
DOI 10.1007/s10664-016-9461-5

The Debsources Dataset: two decades of free and open
source software

Matthieu Caneill1 ·Daniel M. Germán2 ·
Stefano Zacchiroli3,4

© Springer Science+Business Media New York 2016

Abstract We present the Debsources Dataset: source code and related metadata spanning
two decades of Free and Open Source Software (FOSS) history, seen through the lens of
the Debian distribution. The dataset spans more than 3 billion lines of source code as well
as metadata about them such as: size metrics (lines of code, disk usage), developer-defined
symbols (ctags), file-level checksums (SHA1, SHA256, TLSH), file media types (MIME),
release information (which version of which package containing which source code files
has been released when), and license information (GPL, BSD, etc). The Debsources Dataset
comes as a set of tarballs containing deduplicated unique source code files organized by
their SHA1 checksums (the source code), plus a portable PostgreSQL database dump (the
metadata). A case study is run to show how the Debsources Dataset can be used to eas-
ily and efficiently instrument very long-term analyses of the evolution of Debian from
various angles (size, granularity, licensing, etc.), getting a grasp of major FOSS trends of

Communicated by: Romain Robbes, Martin Pinzger and Yasutaka Kamei

This work has been partially performed at IRILL, center for Free Software Research and Innovation in
Paris, France http://www.irill.org . Unless noted otherwise, all URLs in the text have been retrieved on
September 1st, 2016. Authors are listed alphabetically.

� Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Matthieu Caneill
caneill@imag.fr

Daniel M. Germán
dmg@uvic.ca

1 Université Grenoble Alpes, Grenoble, France

2 University of Victoria, Victoria, Canada

3 Sorbonne Paris Cité, IRIF, UMR 8243, CNRS, Université Paris Diderot, 75205 Paris, France

4 Inria, Paris, France

Empir Software Eng (2017) 22:1 –1 7

Published online: 7 October 2016

405 43

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-016-9461-5&domain=pdf
http://orcid.org/0000-0002-4576-136X
http://www.irill.org
mailto:zack@pps.univ-paris-diderot.fr
mailto:caneill@imag.fr
mailto:dmg@uvic.ca

the past two decades. The Debsources Dataset is Open Data, released under the terms of
the CC BY-SA 4.0 license, and available for download from Zenodo with DOI reference
10.5281/zenodo.61089.

Keywords Software evolution · Source code · Free software · Open source · Debian ·
Dataset

1 Introduction

Software is increasingly being distributed to final users by the means of software collec-
tions and deployed using package management tools. Some software collections are very
tightly curated and integrated, like Free and Open Source Software (FOSS) distributions,
others much more loosely so, like so called “app stores”. The study of software evolution
(Brooks 1995; Lehman 1980) can no longer ignore software collections as relevant subjects
of macro-level studies (González-Barahona et al. 2009; Caneill and Zacchiroli 2014), i.e.,
evolution studies conducted at the granularity of component releases rather than individual
commits.

The study of software collections however poses specific challenges to scholars due to a
common tendency at creating ad hoc software ecosystems made of homegrown tools, tech-
nical conventions, and social norms that might be hard to take into account when conducting
empirical studies.

The Debsources platform (Caneill and Zacchiroli 2014) has been developed to counter
those challenges in the specific case of Debian1—a general purpose FOSS operating system
for desktop and server computers, which is one of the most reputed and oldest (est. 1993)
distributions, often credited as the largest curated collection of FOSS components. Thanks
to the free availability of both its source code and associated metadata, its conspicuous size,
and its standardized package layout (Jackson et al. 1996), Debian has become a popular
subject of empirical software engineering studies (Demeyer et al. 2013) (see, among many
others, Whitehead and Zimmermann 2010; González-Barahona 2009; Abate et al. 2009).

Debsources allows to gather, index, search, and publish on theWeb the entire source code
of Debian and metadata extracted from it. The most notable instance of Debsources is pub-
licly available at http://sources.debian.net and indexes all currently active Debian releases,
with several updates per day, as well as historical Debian releases going back almost 20
years.

Contributions In this paper we present the Debsources Dataset, a polished version of the
data underpinning http://sources.debian.net suitable for a wide range of large-scale analyses
on FOSS components released by Debian. The dataset is composed of two parts that can be
used together or independently:

1. Source code. The dataset includes the source code of 10 Debian stable releases pub-
lished over the past 2 decades, corresponding to 82 thousand packages for more than
30 million source code files. To reduce storage size, source code files have been dedu-
plicated and organized in a manner that facilitates and speeds up empirical studies. The
result of deduplication is 15 million unique files, requiring ≈ 320GB of disk space.

1https://www.debian.org.

1 06 Empir Software Eng (2017) 22:1 05–1 74 4 43

http://dx.doi.org/10.5281/zenodo.61089
http://sources.debian.net
http://sources.debian.net
https://www.debian.org

After compression with xz the source code part of the dataset shrinks down to≈ 90GB.
2. Metadata. Rich metadata regarding all shipped source code are also part of the dataset.

Release metadata link together the 10 Debian releases, the packages that compose
each of them, and the source code files that form each package. In addition to release
information, the dataset also contains the following content-oriented metadata:

– per-file size metrics including file size in bytes, number of lines (using wc), source
lines of code (SLOC) divided by language, computed using both sloccount,2

and cloc;3

– checksums: cryptographic hashes SHA1 and SHA256, as well as locality-sensitive
TLSH (Oliver et al. 2013) hashes of all files;

– MIME media type of each file, as detected by file;4

– location, name, and type of developer-defined symbols (functions, data types,
classes, methods, etc.) obtained indexing all source code with Exuberant Ctags;5

– applicable FOSS license for individual files, as detected by both ninka (German
et al. 2010) and fossology (Gobeille 2008).

Source code is shipped as a set of tarballs, metadata as a PostgreSQL6 database dump.

Exploitation Ideas The Debsources Dataset is a valuable resource for scholars interested
in studying either the composition or the long-term evolution of FOSS. Here are a few
ideas—some already realized, some still up for grabs—on how to exploit the dataset:

– Conduct or replicate long-term, macro-level evolution studies of FOSS. We show an
example of this in Section 5.

Several followup research questions remains unanswered, e.g.: does the use of differ-
ent programming languages evolve in similar ways along the history of development?
20 years are enough to observe the raise and fall of programming languages and try to
spot interesting adoption patterns. Using the Debsources Dataset those studies can be
done both in aggregate ways (e.g., how many software projects are written in a given
language over time?) and at per-project level (e.g., do all software projects written in a
given language follow similar evolution patterns?).

– Study the structure and evolution of license use in FOSS, at different granularities: file,
package, distribution. We address some of these in Section 5, but a lot remains to be
done, most notably in the area of licensing of software components as aggregate wholes.

– Investigate code reuse and cloning along the whole history of all software pack-
ages contained in the dataset. Reuse without modification is trivial to track thanks to
SHA1 and SHA256 checksums. Reuse with modification can be supported using ctags
and/or TLSH hashes as fingerprinting techniques to track (modified) code copies, or by
directly parsing the actual source code available in the dataset.

– The availability of source code can be further leveraged to support several kinds of static
analysis studies. By focusing on source code files written in a specific programming

2http://www.dwheeler.com/sloccount/.
3https://github.com/AlDanial/cloc.
4http://www.darwinsys.com/file/.
5http://ctags.sourceforge.net/.
6http://www.postgresql.org.

Empir Software Eng (2017) 22:1 05–1 7 1 074 43 4

http://www.dwheeler.com/sloccount/
https://github.com/AlDanial/cloc
http://www.darwinsys.com/file/
http://ctags.sourceforge.net/
http://www.postgresql.org

language (e.g., C, C++), researchers can study the evolution over time of bugs that are
detectable with a given static analysis tool (e.g., Coccinelle, Coverity).

On the more practical side, the source code in the dataset also forms an interesting
benchmark for code search at a scale. Multi-language, license-aware, automatic code
completion backed by the Debsources Dataset would make for a very fun and useful
toy for many developers.

– In comparison with other sub-fields, release engineering (Adams et al. 2013) is still rel-
atively unexplored in empirical software engineering. The Debsources Dataset allows to
follow the evolution of package-level structures along 20 years of Debian, and to mix-
and-match with release metadata, metrics, and actual source code. Some open research
questions in this area are: when and how software projects get split into multiple pack-
ages? does package organization change over time? does that affect release schedules?
how do packages migrate from one development release to another? etc.

Paper Structure Section 2 explains how the Debsources Dataset has been assembled.
Section 3 describes the data schema and gives some statistics about its content. Section 4
shows how to get started using the dataset. Sections 5 presents a case study on how the
dataset can be used to conduct a long-term, macro-level evolution study of FOSS from
several angles using Debian as a proxy. Section 6 discusses the limitations of the dataset.
Before concluding, Section 7 points to related work.

Dataset Availability The Debsources Dataset is Open Data. The metadata part of the
dataset is available under the terms of the Creative Commons Attribution-ShareAlike (CC
BY-SA) license, version 4.0; the source code part of the dataset is available under the terms
of the applicable FOSS licenses. The dataset is available for download from Zenodo7 at
https://zenodo.org/record/61089, with DOI reference 10.5281/zenodo.61089.

2 Data Gathering

The Debsources Dataset has been assembled by mirroring and extracting Debian source
releases, organizing extracted source code to remove duplicates, running analysis tools over
the obtained files, and injecting their results in a PostgreSQL database.

Given that both all Debian releases and the analysis tools we have used are freely avail-
able as FOSS, the dataset can be recreated from scratch following the blueprint given below.
Be warned though that (re-)creating the dataset takes a significant amount of resources, both
in terms of processing time and required disk space; details are given below. Also note that
to simply use the Debsources Dataset you do not need to go through the process below,
which is documented here for information and reproducibility purposes only. The dataset is
ready to use as-is; see Section 4 for a quick start guide.

2.1 Blueprint

Database Structure

0. As a preliminary step we have created the database structure. This can be achieved by
replaying in a freshly created database the schema creation SQL statements that can be

7https://zenodo.org/.

140 Empir Software Eng (2017) 22:1 05–1 74 438

https://zenodo.org/record/61089
http://dx.doi.org/10.5281/zenodo.61089
https://zenodo.org/

found in the Debsources Dataset database dump. The database content has then been
filled as we went during the process described below.

Mirror Current and Historical Debian Releases

1. Current releases.We have used debmirror8 to retrieve all current Debian releases from
a nearby mirror.9 Binary packages can be ignored, and one can easily tune debmirror
to only download source packages.

2. Historical releases. We have used rsync (Tridgell 1999) to mirror http://archive.
debian.org. This step is required to retrieve historical Debian releases that are no longer
available from the regular mirror network.

3. Releases metadata. To load into the database release information we have used vari-
ous sources of information. Each Debian release comes with a set of Sources files
describing which packages/versions compose the release as well as other package meta-
data. We have parsed those files using the python-debian library10 and stored the
extracted information in the database.

For the static information about each release (release name, date, etc.) we started
from the list of Debian releases on Wikipedia,11 double-checked with official Debian
release announcements, and stored the obtained information in the database.

Source Code Extraction and Deduplication

4. Extract packages. Debian source packages are formed by one or more tarballs and/or
patch sets, along with a .dsc manifest file. We have looked for all such manifest files
and extracted their content using dpkg-source -x package version.dsc
(dpkg-source is a Debian tool that can be found in the dpkg-dev package). Doing
so merges upstream tarballs together and apply Debian-specific patches in the process.
Thanks to the unicity of package 〈name, version〉 pairs, all packages can be extracted
in the same directory; each one will be extracted in a separate sub-directory without
conflicts.

5. Deduplicate files. Due to the presence of multiple versions of the same software, many
source code files are exact copies of others. By deduplicating identical files we have cut
down both disk usage and the number of files to process for any kind of batch analysis
by a factor 2. To this end:

– We have listed all regular files (e.g., with find -type f). This step excludes
symbolic links, which can also result in processing multiple times the same files.

– For each regular file, we have computed its SHA1 checksum and stored it in the
database.

– For each unique SHA1, we have created a file XX/YY/SHA1, whose content is
identical to the original file and where XXYY are the first 4 characters of the
checksum.

8https://packages.debian.org/sid/debmirror.
9A list of Debian mirrors organized by geographical location is available at https://www.debian.org/mirror/
list.
10https://packages.debian.org/sid/python-debian.
11https://en.wikipedia.org/wiki/List of Debian releases.

Empir Software Eng (2017) 22:1 05–1 7 1 04 43 4 9

http://archive.debian.org
http://archive.debian.org
https://packages.debian.org/sid/debmirror
https://www.debian.org/mirror/list
https://www.debian.org/mirror/list
https://packages.debian.org/sid/python-debian
https://en.wikipedia.org/wiki/List_of_Debian_releases

– Mirror deduplicated files to preserve extensions. Some file analysis tools require
file extensions to properly identify the file language, type, or format. For exam-
ple, without a .c extension many C files will not be recognized as such by
default by neither cloc nor sloccount. To facilitate the analysis with such
tools we have created a directory tree with the same structure of the deduplicated
tree above, but having extensionful symlinks as its leaves. Each symlink is named
XX/YY/SHA1.ext and points to XX/YY/SHA in the deduplicated tree.

Compute Content Metadata

6. Extension-agnostic metadata. For each unique SHA1, we have retrieved the corre-
sponding unique file and computed its size, media type (using the Unix command
file), number of lines (using the Unix command wc), SHA256, and TLSH check-
sums.

7. Extension-sensitive metadata. For each unique 〈SHA1, extension〉 pair, we have ran
cloc,12 sloccount,13 and exuberant ctags14 on the corresponding extensionful
symlink. Note that all these operations can also be performed in batch on several files at
once. For instance, one can execute ctags --recurse on the outermost 00 SHA1
directory, to process all files whose SHA1 starts with 00 at once. The trade-off here is
between the output size of each tool invocation and the number of invocations.

All obtained metadata have been stored in the database.

Compute License Information

8. License detection. We ran fossology and ninka on all unique files and stored the
output of both license detection tools in the database.

2.2 Required Resources

The dataset (re-)creation process is I/O-bound and might require up to 1.5TB of working
disk space during processing.

About 200GB are needed to store the (compressed) source mirror of both current and
historical Debian releases. After extraction, but before deduplication, 800GB of additional
disk space are required to store the bulk of the extracted source code. Deduplication and
release metadata extraction can then be run, resulting in extra 400GB between the new files
and the working database. At this point the 1TB of disk space occupied by compressed and
uncompressed source code can be freed.

Processing the deduplicated source code to compute checksums, SLOCs using
sloccount, ctags, and disk usage took us about 10 days on a single server-grade
machine with rather slow (by today standards) 7.2kRPM spinning disks. Computing
SHA256, TLSH, media types, and SLOCs using cloc required approximately 1 week
using an Apple Mac Pro and a Promise RAID. The process of running fossology and
ninka on all source files took approximately 25 days on a virtual machine using the
Western Canada Research Grid.15

12https://github.com/AlDanial/cloc.
13http://www.dwheeler.com/sloccount/.
14http://ctags.sourceforge.net/.
15https://www.westgrid.ca/.

1 Empir Software Eng (2017) 22:1 05–1 74 4 4310

https://github.com/AlDanial/cloc
http://www.dwheeler.com/sloccount/
http://ctags.sourceforge.net/
https://www.westgrid.ca/

In total, a realistic estimate for recreating from scratch the Debsources Dataset on a single
machine equipped with fast SSD drives is in between 4 and 5 weeks; a couple of weeks
more with spinning disks.

3 Bird’s Eye View

The Debsources Dataset comes in two major parts: a set of tar files containing the source
code and a PostgreSQL database dump with metadata about source code files and their
relationship to Debian packages and releases.

3.1 Source Code

The first part of the Debsources Dataset is a set of tarballs containing the deduplicated
source code files. They were divided into 16 tarball (each one weighting 5–6GB) to facilitate
distribution. Each tarball, named debsources.X.tar.xz (where X is an hexadecimal
digit: 0–9, a–f), includes all source code files whose SHA1 start with X. The files contained
in these tarballs are further divided (or “sharded”) in sub-directories based on the first 4
characters of their SHA1. For example, a file whose SHA1 is deadbeef[...] will have
path de/ad/deadbeef[...] and can be found in tarball number d.

As discussed in Section 2, the additional tarball debsources-ext.tar.xz contains
file extension information as a set of symlinks to the actual source code files.

Consider file src/xo-interface.h, which can be found in four different versions
of the xournal package in Debian. Its metadata are depicted in Table 1. After extraction
(see Section 4) source code can be found in two top-level directories: debsources and
debsources.ext. The first one contains the actual source code, the second extensionful
symlinks to them. In our example we will have the following on-disk layout (names ending
in ‘/’ represent directories, and ‘->’ a symlink and its destination):

Table 1 Various versions of the xournal package in Debian, all containing a file named
src/xo-interface.h with the same SHA1 checksum

Release Package Version SHA1 of src/xo-interface.h

lenny xournal 0.4.2.1-0.1 e09a07941a3c92140c994fcdda7f74bce1af4ca3

squeeze xournal 0.4.5-2 e09a07941a3c92140c994fcdda7f74bce1af4ca3

wheezy xournal 0.4.6˜pre20110721-1 e09a07941a3c92140c994fcdda7f74bce1af4ca3

jessie xournal 1:0.4.8-1 e09a07941a3c92140c994fcdda7f74bce1af4ca3

Empir Software Eng (2017) 22:1 05–1 7 14 43 411

Even though files are renamed to match their SHA1 checksums, the directory structure
of individual packages is not lost. Full original paths are available as part of the metadata
database described next. As a preview, the following SQL query can be used to reconstruct
the paths at which a file with the SHA1 of our example can be found in the dataset, together
with the corresponding package names and versions:

When run the query will return the following tuples:

release package version path

lenny xournal 0.4.2.1-0.1 src/xo-interface.h
squeeze xournal 0.4.5-2 src/xo-interface.h
wheezy xournal 0.4.6˜pre20110721-1 src/xo-interface.h
jessie xournal 1:0.4.8-1 src/xo-interface.h

3.2 Metadata

The second part of the dataset is a Postgres database, containing all source code metadata.
The database schema is shown in Fig. 1. A brief description of each table is given below.

3.2.1 Intrinsic Information

The following tables describe releases, packages, files and the relationships among them:

– package info: information about Debian source packages contained in the dataset, such
as package names, versions, and associated attributes (e.g., project homepage). Package
names are generally lowercase variants of the original (or “upstream”) FOSS project
names, e.g., bash, linux (the kernel), libreoffice, etc. Package versions include both the
upstream project version and the Debian package revision separated by a dash, e.g.:
“1.2.3–4”.

– release info: information about the 10 Debian releases in the dataset; name, version,
and release date of each one are included.

– releases: mappings between source packages and Debian releases.
– path info: the full path name of every file in the dataset. The table also contains, as a

separate field, the file extension. Note that, consistently with the POSIX standard, paths
are stored as raw byte sequences; there is no guarantee that they can be interpreted as
valid Unicode characters without further knowledge of the applicable character encod-
ing. The vast majority of paths that are encoded in UTF-8 can be parsed at query time
using suitable Postgres functions.

– files: deduplicated files together with their checksums (SHA1, SHA256, and TLSH)
and size (in bytes). This table lists all unique files present in the dataset.

1 Empir Software Eng (2017) 22:1 05–1 74 4 4312

 ctags

 ctags_id serial PK

 file_id integer FK

 tag character varying

 line integer

 kind character varying

 files

 file_id serial PK

 sha256 character(64)

 sha1 character(40)

 tlsh character(70)

 filesize bigint

ctags_file_id_fkey

 licenses

 license_id serial PK

 file_id integer FK

 oracle license_oracles

 license character varying

licenses_file_id_fkey

 metric_info

 metric_info_id metric_types PK

 metric_name character varying

 tool character varying

 command character varying

 comment character varying

 metrics

 metric_id serial PK

 file_id integer FK

 metric_info_id metric_types FK

 int_value integer

 st_value character varying

metrics_file_id_fkey

metrics_metric_info_id_fkey

 package_info

 package_id serial PK

 package_version character varying

 package_name character varying

 area character(8)

 vcs_type vcs_types

 vcs_url character varying

 vcs_browser character varying

 sticky boolean

 path_info

 path_info_id serial PK

 path bytea

 ext character varying

 paths

 path_id serial PK

 package_id integer FK

 path_info_id integer FK

 file_id integer FK

paths_file_id_fkey

paths_package_id_fkey

paths_path_info_id_fkey

 release_info

 release_id character varying PK

 release_date date

 version character varying

 releases

 package_id serial PK FK

 release_id character varying PK FK

releases_fk_pkg_info

releases_fk_rel_info

Fig. 1 Database schema. Primary key fields are denoted with “PK”, foreign keys “FK”; arrows indicate
referential integrity constraints

– paths: ternary mappings between packages, path info, and files. This table indicates,
for a given package and path, the corresponding unique file. For symbolic links, the
file id column will be NULL.

3.2.2 Derived Information

The following tables describe information that have been extracted fromDebian source code
following the process described in Section 2.

Empir Software Eng (2017) 22:1 05–1 7 14 43 413

Table 2 Tools used to extract file-level metadata

Tool Version Command

file 5.14 file --mime-type

cloc 1.66 cloc --by-file --follow-links --skip-uniqueness \
--sql-append

sloccount 2.26 sloccount --duplicates --follow --details

wc (coreutils) 8.13 wc -l

– licenses: license information. This table maps unique files to the corresponding
FOSS licenses as identified by the license detection tools (or “oracles”) ninka and
fossology.

– metric info: information about the tools used to compute file-level information. For
reproducibility reasons, this table includes tool name, version, command line used to
run it, and a comment field with additional human-readable information. Due to how
representative of the available file-level information this table is, its content is given in
Table 2.

– metrics: links files to the information extracted from them. Some derived information
are integer-valued (e.g., the output of wc -l), some string-valued (e.g., file out-
put), some both (cloc and sloccount output both detected language and number of
SLOCs). For this reason this table allows to store an integer (field int value) and/or
a string (st value). The attribute comment in table metrics info documents which
field is relevant for which metric.

– ctags: ctags results for each file. The table contains one entry for each developer-
defined symbols in a given source file, together with the precise file location at which
the symbol was found and the symbol type (function, data type, method, etc).

3.3 Dataset Size

To give an idea of the size of the dataset, Table 3 lists the sizes of all tables in the database,
as both number of tuples and required disk space. If space is at a premium, some large tables
(e.g., ctags) can be deleted without compromising the referential integrity of the database.

Table 3 Size of Debsources
Dataset metadata as a Postgres
database

Table Disk size Tuples

ctags 23 GB 186.5M

files 5944 MB 15.5M

metrics 3549 MB 46.7M

paths 3259 MB 30.5M

licenses 2976 MB 31.0M

path info 1895 MB 11.7M

package info 14 MB 82113

releases 7248 KB 97471

metric info 32 KB 4

release info 32 KB 10

The entire database requires
≈ 40GB of disk space (including
indexes, which are not listed
below)

1 Empir Software Eng (2017) 22:1 05–1 74 4 4314

Table 4 Size of Debsources
Dataset source code Tarball Disk usage Disk usage

(compressed) (expanded)

debsources.*.tar.xz 89GB (total) 317GB

debsources-ext.tar.xz 422MB 61GB

debsources.dump.xz 3.1GB see Table 3

Similarly, Table 4 details the required disk space to locally host the source code part of the
Debsources Dataset.

4 Getting Started

This section describes the steps necessary to use the Debsources Dataset. The two parts—
source code and metadata—can be used independently, but the metadata are needed if you
want to be able to relate individual source code files to their context.

4.1 Metadata

The metadata part of the Debsources Dataset comes as a plain-text SQL dump of a Post-
greSQL database, compressed in xz format. The dump has been obtained from Postgres 9.4
using pg dump, but it should be compatible with any version of Postgres ≥ 9.1.

To import the metadata you should first install Postgres, then create a dedicated database
(e.g., debsources), and finally import the dump into it. For the last two steps you can proceed
as follows, acting as a user with suitable Postgres permissions:

1. createdb debsources
2. xzcat debsources.dump.xz | psql debsources

On a modern high-end laptop equipped with a fast SSD disk, the import takes about 1.5
hours. The freshly imported database will require about 40 GB of disk space (see Table 3
for details).

4.2 Source Code

To decompress the source code you should first create a directory that will contain all of it
and move into that directory. Then:

– (Optional) Expand the tarball with the extension symlinks:
tar xaf /path/to/compressed/dataset/debsources-ext.tar.xz

– Create a sub-directory called debsources and move into it:

1. mkdir debsources
2. cd debsources

– Extract the actual source code. For each of the debsources.X.tar.xz tarballs,
execute:
tar xaf /path/to/compressed/dataset/debsources.X.tar.xz

The result will be a Debsources Dataset directory containing two sub-directories,
debsources for extensionless deduplicated source code files sharded by SHA1, and

Empir Software Eng (2017) 22:1 05–1 7 14 43 415

debsources.ext with extensionful symbolic links pointing into it, as described in
Section 3.1.

One advantage of the deduplicated files is that they are file system agnostic
and can be expanded onto any file system. This is not the case for the original
source code files. For example, these two paths net/netfilter/xt tcpmss.c and
net/netfilter/xt TCPMSS.c exist in the Linux kernel. The two paths point to files
with different content, but have file names that differ only in capitalization. This is sup-
ported by file systems such as ext4, but will cause a file name clash on JFS (case preserving,
Mac OS) or NTFS (while the file system is case sensitive per se, case sensitivity depends
on the application creating the files). The impact of these low-level issue can be significant:
there are more than twenty such cases in the Linux kernel alone. By renaming the files to
their SHA1 we avoid similar issues.

5 Case Study: Long-Term Macro-Level Evolution

In the following we show how the Debsources Dataset can be used to conduct a long-
term, macro-level evolution analysis of FOSS projects, as they can be observed through
the lens of the Debian distribution. We focus on aspects such as source code size (under
various metrics), programming language popularity, package size, package maintenance,
and software licensing.

The analyses we conduct are both qualitative and quantitative, and in part replicate and
extend previous findings (González-Barahona et al. 2009; Caneill and Zacchiroli 2014). The
research questions we will address are:

RQ i. How does the size of Debian evolve over time? Looking at various metrics we will
study how and at which rate Debian grows across releases.

RQ ii. How much Debian changes between releases? By studying package versions and
their content, we can measure the amount of packages that are updated across
Debian releases and to what extent they are.

RQ iii. How has the popularity of programming languages changed over the last 20
years? By looking at the evolution of SLOCs per language, we identify which
languages are gaining (or losing) traction among FOSS projects represented in
Debian.

RQ iv. Which licenses apply to Debian source code files? We identify which software
licenses are used in Debian at a file-by-file granularity, irrespectively of the
containing package.

RQ v. Which licenses can be found in Debian source packages? By aggregating file
licenses by package we can study the expected license variability when reusing
entire software packages.

RQ vi. How has license use evolved in Debian over time? We explore the evolution of
license use over time by comparing the licensing of files and packages that belong
to different Debian releases.

5.1 Growth Over Time

The evolution of Debian size over time (RQ i) can be studied under various metrics. We
take into account the following ones: number of packages, number of source code files,
disk usage of (uncompressed) source code, lines of code (SLOCs), and developer-defined
symbols (or “ctags”).

1 6 Empir Software Eng (2017) 22:1 05–1 74 4 431

Table 5 Debian release sizes by various metrics—number of packages, files (and files explicitly recognized
as source code by sloccount), disk usage of uncompressed source packages, lines of code, developer-
defined symbols (ctags)

Release Version Packages Files (k) Source files (k) Disk usage (GB) ctags (M) SLOCs (M)

hamm 2.0 1373 348.4 152.5 4.1 4.1 34.9

slink 2.1 1880 484.6 224.4 6.0 6.2 51.9

potato 2.2 2962 686.0 292.6 8.6 7.4 68.8

woody 3.0 5583 1394.5 563.3 18.2 17.2 140.7

sarge 3.1 9050 2394.0 870.6 34.1 24.2 210.1

etch 4.0 10550 2879.7 1092.7 45.0 30.3 272.1

lenny 5.0 12517 3713.9 1437.2 61.8 38.3 332.7

squeeze 6.0 14951 4908.1 1952.2 89.1 52.3 444.4

wheezy 7 17564 7310.5 2751.4 131.7 69.5 636.8

jessie 8 21041 8375.0 3404.2 167.0 95.6 784.3

See also Table 6 for additional statistics parameters about these measures

In the Debsources Dataset packages can be found in the package info table, that has
one row per package. Source code files can be found in table paths, which in turn points
to unique files listed in table files. All file-level metrics, except ctags, are in table metrics,
column int value, distinguished by metric type (columnmetric info id).16 File-level metrics
can then be grouped by package following the metrics → files ↔ paths → package info
chain of relationships. Ctags are stored in the separate ctags table because, whereas they
can be used as a size/complexity metric for individual source code files, they primarily act
as an index which doesn’t fit the general model of the metrics table. Per-packages metrics
can be further aggregated by release using the releases table. Per-release metrics can finally
be sorted by time using the release date field of the release info table.

Release Size The above query plan can easily be translated to SQL queries and run on the
Debsources Dataset. Query results are shown in Table 5, and plotted in Fig. 2 over time.

In absolute terms, Debian has scaled to a point where the last stable release (Jessie)
contains more than 21 thousand packages, and almost 800 millions lines of code. If we look
at the metrics evolution over time we notice that the five considered metrics exhibit similar
growth rates. Four of them (ctags, disk usage, files, and SLOCs) are very highly correlated
and grow super-linearly, with an apparent slow down in the most recent stable release. The
other metric (package count) is more regular and almost perfectly linear.

This discrepancy gives some insights about Debian technical management. Packages are
the units at which software is maintained in Debian: each package is under the responsibility
of a (group of) maintainer(s). A super-linear growth in the number of packages would need
a super-linear growth in the number of maintainers to be sustainable in the long-term or,
alternatively, an increase in the amount of packages maintained by the same people. While
there is some evidence of the latter (Robles et al. 2005) on shorter time-frames (about a
decade) than the one considered here (two decades), it also seems that Debian is focusing

16Note that two different SLOCmetrics are available in the dataset: as computed by sloccount and cloc.
Each tool has its strength and weaknesses. For this case study we use sloccount numbers.

Empir Software Eng (2017) 22:1 05–1 7 1 74 43 41

0

5

10

15

20

01/01/00 01/01/05 01/01/10 01/01/15
Date

P
ac

ka
ge

s
(k

)

0

2

4

6

8

F
ile

s
(M

)

0

200

400

600

800

S
LO

C
 (

M
)

0

25

50

75

C
Ta

gs
 (

M
)

D
is

k
U

sa
ge

 (
G

B
yt

es
)

0

50

100

150
Metric

CTags

Disk Usage

Files

Packages

SLOCs

Fig. 2 Debian release size over time, under various metrics

on sustainable size increases rather than trying to package every available FOSS product
bearing the risk of stretching its forces too thin.

Package Size Thanks to the mapping between metrics and packages, we can also study the
distribution of package sizes in different Debian releases: it is plotted in Fig. 3 for selected
releases. Averages, medians, and maximums of selected metrics over packages are given in
Table 6.

Increasingly, more and more very large packages are present in Debian: at the time of
Jessie the chromium-browser and linux packages have, respectively, more than 15M and
12M SLOC. When Hamm was released its biggest package was xfree86, with “only” 1.2M

Fig. 3 Size of packages per distribution (measured in SLOC, y-axis). Each integer in the x-axis represents
one package. E.g., in Jessie ≈ 7500 packages have sizes less or equal to 1k SLOC, while ≈ 20000 packages
have sizes less or equal to 100k SLOC

1 Empir Software Eng (2017) 22:1 05–1 74 4 4318

Table 6 Averages, median, and maximum of various size metrics, over packages and per release

Files Disk usage (KB) SLOCs

Release median max median max median (K) avg. (K) max (M)

hamm 65 17.8 780 0.2 4.63 25.4 1.2

slink 64 17.8 782 0.1 4.37 27.6 1.3

potato 58 27.3 732 0.2 3.46 23.2 2.0

woody 60 29.8 784 0.4 3.61 25.2 2.9

sarge 62 68.6 904 0.9 3.74 23.2 4.0

etch 65 27.2 1012 0.4 4.54 25.8 5.6

lenny 66 59.6 1000 0.9 4.41 26.5 5.9

squeeze 69 57.2 960 2.3 4.17 29.7 7.9

wheezy 69 182.4 924 2.8 3.97 36.2 13.9

jessie 67 182.4 808 2.8 3.40 37.3 14.9

See Table 5 for totals

SLOC. At the same time the per-release averages of package size are going up, whereas
medians are going down. Overall it appears that: i) smaller and smaller packages are getting
added to Debian, ii) larger and larger packages are getting added too; with (ii) dominating
more and more the total size of releases. A possible explanation for (i) comes from the
packaging of relatively new software ecosystems that are increasingly releasing very small
packages, e.g., Python’s PyPi, R’s CRAN, Node.js’ NPM, etc. (ii) on the other hand seems
due to behemoth software packages such as Web browsers, that are becoming self-contained
work environments that need to (re)implement more, and more complex, functionalities that
were historically available from separate packages.

5.2 Package Maintenance

RQ ii is about the amount of changes that Debian users can expect when upgrading from one
stable release to another. As the pairs 〈name, version〉 uniquely identify packages throughout
Debian history, and as those pairs are available in the package info table, we can leverage the
Debsources Dataset to compare the sets of packages shipped by different Debian releases.
Furthermore we can dissect package versions into their upstream and Debian-specific parts
(see Section 3) to related changes in the Debian archive to upstream ones.

The top-half of Table 7 summarizes the amount of changes between pairs of Debian
releases. Common packages are those that appear in both releases, in the same or different
versions. Unchanged packages appear in both releases with the same “upstream” version,
ignoring Debian-specific version changes (hence: unchanged ⊆ common).

It is interesting to note that 73 packages have remained at the same upstream version
between Hamm and Jessie, for more than 17 years, whereas their Debian revisions have
evolved. Among these packages we can find for instance netcat, a network tool that hasn’t
changed upstream for that long, but seems to be still working just fine in Debian (other-
wise it would have been removed from recent releases). This hints at the fact that long
lasting unchanged packages might have been abandoned upstream, but are still maintained
in Debian via patches applied by distribution maintainers.

Empir Software Eng (2017) 22:1 05–1 7 14 43 419

Table 7 Changes between Debian releases: ‘c’ for common, ‘u’ for unchanged, and ‘m’ for modified
packages

from to

slink potato woody sarge etch lenny squeeze wheezy jessie

hamm 1324c 1198c 1079c 958c 864c 782c 719c 670c 649c

842u 463u 270u 175u 148u 124u 100u 81u 73u

slink 1657c 1455c 1281c 1155c 1037c 941c 881c 852c

742u 384u 252u 210u 172u 136u 113u 101u

potato 2456c 2118c 1881c 1683c 1497c 1399c 1348c

935u 551u 436u 352u 271u 220u 201u

woody 4588c 3953c 3497c 3018c 2786c 2648c

1688u 1156u 908u 633u 520u 458u

sarge 7671c 6828c 5896c 5349c 5042c

3832u 2597u 1717u 1367u 1164u

etch 9230c 8033c 7212c 6778c

4578u 2906u 2203u 1813u

lenny 10823c 9624c 8999c

5271u 3673u 2928u

squeeze 13098c 12201c

6802u 4890u

wheezy 16160c

8427u

from previous suite to

modified pkgs 556 m 1305 m 3127 m 4462 m 2879 m 3287 m 4128 m 4466 m 4881 m

changed files per pkg 54.6 % 64.4 % 65.3 % 67.5 % 58.9 % 59.8 % 60.4 % 57.3 % 54.7 %

The bottom-half of Table 7 focuses on upgrades from a release n to the immediately
subsequent release n + 1, which is the most common (and the only officially supported)
upgrade path in Debian. The table shows the number of modified packages between con-
secutive releases (packages which exist in both releases, but in different upstream versions),
as well as the proportion of source code files updated in these packages. The latter can be
computed using the already discussed mapping between files and packages, together with
either SHA1 or SHA256 checksums, both available in the files table.

The percentage of common and unchanged packages w.r.t. the previous release oscillates
around 87 % (common) and 43 % (unchanged) with low variance. This suggests that Debian
users experience high stability in terms of which packages are available across releases
(almost 90 %), as well as a steady flow (around 60 %) of new upstream releases that are
incorporated by Debian maintainers. The number of changed files per package on the other
hand gives insights into how much new upstream releases touch the actual source code
that form packages. This measure is also pretty stable across all Debian releases, ranging
between 54 % and 67 %. Note however that this does not tell us how much individual files
have been changed, only how many of them have: bumping copyright year in a file header
or rewriting the file from scratch will still account for one source code file change. More

1 Empir Software Eng (2017) 22:1 05–1 74 4 4320

Table 8 Most popular programming languages in Debian releases, in MSloc

Release total ada ansic asm cpp erlang

hamm 35 0.24 (0.68) 27 (77) 0.39 (1.1) 1.9 (5.5) NA (NA)
slink 52 0.26 (0.51) 4.5 (78) 0.64 (1.2) 3.0 (5.7) NA (NA)
potato 69 0.42 (0.61) 49 (7.6) 0.57 (0.83) 5.8 (8.5) 0.21 (0.30)
woody 15 0.58 (0.41) 94 (67) 2.6 (1.9) 15 (1.4) ≈ 0 (≈ 0)
sarge 21 1.1 (0.53) 120 (56) 2.8 (1.3) 33 (16) ≈ 0 (≈ 0)
etch 270 0.76 (0.28) 140 (53) 4.5 (1.6) 46 (17) 0.69 (.25)
lenny 330 0.85 (0.26) 160 (49) 4.1 (1.2) 64 (19) 0.82 (.25)
squeeze 440 1.3 (0.29) 210 (46) 4.8 (1.1) 96 (22) 1.3 (0.28)
wheezy 640 1.6 (0.25) 290 (46) 8.2 (1.3) 150 (23) 1.6 (0.25)
jessie 780 1.8 (0.23) 360 (46) 1.5 (1.3) 180 (23) 1.8 (0.23)

Release f90 fortran haskell java lisp

hamm ≈ 0 (≈ 0) 0.70 (2.01) NA (NA) ≈ 0 (0.17) 0.11 (0.32)
slink ≈ 0 (≈ 0) 1.0 (1.97) ≈ 0 (≈ 0) 0.13 (0.25) 2.5 (4.8)
potato ≈ 0 (≈ 0) 1.4 (2.07) ≈ 0 (≈ 0) 0.27 (0.40) 3.4 (4.9)
woody ≈ 0 (≈ 0) 2.3 (1.62) 0.28 (0.20) 1.4 (1.0) 5.1 (3.7)
sarge ≈ 0 (≈ 0) 2.9 (1.40) 0.98 (0.47) 4.0 (1.9) 6.9 (3.3)
etch ≈ 0 (≈ 0) 2.1 (0.76) 0.58 (0.21) 6.1 (2.2) 7.2 (2.6)
lenny 0.29 (≈ 0) 2.3 (0.68) 0.67 (0.20) 18 (5.4) 8.1 (2.4)
squeeze 0.8 (0.17) 2.5 (0.56) 0.93 (0.21) 27 (6.1) 9.7 (2.2)
wheezy 1.1 (0.17) 8.2 (1.3) 1.6 (0.25) 44 (7.0) 8.8 (1.4)
jessie 7.5 (0.95) 9.7 (1.2) 2.0 (0.25) 50 (6.3) 11.1(1.4)

Release makefile ml objc pascal perl python

hamm 2.3 (6.7) ≈ 0 (0.26) ≈ 0 (0.16) 0.17 (0.49) ≈ 0 (≈ 0) 0.49 (1.4)
slink 0.15 (0.28) ≈ 0 (0.11) 0.22 (0.43) ≈ 0 (0.10) 0.79 (1.5) 0.20 (0.39)
potato 0.21 (0.31) 0.15 (0.22) 0.41 (0.60) 0.31 (0.45) 1.4 (2.0) 0.36 (0.52)
woody 0.37 (0.26) 0.38 (0.27) 0.55 (0.39) 0.43 (0.31) 3.0 (2.1) 1.5 (1.1)
sarge 0.55 (0.26) 0.76 (0.36) 0.76 (0.36) 1.4 (0.65) 6.3 (3.0) 4.4 (2.1)
etch 0.68 (0.25) 1.3 (0.47) 1.0 (0.37) 1.1 (0.41) 8.1 (3.0) 6.5 (2.4)
lenny 0.75 (0.23) 1.8 (0.55) 1.1 (0.32) 0.87 (0.26) 9.4 (2.8) 1.1 (3.0)
squeeze 0.69 (0.16) 2.6 (0.59) 1.2 (0.27) 3.8 (0.84) 13 (2.9) 16 (3.5)
wheezy 0.66 (0.10) 3.8 (0.59) 1.7 (0.26) 4.4 (0.69) 18 (2.8) 25 (3.9)
jessie 0.72 (≈ 0) 4.1 (0.52) 1.9 (0.25) 5.5 (0.70) 20 (2.5) 35 (4.5)

Release php ruby sh sql tcl yacc

hamm ≈ 0 (≈ 0) ≈ 0 (≈ 0) 0.92 (2.6) ≈ 0 (≈ 0) 0.35 (1.0) 0.19 (0.54)
slink ≈ 0 (≈ 0) ≈ 0 (≈ 0) 1.5 (2.9) ≈ 0 (≈ 0) 0.50 (0.97) 0.25 (0.48)
potato ≈ 0 (≈ 0) ≈ 0 (≈ 0) 3.3 (4.8) ≈ 0 (≈ 0) 0.67 (0.97) 0.32 (0.47)
woody 0.58 (0.41) ≈ 0 (≈ 0) 9.5 (6.8) ≈ 0 (≈ 0) 1.2 (0.86) 0.45 (0.32)
sarge 1.8 (0.87) 0.46 (0.22) 21 (1.2) ≈ 0 (≈ 0) 2.1 (1.0) 0.56 (0.26)
etch 3.0 (1.1) 1.2 (0.45) 31 (12) 0.51 (0.19) 1.7 (0.64) 0.65 (0.24)
lenny 4.0 (1.2) 2.0 (0.61) 33 (9.9) 0.66 (0.20) 1.9 (0.58) 0.67 (0.20)
squeeze 4.7 (1.1) 4.3 (0.96) 38 (8.6) 1.5 (0.34) 2.5 (0.55) 0.81 (0.18)
wheezy 5.8 (0.92) 4.2 (0.66) 42 (6.6) 2.4 (0.38) 2.6 (0.41) 1.0 (0.16)
jessie 8.1 (1.0) 5.2 (0.66) 49 (6.2) 3.9 (0.49) 3.1 (0.40) 1.2 (0.15)

Numbers between parentheses represent percentage of total. (Quantities < 0.1 have been omitted and
replaced by ≈ 0.)

Empir Software Eng (2017) 22:1 05–1 7 14 43 421

precise evaluations of “how much” source code has changed can be performed leveraging
TLSH hashes, that are readily available in the Debsources Dataset as well.

5.3 Programming Language Popularity

To address RQ iii (programming language popularity) we can simply aggregate per-package
first, and per-release then, the SLOC counts available in the metrics table as computed
by both sloccount and cloc. In either case the field st value is used to detail the
detected programming language. For consistency with RQ i, in the following we present
sloccount results.

The evolution of programming languages in Debian is presented in Table 8 and plotted
in Figs. 4 and 5. In both cases we restrict presented results to the most popular languages,
using the Jessie release as a reference. Figure 4 shows the evolution of language popularity
in absolute SLOCs, while Fig. 5 shows the proportion over release size measured in SLOC.

Results show that C has always and still is the dominant language in Debian, since a big
part of the core operating system (the Linux kernel, the GNU suite, etc) is written in C.
However, while the absolute amount of C code has been steadily increasing, its proportion
over the total is decreasing since the Slink release (1999). Other languages, and most notably
C++, are getting more and more relevant. The proportion of C code seems to have been
stable for the past 3 releases though, at about 41 % of the total.

Without a comprehensive reference base for FOSS source code it is impossible to deter-
mine how representative these numbers are of out-of-Debian trends. But the comparison
with programming languages trends on other platforms (e.g., GitHub (La 2015)) is strik-
ing. Whereas GitHub developers seem to be flocking to JavaScript, Java, Ruby, and PHP,

0

200

400

600

800

07
−

19
98

 (
H

am
m

)

03
−

19
99

 (
S

lin
k)

08
−

20
00

 (
P

ot
at

o)

07
−

20
02

 (
W

oo
dy

)

06
−

20
05

 (
S

ar
ge

)

04
−

20
07

 (
E

tc
h)

02
−

20
09

 (
Le

nn
y)

02
−

20
11

 (
S

qu
ee

ze
)

05
−

20
13

 (
W

he
ez

y)

04
−

20
15

 (
Je

ss
ie

)

Date

S
LO

C
 (

M
)

Language
Other

Python

sh

XML

Java

C++

ansi C

Fig. 4 Evolution of the most popular (top-6 plus other) programming languages in Debian by total number
of SLOC per release

1 Empir Software Eng (2017) 22:1 05–1 74 4 4322

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

07
−

19
98

 (
H

am
m

)

03
−

19
99

 (
S

lin
k)

08
−

20
00

 (
P

ot
at

o)

07
−

20
02

 (
W

oo
dy

)

06
−

20
05

 (
S

ar
ge

)

04
−

20
07

 (
E

tc
h)

02
−

20
09

 (
Le

nn
y)

02
−

20
11

 (
S

qu
ee

ze
)

05
−

20
13

 (
W

he
ez

y)

04
−

20
15

 (
Je

ss
ie

)

Date

P
ro

po
rt

io
n

Fig. 5 Evolution of the most popular (top-6 plus other) programming languages in Debian as a proportion
of release size in SLOC

a foundational operating system like Debian is still prominently composed of system-level
languages like C and C++.

File Size We can drill down to investigate median file sizes (in SLOC) per language and
their evolution over time. Detecting the programming language of each source file can be
done in a number of ways, each one with their own strengths and weaknesses. Two ways of
doing that is delegating language detection to cloc and sloccount, using the st value
column of the metrics table; alternatively one can look at file extensions (field ext in table
path info) and map popular extensions to programming languages. We have adopted the
sloccount approach in the following.

Table 9 presents per release and per language median file sizes for the most popular
languages. For the top-6 of them, their evolution over time is plotted in Fig. 6.

Most of the studied languages are shown to be relatively stable in their median file size
over time. This is the case for mainstream languages such as C, C++, and Java, as well
as several others such as Perl and Lisp (not plotted). Median file size also appears to be a
rather intrinsic characteristic of a programming language, that is not really affected by how
popular the language is in a large FOSS ecosystem.

5.4 Debian Licensing Over Time

One of the most important characteristics that define a FOSS component is its license. It is
very important to know the license of a package, as it determines the rights and obligations
of anybody wanting to reuse and further distribute the software (either as a component or as
a stand-alone product). Since the conception of Debian in 1993 the FOSS license landscape
has evolved significantly. Many licenses released new versions, others have been created,

Empir Software Eng (2017) 22:1 05–1 7 14 43 423

Table 9 Median file size (in SLOC) per language for the most popular languages

Release ada ansic asm cpp erlang f90 fortran haskell java lex lisp

hamm 40 69 26 62 – 47 67 – 44 181.5 132

slink 38 68 43 60 – 11 61 11.5 36 185.5 124

potato 40 71 34 57 167 11 73 44 34 171.5 120.5

woody 47 86 75 64 41.5 15.5 81 36 37 208 142

sarge 47 79 40 66 43 38 89 37 43 179 124

etch 43 80 32 64 205 60.5 79 57 46 173 120

lenny 42 79 25 61 200 89 78 44 44 177 126

squeeze 45 76 20 62 164 96 76 58 45 186 124

wheezy 47 80 23 66 128 98 112.5 32 47 190 113

jessie 38 75 21 65 107 79 96 39 47 209 105

Release make ml objc pascal perl php python ruby sh sql tcl yacc

hamm 43 25.5 151.5 139.5 62 0 59 0 20 18.5 87 516

slink 42 22 124.5 12 66 0 61 0 23 16 92 508

potato 42 32 144 63 63 19 68 31 23 17 97 596

woody 46 35 168 72 61 45 64.5 31 27 16 80 323

sarge 47 44 155 92 63 39 60 38 35 11 94 316

etch 47 50 153 301 70 46 59 45 38 11 92 316

lenny 44 49 152 226 64 46 58 42 39 11 84 316

squeeze 32 50 140 84 56 44 59 38 37 26 69 318

wheezy 15 48 128 79 58 39 60 36 33 20 72 343

jessie 11 43 111 88 53 37 62 32 34 20 65 349

20

40

60

80

0
4
−
2
0
0
7
 (
e
tc
h
)

0
7
−
1
9
9
8
 (
h
a
m
m
)

0
4
−
2
0
1
5
 (
je
s
s
ie
)

0
2
−
2
0
0
9
 (
le
n
n
y
)

0
8
−
2
0
0
0
 (
p
o
ta
to
)

0
6
−
2
0
0
5
 (
s
a
r
g
e
)

0
3
−
1
9
9
9
 (
s
li
n
k
)

0
2
−
2
0
1
1
 (
s
q
u
e
e
z
e
)

0
5
−
2
0
1
3
 (
w
h
e
e
z
y
)

0
7
−
2
0
0
2
 (
w
o
o
d
y
)

Date

M
e
d
ia
n
 L
e
n
g
th
 (
S
L
O
C
)

Language

ansi C

C++

Java

sh

Python

Perl

Fig. 6 Evolution over time of the median file size (in SLOC) per language, based on file extension

1 Empir Software Eng (2017) 22:1 05–1 74 4 4324

and some ceased to be used. The long history of Debian creates a perfect subject to evaluate
how FOSS licenses use has evolved over time, and the popularity of licenses currently in
use.

Creating a census of licenses used in a large software distribution is not an easy task
though. The first challenge is how to identify the licenses of individual files. Then, one needs
to consider the overall licenses of aggregate/composite software bundles, such as packages
in the case of FOSS distributions. The license of a package as a whole is indeed not nec-
essarily the same of the files that compose it: due to how license compatibility works, a
package might have most of its files under license A, but its aggregate license might end up
being license B 	= A. Unfortunately there is no well-established convention for document-
ing either one, and tools for license identification have thus far focused on discovering the
license of individual files. In order to answer iv, in the following we focus on the license of
individual files. We do not study the license of packages as wholes. We do, however, aggre-
gate file licenses by package in order to study license variability within packages, answering
RQ v. Finally, in order to answer RQ vi (how has license use evolved in Debian over time?),
we analyze the evolution of our answers to iv (file licensing) and RQ v (source package
licensing) across all Debian stable releases.

As automatic license identification of a file is still difficult and error prone, we avoid
developing in house heuristics and rather resort to the two tools that are considered the state
of the art in license identification: ninka (German et al. 2010) and fossology (Gobeille
2008). Both tools are capable of identifying commonly used licenses, but vary in the way
that they deal with less common ones. For example, ninka is capable of identifying many
variants of the BSD andMIT family of licenses, while fossology groups them into “MIT-
style” and “BSD-style”. On the other hand fossology is capable of identifying more
licenses and, where applicable, uses the license identifiers standardized by SPDX (Stewart
et al. 2011) for its reports.

In terms of Debsources Dataset use, the license information we have extracted using both
ninka and fossology are readily available from table licenses. The detected licenses
of individual files as returned by the two tools can be discriminated using the oracle field
of that table, whose value will be either “ninka” or “fossology”. Note that the detected
license, available in field license, is tool-dependent: we have favored preserving the full
information returned by license identification tools over data uniformity. For the sake of
brevity in the following we only discuss fossology results, but interested scholars can
use the Debsources Dataset to explore ninka results.

While the Debsources Dataset contains the output of ninka and fossology for every
unique file, in the following we only report about licensing of source code files (excluding,
e.g., binary files such as raster images). To that end we will ignore all files not recognized
as being source code by sloccount.

5.4.1 Individual File Licensing

Table 10 shows the total amount of different licenses identified for each release in the
dataset. As it can be observed, the number of identified licenses is very large and has grown
an order of magnitude across Debian history. Part of the reason is that, when a file is licensed
under two or more licenses, such combination of licenses is considered to be a different
license by license identification tools. For example, in several Debian releases Firefox is
licensed under a combination of the MPL, GPL-2.0, and LGPL-2.1. In most releases, few
licenses account for most of the identified licenses: the top 50 most frequently identified
licenses (including “No license found”) correspond to 94–97 % of release source files.

Empir Software Eng (2017) 22:1 05–1 7 14 43 425

Table 10 Number of different
licenses identified in each release Release Licenses

hamm 281

slink 326

potato 437

woody 620

sarge 949

etch 1125

lenny 1352

wheezy 1879

jessie 2039

Table 11 shows the top identified licenses in the oldest and newest Debian releases avail-
able in the dataset. As it can be observed, most frequently files do not have a license that
fossology can directly identify. Figure 7 shows the evolution over time of the most com-
mon identified licenses. As it can be seen, the most used licenses have been the GPL and
BSD families, with recent increases for Apache-2.0 and the Mozilla Public License (MPL).

Table 11 Top identified licenses in two selected releases

Release License Files Prop.(%) Accum. (%)

Hamm No license found 72,533 47.5 47.5

GPL-2.0+ 22,983 15.1 62.6

LGPL-2.0+ 14,608 9.6 72.2

BSD-style 3,667 2.4 74.6

See-doc(OTHER) 2,490 1.6 76.2

MIT-style 2,457 1.6 77.8

UnclassifiedLicense 2,359 1.5 79.4

GPL 2,329 1.5 80.9

BSD-4-Clause-UC 2,112 1.4 82.3

See-file 1,938 1.3 83.5

X11 1,887 1.2 84.8

Jessie No license found 1,011,088 29.7 29.7

GPL-2.0+ 432,482 12.7 42.4

Apache-2.0 168,655 5.0 47.4

GPL-3.0+ 160,233 4.7 52.1

GPL-2.0 148,364 4.4 56.4

LGPL-2.1+ 141,747 4.2 60.6

BSD 115,135 3.4 64.0

LGPL-2.0+ 87,153 2.6 66.5

BSD-3-Clause 72,634 2.1 68.7

MIT 71,022 2.1 70.8

EPL-1.0 66,755 2.0 72.7

1 6 Empir Software Eng (2017) 22:1 05–1 74 4 432

1e+01

1e+03

1e+05

2000 2005 2010 2015
date

F
ile

s

license
Apache−2.0
Artistic−1.0,GPL
BSD−2−Clause
BSD−3−Clause
EPL−1.0
GPL−2.0
GPL−2.0+
GPL−3.0
GPL−3.0+
LGPL−2.0+
LGPL−2.1+
MIT
MPL

Files with a given License

Fig. 7 Evolution of the number of files with a given license, as detected by fossology

5.4.2 Package Licensing and Variability

In order to address RQ v (source package licensing), it is not practical to simply report
each and every license found in very package. Instead, we develop several metrics, each
one highlighting different aspects of the licensing of source code files belonging to a given
package:

– How detectable are the licenses of the package source files? For this purpose we com-
pute the proportion of files for which a license was identified over the total number
of files. fossology reports No license found when it does not find the license of a
given file, and UnclassifiedLicense when it finds one it does not know. Hence we con-
sider a file to have an identifiable license if fossology reports a license other than
No license found and UnclassifiedLicense. The proportion of files without a license is
the number of source files without an identifiable license divided by the total number
of source files.

– How many different licenses can be found in a given package? In this case we ignore
files without an identifiable license.

– What is the dominant license identified in each package? We define such a license as
the most commonly identifiable license, counted as the number of files it applies to.
If two or more licenses are equally frequent, all of them are considered to be equally
dominant.

– How much diversity is there in the licenses of the files of a package? The more licenses
a package contains, the larger it will be the problem space of determining its license as

Empir Software Eng (2017) 22:1 05–1 7 1 74 43 42

an aggregate—due to how license compatibility works the problem will not necessarily
be more difficult, but more options will have to be considered.

To establish license diversity within a package we use Wilcox’s Analog of the Mean
Difference (MNDif). It represents the average of the absolute differences of all the pos-
sible pairs of license frequencies. Intuitively, it is the equivalent of a GINI coefficient,
but applicable to categorical data. A value of 0 implies that all files have the same
license, while a value of 1 that all licenses are equally represented, i.e., each license is
used by the same number of files.

When aggregating by package, different licensing patterns appear. Figure 8 shows box
plots with the proportion of files that do not have a detectable license. The median number
of source files without an identifiable license has fluctuated between 50 % and 60 %, show-
ing the same pattern over time. It is important to mention that sloccount is relatively
aggressive on what it considers source code. For example, sloccount considers Make-
files and configuration and installation scripts to be source code; these files do not normally
include a license. For this reason we also include the box plots for C (Fig. 9) and Java files
(Fig. 10). As it can be seen, their current median is below 5 % in both cases, and over time,
the proportion of files without a license keeps dropping. It seems that, at least from the
point of view of fossology and for mainstream programming languages, FOSS develop-
ment practices (and in particular writing down license annotations) are evolving in a way
that makes automatic license detection easier. There is still plenty of room for improvement
though.

The number of licenses used per package is generally very small, as shown in Fig. 11.
The median is 2; the third quartile has decreased from 3 to 2 licenses in recent releases
(taking into account identifiable licenses only).

With regard to the chosen licenses, we present in Fig. 12 the evolution of licenses that
occur at least once in a package. As it can be seen variants of the GPL licenses are still, by
far, the most commonly used, and in particular versions 2.0 and 2.0+ (i.e., “version 2 or any
later version”).

0.00

0.25

0.50

0.75

1.00

07
−

19
98

 (
ha

m
m

)

03
−

19
99

 (
sl

in
k)

08
−

20
00

 (
po

ta
to

)

07
−

20
02

 (
w

oo
dy

)

06
−

20
05

 (
sa

rg
e)

04
−

20
07

 (
et

ch
)

02
−

20
09

 (
le

nn
y)

02
−

20
11

 (
sq

ue
ez

e)

05
−

20
13

 (
w

he
ez

y)

04
−

20
15

 (
je

ss
ie

)

Debian Release

P
ro

po
rt

io
n

Source files in Package without a detected license

Fig. 8 Box plots of the proportion of files with no identifiable license

1 Empir Software Eng (2017) 22:1 05–1 74 4 4328

0.00

0.25

0.50

0.75

1.00

07
−

19
98

 (
ha

m
m

)

03
−

19
99

 (
sl

in
k)

08
−

20
00

 (
po

ta
to

)

07
−

20
02

 (
w

oo
dy

)

06
−

20
05

 (
sa

rg
e)

04
−

20
07

 (
et

ch
)

02
−

20
09

 (
le

nn
y)

02
−

20
11

 (
sq

ue
ez

e)

05
−

20
13

 (
w

he
ez

y)

04
−

20
15

 (
je

ss
ie

)

Debian Release

P
ro

po
rt

io
n

Proportion of C files in Package without a detected license

Fig. 9 Box plots of the proportion of C files with no identifiable license

Figure 13 shows the evolution of dominant licenses in Debian packages, according to our
definition. The top license is, once again, GPL-2.0+, followed by: Artistic-1.0/GPL dual-
licensing (the licensing choice of Perl and most Perl libraries), GPL-3.0+, and Apache-2.0
(Fig. 15).

With regard to the variability of licenses in packages, we present in Fig. 14 the box plot of
theMNDif of the licenses per package in each release. As it can be seen, most packages have
very small license variability, and license diversity seems to be decreasing over time. This
might be due to new, popular programming language ecosystems that manage to impose,

0.00

0.25

0.50

0.75

1.00

07
−

19
98

 (
ha

m
m

)

03
−

19
99

 (
sl

in
k)

08
−

20
00

 (
po

ta
to

)

07
−

20
02

 (
w

oo
dy

)

06
−

20
05

 (
sa

rg
e)

04
−

20
07

 (
et

ch
)

02
−

20
09

 (
le

nn
y)

02
−

20
11

 (
sq

ue
ez

e)

05
−

20
13

 (
w

he
ez

y)

04
−

20
15

 (
je

ss
ie

)

Debian Release

P
ro

po
rt

io
n

Proportion of Java files in Package without a detected license

Fig. 10 Box plots of the proportion of Java files with no identifiable license

Empir Software Eng (2017) 22:1 05–1 7 14 43 429

1

2

3

4

5

6

7

8

9

10

07
−

19
98

 (
ha

m
m

)

03
−

19
99

 (
sl

in
k)

08
−

20
00

 (
po

ta
to

)

07
−

20
02

 (
w

oo
dy

)

06
−

20
05

 (
sa

rg
e)

04
−

20
07

 (
et

ch
)

02
−

20
09

 (
le

nn
y)

02
−

20
11

 (
sq

ue
ez

e)

05
−

20
13

 (
w

he
ez

y)

04
−

20
15

 (
je

ss
ie

)

Debian Release

C
ou

nt

Licenses in source files per package

Fig. 11 Box plots with the number of different identified licenses per package

either with legal agreements or simply via “bandwagon” effects, a specific license to all the
new modules and libraries that will be developed in the language.

Figure 15 shows a scatter plot showing MNDif vs the number of source files in a pack-
age, for the most recent Debian release (Jessie). A pattern stands out: the more source
files a package has, the less license diversity. This might seem counter intuitive at first,
because more files would appear to give more opportunities for reusing code from other
FOSS projects and hence adopt a new license, increasing diversity. Our intuition is that

0

2000

4000

6000

2000 2005 2010 2015

date

P
ac

ka
ge

s

license
Artistic−1.0,GPL
BSD
BSD−3−Clause
GPL
GPL−2.0
GPL−2.0+
GPL−3.0
GPL−3.0+
GPL−exception
MIT
Public−domain
Public−domain,X11
See−doc(OTHER)

License used at least once in package

Fig. 12 Evolution of the number packages that use a license at least once

1 Empir Software Eng (2017) 22:1 05–1 74 4 4330

10

100

1000

2000 2005 2010 2015
Date

P
ac

ka
ge

s
(lo

g
10

)

license
Apache−2.0
Artistic−1.0,GPL
BSD
BSD−3−Clause
GPL
GPL−2.0
GPL−2.0+
GPL−3.0+
LGPL−2.0+
LGPL−2.1+
MIT
See−file

Dominant license in Package

Fig. 13 Evolution of the number of packages that have a given dominant license

such aspect is countered by the fact that larger, well-established FOSS projects tend to be
governance-heavy, cautious when importing external code in their own repositories (e.g.,
due to long-term maintainability concerns), if not simply used to impose a specific license
as a condition to accept external code contributions.

To the best of our knowledge this is the first study of FOSS license popularity at this
scale, and in particular over such a long time frame. While there exist reports on the Web

0.00

0.25

0.50

0.75

1.00

07
−

19
98

 (
ha

m
m

)

03
−

19
99

 (
sl

in
k)

08
−

20
00

 (
po

ta
to

)

07
−

20
02

 (
w

oo
dy

)

06
−

20
05

 (
sa

rg
e)

04
−

20
07

 (
et

ch
)

02
−

20
09

 (
le

nn
y)

02
−

20
11

 (
sq

ue
ez

e)

05
−

20
13

 (
w

he
ez

y)

04
−

20
15

 (
je

ss
ie

)

Debian Release

M
N

D
if

of
 p

ac
ka

ge
s

Fig. 14 Box plots showing the MNDif of packages per release. A MNDif of zero means no variability, while
1 means that every license in the package is equally represented

Empir Software Eng (2017) 22:1 05–1 7 14 43 431

0.00

0.25

0.50

0.75

1.00

5 10 50 100 1000 10000 50000

Number of Source Files in Package (log 10)

M
N
D
if
 o
f
p
a
c
k
a
g
e

1

10

100

Licenses

Variability of licenses (Jessie)

Fig. 15 Each point represents a package in Jessie (version 8): its MNDif vs number of source files. As it can
be seen, smaller packages tend to have more variability in their licensing

about FOSS license popularity, and most notably from Black Duck,17 such reports do not
disclose the adopted methodology nor are clear on the underlying sample of observed FOSS
projects, making them non-reproducible. Furthermore they do not properly document how
licenses are counted, which is an important and tricky aspect of surveying FOSS license use
(Kerrisk 2013).

5.5 Looking Back, Debsources Dataset Advantages

Looking back at this case study we can attempt a self-assessment of the advantages induced
by using the Debsources Dataset as a starting point. Limitations and threats to validity will
be discussed in the next section.

Using Debsources Dataset metadata (the database) we have been able to study Debian
growth over time as well as the correlation and distribution of the chosen metrics. We have
also been able to get insights on software engineering practices such as package mainte-
nance and study over time the popularity of programming languages and software licenses,
aggregating at different granularities (file, package, release). In all cases data gathering
boiled down to crafting and executing relatively straightforward (Postgre)SQL queries.
Statistical analysis and plotting have then been implemented externally (using GNU R),
processing Postgres query output.

Without the Debsources Dataset the starting point of the case study would have
necessarily been retrieving and unpacking all Debian releases, followed by running all mea-
surement/mining tools on the obtained source code. We have documented in Section 2.2
how, in terms of resources, doing so would have required about 1.5 months of processing
time (on a single machine) and 1.5TB of disk space. None of this has been necessary to
run our case study. More importantly than savings in computational resources though, the

17https://www.blackducksoftware.com/top-open-source-licenses.

1 Empir Software Eng (2017) 22:1 05–1 74 4 4332

https://www.blackducksoftware.com/top-open-source-licenses

Debsources Dataset relieves scholars from the responsibility of figuring out which-tools-
to-use-when in order to mine Debian-specific data sources; the starting point becomes a
relatively straightforward ER data model.

A counter argument here is that the metrics and information we were interested in were
all already available in the dataset; unsurprisingly, given we initially included them in the
dataset for our own needs. The first response to this is that a significant part of the meta-
data included in the dataset is intrinsic to either how Debian works (e.g., Debian release
information) or the nature of the referenced objects (e.g., file size, SHA checksums). We
expect that most studies interested in using Debian as a FOSS sample will need these infor-
mation; the Debsources Dataset alleviates the need of having to mine them over and over
again.

Second, when it comes to mining new facts that are not included in the Debsources
Dataset, the source code part of the dataset and how it is organized offers many bene-
fits. Most notably it saves space; thanks to deduplication the required disk space is cut by
approximately 50 %. As many kind batch source code analyses are I/O bound, a similar sav-
ing in processing time should generally be expected as well. Source code organization also
simplifies analysis, since the files are sharded into a (relatively speaking) small number of
directories; for example, one can run cloc recursively only 256 times, once per each top-
level directory. Another benefit is that this code organization avoids the challenges of having
to deal with the original path names. Some of these paths use extended character sets, or
include characters that might not be handled properly by (buggy) research tools (e.g., apos-
trophes and white spaces), or might differ only in capitalization resulting in name clashes
on some popular file systems.

It is also reasonable to expect that newly mined facts from Debian source code will need
to be correlated, one way or another, with metadata that are available in this dataset. It is at
the border of source code mining and related metadata that the Debsources Dataset offers
the most time- and space-saving opportunities for empirical software engineering scholars.

6 Threats to Validity

Due to the fact that at the time Debian neither had a source package format that can be
extracted using today’s dpkg-source, nor package indexes (Sources files), the Deb-
sources Dataset does not include the first 3 Debian releases: Buzz (1996), Rex (1996) and
Bo (1997). The first release included in the dataset is Hamm (1998). Additionally, due to a
regression in dpkg-source,18 12 packages from historical releases cannot be extracted
and are missing from the dataset. We do not expect such a tiny number of packages to
significantly impact the usefulness of the dataset.

It is important to note that the Debsources Dataset does not fully round-trip with Debian
mirrors: it is not possible to fully reconstruct source packages by only using the dataset.
This is because the dataset is not supposed to be as precise as a backup system in capturing
detailed file characteristics such as ownership, permissions, and extended attributes.

sloccount and Exuberant Ctags are starting to show their age and suffer from a lack of
active maintenance. Most notably, they do not support languages like Scala and JavaScript,
which might then be underrepresented in the dataset. The case of JavaScript is particularly
worrisome, due to its increasing popularity for server-side Node.js applications. On the

18http://bugs.debian.org/740883.

Empir Software Eng (2017) 22:1 05–1 7 14 43 433

http://bugs.debian.org/740883

front of SLOC counting the issue is mitigated by the presence of counts as returned by
cloc, which is a more modern tool with support for recent languages. At the same time
we consider important to also have sloccount results in the dataset, as it is used as a
reference tool in many works in the literature.

Regarding licensing data, the main threat to construct validity is the reliability of license
identification as implemented by the tools that we used to detect licenses. fossology is a
mature tool, widely used in the software industry; ninka is more experimental but shines
in specific areas such as discriminating among license variants. With respect to external
validity, we make no specific claims. While Debian is a good proxy for well-established
FOSS products, Debian requires clear licensing on any software that it incorporates, hence
what is observable in Debian might not reflect all of FOSS.

More generally, while we claim that the Debsources Dataset is representative, by con-
struction, of Debian trends, any extrapolation of findings based on this dataset to more
general FOSS trends should stand on its own ground. Debian is likely representative of
enterprise use of FOSS as a base operating system, where stable, long-term and seldomly
updated software products are desirable. Conversely Debian is unlikely representative of
more dynamic FOSS environments (e.g., modern Web-development with micro libraries)
where users, who are usually developers themselves, expect to receive library updates on a
daily basis. Debian trends on size, language popularity, and licensing are likely not directly
transferable to those contexts.

7 Related Work

Debsources (Caneill and Zacchiroli 2014) is the software platform used to produce a previ-
ous version of the Debsources Dataset (Zacchiroli 2015), which contained only metadata (no
source code) and only a subset of the metadata described in this paper. Debsources can be
used to recreate similar datasets for any other FOSS distribution that uses the Debian source
package format, including Ubuntu19 and hundred others http://distrowatch.com/search.php?
ostype=linux&basedon=debian&status=active.

Reproducing the findings of a former macro-level software evolution study
(González-Barahona et al. 2009) motivated in part the development of Debsources. That
study also shows the results of running sloccount on Debian releases over the 1998–
2007 period. The Debsources Dataset covers twice that period, offers more and more diverse
metadata (ctags, disk size, checksums, license information), and is publicly available from
archival storage (Zenodo), whereas the dataset URL from (González-Barahona et al. 2009)
has been down for a few years now. Most notably the availability of the Debsources Dataset
allows today to conduct studies similar to (González-Barahona et al. 2009) without having to
mirror Debian from different websites, run sloccount, manually classify by release, etc. All
needed metadata are already available in an easy-to-query format. When it comes to miss-
ing metadata, they can be extracted from the source code shipped as part of the Debsources
Dataset, minimizing the required computational effort thanks to source code deduplication.

The Ultimate Debian Database (UDD) (Nussbaum and Zacchiroli 2010) has assembled
a large dataset about Debian and some of its derivatives, and is a popular target for mining

19http://www.ubuntu.com/.

1 Empir Software Eng (2017) 22:1 05–1 74 4 4334

http://distrowatch.com/search.php?ostype=linux&basedon=debian&status=active
http://distrowatch.com/search.php?ostype=linux&basedon=debian&status=active
http://www.ubuntu.com/

studies and challenges (Whitehead and Zimmermann 2010). UDD however lacks the time
axis and is focused on distribution-level metadata. As such it lacks most of the content-
oriented metadata (ctags, checksums, license information, etc.) that are available in the
Debsources Dataset.

Other studies have targeted different aspects of the Debian ecosystem, such as discus-
sion on its mailing lists (e.g., (Sowe et al. 2006)). Those studies cannot be supported by the
Debsources Dataset which focuses on source code. However, the presence of time-indexed
metadata in the dataset allows to correlate mailing list discussions, and in particular devel-
opment discussions that often touch specific versions of specific packages, with release and
release dates.

Boa (Dyer et al. 2013) is a Domain Specific Language (DSL) and an infrastructure to
mine FOSS project collections like forges. Boa’s dataset is larger in scope than the Deb-
sources Dataset (e.g., it contains SourceForge) and also more fine grained, reaching down to
the version control system level, but does not correspond to curated software collections like
FOSS distributions. That has both advantages (it allows to peek into unsuccessful projects)
and disadvantages: contained projects are less likely to be representative of what was pop-
ular at the time. The time horizon of BOA is also more limited than that of the Debsources
Dataset.

FLOSSmole (Howison et al. 2006) is a collaborative collection of datasets obtained by
mining FOSS projects. Many datasets in there are about Debian but no one is, by far, as
extensive as the Debsources Dataset.

With respect to our case studies, analyses similar to the one of Section 5 on software
evolution have been conducted in the past on various distributions, e.g., (Wheeler 2001;
González-Barahona et al. 2001), even though only punctually on individual releases. On
the specific aspect of licensing, ninka has been used in the past to scan Debian Lenny
(German et al. 2010). Several empirical studies on licensing have used other FOSS distri-
butions as data sources, such as Fedora Core 12 (German et al. 2010) and Debian Wheezy
(Wu et al. 2015).

8 Conclusion

We have presented the Debsources Dataset: source code, release metadata about it, measure-
ments, checksums, and license information spanning two decades of Free and Open Source
Software (FOSS) history, as it can be observed through the lens of the popular Debian dis-
tribution. Using the dataset we have conducted a long-term, macro-level evolution study
of Debian looking from angles as diverse as size, package maintenance, programming
language popularity, and software licensing.

The Debsources Dataset contains increasingly more fine-grained information (packages
→ releases → source code files → checksums → developer-defined symbols) about more
than 3 billion lines of source code, from popular FOSS projects of their times. The dataset
also contains the corresponding source code, deduplicated at file-level granularity, resulting
in a factor 2 gain in the space required to store it in uncompressed form. Deduplication
allows to efficiently process the available source code to mine further facts and correlate
them with existing metadata.

The Debsources Dataset is publicly available as Open Data, documented, and repro-
ducible using data and source code from the Debian project, as well as a variety of tools
that are all available as FOSS. However, recreating it takes a non-negligible amount of stor-
age and computational resources. Its availability as a ready to use dataset can therefore ease

Empir Software Eng (2017) 22:1 05–1 7 14 43 435

the work of scholars interested in macro-level software evolution, and in the history and
composition of FOSS.

References

Abate P, Boender J, Di Cosmo R, Zacchiroli S (2009) Strong dependencies between software components.
In: ESEM, pp 89–99

Adams B, Bird C, Khomh F, Moir K (2013) 1st international workshop on release engineering (RELENG
2013). In: ICSE’13, pp 1545–1546

Brooks FP Jr (1995) The mythical man-month: essays on software engineering, 2nd edn. Addison-Wesley
Caneill M, Zacchiroli S (2014) Debsources: live and historical views on macro-level software evolution. In:

ESEM 2014: 8th international symposium on empirical software engineering and measurement. ACM
Demeyer S, Murgia A, Wyckmans K, Lamkanfi A (2013) Happy birthday! A trend analysis on past msr

papers. In: MSR 13: 10th Working Conference on Mining Software Repositories, MSR’13. IEEE,
Piscataway, NJ, USA, pp 353–362

Distrowatch distribution search — debian-based distributions. http://distrowatch.com/search.php?
ostype=linux&basedon=debian&status=active

Dyer R, Nguyen HA, Rajan H, Nguyen TN (2013) Boa: a language and infrastructure for analyzing ultra-
large-scale software repositories. In: ICSE. IEEE/ACM, pp 422–431

German DM, Di Penta M, Davis J (2010) Understanding and auditing the licensing of open source software
distributions. In: 18th international conference on program comprehension (ICPC’2010), pp 84–93

German DM, Manabe Y, Inoue K (2010) A sentence-matching method for automatic license identification
of source code files. In: Proceedings of the IEEE/ACM international conference on automated software
engineering, ASE’10. ACM, pp 437–446

Gobeille R (2008) The fossology project. In: MSR 2008: the 5th working conference on mining software
repositories. ACM, pp 47–50

González-Barahona JM, Ortuno PerezMA, de las Heras Quirós P, González JC, Olivera VM (2001) Counting
potatoes: the size of debian 2.2. Upgrade Magazine 2(6):60–66

González-Barahona JM, Robles G, Michlmayr M, Amor JJ, Germán DM (2009) Macro-level software
evolution: a case study of a large software compilation. Empir Softw Eng 14(3):262–285

Howison J, Conklin M, Crowston K (2006) FLOSSmole: a collaborative repository for FLOSS research data
and analyses. IJITWE 1(3):17–26

Jackson I et al. (1996) Debian policy manual. Available at https://www.debian.org/doc/debian-policy/
Kerrisk M (2013) Surveying open source licenses. Available at https://lwn.net/Articles/547400/
La A (2015) Language trends on github. Available at https://github.com/blog/2047-language-trends-on-github
Lehman MM (1980) Programs, life cycles, and laws of software evolution. Proc IEEE 68(9):1060–1076
Nussbaum L, Zacchiroli S (2010) The ultimate debian database: consolidating bazaar metadata for quality

assurance and data mining. In: MSR. IEEE, pp 52–61
Oliver J, Cheng C, Chen Y (2013) Tlsh - a locality sensitive hash. In: CTC, 4th Cybercrime and Trustworthy

Computing Workshop. IEEE, pp 7–13
Robles G, Gonzalez-Barahona JM, Michlmayr M (2005) Evolution of volunteer participation in libre soft-

ware projects: evidence from debian. In: Proceedings of the 1st international conference on open source
systems, pp 100–107

Sowe S, Stamelos I, Angelis L (2006) Identifying knowledge brokers that yield software engineering
knowledge in oss projects. Inf Softw Technol 48(11):1025–1033

Stewart K, Odence P, Rockett E (2011) Software package data exchange (SPDX™) specification. Interna-
tional Free and Open Source Software Law Review 2(2):191–196

Tridgell A (1999) Efficient algorithms for sorting and synchronization. PhD thesis Australian National
University Canberra

Wheeler DA (2001) More than a gigabuck: Estimating GNU/linux’s size. http://www.dwheeler.com/sloc/
redhat71-v1/redhat71sloc.1.03.html

Whitehead J, Zimmermann T (eds) (2010) Mining software repositories, MSR 2010. IEEE
Wu Y, Manabe Y, Kanda T, German DM, Inoue K (2015) A method to detect license inconsistencies in

large-scale open source projects. In: Proceedings of the 12th working conference on mining software
repositories, MSR ’15. IEEE Press, Piscataway, NJ, USA, pp 324–333

Zacchiroli S (2015) The Debsources dataset: two decades of Debian source code metadata. In: MSR 2015:
the 12th working conference on mining software repositories. IEEE, pp 466–469

1 6 Empir Software Eng (2017) 22:1 05–1 74 4 433

http://distrowatch.com/search.php?ostype=linux&basedon=debian&status=active
http://distrowatch.com/search.php?ostype=linux&basedon=debian&status=active
https://www.debian.org/doc/debian-policy/
https://lwn.net/Articles/547400/
https://github.com/blog/2047-language-trends-on-github
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.1.03.html
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.1.03.html

Matthieu Caneill is a PhD student at Université Grenoble Alpes in France, and a Debian developer. He
focuses on distributed systems, and particularly on distributed stream processing engines.

Daniel M. Germán is Professor in the Department of Computer Science at the University of Victoria,
where he does research in the areas of mining software repositories, open source software engineering, and
intellectual property.

Stefano Zacchiroli is Associate Professor of Computer Science at University Paris Diderot on leave at Inria.
His research interests span formal methods, software preservation, and Free/Open Source Software engineer-
ing. He is a co-founder and current CTO of the Software Heritage project, former 3-time Debian Project
Leader, and Board Director of the Open Source Initiative.

Empir Software Eng (2017) 22:1 05–1 7 1 74 43 43

	The Debsources Dataset
	Abstract
	Introduction
	Contributions
	Exploitation Ideas
	Paper Structure
	Dataset Availability

	Data Gathering
	Blueprint
	Database Structure
	Mirror Current and Historical Debian Releases
	Source Code Extraction and Deduplication
	Compute Content Metadata
	Compute License Information

	Required Resources

	Bird's Eye View
	Source Code
	Metadata
	Intrinsic Information
	Derived Information

	Dataset Size

	Getting Started
	Metadata
	Source Code

	Case Study: Long-Term Macro-Level Evolution
	Growth Over Time
	Release Size
	Package Size

	Package Maintenance
	Programming Language Popularity
	File Size

	Debian Licensing Over Time
	Individual File Licensing
	Package Licensing and Variability

	Looking Back, Debsources Dataset Advantages

	Threats to Validity
	Related Work
	Conclusion
	References

