team size project, and product size (measured in added and modified lines of code and
number of components). These data are all available from the project fact sheets for each
project. Summary statistics and the year of project initiation are displayed in Fig. 11. From
this table we can make some observations about the range of project characteristics.

Of the 171 projects in the sample, only 117 collected size data in lines of code. How-
ever all projects tracked effort and the component counts with applied effort are provided.

N Min Q1 Median Q3 Max Mean Distribution

Team size 171 1 4 6 10 36 7.8

Duration [days] 171 7 33 61 118 1918 107

Added & Modified LOC 117 2 1125 4201 13092 88394 10259

Defects Found & Fixed 171 1 28 95 278 4580 324.4

Components 171 8 26 49 107 4170 116.2

Project Initiation Year 171 2006 2011 2012 2013 2014 2011.9

Fig. 11 Project summary description

1920 Empir Software Eng (2017) 22:1903–1935

Other data are complete for all 171 projects. The projects were mostly of short duration and
small to medium size. The median project began in 2012 lasted 61 days, produced 4,200
Lines of Code, 49 components (modules or features). Duration ranged from 7 to 1,918 days.
Size ranged from minimal (this may represent a short maintenance project) to 88,394. The
earliest project was in 2006 and the most recent in 2014.

How many of these teams could be classified as ”agile” is not clear because actual prac-
tices in the agile world can vary. We did not ask teams to self-identify, however we offer the
following observations regarding characteristics commonly associated with agile behavior.

– all teams were self managed, defining work flows, practices, and schedules
– teams met at least weekly to evaluate progress and re-plan
– most teams were small with a median size of 6 and a mean of 7.8; only 25 % of the

teams were larger than 10 with a long tail on the distribution
– the median project lasted only 60 days, suggesting limited scope for each integration

5.5 Statistical Analysis

In the following presentation of our results, three statistical methods were used to test for
the delayed issue effect: the Scott-Knott ranker; bootstrap sampling (to test for statistical
significantly different results); and an effect size test (to reject any significant differences
that are trivially small). Scott-Knott allows for a direct answer to the following questions:

– Given an issue raised at phase i and resolved at phase ∀j, k ∈ {i, i + 1, i + 2, ...},...
– ... Is it true that the time to resolve issues in phase j is significantly different to the time

to resolve issues in phase k?

Note that if j, k times are significantly different, then we can compare the median values
to say (e.g.) resolution time at phase k is 3 times slower than phase j . Note also that if all
times j, k are not significantly different then we say that the phases all rank the same (and
we denote this by setting all such ranks to 1).

In the following results, we nearly always encountered the second case; i.e. the times to
resolve issues at different times were usually not significantly different.

As to technical details of the Scott-Knott methods, this ranker was recommended by
Mittas and Angelis in a recent TSE’13 article (Mittas and Angelis 2013) and by Ghotra
et al. in a recent ICSE’15 article (Ghotra et al. 2015) Scott-Knott is a top-down clustering
approach used to rank different treatments. If that clustering finds an “interesting division”
of the data, then some statistical test is applied to the two divisions to check if they are sta-
tistically significant different. If so, Scott-Knott considers recurses into both halves. Before
Scott-Knot recurses, however, it applies some statistical hypothesis test H to check if m, n

are significantly different. To operationalize “interesting”,

– Scott-Knott seeks the division of l treatments into subsets of size m, n (so if n was
appended to the end of m then that new list would the same as l).

– We say that l, m, n have sizes ls, ms, ns and median values l.μ, m.μ, n.μ (respectively)
– Scott-Knott tries all ways to split l into m, n and returns the one that maximizes the

differences in the mean values before and after the splits; i.e.

ms

ls
abs(m.μ − l.μ)2 + ns

ls
abs(n.μ − l.μ)2

To operationalize H , we use both bootstrap sampling and Vargha and Delaney’s A12 effect
size test. In other words, we divide the data if both bootstrap sampling and effect size test

Empir Software Eng (2017) 22:1903–1935 1921

agree that a division is statistically significant (with a confidence of 99 %) and not a small
effect (A12 ≥ 0.6). For a justification of the use of non-parametric bootstrapping, see ?[
()p220-223]efron93. For a justification of the use of effect size tests see Shepperd and Mac-
Donell (2012), Kampenes et al. (2007), and Kocaguneli et al. (2013). These researchers
warn that even if a hypothesis test declares two populations to be “significantly” different,
then that result is misleading if the “effect size” is very small. Hence, to assess the perfor-
mance differences we first must rule out small effects using Vargha and Delaney’s A12 test,
a test endorsed by Arcuri and Briand at ICSE’11 (Arcuri and Briand 2011).

To apply Scott-Knott, we divided data into the phases P0 where issues are introduced.
Next, for each division, we separated all the issues that were removed at different subsequent
issues Pr ∈ {P1, P2, ..}. For each pair P0, Pr , we build one treatment containing the issue
resolution times for issues raised in P0 and resolved in Pr . These treatments were then
ranked by Scott-Knott.

5.6 Observations from 171 Projects

The count by phase in which defects were removed is shown in Fig. 12. Defects are counted
only if they they escape the introduction phase unless a bad fix introduces a new defect.
These secondary defects occur almost exclusively in test and very rarely in an inspec-
tion. A high percentage of defects (44 %) were found and fixed in the early phases, i.e.,
prior to coding. This distribution is similar to that observed for other projects that empha-
sized investment in software engineering quality assurance practices. For example, Jones
and Bonsignour report 52 % of pretest defects removed before entering implementation,
for large projects that focus on upfront defect removal techniques (Jones and Bonsignour
2012). NASA robotics projects had a slightly higher percentage (58 %) of defects removed
before implementation began, although these had invested in independent verification and
validation on top of other forms of defect removal (Menzies et al. 2008).

Figures 13 and 14 show the 50th and 90th percentile (respectively) of the time spent
resolving issues (note that, in TSP, when developers see issues, they enter review or inspect
or test until that issue is retired). These values include all the time required to (a) collect
data and realize there is an error; (b) prepare a fix; and (c) apply some validation procedure
to check the fix (e.g. discuss it with a colleague or execute some tests).

0

2000

4000

6000

Be
fo

re
De

ve
lo

pm
en

t
Pl

an
ni

ng
Re

qt
s

Re
qt

sR
ev

ie
w

Re
qt

sI
ns

pe
ct

De
sig

n
De

sig
nR

ev
ie

w
De

sig
nI

ns
pe

ct
Co

de
Co

de
Re

vie
w

Co
de

In
sp

ec
t

Un
itT

es
t

In
tT

es
t

Sy
sT

es
t

Ac
ce

pt
Te

st

Phase

de

fe
ct

s
fo

un
d

an
d

fix
ed

Fig. 12 Distribution of defects by phase removed

1922 Empir Software Eng (2017) 22:1903–1935

Percentiles
(units = Growth with respect to earliest phase

Phase minutes) (unitless ratios of two time values)
rank injected removed 50th IQR 50th percentile growth

1 Before DesignInspect 10 14 1.00
1 CodeReview 8 14 0.80
1 CodeInspect 10 16 1.00
1 UnitTest 12 21 1.20
1 IntTest 15 31 1.50
1 SysTest 11 22 1.10

1 Planning ReqtsReview 8 14 1.00
1 DesignInspect 11 13 1.38
2 UnitTest 24 25 3.00

1 Reqts ReqtsReview 13 20 1.00
1 ReqtsInspect 12 18 0.92
1 DesignReview 10 14 0.77
1 DesignInspect 9 15 0.69
1 CodeInspect 13 24 1.00
1 UnitTest 10 17 0.77
1 IntTest 33 42 2.54
1 SysTest 24 108 1.85

1 Design DesignReview 11 16 1.00
1 DesignInspect 8 12 0.73
1 CodeReview 10 18 0.91
1 CodeInspect 9 14 0.82
1 UnitTest 11 18 1.00
1 IntTest 17 31 1.55
1 SysTest 13 18 1.18
1 AcceptTest 14 19 1.27

1 Code CodeReview 10 16 1.00
1 CodeInspect 10 15 1.00
1 UnitTest 12 20 1.20
1 IntTest 14 25 1.40
1 SysTest 13 20 1.30
1 AcceptTest 16 25 1.60

Fig. 13 Median times to resolve issues seen in the SEI TSP data. For an explanation of this figure, see
Section 5.6

To understand that figure, we offer the following notes:

– Shown here are the 50th/90th percentiles of issue resolution times for issues injected in
phase PO and resolved in phase Pr (these values are calculated by sorting all resolution
time, then reporting the middle values of that sort).

– The “IQR” column shows the “inter-quartile range”; i.e. the range of values represent-
ing the 75th - 25th percentile range

– The results in that figure are split out according to issues that were fixed in phase Pr

after being introduced in phase P0. The data are sub-divided into tables according to
P0; i.e. according to before, planning, requirements, design or code.

– The left-hand-side “rank” column shows the result of the Scott-Knott ranking procedure
described in Section 5.5. These statistical results were applied separately to each group
Before, Planning, Reqts, Design, Code. Recall from §5.5 that if all the fix times within
a group were statistically insignificantly different, then they all earn “rank=1”. Note
that most treatments achieved the same ranks i.e. they were found to be insignificantly
different from each other (the one exception is within the Planning:UnitTest results
where UnitTests were ranked 2).

Empir Software Eng (2017) 22:1903–1935 1923

Percentiles Growth with respect to earliest phase
Phase (units= miniutes) (unitless ratios of two time values)

rank injected removed 90th 90th percentile growth

1 Before DesignInspect 32 1.00
1 CodeReview 31 0.97
1 CodeInspect 32 1.00
1 UnitTest 45 1.41
1 IntTest 63 1.97
1 SysTest 46 1.44

1 Planning ReqtsReview 35 1.00
1 DesignInspect 31 0.89
2 UnitTest 53 1.51

1 Reqts ReqtsReview 42 1.00
1 ReqtsInspect 40 0.95
1 DesignReview 34 0.81
1 DesignInspect 38 0.90
1 CodeInspect 45 1.07
1 UnitTest 40 0.95
1 IntTest 95 2.26
1 SysTest 126 3.00

1 Design DesignReview 37 1.00
1 DesignInspect 28 0.76
1 CodeReview 40 1.08
1 CodeInspect 33 0.89
1 UnitTest 41 1.11
1 IntTest 75 2.03
1 SysTest 40 1.08
1 AcceptTest 44 1.19

1 Code CodeReview 35 1.00
1 CodeInspect 32 0.91
1 UnitTest 45 1.29
1 IntTest 58 1.66
1 SysTest 47 1.34
1 AcceptTest 60 1.71

Fig. 14 90th percentile times to resolve issues seen in the SEI TSP data. Same format as Fig. 13 (but here
we look at 90th percentile outliers while Fig. 13 explored the central tendencies of the data)

– The right-hand-side bars show the relative sizes of the increases for the 50th (median)
percentile values. These increases are calculated with respect to the first value in each
section “Before, Planning, Reqts. Design, Code”.

– These right-hand-side bars are unitless since they are ratios. For example, on the last
line of Fig. 13, issues injected during coding and fixed in SysTest take 13 minutes
(median) to resolve. This is 130 % more than the 10 minutes (median) required to
resolve coding issues during CodeReview. The right-hand-side bar visually represents
that 130 %.

Technical note: to ensure representativeness, we display examples where there exist at least
N ≥ 30 examples4 of issues injected in phase P0 then removed in phase Pr .

The two key features of Figs. 13 and 14 are:

1. Nowhere in these results do we see the kind of very large increases reported in the
papers documenting DIE; neither in the median fix times of Fig. 13 or at the 90th
percentile level of Fig. 14. For example, consider the ratio of the issue resolution time

4We selected 30 for this threshold via the central limit theorem (Maxwell 2002).

1924 Empir Software Eng (2017) 22:1903–1935

between Before/DesignInspect and Before/SysTest result of Fig. 13. That ratio is 1.11
which is far smaller than the scale ups seen in Fig. 1.

2. Nearly all the supposed increases seen in Figs. 13 and 14 are insignificantly different
to the other treatments. The left hand column of Fig. 13 shows the results of the Scott-
Knott statistical tests. Note that nearly all the treatments have the same rank (“1”); i.e.
usually there is no statistically significant difference in the time to resolve issues. The
only exception here is Planning:UnitTest which is ranked “2” but even here, the scale
up is merely a factor of 3, and not the exponential increase promised by classic reports
of the delayed issue effect.

One possible explanation for the lack of a DIE effect is that we are looking broadly at the
entire data set but not at specific stratifications. To address that concern, we spent some time
reproducing these figures for various subsets of our data. That proved to be an unfruitful–
no stratification was found that contained an exponential expansion in the time to fix issues.
The reason for this was the small size of those stratifications exacerbated the large IQR’s
seen in this data.5 Our 171 projects stratify into subsets of varying sizes. The two largest
subsets contained only 17 and 12 projects, with numerous much smaller stratifications. Rea-
soning over such small samples is problematic in the general case and, in the case of our
data, it is even more problematic due to the large IQRs of the data. (To see these large IQRs,
please compare the 50th percentile and IQR columns of Fig. 13, where most of the IQRs
are larger than the 50th percentile; i.e. software data exhibits large variances, which in this
case are exacerbated by the smaller samples seen in the stratifications). Our conclusion from
exploring the stratifications is that, given the currently available data, we cannot check for
a DIE effect in subsets of this data.

Before moving on, we comment on some of the counter-intuitive results in these figures.
Consider, for example, the “Reqts” results of Fig. 13 where the time required to fix issues
actually tends to decrease the longer they are left in the system. In terms of explaining this
result, the key thing is the left-hand-side statistical ranking: all these treatments were found
to be statistically indistinguishable. In such a set of treatments, the observed difference may
not be a causal effect; rather, it may just be the result of random noise.

6 Threats to Validity

Threats to validity are reported according to the four categories described in Wohlin et al.
(2012), which are drawn from Cook and Campbell (1979).

6.1 Conclusion Validity

Threats to conclusion validity are “issues that affect the ability to draw the correct conclu-
sion about relations between the treatment and the outcome” (Wohlin et al. 2012). We do
not have a traditional treatment or control as in a classical experiment. Instead, we evalu-
ate if the DIE holds in a modern data set. The data set is comprised of TSP projects, so
the treatment could be misconstrued as TSP, but this is not that case as we do not have an
experimental control to compare TSP against.

5Recall that in a sorted list of numbers, the inter-quartile range, or IQR, is the difference between the 75th
and 25th percentile value.

Empir Software Eng (2017) 22:1903–1935 1925

Low statistical power: Our data set is comprised of 47,376 defect logs. Our primary anal-
ysis in Fig. 13 is based on injection-removal phase pairs whose with sample size > 30.
The justification for the statistical techniques used in this paper is provided in Section ??.

Reliability of measures: The base measures in this study described in Section 5.2 are
defects recorded in TSP defect logs and time reported in time tracking logs. The pri-
mary threats to the reliability of these measures are: that the definition of a defect varies
between projects and that time is not reported accurately or consistently. The reliability
of the time reporting is discussed in Section 5.3. Time is reported on a level of minutes.
We do not have a precise assessment of the error margin for time reporting. Some devel-
opers are less precise with time or estimates. Nonetheless, we have applied several tests
to verify that the data is accurate. First we compare entries from the defect and time logs
to verify that defect log times-to-fix sum to less than the total time log effort in the phase.
Second, time log time stamps must be consistent with both the the time stamps and phase
for defect in the defect log. Third, we applied a Benford test on the leading digits from
the time log and defect log times to estimate the number data entries that do not result
from a natural process (that is, guessed or estimated rather than measured values) (Shirai
et al. 2014). Based on these tests we believe that greater than 90 % of the time log data
is recorded in real time. The fidelity and consistency of data will be subject of a future
paper.

We assume that each team has similar defect recording practices, and the TSP coach-
ing provides guidance on what constitutes a defect. Nonetheless, individual developers and
teams may apply their own internal rules for filtering defects, which would lead to inconsis-
tent reporting thresholds among the projects in our sample. A related issue is that we assume
developers correctly report in which phases a defect was injected and corrected. One point
of variation is the measurement framework that identifies process phases and joins the effort
to a size measurement framework. Individual projects may choose to implement a differ-
ent framework, for example adding phases for specific types of development (for example,
adding static analysis or special testing or a non-standard size unit).

Certainly, if the defect and time reporting was done incorrectly in this study, then all our
results must be questioned. However, this issue threatens every study on the delayed issue
effect– so if our results are to be doubted on this score, then all prior work that reported
the delayed issue effect should also be doubted. In TSP, developers are trained and supplied
with templates for defect and time tracking, all data entry is double-checked by the team
TSP coach, and developers are required to analyze their data to make process improvements.
That is, TSP developers are always testing if their project insights are accurate. In such an
environment, it is more likely that they will accurately identify the injection phase.

Reliability of treatment implementation: Although TSP is not prescriptive about the
development process, goals, or strategy, TSP provides precise guidance and training for
data gathering. The guidance for logging time and defects is precisely defined. All tasks
should be logged as the work is performed with a stopwatch tool. All defects that escape
a phase must be logged. All data fields for each defect must be completed.

There are a number of reasons to believe that the data are consistent between developers
and between projects. First, developers receive PSP training, during which instructors focus
on complete and accurate data gathering. Second, each project that submitted data had a
certified TSP coach responsible for evaluating process adherence and submitting the data.

1926 Empir Software Eng (2017) 22:1903–1935

Third, because the teams use their data to manage the projects the team is motivated to col-
lect complete, accurate, and precise data otherwise the data gathering and analysis would
be wasted effort. Fourth, process fidelity issues are apparent to the TSP coach as miss-
ing or inconsistent data (e.g. time and defect logs do not match, log entries have excessive
rounding, or a developer is an outlier). Fifth, 15 of the projects received a TSP Certifica-
tion in which process fidelity was evaluated independently by an observer and data analyst
examining data internal consistency and consistency with distributional properties known
to consistent among all projects and team members. Sixth, all projects in this sample used
the same data gathering tool. Nonetheless, some variations exist.

6.2 Internal Validity

Threats to internal validity concern the causal relationship between the treatment and the
outcome (Wohlin et al. 2012). Again, we do not consider TSP as a treatment, but we observe
that the DIE does not hold in the TSP data set. Nonetheless, it is useful to consider threats to
internal validity at an abstract level between the software engineering milieu that generated
the original DIE observations and today’s context where TSP was applied.

History: Many technological advances have occurred in the time between when DIE was
originally observed in the late 70s and today. Processors are more powerful, memory is
cheap, programming languages are more expressive, developer tools are more advanced,
access to information is easier via the Internet, and significant evolutions in programming
paradigms and software process have been realized in the past 40 years. In addition to the
risk-oriented, disciplined nature of TSP, any or all of these additional historical factors
may have contributed to the lack of the delayed issue effect in our data.

Instrumentation: The forms by which the TSP defect and time data are collected have
been studied and matured over 20 years. Conversely, we do not find much documented
evidence on how time and defects are reported for the original DIE papers (see Sec-
tion 4). Thus, we cannot be assured that reporting and data capture were not a significant
influence on the delayed issue effect in the original papers.

Interactions with selection: As described in Section 5.2, all TSP teams are required to
contribute time and defect data to the SEI, and thus there should be no selection bias in
this sample compared to the overall population of TSP projects. However, there is likely
selection bias in the teams that elect to use TSP compared to the entire population of
software development teams. We do not have a basis for comparing TSP teams to those
teams in which the DIE was originally observed.

6.3 Construct Validity

Construct validity concerns “generalizing the result of the experiment to the concept or
theory behind the experiment” (Wohlin et al. 2012). Thus, do the observations in this paper
provide evidence on the general delayed issue effect theory?

Inadequate pre-operational explication of constructs: As described in Section 5.2, the
measures of defect, time, and cost in the original DIE papers are not clearly defined. 6

6In retrospect, empirical software engineering studies at that time were extremely rare, and guidance for
reporting empirical case studies and experiments have improved substantially. One of the seminal books on
quasi-experimentation and reporting of validity concerns, Cook and Campbell (1979), had not been published
when most of the DIE papers were written.

Empir Software Eng (2017) 22:1903–1935 1927

Note that in Fig. 2, the units of “cost-to-fix” are not expressed – in the source references,
cost appears as calendar time, effort, and price. In the TSP, a defect is defined as “any
change to a product, after its construction, that is necessary to make the product correc”
and time to correct a defect includes “the time to analyze, repair, and validate a defect
fix.” Our analysis of DIE focuses on time as a measure of time-as-effort (persons * time).

The data used in this analysis does not extend into post-delivery deployment. As mentioned
in Section 4.1, every other paper reporting DIE also reported early onset of DIE within the
current development. Specifically: those pro-DIE papers reported very large increases in
the time required to resolve issues even before delivery. That is, extrapolating those trends
it would be possible to predict for a large DIE effect, even before delivering the software.
This is an important point since Fig. 13 shows an absence of any large DIE effect during
development (in this data, the greatest increase in difficulty in resolving requirements issues
was the 2.16 to 4.37 scale-up seen in the before to integration testing which is far smaller
than the 37 to 250-fold increases reported in Figs. 1 and 2).

Mono-method bias: We only measure the delayed issue effect in terms of defects (as
reported by teams) and time (in minutes of effort). To mitigate mono-method bias, addi-
tional measures of these constructs would be needed. For example, defects may be
segmented into customer-reported defects and pre-release defects. In addition to time-
as-effort, calendar time and price to fix (including labor, CPU time, overhead) would
provide a more complete picture of the abstraction “cost to fix a defect”. Further, there are
no subjective measures of cost-to-fix, such as the social impact on the team or frustration
of the customer.

Confounding constructs and levels of constructs: We do not consider the severity of
defects in this analysis. Evidence discussed in Shull et al. (2002) suggests that low sever-
ity defects may exhibit a lower cost to change. Nonetheless, even “small” errors have
been known to cause enormous damage (e.g., the Mars Climate Orbiter). It is possible
that high-severity defects require more effort to fix simply because more people work
on them, or conversely, low-severity defects may be fixed quickly simply because they
it is easier to do so. High-severity defects are of particular concern in software projects,
and even if the number of high-severity defects is low their cost to fix may be extremely
large. Note that if such outliers were common in our data, they would appear in the upper
percentiles of results.

Restricted generalizability across constructs: While we observe a lack of DIE in the TSP
dataset, we examine only the construct of time-to-fix. We do not consider the tradeoffs
between time-to-fix and other ”-ilities”, such as maintainability. For example, a low time-
to-fix may come at the expense of a more robust solution, i.e., a quick and dirty fix
instead of an elegant repair.

6.4 External Validity

External validity concerns the generalizability of findings (Wohlin et al. 2012) beyond the
context of the study. Madigan et al. (2014) and Carlson and Sean Morrison (2009) discuss
primarily external validity concerns drawn from studies of large datasets in medicine that
are useful for identifying limitations in our study.

Interaction of selection and treatment: The most obvious limitation in our study is that
the dataset in which we observed no DIE was composed entirely of TSP projects. TSP is
a mature process constructed with risk mitigation as its primary purpose. We do not claim

1928 Empir Software Eng (2017) 22:1903–1935

that our findings generalize beyond the projects using the TSP process. Similarly, we
make no claims regarding generalizability across domains (e.g., defense, banking, games,
COTS), scope (# of features, people, and development length), or organizational features.
The purpose of this study is to draw attention to the notion that commonly-held belief
of the delayed issue effect may not be a universal truth. This study adds to the evidence
offered by the case study in Royce (1998). Our study invites a further explanation into
the causal factors that mitigate DIE.

Interaction of setting and treatment: The 171 TSP projects in our data set as well as the
case studies in the original DIE papers were all industry projects conducted by software
development teams. The TSP projects contain examples of a wide variety of systems
(ranging from e-commerce web portals to banking systems) run in a variety of ways
(agile or waterfall or some combination of the two). These are realistic settings for con-
temporary software development teams, though perhaps not representative of all types of
projects (see prior paragraph).

Interaction of history and treatment: The TSP projects and the original DIE projects took
place over several months or years of development. Thus, it is unlikely that the data are
substantially influenced by rare events that occurred during project execution.

7 Discussion

Earlier we noted that the delayed issue effect was first reported in 1976 in an era of punch
card programming and non-interactive environments (Boehm 1976). We also note that other
development practices have changed in ways that could mitigate the delayed issued effect.
Previously, most software systems were large, monolithic, and ”write once and maintain
forever.” Today, even large software systems are trending toward DevOps and cloud-based
deployment. Advances in network communications, CPU processing power, memory stor-
age, virtualization, and cloud architectures have enabled faster changes to software, even for
large systems. Facebook deploys its 1.5 GB binary blob via BitTorrent in 30 minutes every
day (Paul). Upgrades to the Microsoft Windows operating system are moving from service
patches and major releases to a stream of updates (so there will be no Windows 11- just a
stream of continuous updates to what is currently called Windows 10) (Bright 2015).

Even organizations that build complex, high assurance systems are turning to agile devel-
opment processes that purport to address the DIE. For example, agile methods have been
advocated for software acquisitions within the US Department of Defense (Kim 2013),
and interest and adoption has been growing (Lapham et al. 2011). This change in DoD
culture is enabled by a separation of baseline architecture (e.g., the design of an aircraft
carrier) marked by significant up-front design and the agile development of applications
within that architecture. For the baseline architecture, bad decisions made early in the
life cycle may be too expensive to change and the DIE may still hold. However, smaller
projects within the larger architecture (e.g., lift controls, radar displays) can leverage more
agile, interactive development provided that interfaces and architectural requirements are
well-defined.

So, is it really surprising that DIE was not observed? Many software engineering tech-
nologies have been created precisely to avoid the delayed issue effect by removing risk as
early as possible. Boehm’s spiral model (Boehm 1988), Humphrey’s PSP (Humphrey 1995)
and TSP (Humphrey 2000), the Unified Software Development Process (Jacobson et al.
1999), and agile methods (Beck et al. 2001) all in part or in whole focus on removing risk
early in the development lifecycle. Indeed, this idea is core to the whole history of iterative

Empir Software Eng (2017) 22:1903–1935 1929

and incremental product development dating back to “plan-do-study-act” developed at Bell
Labs in the 1930’s (Larman and Basili 2003) and popularized by Deming (1986). Harter
et al. find a statistical correlation between fewer high severity defects and rigorous pro-
cess discipline in large or complex systems (Harter et al. 2012). Technical advancements in
processing power, storage, networking, and parallelism have combined with a deeper sci-
entific understanding of software construction to enable a whole host of software assurance
technologies, from early-phase requirements modeling to automated release testing.

The delayed issue effect may continue to be prevalent in some cases, such as high-
assurance software, architecturally complex systems, or in projects with poor engineering
discipline. We do not have evidence for or against such claims. However, our data shows
that the DIE has been mitigated through some combination of software engineering tech-
nology and process in a large set of projects in many domains. Our results are evidence that
the software engineering community has been successful in meeting one of its over-arching
goals. But our results raise an equally important point - should the DIE persist as a truism
(see Section 4), or is it a project outcome that can be controlled by software engineering
process and technology?

8 Conclusion

In this paper, we explored the papers and data related to the commonly believed delayed
issue effect (that delaying the resolution of issues very much increases the difficulty of com-
pleting that resolution). Several prominent SE researchers state this effect is a fundamental
law of software engineering (McConnell 2001; Boehm and Basili 2001; Glass 2002). Based
on a survey of both researchers and practitioners, we found that a specific form of this effect
(requirements errors are hardest to fix) is commonly believed in the community.

We checked for traces of this effect in 171 projects from the period 2006–2014. That
data held no trace of the delayed issued effect. To the best of our knowledge, this paper is
the largest study of this effect yet performed.

We do not claim that this theory never holds in software projects; just that it cannot
be assumed to always hold, as data have been found that falsify the general theory. Our
explanation of the observed lack-of-effect is five-fold. Each of the following explanations
is essentially a hypothesis which should be tested against empirical data before we can
effectively propose a new theory of the delayed issue effect.

1. The effect might be an historical relic, which does not always hold on contemporary
projects. Evidence: the effect was first described in the era of punch card computing
and non-interactive environments.

2. The effect might be intermittent (rather than some fundamental law of software). Evi-
dence: we can found nearly as many papers reporting the effect (Boehm 1976; 1981;
Stecklein et al. 2004; Fagan 1976; Stephenson 1976) as otherwise (Royce 1998; Boehm
1980; Shull et al. 2002).

3. The effect might be confined to very large systems- in which case it would be acceptable
during development to let smaller to medium sized projects carry some unresolved
issues from early phases into later phases.

4. The effect might be mitigated by modern software development approaches that
encourage change and revision of older parts of the system.

5. The effect might be mitigated by modern software development tools that simplify the
process of large-scale reorganization of software systems.

1930 Empir Software Eng (2017) 22:1903–1935

Our results beg the question: why does the delayed issue effect persist as a truism in soft-
ware engineering literature? No doubt the original evidence was compelling at the time, but
much has changed in the realm of software development in the subsequent 40 years. Pos-
sibly the concept of the delayed issue effect (or its more specific description: requirements
errors are the hardest to fix) has persisted because, to use Glass’s terms on the subject, it
seems to be “just common sense”(Glass 2002). Nevertheless, in a rapidly changing field
such as software engineering, even commonly held rules of thumb must be periodically re-
verified. Progress in the domain of software analytics has made such periodic checks more
cost-effective and feasible, and we argue that an examination of local behaviors (rather than
simply accepting global heuristics) can be of significant benefit.

Acknowledgments The authors wish to thank David Tuma and Yasutaka Shirai for their work on the
SEI databases that made this analysis possible. In particular, we thank Tuma Solutions for providing the
Team Process Data Warehouse software. Also, the authors gratefully acknowledge the careful comments of
anonymous reviewers from the FSE and ICSE conferences. This work was partially funded by an National
Science Foundation grants NSF-CISE 1302169 and CISE 1506586.

This material is based upon work funded and supported by TSP Licensing under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center sponsored by the United States Department of Defense.
This material has been approved for public release and unlimited distribution. DM-0003956

Personal Software ProcessSM, Team Software ProcessSM, and TSPSM are service marks of Carnegie
Mellon University.

References

Arcuri A, Briand L (2011) A practical guide for using statistical tests to assess randomized algorithms in
software engineering. In: ICSE’11, pp 1–10

Aschwanden C (2010) Convincing the public to accept new medical guidelines. http://goo.gl/RT6SK7.
FiveThiryEight.com. Accessed: 2015-02-10

Aschwanden C (2015) Your brain is primed to reach false conclusions. http://goo.gl/OO3B7s. FiveThir-
tyEight.com. Accessed: 2015-02-10

Avram A (2014) Idc study: how many software developers are out there? infoq.com/news/2014/01/
IDC-software-developers

Bachmann FH, Carballo L, McHale J, Nord RL (2013) Integrate end to end early and often. Softw IEEE
30(4):9–14

Baziuk W (1995) Bnr/nortel: path to improve product quality, reliability and customer satisfaction. In: Sixth
international symposium on software reliability engineering, 1995. Proceedings. IEEE, pp 256–262

Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J, Highsmith J,
Hunt A, Jeffries R, Kern J, Marick B, Martin RC, Mallor S, Schwaber K, Sutherland J, Thomas D (2001)
The agile manifesto. http://www.agilemanifesto.org

Beck K (2000) Extreme programming explained: embrace change. Addison Wesley
Bettenburg N, Nagappan M, Hassan AE (2012) Think locally, act globally: improving defect and effort

prediction models. In: MSR’12
Bettenburg N, Nagappan M, Hassan AE (2014) Towards improving statistical modeling of software

engineering data: think locally, act globally! Emp Softw Eng:1–42
Boehm B. W., Papaccio P. N. (1988) Understanding and controlling software costs. IEEE Trans Softw Eng

14(10):1462–1477
Boehm B (1976) Software engineering. IEEE Trans Comput C-25(12):1226–1241
Boehm B (1980) Developing small-scale application software products: some experimental results. In:

Proceedings of the IFIP congress, pp 321–326
Boehm B (1981) Software engineering economics. Prentice Hall, Englewood Cliffs
Boehm B (2010) Architecting: how much and when? In: Oram A, Wilson G (eds) Making software: what

really works, and why we believe it. O’Reilly Media, pp 141–186
Boehm B, Basili VR (2001) Software defect reduction top 10 list. IEEE Softw:135–137

http://goo.gl/RT6SK7
http://goo.gl/OO3B7s
infoq.com/news/2014/01/IDC-software-developers
infoq.com/news/2014/01/IDC-software-developers
http://www.agilemanifesto.org

Empir Software Eng (2017) 22:1903–1935 1931

Boehm B, Horowitz E, Madachy R, Reifer D, Clark BK, Steece B, Winsor Brown A, Chulani S, Abts C
(2000) Software cost estimation with cocomo II. Prentice Hall

Boehm BW (1988) A spiral model of software development and enhancement. Computer 21(5):61–72
Boehm BW (2012) Architecting: how much and when. In: Oram A, Wilson G (eds) Making software: what

really works, and why we believe it. O’Reilly, pp 161–186
Bright P (2015) What windows as a service and a ’free upgrade’ mean at home and at work. http://goo.gl/

LOM1NJ/
Budgen D, Brereton P, Kitchenham B (2009) Is evidence based software engineering mature enough for

practice & policy? In: 33rd Annual IEEE software engineering workshop 2009 (SEW-33). Skovde
Carlson MDA, Sean Morrison R (2009) Study design, precision, and validity in observational studies. J

Palliative Med 12(1):77–82
Cook TD, Campbell DT (1979) Quasi-experimentation: design & analysis issues for field settings. Houghton

Mifflin Boston
Daly EB (1977) Management of software development. IEEE Trans Softw Eng SE-3(3):229–242
Deming WE (1986) Out of the crisis. MIT Press
Devanbu P, Zimmermann T, Bird C (2016) Belief & evidence in empirical software engineering. In:

Proceedings of the 38th international conference on software engineering, pp 108–119. ACM
Dunsmore HE (1988) Evidence supports some truisms, belies others. (some empirical results concerning

software development). IEEE Softw:96–99
Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Mono. Stat. Appl. Probab. Chapman and

Hall, London
Elssamadisy A, Schalliol G (2002) Recognizing and responding to ”bad smells” in extreme programming. In:

Proceedings of the 24th international conference on software engineering, ICSE ’02. ACM, New York,
pp 617–622

Endres A, Rombach D (2003) A handbook of software and systems engineering: empirical observations,
laws and theories. Addison Wesley

Fagan ME (1976) Design and code inspections to reduce errors in program development. IBM Syst J
15(3):182–211

Fenton NE, Neil M (2000) Software metrics: a roadmap. In: Finkelstein A (ed) Software metrics: a roadmap.
ACM Press, New York. Available from http://citeseer.nj.nec.com/fenton00software.html

Fenton NE, Ohlsson N (2000) Quantitative analysis of faults and failures in a complex software system. IEEE
Trans Softw Eng:797–814

Fenton NE, Pfleeger SL (1997) Software metrics: a rigorous & practical approach. International Thompson
Press

Ghotra B, McIntosh S, Hassan AE (2015) Revisiting the impact of classification techniques on the perfor-
mance of defect prediction models. In: Proc. of the international conference on software engineering
(ICSE), pp 789–800

Glass RL (2002) Facts and fallacies of software engineering. Addison-Wesley Professional, Boston
Gordon P (2016) The cost of requirements errors. https://goo.gl/HSMQtP
Harter DE, Kemerer CF, Slaughter SA (2012) Does software process improvement reduce the severity of

defects? A longitudinal field study. IEEE Trans Softw Eng 38(4):810–827
Humphrey WS (1995) A discipline for software engineering. Addison-Wesley Longman Publishing Co. Inc.
Humphrey WS (2000) Introduction to the team software process. Addison-Wesley Longman Ltd., Essex
Humphrey WS (2005) TSP(SM)-leading a development team (SEI series in software engineering). Addison-

Wesley Professional
IEEE-1012 (1998) IEEE standard 1012-2004 for software verification and validation
IfSQ (2013) Catching defects during testing is 10 times more expensive. https://goo.gl/dXIwu4
Gartner Inc (2014) Gartner says worldwide software market grew 4.8 percent in 2013. gartner.com/

newsroom/id/2696317
Jacobson I, Booch G, Rumbaugh J (1999) The unified software development process. Addison-Wesley

Reading
Jones C (2007) Estimating software costs, 2nd edn. McGraw-Hill
Jones C, Bonsignour O (2012) The economics of software quality. Addison Wesley
Jørgensen M, Gruschke TM (2009) The impact of lessons-learned sessions on effort estimation and

uncertainty assessments. IEEE Trans Softw Eng 35(3):368–383
Kampenes VBy, Dybå T, Hannay JE, Sjøberg DIK (2007) A systematic review of effect size in software

engineering experiments. Inf Softw Technol 49(11-12):1073–1086
Karg LM, Grottke M, Beckhaus A (2011) A systematic literature review of software quality cost research. J

Syst Softw 84(3):415–427
Kim D (2013) Making agile mandatory at the department of defense

http://goo.gl/LOM1NJ/
http://goo.gl/LOM1NJ/
http://citeseer.nj.nec.com/fenton00software.html
https://goo.gl/HSMQtP
https://goo.gl/dXIwu4
gartner.com/newsroom/id/2696317
gartner.com/newsroom/id/2696317

1932 Empir Software Eng (2017) 22:1903–1935

Kitchenham BA, Dyba T, Jørgensen M (2004) Evidence-based software engineering. In: ICSE ’04: Proceed-
ings of the 26th international conference on software engineering. IEEE Computer Society, Washington,
pp 273–281

Kocaguneli E, Zimmermann T, Bird C, Nagappan N, Menzies T (2013) Distributed development con-
sidered harmful? In: Proceedings - international conference on software engineering, pp 882–
890

Lapham MA, Garcia-Miller S, Nemeth-Adams L, Brown N, Hackemack L, Hammons CB, Levine L,
Schenker AR (2011) Agile methods: selected dod management and acquisition concerns. Technical
report, Carnegie Mellon University - Software Engineering Institute

Larman C, Basili VR (2003) Iterative and incremental development: a brief history. Computer 36(6):47–56
Leffingwell D (1996) Calculating your return on investment form more effective requirements management.

http://goo.gl/3WHsla. Rational Software Corporation
Madigan D, Stang PE, Berlin JA, Schuemie M, Overhage MJ, Suchard MA, Dumouchel B, Hartzema AG,

Ryan PB (2014) A systematic statistical approach to evaluating evidence from observational studies.
Ann Rev Stat Appl 1:11–39

Maxwell KD (2002) Applied statistics for software managers. Prentice-Hall, Englewood Cliffs
McConnell S (1996) Software quality at top speed. Softw Develop 4(8):38–42
McConnell S (2001) An ounce of prevention. IEEE Softw 18(3):5–7
McHale J (2002) Tsp: process costs and benefits. Crosstalk
Mead NR, Allen JH, Barnum S, Ellison RJ, McGraw G (2004) Software security engineering: a guide for

project managers. Addison-Wesley Professional
Menzies T, Benson M, Costello K, Moats C, Northey M, Richarson J (2008) Learning better IV&V practices.

Innovations in Systems and Software Engineering. Available from http://menzies.us/pdf/07ivv.pdf
Menzies T, Butcher A, Cok DR, Marcus A, Layman L, Shull F, Turhan B, Zimmermann T (2013) Local

versus global lessons for defect prediction and effort estimation, vol 39. Available from http://menzies.
us/pdf/12localb.pdf

Menzies T, Butcher A, Marcus A, Zimmermann T, Cok D (2011) Local vs global models for effort estimation
and defect prediction. In: IEEE ASE’11. Available from http://menzies.us/pdf/11ase.pdf

Minku LL, Yao X (2013) Ensembles and locality: insight on improving software effort estimation. Inf Softw
Technol 55(8):1512–1528

Mittas N, Angelis L (2013) Ranking and clustering software cost estimation models through a multiple
comparisons algorithm. IEEE Trans Softw Eng 39(4):537–551

Paivarinta T, Smolander K (2015) Theorizing about software development practices. Sci Comput Program
101:124–135

Parker J (2013) Good requirements deliver a high roi. http://goo.gl/JvB9BW
Passos C, Braun AP, Cruzes DS, Mendonca M (2011) Analyzing the impact of beliefs in software project

practices. In: ESEM’11
Paul R Exclusive: a behind-the-scenes look at facebook release engineering. http://arstechnica.com/business/

2012/04/exclusive-a-behind-the-scenes-look-at-facebook-release-engineering/1/. Accessed: 2016-06-
14

Popper K (1959) The logic of scientific discovery. Basic Books. New York
Posnett D, Filkov V, Devanbu P (2011) Ecological inference in empirical software engineering. In:

Proceedings of ASE’11
Prasad V, Vandross A, Toomey C, Cheung M, Rho J, Quinn S, Jacob Chacko S, Borkar D, Gall V, Selvaraj

S, Ho N, Cifu A (2013) A decade of reversal: an analysis of 146 contradicted medical practices. Mayo
Clinic Proc 88(8):790–798

Pressman RS (2005) Software engineering: a practitioner’s approach. Palgrave Macmillan
Ray B, Posnett D, Filkov V, Devanbu P (2014) A large scale study of programming languages and code qual-

ity in github. In: Proceedings of the ACM SIGSOFT 22nd international symposium on the foundations
of software engineering, FSE ’14. ACM

Reifer DJ (2007) Profiles of level 5 cmmi organizations. Crosstalk: J Defense Softw Eng:24–28
Royce W (1998) Software project management: a unified framework. Addison-Wesley, Reading
Shepperd MJ, MacDonell SG (2012) Evaluating prediction systems in software project estimation. Inf Softw

Technol 54(8):820–827
Shepperd MJ, Song Q, Sun Z, Mair C (2013) Data quality: some comments on the nasa software defect

datasets. IEEE Trans Software Eng 39(9):1208–1215
Shirai Y, Nichols W, Kasunic M (2014) Initial evaluation of data quality in a tsp software engineering project

data repository. In: Proceedings of the 2014 international conference on software and system process,
ICSSP 2014. ACM, New York, pp 25–29

http://goo.gl/3WHsla
http://menzies.us/pdf/07ivv.pdf
http://menzies.us/pdf/12localb.pdf
http://menzies.us/pdf/12localb.pdf
http://menzies.us/pdf/11ase.pdf
http://goo.gl/JvB9BW
http://arstechnica.com/business/2012/04/exclusive-a-behind-the-scenes-look-at-facebook-release-engineering/1/
http://arstechnica.com/business/2012/04/exclusive-a-behind-the-scenes-look-at-facebook-release-engineering/1/

Empir Software Eng (2017) 22:1903–1935 1933

Shull F, Basili V, Boehm B, Winsor Brown A, Costa P, Lindvall M, Port D, Rus I, Tesoriero R, Zelkowitz M
(2002) What we have learned about fighting defects. In: Eighth IEEE symposium on software metrics,
2002. Proceedings, pp 249–258

Shull F, Feldmann R (2008) Building theories from multiple evidence sources. In: Shull F, Singer J, Sjoberg
DIK (eds) Guide to advanced empirical software engineering. Springer-Verlag, pp 337–364

Sjøberg DIK, Dybå T, Anda BCD, Hannay JE (2008) Building theories in software engineering. In: Shull
F, Singer J, Sjøberg DIK (eds) Guide to advanced empirical software engineering. Springer-Verlag,
pp 312–336

Soni M (2016) Defect prevention: reducing costs and enhancing quality. https://goo.gl/k2cBnW
Stecklein J, Dabney J, Dick B, Haskins B, Lovell R, Moroney G (2004) Error cost escalation through the

project life cycle. In: 14th Annual INCOSE international symposium. Toulouse
Stephenson WE (1976) An analysis of the resources used in the safeguard system software development. In:

Proceedings of the 2Nd International Conference On Software Engineering, ICSE ’76. IEEE Computer
Society Press, Los Alamitos, pp 312–321

Stol K-J, Fitzgerald B (2015) Theory-oriented software engineering. Sci Comput Program 101:79–98
Tassey G (2002) The economic impacts of inadequate infrastructure for software testing. Technical report,

National Institute of Standards and Technology
Westland CJ (2002) The cost of errors in software development: evidence from industry. J Syst Softw

62(1):1–9
Willis RR, Rova RM, Scott MD, Johnson MJ, Ryskowski JF, Moon JA, Winfield TO, Shumate KC (1998)

Hughes aircrafts widespread deployment of a continuously improving software process. Technical
report, Carnegie Mellon University - Software Engineering Institute

Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software
engineering. In: Proceedings of the 18th international conference on evaluation and assessment in
software engineering, page Article 38

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media

Yang Y, He Z, Mao K, Li Q, Nguyen V, Boehm BW, Valerdi R (2013) Analyzing and handling local bias
for calibrating parametric cost estimation models. Inf Softw Technol 55(8):1496–1511

Ye Y, Xie L, He Z, Qi L, Nguyen V, Boehm BW, Valerdi R (2011) Local bias and its impacts on the
performance of parametric estimation models. In: PROMISE

Tim Menzies (Ph.D., UNSW, 1995) is a full Professor in CS at North Carolina State University where he
teaches software engineering, automated software engineering, and foundations of software science. He is
the author of over 250 referred publications and editor of three recent books summarized the state of the
art in software analytics. He has been a lead researcher on projects for NSF, NIJ, DoD, NASA, USDA, as
well as joint research with private companies. He is an associate editor of IEEE Transactions on Software
Engineering, Empirical Software Engineering, the Automated Software Engineering Journal the Big Data
Journal, Information Software Technology, and the Software Quality Journal. For more details, see his home
page http://menzies.us.

https://goo.gl/k2cBnW
http://menzies.us

1934 Empir Software Eng (2017) 22:1903–1935

William Nichols is a senior member of the Software Engineering Institute’s technical staff at Carnegie Mellon
University. He has more than 25 years of technical and management experience in the developing scientific,
engineering, and business systems. During his tenure at the SEI, Dr. Nichols has worked extensively with
the Team Software Process (TSP) Initiative, where he currently serves as a Personal Software Process (PSP)
instructor and a TSP Mentor Coach. Current research interests include modeling of the software development
process and development of secure software systems. Dr. Nichols is a Senior member of IEEE and a member
of ACM.

Forrest Shull is Assistant Director for Empirical Research at Carnegie Mellon University’s Software Engi-
neering Institute, where he leads work with the US Department of Defense, other government agencies,
national labs, industry, and academic institutions to advance the use of empirically grounded information in
software engineering, cybersecurity, and emerging technologies. He has been a lead researcher on projects
for the U.S. DoD, NASA’s Office of Safety and Mission Assurance, the Defense Advanced Research Projects
Agency, the National Science Foundation, and commercial companies. Since 2015, Shull has been a member
of the Board of Governors of the IEEE Computer Society.

Empir Software Eng (2017) 22:1903–1935 1935

Lucas Layman is a research scientist at the Fraunhofer Center for Experimental Software Engineering in the
USA and Adjunct Associate Professor of Research at North Carolina State University. He has led empirical
software engineering research projects for NASA, the U.S. Department of Defense, Microsoft, the National
Science Foundation, IBM, Sabre Airline Solutions, and commercial automotive companies. His research
interests include software process, software analytics, human factors, and computer science education.

	Are delayed issues harder to resolve? Revisiting cost-to-fix of defects throughout the lifecycle
	Abstract
	Introduction
	Preliminaries

	Definitions & Claims
	Claim: ``DIE'' is a Commonly Held, Yet Poorly Documented Belief
	Hypothesis: Delayed Issues are not Harder to Resolve

	Reassessing Old Truisms
	Motivation: ``DIE'' is Commonly Held, Yet Poorly Documented
	Early Onset of the DIE Effect

	Delayed Issues are not Harder to Resolve
	About TSPSM
	Data Collection and Definitions
	Definition: Time for Plan Item
	Definition: Defects and Time-to-Fix
	Definition: Development Phase

	Data Integrity
	Project Descriptive Characteristics
	Statistical Analysis
	Observations from 171 Projects

	Threats to Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity

	Discussion
	Conclusion
	Acknowledgments
	References

