
Empir Software Eng (2017) 22:1763–1794
DOI 10.1007/s10664-016-9462-4

Multi-objective reverse engineering of variability-safe
feature models based on code dependencies of system
variants

Wesley K. G. Assunção1,2 ·Roberto E. Lopez-Herrejon3 ·
Lukas Linsbauer4 ·Silvia R. Vergilio1 ·Alexander Egyed4

Published online: 20 October 2016
© Springer Science+Business Media New York 2016

Abstract Maintenance of many variants of a software system, developed to supply a wide
range of customer-specific demands, is a complex endeavour. The consolidation of such
variants into a Software Product Line is a way to effectively cope with this problem. A
crucial step for this consolidation is to reverse engineer feature models that represent the
desired combinations of features of all the available variants. Many approaches have been
proposed for this reverse engineering task but they present two shortcomings. First, they
use a single-objective perspective that does not allow software engineers to consider design
trade-offs. Second, they do not exploit knowledge from implementation artifacts. To address

Communicated by: Mark Harman

� Wesley K. G. Assunção
wesleyk@inf.ufpr.br

Roberto E. Lopez-Herrejon
roberto.lopez@etsmtl.ca

Lukas Linsbauer
lukas.linsbauer@jku.at

Silvia R. Vergilio
silvia@inf.ufpr.br

Alexander Egyed
alexander.egyed@jku.at

1 DINF, Federal University of Paraná (UFPR), CP: 19081, CEP: 81.531-980, Curitiba, Brazil

2 COTSI, Federal University of Technology - Paraná (UTFPR), Cristo Rei Street, 19.
CEP: 85.902-490, Toledo, Brazil

3 Department of Software Engineering and IT, École de Technologie Supérieure, (ÉTS), Notre-Dame
Street Ouest. 1100, H3C 1K3 Montreal, Canada

4 ISSE, Johannes Kepler University Linz (JKU), Altenbergerstr. 69, 4040 Linz, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-016-9462-4&domain=pdf
mailto:wesleyk@inf.ufpr.br
mailto:roberto.lopez@etsmtl.ca
mailto:lukas.linsbauer@jku.at
mailto:silvia@inf.ufpr.br
mailto:alexander.egyed@jku.at

1764 Empir Software Eng (2017) 22:1763–1794

these limitations, our work takes a multi-objective perspective and uses knowledge from
source code dependencies to obtain feature models that not only represent the desired fea-
ture combinations but that also check that those combinations are indeed well-formed, i.e.
variability safe. We performed an evaluation of our approach with twelve case studies using
NSGA-II and SPEA2, and a single-objective algorithm. Our results indicate that the per-
formance of the multi-objective algorithms is similar in most cases and that both clearly
outperform the single-objective algorithm. Our work also unveils several avenues for further
research.

Keywords Reverse engineering · Feature models · Multi-objective evolutionary
algorithms · Empirical evaluation

1 Introduction

Software Product Lines (SPLs) are families of software products with focus on reuse of arte-
facts (Batory et al. 2004). SPLs have been receiving wide attention in the industry due to
their advantages, among them, higher software quality and shorter time-to-market for new
products (van d. Linden et al. 2007). However, there are some challenges on the adoption
of SPLs in industrial settings. One of the main challenges is how to consolidate exist-
ing system variants into a SPL. To tackle such a challenge, reverse engineering strategies
have been proposed to deal with different stages of the SPL development (Assunção and
Vergilio 2014). The starting point to this reverse engineering process is the extraction of
Feature Models (FMs), the de facto standard for modeling variability and commonality in
SPLs (Benavides et al. 2010), which denote the set of valid configurations of features that
constitute the products of a SPL.

In recent years several approaches to reverse engineer FMs have been proposed. They
are based on configuration scripts (She et al. 2011), propositional logic expressions
(Czarnecki and Wasowski 2007; She et al. 2014), natural language (Weston et al. 2009), ad
hoc algorithms (Acher et al. 2012; Haslinger et al. 2011, 2013), and search-based techniques
(Linsbauer et al. 2014; Lopez-Herrejon et al. 2012, 2015; Thianniwet and Cohen 2015).
However, they present two main limitations. They do not take a multi-objective perspective
to capture the trade-offs that software engineers must make for the reverse engineering task,
and do not exploit any knowledge on how the system variants are actually implemented.

Amulti-objective perspective has advantage in situations where there are conflicts among
the goals of the software engineer. For instance, obtaining an FM that represents a set of
desired product configurations can lead to a model that also generates a surplus of config-
urations, which are not desired. Nevertheless, if we tweak the FM to avoid such additional
configurations we might loose some desired configurations. Here a multi-objective algo-
rithm aims to optimizing both goals and enables the engineer to make a decision based on
an analysis of the different trade-offs of importance in the problem domain. In addition,
the use of knowledge available in implementation artefacts is an important characteristic
because we can generate FMs in accordance with the already existing software variants.

To cope with these limitations, our previous work presented an approach to reverse engi-
neer FMs based on the multi-objective algorithm NSGA-II (Assunção et al. 2015). This
work used a graph to represent dependencies in the source code artifacts of the existing sys-
tem variants, and provided software engineers with sets of FMs with different trade-offs.
In this paper we extend our previous work by including: i) a second multi-objective evolu-
tionary algorithm, namely Strength Pareto Evolutionary Algorithm (SPEA2) (Coello et al.

Empir Software Eng (2017) 22:1763–1794 1765

2007), ii) a single-objective evolutionary algorithm that relies on a genetic programming
representation for baseline comparison, iii) a detailed description of our problem repre-
sentation and evolutionary operators, iv) seven new case studies, and v) a more thorough
empirical evaluation and analysis. In summary, our current work addresses the following
research questions:

– RQ1: What are the benefits and advantages of using a multi-objective approach over a
single-objective one to reverse engineer FMs?

– RQ2: How does the performance of NSGA-II and SPEA2 compare for reverse engi-
neering FMs?

– RQ3: How could a multi-objective perspective be used in practice to support software
engineers in the decision making process?

The remainder of this paper is structured as follows: Section 2 presents the fundamental
concepts of feature models, a running example, and the definitions regarding the depen-
dency graphs. The details of the proposed approach are described in Section 3. The setup
used in the evaluation of the proposed approach is found in Section 4. Section 5 has the
results obtained in the evaluation and the corresponding analysis in order to answer the
research questions. Related work is found in Section 6. The research avenues for future
work and conclusions are presented respectively in Sections 7 and 8.

2 Background

In this section we present an overview of feature models, a running example to illustrate
the details of our approach, and define more precisely the notions of dependencies and
dependency graphs which we use to represent the source code dependencies. We rely on
these definitions for describing our multi-objective approach in Section 3.

2.1 Feature Models

Feature Models (FMs) are widely used to model the different combinations of features in
a SPL (Kang et al. 1990), and are key for supporting variability and commonality manage-
ment (Benavides et al. 2010). These models follow a tree-like structure where features are
depicted as boxes, labelled with the feature name, which are connected by lines with their
children features.

An FM always has a root feature that is present in all products of the SPL. The other
features can be of type mandatory or optional, or a set of features can be organized in
groups as alternative groups or or groups. A mandatory feature is always selected when
its parent feature is selected. An optional feature may or may not be selected when its
parent is selected. The mandatory feature is represented with filled circle at the end of
the relation line and the optional feature is represented with an empty circle. These two
types of features are respectively presented in Fig. 1a and b. An alternative group indi-
cates that when the parent feature of the group is selected then exactly one feature of the
group must be selected. When the parent feature of an or group is selected then at least
one feature of the group must be selected. The alternative group is represented by an
empty arc and the or group is represented by a filled arc, as illustrated in Fig. 1c and d,
respectively.

In addition to the hierarchical relation between the features, the valid configuration of
features can also be restricted by some additional constraints, called Cross-Tree Constraints

1766 Empir Software Eng (2017) 22:1763–1794

(a) (b) (c)

(d) (e)

Fig. 1 Feature models graphical notation

(CTCs) (Benavides et al. 2010). The most common types of CTCs are requires and excludes.
If a feature A is selected and requires feature B, then feature B must also be selected. If a
feature A excludes feature B then these two features cannot both be selected in the same
feature combination.

These two types of CTCs are usually respectively represented by single and double-arrow
dashed lines as shown in Fig. 1e.

2.2 Running Example

In this subsection we present a running example to illustrate the details of our approach.
We selected a set of variants of a drawing application. Our goal is to use these variants as
a starting point to obtain a product line called Draw Product Line (DPL). This application
offers users the ability to handle a drawing area (feature BASE), draw lines (feature LINE),
draw rectangles (feature RECT), draw filled rectangles (feature FILL), select a color for the
line or rectangle (feature COLOR), and clean the drawing area (feature WIPE). With these
six features we have a total number of 16 variants of the drawing application, presented in
Table 1. The symbol� indicates the selected features. We refer to each feature combination
as a feature set, formally defined as Linsbauer et al. (2014):

Definition 1 Feature Set A feature set is a 2-tuple [sel,sel] where sel and sel are
respectively the set of selected and not-selected features of a system variant. Let FL be the
list of features of a feature model, such that sel, sel ⊆ FL, sel ∩ sel = ∅, and sel ∪
sel = FL.

2.3 Source Code Dependency Graphs

One of the main contributions of our approach is to use knowledge from implementation
artefacts, besides the feature sets, to reverse engineer FMs. Based on this knowledge, we
evaluate variability safety of FMs, a property that guarantees that the feature sets denoted by

Empir Software Eng (2017) 22:1763–1794 1767

Table 1 Feature sets for DPL
Products BASE LINE RECT COLOR FILL WIPE

Product1 � � �
Product2 � � �
Product3 � � � �
Product4 � � � � �
Product5 � � � �

Product6 � �
Product7 � � � �
Product8 � � �
Product9 � �
Product10 � � �

Product11 � � �
Product12 � � � �
Product13 � � � �
Product14 � � � � �
Product15 � � � � �
Product16 � � � � � �

an FM are structurally well-formed according to the source code. In particular, we exploit
the information of existing dependencies between source code fragments, as described next.

To represent the dependencies existing in the source code of the different system variants
we use a weighted directed graph. To create this graph we use the terminology and the tool
from our previous work (Fischer et al. 2014; Linsbauer et al. 2013). We identify modules of
two kinds:

Definition 2 Base Module A base module implements a feature regardless of the presence
or absence of any other features and is denoted with the feature name written in lowercase.

Definition 3 Derivative Module A derivativemodule m = δn(c0,c1, ...,cn) implements
feature interactions, where ci is F (if feature F is selected) or ¬F (if not selected), and n is
the order of the derivative.

These two types of modules are the basis of our extraction algorithm (Linsbauer et al.
2013). This algorithm computes traces from the modules to their implementing source code
fragments and identifies dependencies between the modules that have dependencies in their
implementations. The algorithm considers any granularity of the implementation artefacts,
from class level to statement level. Figure 2 presents some examples of traces computed by
the algorithm. The traces are indicated using comments at the end of the lines. For example,
the field defined in Line 5 traces to the base module Color of the corresponding feature
Color. This source code fragment is present in all variants with feature Color, regardless
the existence of other features. Another example of a base module is observed in Line 7 of
the example. This method header and most of its implementation will be included in class
Canvas whenever feature Line is present, regardless of any other feature. However, in
Line 10 of the method we can observe a derivative module δ1(Color, Line), which means
that the corresponding line of code will be part of its containing method only when the
variant has both features Color and Line.

1768 Empir Software Eng (2017) 22:1763–1794

Fig. 2 Source code snippet for DPL example

In order to more formally define dependencies and their representation as graphs, we
first introduce the concept of module expression as follows:

Definition 4 Module Expression A module expression is the propositional logic repre-
sentation of modules. For a base module b, the module expression is its own literal b.
For a derivative module m = δn(c0,c1, ...,cn) its module expression corresponds to
c0 ∧ c1 ∧ ... ∧ cn.

As an illustration, the module expression of base module Color is Color . For the
derivative module δ1(Color,Line), which indicates the interaction between features
Color and Line, the module expression representation is Color ∧ Line.

The traces produced by our trace extraction algorithm are used to identify the dependen-
cies between fragments of source code. These dependencies and the dependency graph they
form are formally defined next.

Definition 5 Dependency A dependency establishes a requirement relationship between
two sets of modules and it is denoted with a three-tuple (from, to, weight), where
from and to each are a set of modules (or module expressions) of the related modules,
and weight expresses the strength of the dependency, i.e. the number of dependencies of
structural elements in modules from on structural elements in modules to.

We use the dot (.) operator to refer to elements of a tuple, e.g. the weight of a dependency
dep is denoted by dep.weight. A dependency’s propositional logic representation is
defined as: ∨

mf rom∈dep.f rom

mf rom ⇒
∧

mto∈dep.to

mto

Definition 6 Dependency Graph A dependency graph is a set of dependencies, where
each node in the graph corresponds to a set of modules (or module expressions), and every
edge in the graph corresponds to a dependency as defined above. Edges are annotated with
natural numbers that represent the dependencies’ weights.

Nowwe recall our running example of the drawing application, Fig. 3 presents the depen-
dency graph considering all its feature sets. To avoid clutter only the lowest order modules
are presented, since they are the most relevant to our approach. Self-dependencies are
removed from the graph for better readability. To make clear the different kinds of modules,

Empir Software Eng (2017) 22:1763–1794 1769

Fig. 3 Dependency graph for DPL

the base modules have solid borders and the derivative modules have dashed borders. In the
figure we can observe that the strongest dependencies (i.e. those with the highest weights)
are those that go to base modules, e.g. Fill to Rect, and the core feature Base has the
largest number of incoming dependencies. As mentioned before, weights in the graph rep-
resent the number of structural dependencies between source code elements belonging to
different features. For instance, in Fig. 3 there are 10 dependencies from source code ele-
ments of WIPE to source code elements of BASE. These dependencies are field accesses (4)
and containment relationships (6), i.e a field belongs to a class.

Alternatively the dependency graph can be represented as a dependency matrix, as
presented in Table 2. The rows are the dependencies, the first column is a dependency
identification for easy reference, the second and third columns have the modules of the
dependency in the order from to to, respectively. The weight of the dependency is displayed
in the fourth column. In the fifth column the weight is normalized to keep the sum of all

Table 2 Dependency matrix for
DPL ID From To Weight Normalized

1 Line Base 21 0.1304

2 Wipe Base 10 0.0621

3 Color Base 19 0.1180

4 Rect Base 20 0.1242

5 Fill Base 17 0.1056

6 Fill Rect 23 0.1429

7 Fill Color 3 0.0186

8 Fill δ1(Rect, Color) 1 0.0062

9 δ1(Rect, ¬Color) Rect 12 0.0745

10 δ1(Rect, Color) Rect 3 0.0186

11 δ1(¬Color, Line) Line 8 0.0497

12 δ1(Color, Line) Color 1 0.0062

13 δ1(Color, Line) Line 10 0.0621

14 δ2(Rect, Color, ¬Fill) δ1(Rect, Color) 1 0.0062

15 δ2(Rect, Color, ¬Fill) Rect 11 0.0683

16 δ2(Rect, Color, ¬Fill) Color 1 0.0062

Total: 161 1.0000

1770 Empir Software Eng (2017) 22:1763–1794

weights of the graph equal to 1.0. This normalization enables a better interpretation of the
values in the optimization process.

To illustrate the propositional logic representation of dependencies let us use again
the source code shown in Fig. 2. Firstly consider the dependency that exists between the
module δ1(Color, Line) and the module Color . This dependency exists because the field
color defined in Line 5 belongs to the module Color and it is used by newLine =
new Line(color,start); in Line 10 which belongs to the module δ1(Color, Line).
The propositional logic expression for this dependency is (Color ∧ Line) ⇒ Color .
In the same code snippet of Fig. 2 we can see that module δ1(Color, Line) depends
on module Line, because the statement in Line 10 is contained in the method void
mousePressedLine(MouseEvent e) which belongs to module Line. In this case,
the propositional logic expression is (Color ∧ Line) ⇒ Line.

An important point is to observe that the propositional logic constraints of some depen-
dencies are tautologies, hence they always hold. The two above examples illustrate this
situation, since (Color∧Line ⇒ Line) ⇔ T RUE. This indicates that the implementation
artefacts are consistent with the feature combinations represented in the FM.

3 Multi-Objective Approach to Reverse Engineer Feature Models

In this section we describe the details of our multi-objective search-based approach which
relies on and extends upon our previous work (Linsbauer et al. 2014). We further describe
the requirements identified by Harman et al. (2012) to implement a search-based solution:
(i) an adequate representation of solutions, (ii) a set of operators to improve the solutions and
explore the search space, and (iii) an adequate way to evaluate the quality of the solutions,
the fitness functions.

3.1 Feature Model Representation

The feature model representation uses a simplified version of the SPLX metamodel.1 This
metamodel, presented in Fig. 4, defines both structure and semantic of the FMs. In the
figure, the elements in the left part describe the tree-like structure of the FM and the ele-
ments in the right describe the CTCs between the features. The tree nodes Root,Mandatory,
Optional, and GroupedFeature inherit from Feature. The tree is composed by exactly one
Root feature. Features Mandatory and Optional have the cardinality of zero or more. The
tree can also have an arbitrary number of Alternative and Or groups and each group must
have at least one GroupedFeature. In the right part of the figure we can observe that an FM
has exactly one ConstraintSet. This ConstraintSet describes the propositional formula in
CNF. Zero or more Constraint are acceptable, each constraints is a clause in a CNF expres-
sion. Each Constraint has exactly one OrClause that has at least one Literal. A literal can
either be an Atom which refers directly to a feature, or a Not which refers to an Atom.

Following this representation, the initial population is created by generating random
feature trees and random CTCs. Some additional domain constraints are also taken into
account, they are presented in the next subsection. The tools FaMa (Benavides et al. 2007)
and BeTTy (Segura et al. 2012) were used to create the initial population.

1http://www.splot-research.org/.

http://www.splot-research.org/

Empir Software Eng (2017) 22:1763–1794 1771

Fig. 4 Feature model metamodel, extracted from Linsbauer et al. (2014)

3.2 Evolutionary Operators

We adopted the evolutionary operators from our previous work (Linsbauer et al. 2014),
and employ standard tournament selection as selection operator. There are some domain
constraints that should be taken into account in the evolutionary process to guarantee the
semantics of FMs and to avoid generating invalid solutions:

– Each feature is identified by its name, so every feature appears exactly once in the FM
tree;

– All FMs have a fixed set of feature names, so in different FMs only the relations
between features are different;

– CTCs can only be either requires or excludes, i.e. exactly two literals per clause with at
least one being negated;

– CTCs must not contradict each other, i.e. the corresponding CNF of the entire constraint
set must be satisfiable;

– There is a maximum number of CTCs (given as a percentage of the number of features)
that must not be exceeded.

Our domain constraints do not consider the rare case of contradictions between CTCs and
the FM tree for which the detection and repair is computationally expensive. For individuals
in that case, we let the evolutionary process itself weed them out because of their bad fitness
value.

3.2.1 Mutation

The mutation operator applies small changes in randomly selected parts of the tree or in
the CTCs of the feature model. The mutation probability is used to decide if the change is

1772 Empir Software Eng (2017) 22:1763–1794

applied in the tree part, in the CTCs, or in both. The kind of change is randomly selected
from the following lists:

• Mutations performed on the tree:

– Randomly swaps two features in the feature tree;
– Randomly changes an Alternative relation to an Or relation or vice-versa;
– Randomly changes an Optional or Mandatory relation to any other kind of

relation (Mandatory, Optional, Alternative, Or);
– Randomly selects a subtree in the feature tree and puts it somewhere else in

the tree without violating the metamodel or any of the domain constraints.

• Mutations performed on the CTCs:

– Adds a new, randomly created CTC that does not contradict the other CTCs
and does not already exist;

– Randomly removes a CTC.

3.2.2 Crossover

Just like the mutation operator, the crossover must generate offspring in conformance to the
metamodel and to the domain constraints. The steps of the crossover process are:

1. The offspring is initialized with the root feature of Parent1. If the root feature of
Parent2 is a different one then it is added to the offspring as a mandatory child feature
of its root feature.

2. Traverse the first parent depth first starting at the root node and add to the offspring
a random number r of features that are not already contained by appending them to
their respective parent feature already contained in the offspring using the same relation
type between them (the parent feature of every visited feature during the traversal is
guaranteed to be contained in the offspring due to the depth first traversal order).

3. Traverse the second parent exactly the same way as the first one.
4. Go to Step 2 until every feature is contained in the offspring.

The second child is obtained by performing the same process but with reverse parents,
i.e. the position of the parents is swapped.

The CTCs offspring are obtained by merging all the constraints of both parents and
then randomly selecting a subset of CTCs that are assigned to the first offspring and the
remaining to the second offspring.

3.3 Multi-Objective Perspective

In this section we describe the three objective functions used in our approach and present
an illustrative example.

3.3.1 Auxiliary Functions Definitions

In order to compute the objective functions of our approach we need some auxiliary func-
tions. Let us consider FM as the universe of feature models, SFS the universe of set of
feature sets, and sf s a set of feature sets defined by the software engineer. An example

Empir Software Eng (2017) 22:1763–1794 1773

of sf s is the feature sets presented in Table 1 for the drawing application. Based on this
terminology, we introduce the function featureSets:

Definition 7 featureSets. Function featureSets returns the set of feature sets denoted by a
feature model.

f eatureSets : FM → SFS

To measure the variability safety of an FM we have to check if its feature sets are in
conformance with the dependencies of the dependency graph. To check this we define the
function holds:

Definition 8 holds Function holds(dep, f s) returns 1 if dependency dep holds on the
feature set (of a system variant) f s and 0 otherwise. A dependency dep holds for a feature
set f s if: ⎛

⎝
∧

f ∈f s.sel

f ∧
∧

g∈f s.sel

¬g

⎞

⎠ ⇒ (dep.f rom ⇒ dep.to)

To illustrate this function recall our running example. Let us consider the dependency
Fill ⇒ Rect and a system variant with the features Base and Line. In this case the
function holds returns 1, since the propositional logic formula (Base ∧ Line ∧ ¬Fill ∧
¬Rect ∧ ¬Wipe ∧ ¬Color) ⇒ (F ill ⇒ Rect) is true.

3.3.2 Fitness Functions Definitions

Considering the two auxiliary functions presented before we are able to introduce the
three objective functions of our approach. The first two measures are based on information
retrieval metrics, for further details refer to Manning et al. (2008), and the third measure is
based on variability safety.

Definition 9 Precision (P). Precision expresses how many of the feature sets denoted by a
reverse engineered feature model f m are among the desired feature sets sf s.

precision(sf s, f m) = |sf s ∩ f eatureSets(f m)|
|f eatureSets(f m)|

Definition 10 Recall (R). Recall expresses how many of the desired feature sets are
denoted by the reverse engineered feature model f m.

precall(sf s, f m) = |sf s ∩ f eatureSets(f m)|
|sf s|

Definition 11 Variability Safety (VS). Variability Safety expresses the degree of
variability-safety of a reverse engineered feature model f m with respect to a dependency
graph dg.

variabilitySaf ety(f m, dg)=
∑

dep∈dg

dep.weight×
⎛

⎜⎝

∑
f s∈f eatureSets(f m)

holds(dep, f s)

|f eatureSets(f m)|

⎞

⎟⎠

1774 Empir Software Eng (2017) 22:1763–1794

(a) (b) (c)

Fig. 5 Examples of extracted feature models for DPL

3.3.3 Fitness Functions Illustration

To illustrate our three objective functions let us consider the feature sets of sf s in Table 1,
the dependency graph dg in Fig. 3, and the normalized weight values for dg from Table 2.
Figure 5 presents three examples of FMs extracted from the drawing application variants.
We computed the values of precision, recall and variability safety for these FMs.

In Fig. 5a the feature model FM1 is an ideal solution for the sf s in Table 1. This fea-
ture model has |f eatureSets(FM1)| = |sf s| = 16, leading to precision and recall equal
to 1.000, which means that its valid configurations are exactly the same as the desired fea-
ture sets. The value of variability safety for this FM is also 1.000, indicating that the valid
configurations of FM1 do not break any dependency.

The feature model FM2, presented in Fig. 5b, denotes |f eatureSets(FM2)| = 12
feature sets of which |sf s ∩ f eatureSets(FM2)| = 10 are in the desired feature sets.
With these values we have precision = 0.833 and recall = 0.625. Some feature sets
denoted by this feature model do not satisfy all dependencies, leading to a value of
variability safety = 0.996. To illustrate some broken dependencies we use the feature
set [{Base, Line, Rect, F ill}, {Wipe, Color}]. For this feature set the dependency ID 7
(Fill ⇒ Color), shown in Table 2, is not satisfied because the dependency indicates that
when Fill is in the feature set the feature Color must also be included. When a depen-
dency is not satisfied, its normalized weight is not added to the accumulated weight of the
satisfied dependencies effectively decreasing the value of variability safety.

Let us now consider the feature model FM3 presented in Fig. 5c. This fea-
ture model denotes six feature sets and all of them are desired feature sets. Hence,
|f eatureSets(FM3)| = 6 and |sf s ∩ f eatureSets(FM3)| = 6, leading to precision
= 1.000 and recall = 0.375. Furthermore, no dependency is broken by its feature sets,
so the value of variability safety is 1.000. For instance, considering a single feature set
[{Base, Line, Rect, Color, F ill}, {Wipe}], the dependencies with IDs {1, 3, 4, 5, 6, 7, 8,
10, 12, 13} are satisfied because both the from modules and the to modules are contained.
In addition, dependencies with IDs {2, 9, 11, 14, 15, 16} are also satisfied because the from
modules are not part of the feature set. Once the from module is not included in the feature
set, it is not required the to module be contained.

These illustrative examples show the possible diversity of values among the three objec-
tives. From the decision maker point of view FM1 is the best one, since it has the best values
for the three objectives. However, in most of the situations, ideal solutions like this do not
necessarily exist, and hence many trade-offs must be considered.

Empir Software Eng (2017) 22:1763–1794 1775

Table 3 Algorithm’s parameters

Parameter GP NSGA-II SPEA2

Number of Generations 1000 1000 1000

Population Size 200 200 200

Archive Size – – 10

Crossover 0.7 0.7 0.7

Feature Tree Mutation 0.5 0.5 0.5

CTCs Mutation 0.5 0.5 0.5

Number of Elites 25 % 25 % 25 %

Selection Method Tournament Tournament Tournament

Tournament Size 6 6 6

Maximium CTC Percentage for Buildera 0.1 0.1 0.1

Maximium CTC Percentage for Mutatora 0.5 0.5 0.5

Independent runs 30 30 30

arelative to number of features

4 Experimental Description

In this section we present our experimental setup and describe the case studies used for our
evaluation. The implementation and data are available online for replication.2

4.1 Experimental Setup

In order to answer our research questions we perform an experiment, which is described as
follows. As mentioned before, our focus is to solve the problem of reverse engineering of
FMs using three objective functions: Precision (P), Recall (R), and Variability Safety (VS).
We designed these measures to be normalized values in the interval between 0 and 1, where
the goal is to maximize the values of all objective functions. Hence, the ideal solution is P
= 1.0, R = 1.0, and VS = 1.0.

In Section 3.1 we described the genetic programming representation we used. In addition
to our previous work (Assunção et al. 2015), where we applied only the Non-Dominated
Sorting Genetic Algorithm (NSGA-II) (Deb et al. 2002), here we consider two additional
algorithms. The single-objective Genetic Programming (GP) algorithm from related work
(Linsbauer et al. 2014), and the Strength Pareto Evolutionary Algorithm (SPEA2) (Zitzler
et al. 2001), which is characterized by its external archive used to create the fronts of non-
dominated solution in each generation. The GP algorithm was applied to serve as a baseline
comparison. Our GP algorithm uses a weighted measure of precision and recall with same
weight for both values, called F1 based on information retrieval theory (Manning et al.
2008). The implementation is the same as in our previous work, for further details, refer
to Linsbauer et al. (2014). SPEA2 was added because it is widely used with NSGA-II
(Coello et al. 2007) and commonly applied in search-based software engineering approaches
(Harman et al. 2012). For the experimentation we used ECJ Framework.3 The parameter

2http://www.inf.ufpr.br/gres/IS/MORevEngFMs.zip.
3http://cs.gmu.edu/∼eclab/projects/ecj/.

http://www.inf.ufpr.br/gres/IS/MORevEngFMs.zip
http://cs.gmu.edu/~eclab/projects/ecj/

1776 Empir Software Eng (2017) 22:1763–1794

Table 4 Case studies overview
System #F #P LoC #Nodes #Edges

ArgoUML 11 256 264K–344K 49 114

DPL 6 16 282–473 12 27

GOL 15 65 874–1.9K 12 24

VOD 11 32 4.7K–5.2K 7 11

ZipMe 7 32 5K–6.2K 29 60

MM-V1 5 3 2.1K 5 4

MM-V2 6 6 2.3K–2.4K 6 6

MM-V3 7 12 2.3K–2.5K 9 12

MM-V4 8 24 2.6K–2.9K 10 14

MM-V5 9 48 2.7K–3.8K 14 25

MM-V6 10 96 2.8K–4.1K 22 43

MM-V7 13 240 2.9K–4.3K 31 70

#F: Number of Features, #P:
Number of Products, LoC: Lines
of Code, #Nodes: Number of
Nodes in the Dependency Graph,
#Edges: Number of Edges, i.e.
Dependencies, in the
Dependency Graph

settings used to configure the algorithms are shown in Table 3. We performed 30 indepen-
dent runs for each algorithm for each case study. The runs were performed on a machine
with an Intel® CoreT M i7-4900MQ CPU with 2.80 GHz, 16 GB of memory, and running
on a Linux platform.

4.2 Case Studies

To evaluate the proposed approach we used the case studies presented in Table 4. ArgoUML
is an open source tool for UML modelling (Couto et al. 2011). Draw Product Line (DPL),
briefly presented in our running example, is a small drawing application. Game Of Life
(GOF) is a customizable game. Video On Demand (VOD) implements video-on-demand

Table 5 Average runtime per run

System GP NSGA-II SPEA2

min sec msec min sec msec min sec msec

ArgoUML 25 275 13 59 911 17 35 300

DPL 23 512 35 802 1 30 583

GOL 56 934 2 15 991 3 3 531

VOD 906 1 882 2 247

ZipME 1 131 1 50 576 2 57 495

MM-V1 4 816 10 468 20 258

MM-V2 8 502 15 321 38 451

MM-V3 17 212 22 325 45 628

MM-V4 29 327 30 624 58 208

MM-V5 52 962 59 342 1 44 310

MM-V6 1 27 442 3 28 598 4 18 747

MM-V7 2 35 35 10 53 762 11 2 444

min = minutes, sec = seconds, msec = milliseconds

Empir Software Eng (2017) 22:1763–1794 1777

streaming. ZipMe is an application for files compression. MobileMedia (MM) is an appli-
cation to manipulate media files, such as photo, music, and video, on mobile devices. In our
evaluation we used seven versions of MobileMedia (Figueiredo et al. 2008).

5 Results and Analysis

The average runtime per run of each algorithm is presented in Table 5. GP is the fastest
algorithm in all case studies, respectively followed by NSGA-II and SPEA2. As expected,
the multi-objective algorithms performed slower than the single-objective GP because of
the computation to compose the Pareto fronts in each generation. Nonetheless, next we
elaborate on the advantages of a multi-objective approach for our reverse engineering task.

For the analysis of results obtained by the algorithms we computed two different sets of
solutions. Our terminology is based on our previous work (see Assunção et al. 2014) and
standard multi-objective optimization literature (Coello et al. 2007).

– Pareto Front True (PFTrue): since we do not know the real Pareto Front True, we use
PFT rue as an approximation of the best solutions. This set consists of the best solutions
reached by all algorithms for each case study. These best solutions are found by merging
all the solutions of all runs of the three algorithms together, then leaving only the non-
dominated solutions. The cardinality of PFT rue for each case study is presented in the
second column of Table 6.

– Pareto Front Known (PFKnown): this set contains the best solutions reached by each
algorithm for each case study. To compute PFKnown we merged all the solutions of
all runs for each algorithm and then we keep only the non-dominated solutions. The
cardinality of PFKnown for each case study and each algorithm is presented in the fourth
column of Table 6.

5.1 Answering RQ1

Recall that RQ1’s purpose is to find what the benefits are of a multi-objective perspective for
reverse engineering FMs. We do so by comparing solutions obtained from multi-objective
algorithms against solutions from a single-objective algorithm. From Table 6 we can observe
that in seven case studies there is only one single solution in PFT rue, so all the three objec-
tives could be optimized independently. For the other five case studies with more than one
solution there are conflicts among the objectives. Taking into account the seven versions
of Mobile Media, we can observe that the three objectives became conflicting in MM-V6.
Besides, we can note that MM-V6 and MM-V7 have a large number of solutions in com-
parison with the other case studies with cardinality larger than one in PFT rue. We found out
that this happens because MM-V6 introduced big changes in the source-code of MobileMe-
dia (Figueiredo et al. 2008). As explained in Figueiredo et al. (2008), MM-V6 and MM-V7
introduced the two alternative features Music and Video, and the mandatory Photo fea-
ture was made optional leading to a big impact on the whole system. These changes lead to
a larger number of nodes and edges, see Table 4, which makes the dependency graph more
complex and impacts the number of solutions found.

For the analysis on the ability of each algorithm to find non-dominated solutions we
consider two values presented in Table 6: (i) the number of solutions found by each algo-
rithm, i.e. PFknown, that are in PFT rue, fifth column; and (ii) the average number of solutions
found per run that are/were in PFT rue, sixth column. To illustrate the meaning of these

1778 Empir Software Eng (2017) 22:1763–1794

Table 6 Pareto fronts

System PFT rue Search PFknown # of solutions Average in PFT rue

cardinality Algorithm cardinality in PFT rue per run

ArgoUML 4 GP 2 2 (50 %) 0.966

NSGA-II 3 3 (75 %) 1.9

SPEA2 2 2 (50 %) 2.0

DPL 1 GP 1 1 (100 %) 0.033

NSGA-II 1 1 (100 %) 0.166

SPEA2 1 1 (100 %) 0.066

GOL 8 GP 6 0 (0 %) 0.0

NSGA-II 8 8 (100 %) 0.966

SPEA2 6 5 (62 %) 0.933

VOD 1 GP 1 0 (0 %) 0.0

NSGA-II 1 1 (100 %) 1.0

SPEA2 1 1 (100 %) 1.0

ZipME 4 GP 1 1 (25 %) 1.0

NSGA-II 4 4 (100 %) 3.033

SPEA2 3 3 (75 %) 3.0

MM-V1 1 GP 1 1 (100 %) 0.5

NSGA-II 1 1 (100 %) 0.5

SPEA2 1 1 (100 %) 0.566

MM-V2 1 GP 1 1 (100 %) 0.3

NSGA-II 1 1 (100 %) 0.366

SPEA2 1 1 (100 %) 0.433

MM-V3 1 GP 2 0 (0 %) 0

NSGA-II 1 1 (100 %) 0.333

SPEA2 1 1 (100 %) 0.333

MM-V4 1 GP 1 1 (100 %) 0.066

NSGA-II 1 1 (100 %) 0.333

SPEA2 1 1 (100 %) 0.3

MM-V5 1 GP 1 1 (100 %) 0.1

NSGA-II 1 1 (100 %) 0.233

SPEA2 1 1 (100 %) 0.166

MM-V6 42 GP 5 1 (2 %) 0.033

NSGA-II 42 42 (100 %) 4.66

SPEA2 20 13 (30 %) 1.033

MM-V7 801 GP 5 3 (0.37 %) 0.333

NSGA-II 796 760 (92 %) 36.0

SPEA2 155 61 (7 %) 3.833

two values we consider ArgoUML, which has the PFT rue composed of four solutions. For
this case study GP found two solutions that are in PFT rue, NSGA-II found three solutions,
and SPEA2 two. On average GP was able to find almost one solution in PFT rue per run,
what is expected because it is a single-objective approach. On the other hand NSGA-II

Empir Software Eng (2017) 22:1763–1794 1779

found on average 1.9 solutions per run, and SPEA2 2.0 solutions. For this case study GP
is able to find good solutions in comparison with the multi-objective algorithms, NSGA-II
found the largest amount of solutions in PFT rue after the thirty runs, but SPEA2 finds more
non-dominated solutions on average in each run.

Regarding the number of solutions in PFT rue, fifth column of Table 6, we can observe
that the three algorithms have the same results for five case studies: DPL, MM-V1, MM-V2,
MM-V4, and MM-V5. NSGA-II and SPEA2 outperform GP for two case studies: VOD and
MM-V3. NSGA-II found more solutions in PFT rue for five case studies: ArgoUML, GOL,
ZipMe, MM-v6, and MM-V7. On the other hand, considering the average of solutions in
PFT rue per run, sixth column of Table 6, the three algorithms have the same results for four
case studies: ArgoUML, ZipMe, MM-V1, andMM-v2. NSGA-II and SPEA2 are better than
GP in five case studies: GOL, VOD, MM-V3, MM-V4, and MM-V5. NSGA-II outperform
GP and SPEA2 in three case studies: DPL, MM-V6, and MM-V7.

In summary, from Table 6 we can observe that GP can only have similar results of NSGA-
II and SPEA2 in two case studies and never reached the best results. NSGA-II and SPEA2
reached the same results and outperform GP in four case studies, and in six case studies
NSGA-II is better than GP and SPEA2.

RQ1 Discussion From our set of case studies we identified that five of them have conflict-
ing objectives. This means that when we get better values for one objective, then another
objective is penalized, leading to a set of possible good solutions with different trade-offs.
In such situation the multi-objective algorithms NSGA-II and SPEA2 are better than the
single-objective GP. From the results we observed that on average the multi-objective algo-
rithms found a set of solutions per run, on the other hand the single-objective algorithm is
able to find only one. Furthermore, considering the set of solutions obtained after the 30
runs, GP still was not competitive against the multi-objective algorithms. GP tends to find
in each run the same single solution, not exploring other parts of the search space, which
is done by the multi-objective algorithms. For seven case studies the three objectives are
not conflicting, however NSGA-II and SPEA2 found the same good solutions found by GP.
In summary, we can conclude that a multi-objective approach is the best choice to reverse
engineer FMs considering our case studies.

5.2 Answering RQ2

Recall that RQ2 aims at comparing the performance of algorithms NSGA-II and SPEA2
for the three selected objective functions. An interesting characteristic to be analysed is the
position of the solutions on the search space. Figure 6 presents the three graphs for each case
study with more than one solution in PFKnown. The first column of graphs presents the view
of objectives precision and recall, the second column the objectives of variability safety and
precision, and the third column presents variability safety and recall. As already analysed
above, for all these case studies NSGA-II reached a larger amount of solutions than SPEA2.
However, in the graphs we can observe that despite the smaller number of solutions, SPEA2
has solutions spread over a very similar area on search space explored by NSGA-II. On the
previous analysis of Table 6 we observed that in six case studies NSGA-II reached better
solutions than SPEA2, probably because of the larger number of solutions returned by the
former algorithm. On the other hand, the smaller amount of solutions reached by SPEA2
can help in situations such as observed in the case studies MM-V6 and MM-V7, where a
large number of solutions was returned and the decision maker has to choose only one to be
used in practice.

1780 Empir Software Eng (2017) 22:1763–1794

 0.97

 0.98

 0.99

 1

 0.75

 0.8

 0.85

 0.9

 0.95

 1

NSGA−II
SPEA2

PrecisionRecall

ArgoUML: P x R

 0.97 0.98 0.99 1

 0.99995

 0.99996

 0.99997

 0.99998

 0.99999

 1

V
ar

ia
bi

lit
y

Sa
fe

ty

NSGA−II
SPEA2

Precision

V
ar

ia
bi

lit
y

Sa
fe

ty

ArgoUML: VS x P

 0.75 0.8 0.85 0.9 0.95 1

 0.99995

 0.99996

 0.99997

 0.99998

 0.99999

 1

V
ar

ia
bi

lit
y

Sa
fe

ty

NSGA−II
SPEA2

Recall

V
ar

ia
bi

lit
y

Sa
fe

ty

ArgoUML: VS x R

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0.5

 0.6

 0.7

 0.8

 0.9

 1

NSGA−II
SPEA2

PrecisionRecall

GOL: P x R

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 1

V
ar

ia
bi

lit
y

Sa
fe

ty
NSGA−II

SPEA2

Precision

V
ar

ia
bi

lit
y

Sa
fe

ty

GOL: VS x P

 0.5 0.6 0.7 0.8 0.9 1

 1

V
ar

ia
bi

lit
y

Sa
fe

ty

NSGA−II
SPEA2

Recall

V
ar

ia
bi

lit
y

Sa
fe

ty

GOL: VS x R

 0.97

 0.98

 0.99

 1

 0.75

 0.8

 0.85

 0.9

 0.95

 1

NSGA−II
SPEA2

PrecisionRecall

ZipMe: P x R

 0.97 0.98 0.99 1

 0.99995

 0.99996

 0.99997

 0.99998

 0.99999

 1

V
ar

ia
bi

lit
y

Sa
fe

ty

Precision

V
ar

ia
bi

lit
y

Sa
fe

ty

ZipMe: VS x P

 0.75 0.8 0.85 0.9 0.95 1

 0.99995

 0.99996

 0.99997

 0.99998

 0.99999

 1

V
ar

ia
bi

lit
y

Sa
fe

ty NSGA−II
SPEA2

Recall

V
ar

ia
bi

lit
y

Sa
fe

ty

ZipMe: VS x R

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

NSGA−II
SPEA2

PrecisionRecall

MM - V6: P x R

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0.999

 0.9993

 0.9996

 0.9999

V
ar

ia
bi

lit
y

Sa
fe

ty

NSGA−II
SPEA2

Precision

V
ar

ia
bi

lit
y

Sa
fe

ty

MM - V6: VS x P

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

 0.999

 0.9993

 0.9996

 0.9999

V
ar

ia
bi

lit
y

Sa
fe

ty

NSGA−II
SPEA2

Recall

V
ar

ia
bi

lit
y

Sa
fe

ty

MM - V6: VS x R

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

NSGA−II
SPEA2

PrecisionRecall

MM - V7: P x R

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0.9988

 0.9992

 0.9996

 1

V
ar

ia
bi

lit
y

Sa
fe

ty

NSGA−II
SPEA2

Precision

V
ar

ia
bi

lit
y

Sa
fe

ty

MM - V7: VS x P

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0.9988

 0.9992

 0.9996

 1

V
ar

ia
bi

lit
y

Sa
fe

ty

NSGA−II
SPEA2

Recall

V
ar

ia
bi

lit
y

Sa
fe

ty

MM - V7: VS x R

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 6 Solutions on the search space

Statistical Analysis To reason about the differences between NSGA-II and SPEA2 we
used the well known quality indicator called Hypervolume (Zitzler et al. 2003). Table 7
presents in the second and third columns the average of Hypervolume and standard

Empir Software Eng (2017) 22:1763–1794 1781

Table 7 Hypervolume and effect size

System Hypervolume Wilcoxon Â12 Effect Size

NSGA-II SPEA2 p-value NSGA-II SPEA2

ArgoUML 0.0036 (0.0005) 0.0035 (0.0000) 1.61E-01 46.67 53.33

DPL 0.0064 (0.0025) 0.0071 (0.0017) 1.42E-01 56.56 43.44

GOL 0.0365 (0.0080) 0.0340 (0.0041) 3.62E-02 34.22 65.78

VOD 0.0010 (0.0000) 0.0010 (0.0000) NA* 50.00 50.00

ZipME 0.0038 (0.0000) 0.0038 (0.0000) NA* 50.00 50.00

MM-V1 0.0050 (0.0042) 0.0037 (0.0032) 1.69E-01 40.56 59.44

MM-V2 0.0097 (0.0075) 0.0083 (0.0073) 4.33E-01 44.50 55.50

MM-V3 0.0121 (0.0086) 0.0109 (0.0083) 4.33E-01 44.33 55.67

MM-V4 0.0124 (0.0089) 0.0104 (0.0083) 3.49E-01 43.22 56.78

MM-V5 0.0126 (0.0089) 0.0129 (0.0088) 5.06E-01 45.06 54.94

MM-V6 0.0399 (0.0128) 0.0435 (0.0123) 1.78E-01 60.17 39.83

MM-V7 0.1125 (0.0015) 0.1038 (0.0059) 1.86E-09 4.78 95.22

*NA = Not Available, because the two sets of values are identical

deviation, in parentheses, for the 30 runs. To compute the Hypervolume the reference point
for all case studies was P=1.1, R=1.1, and VS=1.1. Since our problem is a maximization
problem, then lower values of Hypervolume are better. To check statistical difference we
applied the Wilcoxon test (Bergmann et al. 2000). The p-value obtained for each case study
is presented on the fourth column of Table 7. To corroborate our analysis we also compute
the effect size with the Vargha-Delaney’s Â12 statistic (Vargha and Delaney 2000), used
for assessing randomized algorithms in Software Engineering (Arcuri and Briand 2014),
presented on the last two columns of Table 7.

From the results on Table 7 we observe that there is a difference between both algorithms
only for the case studies GOL and MM-V7. The boxplots for these two case studies are
presented in Fig. 7. In these two systems the best algorithm was SPEA2. The results for the
case studies VOD and ZipME are exactly the same. Despite some differences in the average
Hypervolume for the other case studies, they are statistically similar.

(a) (b)

Fig. 7 Hypervolume boxplots

1782 Empir Software Eng (2017) 22:1763–1794

RQ2 Discussion Regarding the number of good solutions found on average and after the
30 runs, NSGA-II outperformed SPEA2. However, both are able to widely explore the
search space. Using the well-know Hypervolume indicator we observed that in ten case
studies there are no significant differences. In the two case studies with significant differ-
ence, the algorithm SPEA2 was the best. In conclusion, both algorithms are good to solve
the problem of reverse engineering of FMs using our three objectives.

5.3 Answering RQ3

Recall that the purpose of RQ3 was to explain how our approach could be used in practice.
Let us now illustrate how. In Table 8 we present the values of the three objectives for all
solutions that compose the sets PFknown. The exceptions are case studies MM-V6 and MM-
V7. For these two case studies we selected those solutions with the value 1.0 for at least
one of the objectives. Here the goal is to analyse qualitatively the solutions reached by the
algorithms NSGA-II and SPEA2.

As mentioned before, the solutions of NSGA-II and SPEA2 are the same for seven case
studies, namely DPL, VOD, MM-V1, MM-V2, MM-V3, MM-V4, and MM-V5. For the
remaining case studies it is possible to observe how conflicting the objectives can be. For
example, in ArgoUML we can observe that the conflict occurs only between recall and
variability safety, since in all solutions have the value 1.0 for precision. A similar situation
happens for GOL, but in this case study the variability safety is 1.0 in all solutions. For
the case studies ZipMe, MM-V6 and MM-V7 there are solutions with different trade-offs
among the three objectives. These solutions, with different values for each objective, help
the software engineers in the decision making. They can decide which measure is more
important and then select the corresponding solution.

To illustrate this process of selecting one solution, in Fig. 8 we present four FMs from
MM-V7 obtained by SPEA2, their tree-like structure and cross-tree constraints. We selected
these FMs based on two criteria: i) solutions with value equal to 1.0 for at least one objec-
tive, and ii) solutions with the best value for a second objective. For example, The solution
presented in Fig. 8a has P = 1.0, satisfying the first criteria, and R = 0.8000000119 the best
value of recall among solutions with P = 1.0, satisfying the second criteria.

In the FM presented in Fig. 8a we have 192 valid configurations and all of them are
desired products, so the value of precision is 1.0. However, the total number of desired
products for this case study is 240, so the recall of this FM is not 1.0. The value of
variability safety equal to 0.999162264 means that there are 324 broken dependencies
from the dependency graph on the valid configurations. The FMs in Fig. 8b and c have
the best values for variability safety, however with very low value of recall. In the FM
of Fig. 8b only four valid configurations are possible mainly because of the constraint
"Include CopyMedia EXCLUDES Capture Photo" what makes all the configu-
rations after the third level of the tree invalid, because the feature Include CopyMedia
is mandatory of Capture Photo. In Fig. 8c only 16 valid configurations are possi-
ble, because the constraint "Include Video EXCLUDES Include Music" makes
invalid all the configurations below the second level of the tree, since the feature
Include Music is mandatory child of feature Include Video. In Fig. 8d we have an
FM with recall equal to 1.0, which means that all desired products are valid configurations
here; however, it denotes more valid configurations than the input, hence decreasing the
value of precision. In this same FM, the number of broken dependencies is 624. These are
four examples of multi-objective solutions that are given to the software engineers, so that
they can analyse the trade-offs and select the one that best meets their needs.

Empir Software Eng (2017) 22:1763–1794 1783

Ta
bl
e
8

N
on
-d
om

in
at
ed

so
lu
tio

ns

Sy
st
em

N
SG

A
-I
I

SP
E
A
2

P
R

V
S

P
R

V
S

A
rg
oU

M
L

1.
0

1.
0

0.
99
99
62
97
41
.0

1.
0

1.
0

0.
99
99
62
97
41
.0

1.
0

0.
76
56
25

0.
99
99
68
26
36

1.
0

0.
75

1.
0

1.
0

0.
75

1.
0

D
PL

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

G
O
L

1.
0

0.
55
38
46
18
04

1.
0

1.
0

0.
55
38
46
18
04

1.
0

0.
83
33
33
31
35

0.
61
53
84
63
83

1.
0

0.
83
33
33
31
35

0.
61
53
84
63
83

1.
0

0.
80
00
00
01
19

0.
73
84
61
55
41
.0

1.
0

0.
80
00
00
01
19

0.
73
84
61
55
41
.0

1.
0

0.
48
51
48
51
93

0.
75
38
46
16
85

1.
0

0.
48
51
48
51
93

0.
75
38
46
16
85

1.
0

0.
41
93
54
82
62

0.
80
00
00
01
19

1.
0

0.
30
81
08
12
12

0.
87
69
23
08
43

1.
0

0.
41
17
64
71
11
.0

0.
86
15
38
46
98

1.
0

0.
29
41
17
65
93

1.
0

1.
0

0.
38
09
52
38
8

0.
98
46
15
38
55

1.
0

0.
29
41
17
65
93

1.
0

1.
0

V
O
D

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

Z
ip
M
e

1.
0

1.
0

0.
99
99
53
36
69

1.
0

1.
0

0.
99
99
53
36
69

1.
0

0.
87
5

0.
99
99
60
02
88

1.
0

0.
75

1.
0

1.
0

0.
75

1.
0

0.
96
96
96
99
86

1.
0

0.
99
99
54
78

0.
96
96
96
99
86

1.
0

0.
99
99
54
78

M
M
-V

1
1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

M
M
-V

2
1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

M
M
-V

3
1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

M
M
-V

4
1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

M
M
-V

5
1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

M
M
-V

6
1.
0

1.
0

0.
99
88
59
24
89

1.
0

1.
0

0.
99
88
59
24
89

1784 Empir Software Eng (2017) 22:1763–1794

Ta
bl
e
8

(c
on
tin

ue
d)

Sy
st
em

N
SG

A
-I
I

SP
E
A
2

P
R

V
S

P
R

V
S

1.
0

0.
83
33
33
31
35

0.
99
90
87
39
91
.0

1.
0

0.
75

0.
99
96
48
99
96

1.
0

0.
75

0.
99
96
48
99
96

1.
0

0.
66
66
66
68
65

0.
99
97
36
74
97

1.
0

0.
66
66
66
68
65

0.
99
97
36
74
97

1.
0

0.
62
5

1.
0

1.
0

0.
62
5

1.
0

0.
75

1.
0

0.
99
88
59
24
89

0.
85
71
42
86
57

1.
0

0.
99
88
59
24
89

0.
66
66
66
68
65

1.
0

0.
99
92
39
49
92

0.
80
00
00
01
19

1.
0

0.
99
89
46
99
89

0.
5

1.
0

0.
99
92
54
12
43

0.
66
66
66
68
65

1.
0

0.
99
92
39
49
92

...

0.
5

1.
0

0.
99
92
54
12
43

...

M
M
-V

7
1.
0

0.
60
00
00
02
38

0.
99
89
36
01
41
.0

1.
0

0.
80
00
00
01
19

0.
99
91
62
26
4

1.
0

0.
40
00
00
00
6

0.
99
89
36
01
41
.0

1.
0

0.
60
00
00
02
38

0.
99
93
55
90
12

1.
0

0.
36
25
00
01
19

0.
99
96
66
00
2

1.
0

0.
46
66
66
66
87

0.
99
94
11
22
62

1.
0

0.
23
33
33
33
43

0.
99
97
55
40
55

1.
0

0.
40
00
00
00
6

0.
99
97
43
17
58

1.
0

0.
10
00
00
00
15

0.
99
98
85
85
59

1.
0

0.
20
00
00
00
3

0.
99
99
02
16
22

1.
0

0.
06
66
66
67
01
.0

0.
99
99
26
62
17

1.
0

0.
08
33
33
33
58

0.
99
99
21
72
98

1.
0

0.
05
00
00
00
07

0.
99
99
34
77
48

1.
0

0.
05
00
00
00
07

0.
99
99
34
77
48

1.
0

0.
03
33
33
33
51
.0

0.
99
99
51
08
11
.0

1.
0

0.
03
33
33
33
51
.0

0.
99
99
51
08
11
.0

1.
0

0.
02
50
00
00
04

1.
0

1.
0

0.
02
50
00
00
04

0.
99
99
67
38
74

0.
62
5

1.
0

0.
99
91
15
38
34

1.
0

0.
02
08
33
33
4

0.
99
99
80
43
24

0.
46
87
5

1.
0

0.
99
92
72
33
15

1.
0

0.
01
66
66
66
75

1.
0

0.
37
5

1.
0

0.
99
93
76
28
41
.0

0.
62
5

1.
0

0.
99
91
15
38
34

0.
25

1.
0

0.
99
94
37
43
27

0.
46
87
5

1.
0

0.
99
92
72
33
15

0.
16
66
66
67
16

1.
0

0.
99
94
70
04
53

0.
37
5

1.
0

0.
99
93
34
70
31
.0

Empir Software Eng (2017) 22:1763–1794 1785

Ta
bl
e
8

(c
on
tin

ue
d)

Sy
st
em

N
SG

A
-I
I

SP
E
A
2

P
R

V
S

P
R

V
S

0.
80
00
00
01
19

0.
03
33
33
33
51
.0

1.
0

0.
27
27
27
28
09

1.
0

0.
99
93
75
17
23

0.
75

0.
05
00
00
00
07

1.
0

0.
25

1.
0

0.
99
94
37
43
27

...
0.
23
07
69
23
19

1.
0

0.
99
94
39
31
42

0.
20
83
33
32
84

1.
0

0.
99
94
70
04
53

0.
75

0.
05
00
00
00
07

1.
0

...

1786 Empir Software Eng (2017) 22:1763–1794

(a)

(b)
(c)

(d)

Fig. 8 MM-V7 feature models

The use of dependency graphs to compute variability safety helps to identify another
characteristic in the implementation artefacts, the existence of compilation errors or inco-
herences in the source code. For example, looking at the FM presented in Fig. 8a, the

Empir Software Eng (2017) 22:1763–1794 1787

precision is 1.0, this means that all feature sets denoted by the FM belong to the set of
desired feature sets, but there are configurations that even though are valid, they do have
broken dependencies. In the dependency graph of this case study there is the dependency
Include SMS ⇒ Capture Photo, which means that in the source code the feature
Include SMS depends on Capture Photo; however, in the set of desired configura-
tions there are 72 configurations that have the feature Include SMS but do not have
Capture Photo, decreasing the value of variability safety.

RQ3 Discussion As discussed before, the main advantage of a multi-objective approach
is to find a set of good solutions regarding different trade-off among the objectives. In
a practical point of view, these solutions allow the software engineer to reason about the
different measures used to evaluate the FMs. At the end, the software engineers can select
the solution that best fits his/her needs. In addition, multi-objective algorithms can return
solutions that can call the attention of the decision maker to characteristics that are not
considered in the beginning of the optimization process. We discussed this point about the
possible identification of inconsistencies between the source code and the feature sets used
as input, e.g. invalid references. To identify such inconsistencies was not the goal of the
software engineers when starting the optimization process, however our approach further
enables software engineers to reason about inconsistencies by looking at the solutions with
different values among the objectives.

5.4 Threats to Validity

The first threat to validity identified was the parameter settings for the algorithms. We
addressed this threat by using conventional values for our parameters as we have done in our
previous work (Assunção et al. 2015); however, we increased the population size to allow
the algorithms to generate more individuals.

The second threat regards to the used case studies. Despite using only twelve case studies,
these systems are from different domains and have different sizes. We argue that they are
representative to evaluate our approach.

A third threat concerns the baseline comparison. To the best of our knowledge, our
approach is the first to use information from implementation artefacts and a multi-objective
perspective to reverse engineer feature models. Then as baseline we use the genetic
programming algorithm from our previous work (Assunção et al. 2015). Since this single-
objective algorithm returns a single solution per run we used averages per run and a
set composed with the 30 runs to reason about the differences in comparison with the
multi-objective algorithm.

The fourth threat is related to the set of measures we used to evaluate the reverse engi-
neered FMs. Different measures and metrics could produce FMs with other characteristics.
However, we believe the three measures we considered are well designed for our goals
of representing the actual set of product variants and take into account the source-code
structure.

The last threat refers to the validation of the reversed engineered feature models by devel-
opers. Certainly, because there are no canonical representations of feature models, domain
knowledge can play a significant role when choosing among different feature models. How-
ever, this threat is mitigated by considering real case studies that have been extensively
studied by us an others for different purposes.

1788 Empir Software Eng (2017) 22:1763–1794

6 Related Work

Search-based techniques have been applied in a wide range of SPL activities such as feature
selection, architectural improvement, SPL testing, and feature model construction (Harman
et al. 2014; Lopez-Herrejon et al. 2015). To reverse engineer FMs, search-based algorithms
were explored in the work of Lopez-Herrejon et al. (2012, 2015). In this work an evolu-
tionary algorithm uses as input a set of desired feature sets and, as objective, a function that
maximizes the number of the desired feature sets contained in a feature model disregarding
any surplus feature sets that the model could denote (Lopez-Herrejon et al. 2012, 2015).
This work was extended by Thianniwet and Cohen Thianniwet and Cohen (2015) to reverse
engineer complex features models. The authors designed a fitness function to balance both
additional and missing products and create a representation and evolution operators to sup-
port complex cross-tree constraints. But none of these works includes the information from
the implementation artefacts or a multi-objective perspective.

Feature sets were also used in the work of Haslinger et al. (2011, 2013). The authors used
an ad hoc algorithm to identify patterns in the selected and not selected features mapped in
parent-child relations of feature models (Haslinger et al. 2011). An extension was done to
consider the CTCs requires and excludes (Haslinger et al. 2013). Again the authors do not
consider the implementation artefacts.

Czarnecki andWasowski used a set of propositional logic formulas as input to the reverse
engineering task (Czarnecki and Wasowski 2007; She et al. 2014). They propose an ad
hoc algorithm to extract multiple feature models from single propositional logic formula
preserving the original formulas and reducing redundancy (Czarnecki and Wasowski 2007).
Recently, the algorithm has been improved based on CNF and DNF constraints (She et al.
2014). In contrast with our work their starting point are configuration files, documentation
files, and constraints expressed in propositional logic instead of feature sets and source code.

Acher et al. proposed an interactive process to map each feature into a feature model, and
then all the feature models are merged in a single feature model (Acher et al. 2012). In the
work of Sannier et al. they consider product matrices fromWikipedia as start point (Sannier
et al. 2013). These matrices can have other values besides select or not select. From these
matrices an analysis is performed to identify variability patterns. The authors only mention
about the benefits of exploiting that information to extract models such as feature models.

Genetic Programming is also the focus of other pieces of work on software development.
An example is the paper of Chan et al. where the authors deal with the problem of product
planning and customer satisfaction using a method based on GP (Chan et al. 2011).

There is extensive work using multi-objective optimization algorithms in the field of
search-based software engineering. For instance, software module clustering, integration
testing, testing resource allocation, protocol tuning, software project scheduling, software
project effort estimation, and software defect prediction (Harman et al. 2012; Yao 2013).
However, they do not address reverse engineering of FMs.

7 Future Directions

In this section we describe some research opportunities and trends on the task of reverse
engineering of feature models.

Note that the variability safety measure is not restricted to implications obtained from a
dependency graph. A similar metric can be computed on arbitrary constraints, as long as it
can be determined whether they hold or not. This is important because constraints may not

Empir Software Eng (2017) 22:1763–1794 1789

only be provided in the form of a dependency graph as a result of a code analysis tool, but
also from other sources like constraints defined by domain experts. Generally speaking this
measure expresses the conformance of the found candidate feature models to a set of given
constraints.

In this sense, the exploration of different sources of information is a future direction.
For instance, the use of test cases is a possible target, since they are usually available in
most projects. The comments in the source code are also a possible target for new research.
Design models, like UML diagrams, are another interesting starting point to be considered.

Besides the use of different artefacts, another research opportunity is to design new mea-
sures and metrics to evaluate the feature models. For example, the use of graph similarity
could be applied in dependency graphs of each variant. Perhaps the use of semantic simi-
larity measures among elements is a research opportunity. Non-functional characteristics of
systems can be another measure to be included in the reverse engineering process. We also
identified a lack of complementary metrics to evaluate and validate the reengineered SPL
artefacts, these metrics could facilitate the process of comparison between obtained results
and expected ones.

There is a lack of tools that support the reverse engineering of feature model in prac-
tice. Recently, tools like BUT4Reuse (Martinez et al. 2015), a framework that provides
technologies for leverage commonality and variability of software artefacts, have appeared.
However, more tools with different purpose and focus are needed. For example, they should
cover different programming languages, different artefact types, etc.

Interactive approaches that include the user in the loop are an alternative strategy to
extract information that sometimes is only present in the user’s mind. Furthermore, interac-
tive approaches allow the user to guide the reverse engineering process to some preferred
directions. Hence performing empirical studies that involve users providing feedback on the
generated models is an avenue for future research.

From the identified related work we did not find any strategy to deal with ambiguity in
the input artefacts. In other words, the strategies work only with well defined and structured
inputs. To deal with incomplete or unsound input is an open challenge.

8 Concluding Remarks

This paper presents an approach to reverse engineer feature models from a set of feature
sets and a dependency graph, extracted from the source code. The set of feature sets is used
to compute the precision and recall of the feature models. The dependency graph is used
to compute the variability safety, i.e. how well-formed the feature model is regarding the
implementation artefacts. Furthermore, the approach takes a multi-objective perspective to
deal with the three different measures independently, supporting the software engineers in
the decision making process.

To evaluate the proposed approach we designed an experiment to answer questions
regarding the benefits and advantages of using our multi-objective approach, the perfor-
mance of two multi-objective evolutionary algorithms for reverse engineering of FMs, and
about the practical use of a multi-objective perspective by the software engineers. The
experiment was conducted with twelve case studies and used NSGA-II and SPEA2, and a
single-objective GP algorithm.

The results indicate that the multi-objective algorithms are better than the single-
objective one, which was expected, because in five case studies the three measures are
in conflict. From the number of solutions obtained after 30 runs and the average of good

1790 Empir Software Eng (2017) 22:1763–1794

solutions found per run, we observe that the algorithm NSGA-II outperforms the algorithm
SPEA2. However, the statistical test using the Hypervolume values indicates they do not
have a difference in ten case studies, and in the other two the algorithm SPEA2 has better
Hypervolume values.

Reverse engineering of feature models has recently received an increasing attention from
the research community on SPLs; however, our work also revealed several research avenues
worthy of further investigation. Among them, we can mention: using different types of
constraints in addition to the source code dependencies, exploiting new sources of infor-
mation like non-functional properties, devising new metrics as objective functions, dealing
with ambiguity in input artefacts, and developing more robust and interactive tools and
techniques.

Acknowledgments This work was supported by Austrian Science Fund (FWF): P 25289-N15, and the
Brazilian Agencies CAPES: 007126/ 2014-00 and CNPq: 453678/2014-9 and 305358/2012-0.

References

Acher M, Cleve A, Perrouin G, Heymans P, Vanbeneden C, Collet P, Lahire P (2012) On extract-
ing feature models from product descriptions. In: International workshop on variability modelling of
software-intensive systems (vamos), pp 45–54

Arcuri A, Briand L (2014) A hitchhiker’s guide to statistical tests for assessing randomized algorithms in soft-
ware engineering. Software Testing, Verification and Reliability 24(3):219–250. doi:10.1002/stvr.1486

Assunção WK, Lopez-Herrejon RE, Linsbauer L, Vergilio SR, Egyed A (2015) Extracting variability-safe
feature models from source code dependencies in system variants. In: Genetic and evolutionary compu-
tation conference (GECCO). ACM, New York, NY, USA, pp 1303–1310. doi:10.1145/2739480.2754720

Assunção WKG, Colanzi TE, Vergilio SR, Pozo A (2014) A multi-objective optimization approach for the
integration and test order problem. Inf Sci 267:119–139. doi:10.1016/j.ins.2013.12.040

Assunção WKG, Vergilio SR (2014) Feature location for software product line migration: a mapping
study. In: 18th software product line conference - 2nd international workshop on REverse variability
engineering (REVE), pp 1–8. doi:10.1145/2647908.2655967

Batory DS, Sarvela JN, Rauschmayer A (2004) Scaling step-wise refinement. IEEE Trans Softw Eng
30(6):355–371

Benavides D, Segura S, Cortés AR (2010) Automated analysis of feature models 20 years later: a literature
review. Inf Syst 35(6):615–636

Benavides D, Segura S, Trinidad P, Cortés AR (2007) FAMA: tooling a framework for the automated anal-
ysis of feature models. In: Pohl K, Heymans P, Kang KC, Metzger A (eds) International workshop
on variability modelling of software-intensive systems (VaMoS), Lero Technical Report, vol 2007-01,
pp 129–134

Bergmann R, Ludbrook J, Spooren WPJM (2000) Different outcomes of the Wilcoxon-Mann-Whitney test
from different statistics packages. Am Stat 54(1):72–77. doi:10.2307/2685616

Chan KY, Kwong CK, Wong TC (2011) Modelling customer satisfaction for product development using
genetic programming. J Eng Des 22(1):55–68. doi:10.1080/09544820902911374

Coello CAC, Lamont G, van Veldhuizen D (2007) Evolutionary algorithms for solving multi-objective
problems, 2nd edn. Genetic and Evolutionary Computation. Springer, Berlin

Couto MV, Valente MT, Figueiredo E (2011) Extracting software product lines: a case study using condi-
tional compilation. In: Conference on software maintenance and reengineering (CSMR), pp 191–200.
doi:10.1109/CSMR.2011.25

Czarnecki K, Wasowski A (2007) Feature diagrams and logics: there and back again. In: International
software product line conference (SPLC). IEEE Computer Society, pp 23–34

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE Trans Evol Comput 6(2):182–197

Figueiredo E, Cacho N, Sant’Anna C, Monteiro M, Kulesza U, Garcia A, Soares S, Ferrari F, Khan S, Castor
Filho F, Dantas F (2008) Evolving software product lines with aspects: an empirical study on design
stability. In: International conference on software engineering (ICSE). ACM, New York, NY, USA,
pp 261–270. doi:10.1145/1368088.1368124

http://dx.doi.org/10.1002/stvr.1486
http://dx.doi.org/10.1145/2739480.2754720
http://dx.doi.org/10.1016/j.ins.2013.12.040
http://dx.doi.org/10.1145/2647908.2655967
http://dx.doi.org/10.2307/2685616
http://dx.doi.org/10.1080/09544820902911374
http://dx.doi.org/10.1109/CSMR.2011.25
http://dx.doi.org/10.1145/1368088.1368124

Empir Software Eng (2017) 22:1763–1794 1791

Fischer S, Linsbauer L, Lopez-Herrejon RE, Egyed A (2014) Enhancing clone-and-own with system-
atic reuse for developing software variants. In: International conference on software maintenance and
evolution (ICSME)

Harman M, Jia Y, Krinke J, Langdon WB, Petke J, Zhang Y (2014) Search based software engineering
for software product line engineering: a survey and directions for future work. In: 18Th interna-
tional software product line conference - volume 1, SPLC ’14. ACM, New York, NY, USA, pp 5–18.
doi:10.1145/2648511.2648513

Harman M, Mansouri SA, Zhang Y (2012) Search-based software engineering: trends, techniques and
applications. ACM Comput Surv 45(1):11:1–11:61. doi:10.1145/2379776.2379787

Haslinger EN, Lopez-Herrejon RE, Egyed A (2011) Reverse engineering feature models from programs’
feature sets. In: Working conference on reverse engineering (WCRE), pp 308–312

Haslinger EN, Lopez-Herrejon RE, Egyed A (2013) On extracting feature models from sets of valid feature
combinations. In: International conference fundamental approaches to software engineering (FASE),
pp 53–67

Kang K, Cohen S, Hess J, Novak W, Peterson A (1990) Feature-Oriented Domain analysis (FODA)
feasibility study. Tech. Rep. CMU/SEI-90-TR-21, SEI CMU

van d. Linden FJ, Schmid K, Rommes E (2007) Software product lines in action: the best industrial practice
in product line engineering. Springer

Linsbauer L, Lopez-Herrejon RE, Egyed A (2013) Recovering traceability between features and
code in product variants. In: International software product line conference (SPLC), pp 131–
140

Linsbauer L, Lopez-Herrejon RE, Egyed A (2014) Feature model synthesis with genetic programming. In:
International symposium on search based software engineering (SSBSE), pp 153–167

Lopez-Herrejon RE, Galindo JA, Benavides D, Segura S, Egyed A (2012) Reverse engineering feature mod-
els with evolutionary algorithms: an exploratory study. In: International symposium on search based
software engineering (SSBSE), pp 168–182

Lopez-Herrejon RE, Linsbauer L, Egyed A (2015) A systematic mapping study of search-based software
engineering for software product lines. J Inf Softw Technol. doi:10.1016/j.infsof.2015.01.008

Lopez-Herrejon RE, Linsbauer L, Galindo JA, Parejo JA, Benavides D, Segura S, Egyed A (2015) An assess-
ment of search-based techniques for reverse engineering feature models. J Syst Softw 103(0):353–369.
doi:10.1016/j.jss.2014.10.037

Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge University
Press

Martinez J, Ziadi T, Bissyandé TF, Klein J, Traon YL (2015) Bottom-up adoption of software product lines: a
generic and extensible approach. In: International conference on software product line (SPLC), pp 101–
110. doi:10.1145/2791060.2791086

Sannier N, Acher M, Baudry B (2013) From comparison matrix to variability model: The wikipedia
case study. In: International conference on automated software engineering (ASE). IEEE, pp 580–
585

Segura S, Galindo J, Benavides D, Parejo JA, Cortés AR (2012) BeTTy: benchmarking and testing on the
automated analysis of feature models. In: Eisenecker UW, Apel S, Gnesi S (eds) International workshop
on variability modelling of software-intensive systems (VaMoS). ACM, pp 63–71

She S, Lotufo R, Berger T, Wasowski A, Czarnecki K (2011) Reverse engineering feature models. In:
International conference on software engineering (ICSE). ACM, pp 461–470

She S, Ryssel U, Andersen N, Wasowski A, Czarnecki K (2014) Efficient synthesis of feature models. Inf
Softw Technol 56(9):1122–1143

Thianniwet T, Cohen M (2015) Splrevo: optimizing complex feature models in search based reverse engi-
neering of software product lines. In: North american search based software engineering symposium
(NasBASE)

Vargha A, Delaney H (2000) A critique and improvement of the cl common language effect size statistics of
mcgraw and wong. J Educ Behav Stat 25(2):101–132

Weston N, Chitchyan R, Rashid A (2009) A framework for constructing semantically composable feature
models from natural language requirements. In: International software product line conference (SPLC),
pp 211–220

Yao X (2013) Some recent work on multi-objective approaches to search-based software engineering.
Springer, Berlin, pp 4–15. doi:10.1007/978-3-642-39742-4 2

Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm. Tech.
Rep. 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland

Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of
multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7:117–132

http://dx.doi.org/10.1145/2648511.2648513
http://dx.doi.org/10.1145/2379776.2379787
http://dx.doi.org/10.1016/j.infsof.2015.01.008
http://dx.doi.org/10.1016/j.jss.2014.10.037
http://dx.doi.org/10.1145/2791060.2791086
http://dx.doi.org/10.1007/978-3-642-39742-4_2

1792 Empir Software Eng (2017) 22:1763–1794

Wesley K. G. Assunção received a bachelor’s degree in Information Systems from Faculdade Sul Brasil in
2006 and the MSc degree in 2012 from Federal University of Paraná (UFPR), Brazil. He is currently PhD
candidate at the Post-graduation Program in Informatics of Federal University of Paraná (UFPR), being a
member of Research Group on Software Engineering - GRES. His areas of interest are: Software Testing,
Software Product Lines, Search Based Software Engineering and Multi-Objective Evolutionary Algorithms.

Roberto E. Lopez-Herrejon is an Associate Professor at the Department of Software Engineering and Infor-
mation Technology of the École de Technologie Supérieure of the University of Quebec in Montreal, Canada.
Prior he was a senior postdoctoral researcher at the Johannes Kepler University in Linz, Austria. He was an
Austrian Science Fund (FWF) Lise Meitner Fellow (2012–2014) at the same institution. From 2008 to 2014
he was an External Lecturer at the Software Engineering Masters Programme of the University of Oxford,
England. From 2010 to 2012 he held an FP7 Intra-European Marie Curie Fellowship sponsored by the Euro-
pean Commission. He obtained his Ph.D. from the University of Texas at Austin in 2006, funded in part by a
Fulbright Fellowship sponsored by the U.S. State Department. From 2005 to 2008, he was a Career Develop-
ment Fellow at the Software Engineering Centre of the University of Oxford sponsored by Higher Education
Founding Council of England (HEFCE). His main expertise is in software customization, software product
lines, and search based software engineering.

Empir Software Eng (2017) 22:1763–1794 1793

Lukas Linsbauer is currently a PhD student at the Institute for Software Systems Engineering at the
Johannes Kepler University (JKU) in Linz, Austria under the supervision of Prof. Alexander Egyed and
Dr. Roberto Erick Lopez-Herrejon. He received his master’s degree in computer science from the JKU
after only four years of study for each of which he received a merit scholarship. His research interests
are in traceability, software product lines, variability modeling and management, and highly variable and
configurable systems.

Silvia R. Vergilio received the MS (1991) and DS (1997) degrees from University of Campinas, UNICAMP,
Brazil. She is currently at the Computer Science Department at the Federal University of Paraná, Brazil,
where she has been a faculty member since 1993. She has been involved in several projects and her research
interests are in the areas of Software Engineering, such as: software testing, software quality and software
metrics.

1794 Empir Software Eng (2017) 22:1763–1794

Alexander Egyed heads the Institute for Software Systems Engineering (ISSE) at the Johannes Kepler
University, Austria. He received his Doctorate from the University of Southern California, USA and previ-
ously worked many years in industry before joining academia. Dr. Egyed was recognized among the Top 10
scholars in software engineering and his work has received numerous awards.

	MO reverse engineering of FMs based on code dependencies
	Abstract
	Introduction
	Background
	Feature Models
	Running Example
	Source Code Dependency Graphs

	Multi-Objective Approach to Reverse Engineer Feature Models
	Feature Model Representation
	Evolutionary Operators
	Mutation
	Crossover

	Multi-Objective Perspective
	Auxiliary Functions Definitions
	Fitness Functions Definitions
	Fitness Functions Illustration

	Experimental Description
	Experimental Setup
	Case Studies

	Results and Analysis
	Answering RQ1
	RQ1 Discussion

	Answering RQ2
	Statistical Analysis
	RQ2 Discussion

	Answering RQ3
	RQ3 Discussion

	Threats to Validity

	Related Work
	Future Directions
	Concluding Remarks
	Acknowledgments
	References

