
Empir Software Eng (2017) 22:967–995
DOI 10.1007/s10664-016-9457-1

Achieving traceability in large scale continuous
integration and delivery deployment, usage
and validation of the eiffel framework
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Abstract The importance of traceability in software development has long been recog-
nized, not only for reasons of legality and certification, but also to enable the development
itself. At the same time, organizations are known to struggle to live up to traceability
requirements, and there is an identified lack of studies on traceability practices in the
industry, not least in the area of tooling and infrastructure. This paper presents, investi-
gates and discusses Eiffel, an industry developed solution designed to provide real time
traceability in continuous integration and delivery. The traceability needs of industry pro-
fessionals are also investigated through interviews, providing context to that solution. It is
then validated through further interviews, a comparison with previous traceability meth-
ods and a review of literature. It is found to address the identified traceability needs
and found in some cases to reduce traceability data acquisition times from days to min-
utes, while at the same time alternatives offering comparable functionality are lacking.
In this work, traceability is shown not only to be an important concern to engineers,
but also regarded as a prerequisite to successful large scale continuous integration and
delivery. At the same time, promising developments in technical infrastructure are docu-
mented and clear differences in traceability mindset between separate industry projects is
revealed.
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2 Chalmers University of Technology, Lindholmspiren 5, Göteborg, Sweden
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1 Introduction

Traceability in software engineering is widely recognized as an important concern, with
substantial research and engineering efforts invested in solving its challenges (Gotel and
Finkelstein 1994; Ramesh and Jarke 2001; Wieringa 1995). Traceability can serve multiple
purposes, such as internal follow-up, evaluation and improvement of development efforts
(Dömges and Pohl 1998), but it is also crucial in order to demonstrate risk mitigation and
requirements compliance — either to meet customer expectations on transparency or to
adhere to specific regulations, as is particularly the case for safety-critical systems (BEL-V
BfS CSN ISTec ONR SSM STUK 2013; QuEST Forum 2015; European Cooperation for
Space Standardization 2015; Radio Technical Commission for Aeronautics 2011).

As defined by the Center of Excellence of Software and Systems Traceability (CoEST)
(Center of Excellence of Software Traceability 2015), traceability is “the ability to interre-
late any uniquely identifiable software engineering artifact to any other, maintain required
links over time, and use the resulting network to answer questions of both the software prod-
uct and its development process”, with this network consisting of trace links — “a specified
association between a pair of artifacts, one comprising the source artifact and one compris-
ing the target artifact [with] a primary trace link direction for tracing” — which may also
carry semantic information.

Despite its recognized importance — indeed, something as fundamental as determin-
ing which changes have been made and which requirements have been verified in which
configurations, in order to make a qualified release decision and then generating satisfac-
tory documentation for that release, requires some form of traceability — organizations
often struggle to achieve sufficient traceability (Mäder et al. 2009), not least due to lacking
support from methods and tools (Bouillon et al. 2013). Indeed, related work indicates the
importance of traceability tooling that is “fully integrated with the software development
tool chain” (Rempel et al. 2013) and calls for further research into technical infrastructure
(Cleland-Huang et al. 2014). Furthermore, there is a gap between research and practice
in the traceability area, with considerable valuable work on development and comparison
of e.g. traceability recovery techniques (Antoniol et al. 2002; Oliveto et al. 2010) but few
studies on traceability practices in the industry (Mäder et al. 2009).

A crucial part of the traceability problem is one of generating accurate and consistent
trace links (Center of Excellence of Software Traceability 2015) which can then be used to
answer questions such as which product releases a code change has been included in, which
bug fixes or features were implemented in a given version, or which tests have been executed
for a given product version, which requirements they map to and in which configurations
they have been executed. As difficult as it demonstrably is to achieve this, there are several
factors which complicate it further.

Scale The larger the project, the more engineers and engineering artifacts — and thereby
trace links — are involved. Large scale development can involve many thousands of arti-
facts (e.g. source code, bug reports, requirements, backlog items, test cases), created and
modified over time by hundreds or thousands of engineers, adding further difficulty to man-
ual approaches (Asuncion et al. 2010). Returning to the example of release decisions and
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documentation, with a handful of people involved it may be feasible to manually gather
the required information, but with thousands of engineers contributing to a single release
this turns into a both lengthy and costly practice. This becomes particularly problematic in
contexts — also related to the overall scale of the project — where the system is split into
multiple tiers of completeness. To exemplify, components being integrated into sub-systems,
which are integrated into complete solutions, with internal delivery interfaces across which
traceability must be maintained.

Geographical Diversity Particularly in large multinational companies, the engineers gen-
erating the artifacts may be spread across multiple sites located in different time zones and
on different continents, with all of the implied communication difficulties, such as culture
and language barriers.

Technology and Process Diversity Also related to scale (particularly systems split into
many components and tiers), when numerous different tools are used in development, gener-
ating heterogeneous engineering artifacts, this poses additional traceability challenges, both
in automated and manual approaches. Both human and automated agents must have access
to and be able to parse all the used formats and standards involved in order to generate
consistent and accurate trace links — a problem particularly pronounced where integrated
components are delivered by external companies with completely separate processes and
technology stacks.

Continuous Integration and Delivery Agile methodologies in general may pose addi-
tional challenges by encouraging reduced overhead, particularly documentation (Nerur et al.
2005). Continuous integration and delivery — studied by us in previous work (Ståhl and
Bosch 2013; 2014a; 2014b; Ståhl et al. 2015) — in particular can be problematic, however.
For the purposes of this work we define continuous integration and delivery as the practice
of all developers committing their changes frequently, and that each change is considered a
release candidate to be validated by the build and test process (Humble and Farley 2010).
The implication is that the traceability requirements under which one operates must also
be — at least potentially — satisfied for every single change made to the product during
its life cycle. This scenario is dramatically different from the paradigm of relatively infre-
quent releases planned well in advance. Adding to this, the higher frequency of integrations,
test executions and deliveries implies a dramatically increased amount of traceability data
to be analyzed — in a similarly dramatically reduced time frame. As (Wang et al. 2015)
points out, while providing explicit requirements traceability for every release is rare, “in
continuous releases [it] is much rarer”.

Furthermore, the time dimension is an important factor in traceability. Not only is
“continuous and incremental certification” crucial in avoiding the “big-freeze” problem of
safety-critical software (The Open-DO Initiative 2015), but there are additional benefits to
a prospective approach to traceability. For instance, the concept of in situ real time genera-
tion of trace links — as opposed to the ex post facto approach generally taken by automated
tools (Asuncion et al. 2010) — affords the ability to chronologically structure and analyze
trace links and to provide engineers with immediate feedback (Asuncion and Taylor 2009).
This, combined with the scaling and speed challenges outlined above, imply that an optimal
solution to software traceability is to be sought in tool and framework support for automated
in situ generation of trace links and subsequent analysis of those trace links — as opposed
to a solution solely based on process or development methodology.
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In other words, while many fundamental traceability needs are the same regardless of
continuous integration and delivery practice, the reduced time frames, increased frequencies
and enlarged amounts of traceability data pose severe challenges in practice, calling for
novel automated solutions to aid industry practitioners. That being said, as will be discussed
in Section 4, these practices also prompt additional needs.

Consequently the research question driving the work reported from in this paper is:
How can traceability needs of large scale software development in industry be effectively
addressed in a continuous integration and delivery context?

The contribution of this paper is twofold. First, an industry developed framework
addressing the problem of achieving traceability in the paradigm of continuous integra-
tion and delivery is presented and discussed. Second, it validates the studied framework by
investigating traceability needs in the industry and the extent to which they are addressed
by it.

The remainder of this paper is structured as follows. In the next section the research
method is explained. In Section 3 the Eiffel framework is presented. The results of an
investigation into traceability needs in the industry are presented in Section 4, followed by
validation in Section 5. Threats to validity are discussed in Section 6 and the paper is then
concluded in Section 7.

2 Research Method

The work reported from in this paper consists of three parts: an investigation into the
industry developed continuous integration and delivery framework Eiffel, identification of
prominent traceability needs in the industry and validation of the framework.

2.1 Framework Investigation

Eiffel (not related to the programming language (Meyer 1988)) — a framework for
supporting continuous integration and delivery developed by Ericsson in response to
a lack of adequate available solutions to the problems outlined in Section 1 — was
investigated through perusal of documentation, informal discussions with continuous
integration architects and in situ demonstrations, as well as drawing on our findings
as participant observers (Robson 2011). The results of these findings are presented in
Section 3.

2.2 Needs Identification

To identify the traceability needs most prominent among engineers in large scale industry
projects, interviews with 15 software development professionals spread across three cases
in two companies (cases A, B and C, see Section 4.1) were conducted.

2.3 Validation

The Eiffel framework was validated using the following methods to achieve data triangula-
tion (Runeson and Höst 2009):
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Eiffel Experience Interviews with software development professionals in a very-large-
scale project having deployed Eiffel (case A, see Section 4.1), to capture their experiences
and reflections from using the framework.

Feedback Interviews with software development professionals in two very-large-scale
projects not using Eiffel (cases B and C, see Section 4.1), to investigate whether similar
and/or alternative solutions could be found.

Comparison of traceability data gathering process with and without Eiffel, by repeating
an analysis carried out in case A several years earlier, before the framework was developed.

Systematic Literature Review seeking to answer “Which solutions to the traceabil-
ity problem in a continuous integration and/or delivery context have been proposed in
literature?” by searching for solutions comparable to the Eiffel framework.

Observer Participation as continuous integration subject matter expert and product
owner, respectively: two of the researchers have been involved in the development of the
framework and its deployment in large parts of Ericsson.

All interviews conducted in this work were carried out in a similar fashion. Intervie-
wees were purposively sampled to achieve the best possible coverage of stakeholder roles
and perspectives — and thereby triangulation (Runeson and Höst 2009). They were semi-
structured and conducted individually, with a small set of prepared behavior/experience and
knowledge questions (Hove and Anda 2005) as guide, and the interviewees were explicitly
encouraged to provide spontaneous reflections and/or elaborations. During each interview
two researchers were present — achieving observer triangulation (Runeson and Höst 2009)
— who then compared notes and, where the interviews were conducted in Swedish, trans-
lated the transcript to English. Where necessary, specific terms, e.g. trace links, with which
the interviewees were unfamiliar, were explained.

3 Eiffel

In response to the needs outlined above and the lack of adequate available solutions,
Ericsson has developed the Eiffel framework. This framework has been deployed in case
A (see Section 4.1), among many other projects and units within the company, in order to
address traceability in a continuous integration and delivery context. Some space has been
devoted to this section, as we believe that a description of the framework and some discus-
sion on its usage and deployment is not only an important contribution of the paper, but also
required for understanding and interpretation of the collected data.

3.1 Overview

Ericsson, with many years of experience from developing very-large-scale software sys-
tems and an ambitious continuous delivery agenda, has long recognized the problems
outlined in Section 1. Following careful analysis of its enterprise level needs for both
cross-organizational traceability and collaboration in continuous integration and delivery, a
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framework named Eiffel was developed, in which two of the authors of this paper partic-
ipated as architects and developers. This framework has since been successfully deployed
and used in production in large parts of the company for several years leading up to the study
reported from in this paper. It has been published as open source and is currently available
at GitHub1. While in-depth descriptions of the framework, the messaging protocol, trace
links and document types are available online, this section presents a brief summary.

Eiffel is frequently presented as four things: a concept, a protocol, a toolbox, and an inner
source (Fitzgerald 2006) community; the concept, briefly put, is that continuous integra-
tion and delivery activities in real time communicate through and are triggered by globally
broadcast atomic events, which reference other events as well as design artifacts via seman-
tic trace links, and are persistently stored, thereby forming traversable event graphs. In
this sense, the Eiffel strategy is crucially different from the Information Retrieval approach
of establishing trace links between code and free text documents, as described by e.g.
(Antoniol et al. 2002), in that it only operates on structured data and does not attempt prob-
abilistic analysis. The querying, analysis and visualization of these graphs can then be used
to answer traceability questions. The inner source community supports and evolves the
protocol and the toolbox, which realize the concept.

In developing the Eiffel framework, Ericsson wanted to not just address requirements
traceability, but traceability across various types of “artifacts that are of varying levels
of formality, abstraction and representation and that are generated by different tools”, in
the words of (Asuncion and Taylor 2009); Ericsson’s work also takes a similar approach,
but focuses on the provisioning of real time traceability throughout the automated pro-
cesses of compilation, integration, test, analysis, packaging etc., rather than in “development
time”. In its current state the implementation of the Eiffel framework within Ericsson has
primarily focused on what is termed content traceability: which artifacts constitute the
content of a given version of a component or product, with artifacts being e.g. imple-
mented requirements, completed backlog items or source code revisions. Through this
focus it is able to address the concerns outlined in Section 1. At the same time, Eiffel is
designed to act as a thin abstraction layer, providing a communication interface between
products and organizations that maintains traceability yet hides divergence in processes
and tools such as software control systems, artifact repositories and continuous integration
servers.

In addition, in its work on the Eiffel framework, Ericsson has placed great emphasis
on the bi-directionality of trace links. In order to satisfy multiple needs with the same
traceability solution, the generated event graphs must be traversable both forward and back-
ward through time, or “downstream” and “upstream” in the words of Ericsson’s engineers,
borrowing terminology sometimes used in dependency management (Humble and Farley
2010).

3.2 The Messaging Protocol

Whenever an event occurs during software build, integration and test — e.g. an activity has
commenced, an activity has finished, a new component version has been published, a test
has been executed or a baseline has been created — an atomic message detailing that event
is sent on a global, highly available RabbitMQ message bus.

1https://github.com/Ericsson/eiffel

https://github.com/Ericsson/eiffel
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The payload of the message is a JSON document representing the event, containing infor-
mation such as time stamp, sender identity and semantic links. These links may be either
other events (e.g. an event reporting the publishing of a new artifact referencing the mes-
sage reporting the creation of the baseline on which it was built, which in return references
events reporting the creation of the source revisions included in the baseline) or external
documents (e.g. backlog items, bug reports, requirements, test cases and source code revi-
sions). These events messages are typically generated as the result of automated activities,
but may also result from manual actions (e.g. a tester reporting the execution and outcome
of a test case).

Once sent, the event messages are not only used for documentation of trace links, but
to drive the continuous integration system itself. To exemplify, a listener receiving an event
saying that a new artifact has been published may trigger a test activity as a consequence,
which in turn dispatches more events which are received by yet another listener, triggering
further actions. For more in-depth information on e.g. trace link types, please see the online
Eiffel documentation2.

An important principle in the Eiffel framework is that these event messages are not sent
point-to-point, but broadcast globally, and are immutable. This means that the sender does
not know who might be interested in a certain message, does not need to perform any extra
work on behalf of her consumers, and is geographically independent of them — all impor-
tant features in light of the challenges discussed in Section 1. Any consumers simply set up
their listeners and react to received messages as they see fit. Furthermore, the immutability
means that the historical record never changes.

The end product of this framework is a system of real time generated trace links which
both document and drive the production of software, allowing every commit to be traced
to every resulting release — and every release to be traced to every included commit —
across all intermediate steps of compilation, integration and test, as well as referencing e.g.
requirements and planning artifacts, as exemplified in Fig. 1.

3.3 The Toolbox

Apart from the messaging protocol itself, there is a number of software components that
enable the Eiffel framework. Several of these are plugins to various tools, such as Jenkins,
Nexus, Artifactory, Gerrit et cetera, for sending and/or receiving Eiffel messages.

Other components are built from the ground up in order to persistently store, query,
aggregate, analyze and visualize the messages — a task that requires specialized solutions,
as the steadily growing number of messages generated on a global scale is on the order
of billions. The analysis of this data can serve many purposes for different stakeholders,
such as tracking individual commits, tracking requirements, providing statistics on project
performance, monitoring bottlenecks, analyzing release contents etc. To provide the reader
with an example of day-to-day use, a screen shot from such a visualization tool — Follow
Your Commit — can be seen in Fig. 2. As one interviewee explains, “The individual devel-
oper often begins with Follow My Commit [...] There I actually get the information of how
what I did has been moved forward in the chain.”

From informal discussions with the engineers working on development and deploy-
ment of the Eiffel framework we find a consensus that substantial potential remains
untapped in this area, and that emerging technologies for big data aggregation and

2https://github.com/Ericsson/eiffel

https://github.com/Ericsson/eiffel
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Fig. 1 A simplified example of an Eiffel event graph. Even based on such a simple graph, a number of
questions relating to the identified challenges (see Section 1) can be addressed in real time. These include
code churn, commit frequency, implemented requirements and bugs per build, lead time from commit to
various stages in the pipeline, where a feature or a commit is in the pipeline at any given time, build and
test delays due to queuing and resource scarcity, and more. Furthermore, all these metrics are collected and
analyzed independently of organization, geographical location, time of event and development tools used

analysis hold great promise for even more advanced data driven engineering based on
Eiffel.

3.4 Deployment

How to successfully deploy a framework such as Eiffel in a large existing development
organization is a pertinent question in the context of this research, particularly in light of

Fig. 2 A developer-centric “Follow Your Commit” visualization of Eiffel generated trace links, providing
developers with a real time view and time line of their recent commits, aggregating engineering artifacts
from a large number of systems, including multiple continuous integration servers on multiple sites. All
represented artifacts offer the option to drill down into further details and/or follow links to applicable
external systems. Note that the visualization shows a flow of continuous integration and delivery activities
spanning both a component, and two independent systems into which that component is integrated, in line
with Software Product Line principles (Clements and Northrop 2002; van der Linden et al. 2007). Sensitive
information has been deliberately blurred
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the aggravating factors of technology and process diversity (see Section 1): If achieving
alignment on common tooling and infrastructure is so difficult, how can the solution to
traceability be alignment on a common framework?

As participant observers, we have witnessed several Eiffel deployments in Ericsson, and
find that the deciding factor is not necessarily decisions or directives from high level man-
agement; arguably as with any adoption of new technology. Rather, notable examples of
large scale Eiffel adoption can be found in multi-tiered system contexts (as discussed previ-
ously, see Section 1), where the top tier defines its delivery interface in terms of the Eiffel
protocol, thereby forcing the lower tiers to comply. To exemplify, where system integra-
tion requires incoming deliveries to be communicated and documented using certain Eiffel
events (see Section 3.2), constituting a minimum viable level of traceability, the delivering
components need to produce those events somehow. They can choose to generate them man-
ually at the time of delivery, simply as a different format of delivery report (see Section 3.5).
We find, however, that in the face of such requirements the easiest solution is not only for
the components to instead generate the events in situ, automatically and in real time, but
then to propagate the practice downward through the integration chain. Following this ini-
tial alignment, the system tier is then able to successively raise the bar by requiring greater
detail and scope of the Eiffel events, allowing improved traceability capability to trickle
down through the system hierarchy (see Fig. 3).

In this context, identifying the minimum viable level of traceability is important, in order
to minimize the adoption threshold. It should also be noted that this is in line with the intent
of the Eiffel framework: to function as a thin layer, abstracting away lower level divergence
(see Section 3.1). In the example above, that thin layer allows the lower tier components
to hide both their internal technology stacks and their internal processes, affording them a
level of autonomy while at the same time isolating their dependents from the nitty-gritty
details of their build, test and integration system.

3.5 Manual Activities Compatibility

While a high degree of automation is a common denominator in continuous integration
implementations (Ståhl and Bosch 2014b), in the case studies performed by us both in
this and previous work (Ståhl and Bosch 2014a) we find a significant amount of manual

Fig. 3 A hypothetical example of a multi-tiered integration system aligning top-to-bottom on Eiffel based
traceability through the definition of delivery interfaces. When Delivery Interface S is defined as an Eiffel
interface, this provides an incentive for Sub-Systems A and B both to deploy Eiffel internally and to push
that responsibility downward, also defining Delivery Interfaces A and B in terms of Eiffel events. Thus the
deployment trickles down through the integration hierarchy
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activities in parallel with or subsequent to continuous integration and delivery systems, e.g.
manual release decisions or manually executed tests. Traceability is no less of a concern
for such manual activities than it is for automated ones, and the same requirements apply
— e.g. the importance of cohesive data storage and presentation, as opposed to trace links
being scattered across numerous disjointed systems. Despite this, in our experience both
as software engineers and researchers, we frequently observe projects where manual test-
ing is conducted using separate processes and tools, e.g. following manually defined test
project plans and producing manually authored test reports on ad-hoc formats intended for
manual interpretation. Automated testing, on the other hand, is typically executed as part of
the continuous integration and delivery system and reported on standardized formats to be
visualized and interpreted by generic software packages.

Consequently, even though the Eiffel framework is intended to be used as a part of the
continuous integration and delivery system itself, it is designed to allow manually authored
events to be communicated identically to automatically generated ones. Indeed, the concept
of a thin layer abstracting away underlying details (see Section 3.1) applies once more: by
reporting both manual and automated test executions and results using Eiffel events, the
same level of traceability can be ensured and the consumer of those events is not exposed
to the mode of testing, unless such information is explicitly sought. This ability is particu-
larly important when, as is very often the case, organizations strive to automate as much as
possible of their existing manual test cases; by communicating via standardized events their
dependents are insulated from the impact of such changes in processes and methods.

4 Identification of Traceability Needs

Prompted by the challenges outlined in Section 1 and striving to understand the most
prominent traceability needs as perceived by engineers in the industry, thereby providing
context and an opportunity for subsequent validation of the Eiffel framework, two series
of interviews were conducted. The first, to identify the most prominent traceability needs
in industry, with software professionals in multiple roles (see Section 2) in case A (see
Section 4.1 below for a description of the studied cases). The second, to establish whether
those needs were unique to that case or shared by others in the industry, with professionals
of corresponding roles in cases B and C. This approach was chosen in order to focus on the
needs stated by engineers already familiar with and using Eiffel, as such needs may well
be different from non-users and possibly reflect the characteristics and capabilities of the
framework — encouraging its adoption and/or being influenced by it — and then compare
that to the perspectives of engineers not using it.

4.1 Case Descriptions

Three very-large-scale industry cases have been studied in this work.

Case A is a development project in Ericsson AB, a multinational provider of telecom-
munication networks, networking equipment and operator services as well as
television and video systems. This project develops several network nodes con-
taining custom in-house developed hardware. The software is developed by
several thousand software engineers spread across numerous sites on three conti-
nents and belonging to separate organizations, all with their unique backgrounds,
competences, processes, technologies and tools. To accomplish this, considerable
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effort has been devoted to implementing a continuous integration and delivery
system which integrates on the order of tens of thousands of commits and thou-
sands of tested product builds per month (as of early 2015, and increasing). It
automatically integrates components — developed and delivered at a very high
frequency by separate and independent organizations — as binaries, similar to
the practice described by (Roberts 2004). Despite this, it is stated as formal strat-
egy that “developers shall be responsible for monitoring their contributions in the
integration flow and acting upon any faults they introduce”, not just within their
components, but also on a system level.

While the software itself is highly configurable it may also be deployed to a
wide array of hardware configurations and network topologies. As discussed in
Section 1, this poses a formidable test traceability challenge: when, where and
how has each requirement been verified? This challenge is exacerbated by the fact
that there is, with a few exceptions, no central control or inventory of employed
tools, and that they change over time, severely restricting efforts to achieve trace-
ability based on e.g. a single continuous integration server, revision control system
or application life-cycle management tool. Furthermore, the product exists in a
market subject to both security regulations and national legislations which may
place demands on traceability.

Case A has deployed the Eiffel framework, and is continuously expanding the
scope of that deployment.

Case B is a similarly large and distributed development project of reusable components
integrated into numerous products within Ericsson AB. They pursue an ambitious
continuous integration and delivery agenda, and are planning to adopt the Eiffel
framework, but are not currently using it.

Case C is the development of software components for Volvo Trucks — components
developed both in-house and by third party suppliers and integrated into a highly
hardware dependent system solution. They have a history of implementing con-
tinuous integration on a component level, and are looking to expand that way of
working to the system level. Case C has not deployed or had any access to the
Eiffel framework.

4.2 Case a Interviews

Following the reasoning above, the case A interviewees — in the nomenclature of the
studied case: test manager, track manager, developer, project manager, continuous integra-
tion architect, configuration manager and continuous integration system developer — were
asked the interview question shown in Table 1. All of the interviewees were seasoned engi-
neers with at least eight years of industry software development experience from multiple
projects, many of them recognized as leaders or experts in their fields within their orga-
nization. Their responses were transcribed, translated from Swedish into English and then
thematically coded by two of the researchers. During the thematic coding, statements were
first categorized into themes and then sub-themes in an iterative process, where themes
were restructured and statements reclassified in search of the best possible fit. Certain state-
ments were coded as pertaining to more than one theme. The result of this process was a
set of themes representing functional and non-functional needs — not necessarily related to
any particular tool or framework, but to traceability in general — allowing analysis of the
emphasis placed by the interviewed professionals on these needs (see Fig. 4) through the
number of coded statements and the number of interviewees making those statements. While
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Table 1 Single interview
question posed to interviewees in
cases A in order to identify their
traceability needs

Case A Interview Questions

IQa1 Which types of trace links to do you consider to be important?

Section 4.3 provides explanations of each individual theme, Table 2 shows an overview with
the number of included statements and the number of roles making those statements.

As shown in Fig. 4, test result and fault tracing (Trf), upstream tracing (Ust) and content
downstream tracing (Dst) are the three dominant functional needs for the interviewees. We
find that this fact, together with the examples provided by the interviewed engineers in this
area, strongly supports the findings in related work (Asuncion and Taylor 2009) stressing
the fact that traceability can play an important role in supporting the development effort
itself, rather than only serve purposes of satisfying e.g. legal requirements and certifications.

4.3 Themes

Test Rresult and Fault Tracing (Trf) represents the ability to trace test results and/or
faults to particular source or system revisions. This is exemplified by the need to “follow
[trace links] in order to understand why we can’t build a [system version]”. As one developer
puts it, what he wants to know if whether his source code changes has caused any faults or
not — “my main concern is whether everything is green” — and will when troubleshooting
“drill down” through trace links.

Content Upstream Tracing (Ust) refers to the ability to establish the contents of system
revisions — modules, libraries, individual source changes, implemented requirements et
cetera. Interviewees describe using “trace links for documentation purposes” and how it’s

Fig. 4 A scatter plot of the functional (blue squares) and non-functional (red rhombuses) themes repre-
senting needs highlighted by interviewee statements (none of which were negative, i.e. stating a lack of
need), showing number of discrete statements versus number of roles making those statements. The most
emphasized functional needs are Test result and fault tracing (Trf), Content upstream tracing (Ust), Content
downstream tracing (Dst). The most emphasized non-functional needs are Usability (Usa) and Persistence
(Per). Further explanation of the themes is provided in Section 4.3
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Table 2 Overview of
interviewee statements coded as
pertaining to functional and
non-functional needs, showing
the number of statements and the
number of interviewee roles from
which those statements were
gathered. See Fig. 4 for a graphic
representation

Functional Needs Theme #roles #statements

Test result and fault tracing (Trf) 6 27

Content upstream tracing (Ust) 7 19

Content downstream tracing (Dst) 7 16

Context and environment tracing (Env) 3 9

Requirement and work item tracing (Req) 3 8

Monitoring (Mon) 2 8

Metrics and Reports (Met) 2 3

Documentation Tracing (Doc) 2 2

Salvageability (Slv) 1 5

Non-functional Needs Theme

Usability (Usa) 6 14

Persistence (Per) 4 13

Culture and process (Cul) 4 7

Security and stability (Sec) 4 6

Speed (Spd) 3 7

Automation (Aut) 1 1

important for “knowing that things hang together, that I haven’t lost anything” and to track
the development, integration and test progress of features.

Content Downstream Tracing (Dst) is similar to Content upstream tracing (Ust), but
takes the opposite viewpoint: where did a given artifact end up? To exemplify, in which
system revision was a particular source change first integrated or a certain requirement
implemented? As one engineer puts it, “when I’m following my commit from start to finish
[I want to] see its status through various [test activities]”, an ability which implies an unbro-
ken chain of trace links from the source code commit through the entire integration and test
pipeline of every system that code is integrated into.

Context and Environment Tracing (Env) refers to the conditions under which build
and test activities were conducted. This was mentioned by 3 of the interviewed roles, in
9 statements. In the words of one interviewee, you need to know “exactly which tests and
test tools [we used] to achieve this result” and you need “serious version control of what’s
[building the software]”.

Requirement and Work Item Tracing (Req) is specifically concerned with the ability
to connect artifacts such as requirements, user stories and tasks to e.g. source and system
revisions. It was e.g. stated that “to us it’s important that you tie a [commit] to requirements,
work packages, [high level system requirements] or trouble reports, so you can see what
kind of work this is”.

Monitoring (Mon) represents the ability to monitor the health of the integration system,
e.g. populating information radiators with real time data on bottlenecks, availability and
throughput. It’s also described as a question of traffic management: “We make use [of trace
links] to see when queues grow, if we get queue overload [and then to] drill down into the
flow to troubleshoot”.
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Metrics and Reports (Met) describes how trace links can be used in statistical analy-
sis for purposes of key performance index (KPI) measurements, e.g. “to see how quickly
[commits] can pass through [the system]”.

Documentation Tracing (Doc) captures how various types of documentation, e.g. trade
compliance and product characteristics “should be natural to connect to the product [via
trace links], instead of maintaining in large systems and Excel sheets on the side”, but no
concrete plans or use cases for this have been formulated in the studied case.

Salvageability (Slv) was mentioned only by the configuration manager. It concerns adher-
ence to legal requirements, stating e.g. that “a configuration [deployed at a customer site]
shall be possible to correct, and that shall be possible to do perhaps ten years after the
development organization that created it has ceased to exist”.

Usability (Usa) captures the fact that adequate traceability in theory is not enough — for
it to be of any value, the various stakeholders must also be able to make effective use of it.
To exemplify, adequate archiving and “being able to search quickly” is highlighted along
with the importance of easily track and analyze chains of trace links for e.g. troubleshooting
purposes.

Persistence (Per) means that trace link data must be permanently stored and it must be
“guaranteed that no data is lost”. That being said, however, several of the interviewees reflect
that not all traceability data is equally important to keep, that some “is not critical long term,
even if it’s useful” but that deciding what to keep and what to discard “is tricky”.

Culture and Process (Cul) represents how tooling and infrastructure are intimately con-
nected to culture and process. Downstream traceability is highlighted to ensure awareness
“of the fact that others are pushing code as well; if you get that gut feeling in every developer
it’s much easier to do [development and integration of large systems]”. One interviewee also
considers the fact that improving traceability and visibility by itself may even be counter-
productive unless one is able to interpret and respond to it appropriately: “as soon as things
start flashing red every manager will ask why it’s red — you have to keep calm”.

Security and Stability (Sec) represents the need for traceability infrastructure to be
resilient both to changes in the development environment and to security threats, as the
traceability data is highly sensitive information. One interviewee explains how this inval-
idates traceability infrastructures on top of e.g. source code management systems: “the
connection to repositories comes with a dependence [where] if anyone changes the repos-
itory or modifies it you become very vulnerable to that: the traceability breaks if anyone
modifies the [repository layout or scheme]”.

Speed (Spd) partly overlaps with usability, but focuses particularly on the speed at which
one can be notified when a particular commit, system revision or requirement has failed
a test is highlighted, stating that “it’s really the negative feedback I want as quickly as
possible if it exists”. It’s also explained that this is not just a concern for any one group of
stakeholders, but that “the entire organization wants quick feedback on what they do”.
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Automation (Aut) represents the need for continuous integration and delivery traceabil-
ity infrastructure to be automated. We find the fact that it was only mentioned explicitly
in a single statement highly interesting, particularly in the light of the established preva-
lence of automation in continuous integration systems (Ståhl and Bosch 2014b) and the fact
that the studied case is highly automated in this regard — one interpretation being that the
interviewed engineers consider the need for automation implicit.

4.4 Case B and C Interviews

In the second series of interviews, a total of eight engineers from cases B and C (see
Section 4.1) were included. The purpose of these interviews was to establish whether the
most prominent concerns revealed in case A (see Section 4.2) are unique to that case —
conceivably influencing or influenced by the adoption of Eiffel — or shared by engineers in
other industry projects. These interviews were conducted using the same methodology, but
focusing on the three most prominent functional needs of case A (see Table 3 for interview
questions) and inviting the interviewees to elaborate and expand on these attitudes, explic-
itly asking them to add any of their own reflections or to themselves phrase and/or answer
questions they felt were lacking from the interview.

In the case of Test result and fault tracing (Trf) interviewees stated e.g. that “abso-
lutely”, this is “particularly important” and “super crucial”. Several explain that while
tracing faults to individual source code revisions is not something they have considered,
it’s crucial to “at least [trace faults] to the product version”. One interviewee touches upon
usability as he relates how his project keeps millions of test results “traced in every direc-
tion”, but that “this is a problem for us, [because] it creates an illusion” and that “it doesn’t
help if [system verification teams] kill themselves with traceability if [we don’t use it]”,
leading them to consider “removing certain trace links [...] because they only produce the
impression of a level of control which does not exist”.

In the case of Content upstream tracing (Ust) interviewees stating e.g. that “that is
absolutely the case, this is something we consider important” and “from my point of view
it is incredibly important”.

In the case of Content downstream tracing (Dst) interviewees stated e.g. that it’s
“extremely important”, “especially when problems occur”, but also that even though

Table 3 Interview questions posed to interviewees in cases B and C in order to assess the extent to which
engineers in other cases share the most prominent traceability needs documented in case A, along with the
number of positive responses per question

Case B and C Interview Questions #positive

IQbc1 In your development efforts, is the ability to trace
product contents from a commit to product releases
— downstream traceability — considered important?

8

IQbc2 In your development efforts, is the ability to trace
product contents from a product release to included
commits and related life cycle documents and work
items — upstream traceability — considered impor-
tant?

8

IQbc3 In your development efforts, is the ability to trace test
results and faults to relevant source revisions and/or
product versions considered important?

8
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they themselves found it essential, “I think the interest in this varies [from individual to
individual]” and that “it depends on who you ask”.

Consequently, we find that these concerns are not isolated to a single case, but considered
highly important by multiple large scale projects and — in our professional experience
— also in the industry at large. Interestingly enough, we find that achieving these types
of traceability functionality is not only considered a crucial challenge in the context of
continuous integration, but also an absolute and non-negotiable prerequisite for making
large scale continuous integration work in the first place. As two of the interviewees explain,
the current methods of securing traceability “are not sustainable in the long run”, which “is
our greatest impediment to achieve speed [in integration and test]” and that “If we succeed
with this, then we’ll succeed. If we fail, then we’ll fail at continuous integration, delivery
and everything.”

In summary, based on the statements made by practitioners we conclude that traceabil-
ity — particularly of content, faults and test results — are key challenges for the industry
in achieving large scale continuous integration and delivery. This is because, as demon-
strated by the interviewee statements above, insufficient traceability is not only a concern
from a certification and legality perspective, but because it hampers effective development
practices in a number of areas:

– Troubleshooting faults discovered in continuous integration and delivery.
– Discovering problems such as congestion or resource scarcity in the continuous

integration delivery system.
– Providing developers with relevant feedback with regards to the source code changes

they commit.
– Determining the content of system revisions.
– Monitoring the progress of features, requirement implementations, bug fixes et cetera.

Of these, the first two are unique to continuous integration and delivery contexts. The
third is not, but is arguably particularly relevant in such contexts: in previous work we have
often found that the ability of developers to easily determine the status of commits is of great
importance in continuous integration and delivery (Ståhl and Bosch 2014a). The final two
needs are clearly relevant regardless continuous integration and delivery, but as discussed in
Section 1, the ability to satisfy them is affected by these practices.

5 Validation

This section presents validation of the Eiffel framework as a solution to traceability in con-
tinuous integration and delivery. This is accomplished through interviews with professionals
working both in projects using and not using the framework, as well as through a com-
parison of the process to gather traceability data in case A with and without Eiffel and a
systematic literature review. In addition, the results of these methods are, where applicable,
discussed in the context of our own findings as participant observers.

5.1 User Interviews

In order to investigate the experiences of software professionals using the Eiffel framework,
further semi-structured interviews were conducted in case A. Following the interviews, the
discrete interviewee statements were thematically coded (Robson 2011) and analyzed, and
a thematic network (see Fig. 5) was created using the same method and the same themes
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Fig. 5 The thematic network resulting from the individual semi-structured interviews in case A

for functional and non-functional needs as described in Section 4. As in all interviews,
the interviewees were encouraged to provide spontaneous input outside of the questions
of the interview guide (see Table 4): How are trace links generated in your development
process?, How are trace links analyzed in your development process?, What use do you
make of generated trace links in your role? and How have the traceability capabilities of
your development process evolved over time?

A recurring topic throughout all seven interviews was the continuous integration and
delivery framework Eiffel, along with the various tools for aggregating, analyzing and pre-
senting trace links generated by it, which has been extensively deployed in the studied
project. It is not nearly the only tool in use, but while “Eiffel is a systemized product [...]
the others have arisen from needs in the project without any thought to traceability or inte-
gration with other systems [...] and that has caused problems”. It is also clear that Eiffel
addresses most of the highlighted use cases and is seen as the way forward, and intended to
replace many of the other solutions currently used in parallel. The reasons for this include

Table 4 Interview questions posed to engineers in case A using the Eiffel framework

User Interview Questions

IQu1 How are trace links generated in your development process?

IQu2 How are trace links analyzed in your development process?

IQu3 What use do you make of generated trace links in your role?

IQu4 How have the traceability capabilities of your development process evolved over time?
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performance, data consistency, usability and alignment, stating e.g. that “Eiffel is a plat-
form I think we will rely on more and more [and] it feels like a very solid foundation” and
“we are very much headed towards gathering data via [Eiffel] events”. Indeed, it is formal
strategy in the project that “the primary method of collecting integration flow data shall be
via Eiffel events”, supporting the position of the framework as an important contribution in
satisfying continuous integration and delivery traceability.

In line with this, six out of seven interviewees described how they use Eiffel to address
test result and fault tracing, downstream content tracing, and/or upstream content tracing.
This is not least the case across the delivery interface between components and systems,
where they e.g. state that with Eiffel “when we create [release candidates] they sometimes
fail [but] using just that [Eiffel] data we can actually in 95 % of cases [locate] the fault,
revert that and the next build will be ok”, “modules can tell me which [bugs] they have tried
to correct in a given delivery”, “you can tell what is provided”, “[the project manager] can
understand the developer’s point of view” and “[I can see] how what I did has been moved
forward in the chain”. A project manager also explains how, using this data, one can “know
where a feature is in our development chain [...] for instance, ’It’s in a [system revision]
now, and now it has achieved [a specified quality threshold]’; or a [change request], a [work
item] or a [bug report]”. In a similar vein, other engineers relate how Follow Your Commit
(see Fig. 2) “is good for understanding ’What is going on, I have done something and want
to understand where it is going”’ answering “What is the status of a [commit] right now?”.

These statements strongly support the feasibility of Eiffel as a solution to large scale
traceability, particularly for purposes of integrating across tiers of system completeness (e.g.
components into systems), addressing the concerns outlined in Section 1. Taking that one
step further, we have also witnessed it facilitating the integration and testing of networks
consisting of multiple systems such as the one studied in case A, where, in the words of a
test manager, it strips away most of the coordination and alignment otherwise required, as
the communication protocol and trace link data is already given.

The one interviewee who did not support this view was a configuration manager in one of
the components, who favored a source code management based approach to traceability, as
his primary concern was salvageability and reproducibility of software and configurations,
stating that Eiffel long term data persistence was not satisfactorily assured in the current
deployment.

One interviewee in particular — the continuous integration architect — was eager to dis-
cuss methodological and philosophical questions with regards to traceability. For instance,
the importance of separating intended content from actual content — effectively invali-
dating planning documents for purposes of traceability analysis — and the positive effects
of event driven in situ trace link generation and the difficulties in achieving sufficient
granularity in trace link references.

5.2 Non-User Interviews

In order to investigate whether alternatives to Eiffel are employed in industry, four engineers
from cases B and C, respectively, were interviewed. These were purposively sampled to as
closely as possible match the roles in case A expressing the strongest personal needs —
as opposed to describing the needs of others — in other words, the primary stakeholders
of continuous integration and delivery traceability. None of the interviewees were shown
Eiffel prior to the interviews; while plans in case B were being made to adopt Eiffel (see
Section 4.1) only one of the interviewees was familiar with the framework at the time. The
interviews were focused on how various traceability needs are addressed (see Table 5).



Empir Software Eng (2017) 22:967–995 985

Table 5 Interview questions posed to engineers in cases B and C, not using the Eiffel framework

Non-User Interview Questions

IQnu1 How, if at all, do you address the need for downstream traceability?

IQnu2 How, if at all, do you address the need for upstream traceability?

IQnu3 How, if at all, do you address the need for test result and faults traceability?

IQnu4 What is your assessment of the usability of your traceability solutions?

IQnu5 What is your assessment of the persistence of traceability data in your development effort?

Through these interviews, stark differences compared to case A became evident. In both
case B and C, delivery from component to system level is manually handled, with manually
authored delivery reports and little visibility from component to system, or vice versa. This
lack causes several problems — e.g. from a system point of view “we don’t know which
new test cases [to] introduce for this release [because we] don’t have release notes from
these small deliveries [so] it’s hard to start testing” and testing has “a lot of waste [because
we] test with the wrong input data [so] approximately 40 % of our work is wasted due to
poor traceability”. On the other hand, lack of downstream traceability (from component to
system) causes other problems: the developers “don’t understand that it’s a long chain, they
don’t understand that they’re part of a truck” and it takes too long to get feedback on faults
found beyond the component scope to the developer.

In both cases, interviewees state that they do not have adequate solutions for these types
of traceability. The traceability they do have is largely based on their source control systems,
unstructured documents, requirement management tools and/or ticket management tools,
with limited integration between these, so while “there is no tool where I can see that my
commit has been included here and verified [at system level]” the data exists “indirectly, but
you have to dig for it and I don’t think anybody does that” and “right now it’s heavy work”.
In other words, while traceability data exists in e.g. source code repositories, text documents
and spreadsheets, “that doesn’t mean it is used”, confirming the concerns about usability
highlighted in Section 4. The manual traceability handling is also identified as a major
blocker for more frequent deliveries of software, both at a component and a system level:
“today, without continuous integration, it’s nearly overbearing, deliveries are very costly”,
“sometimes it scares me, thinking about how many people fill out various documents and
simply create deliveries and sub deliveries, because you want traceability”, and therefore
work is ongoing to implement “tooling to handle the amount of data and make a different
kind of reporting possible”.

Statements such as these show that not only is functionality comparable to that of Eiffel
lacking, but also that this lack is identified as a problem. Furthermore, they reinforce the
position that satisfactory solutions must be sought in tooling and infrastructure, rather than
(exclusively) in processes, and that such solutions are a non-negotiable prerequisite for suc-
cessful large scale implementation of continuous integration and delivery, as discussed in
Section 1.

An observation made by us during the interviews is that the concept of downstream trace-
ability, so important to the case A interviewees, was very difficult to convey to the engineers
in case B and C: in each of the eight interviews we had to resort to concrete examples and
story-telling to explain the question. Even then, while confirming its importance, several
interviewees discussed it in terms of what we would label upstream traceability, or trace-
ability limited to the component context. The majority, however, grasped the concept and
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in both of the cases explained that this was something they were hoping to achieve. We
find this difficulty to communicate the concept highly interesting. Despite the claims of the
interviewees to the contrary, it is conceivable that the actual need is small or non-existent,
but one may also speculate that there’s a hierarchy of needs: in what may be called a reac-
tive mindset, where developers delivering to a higher system tier “throw their changes into
a black hole, and then get angry mails back a few weeks later”, in the words of an engineer
interviewed by us in previous work, understanding the system level is not the developer’s
concern — if there’s a problem they’ll be told and then react, whereas a lack of “angry
mails” is presumed to mean everything is fine. In the proactive mindset of case A, however,
developers are expected to understand the system and how they affect it (as evident from
interviewee statements and formal strategy, see e.g. Section 4.1), allowing them to act on
faults they introduce before they cause major disruption to the larger development effort.
This requires adequate traceability to support that expanded responsibility — or possibly
the other way around: the availability of information has lead to the expanded responsi-
bility. Both as researchers and software professionals ourselves, we consider this a highly
interesting question worthy of further investigation (see Section 7.1.2).

As for the non-functional concern of persistence, highlighted as important in the orig-
inal case study, all of the control case engineers in both cases either stated that their data
persistence was adequate, or were uncertain but had no reason to believe it was insufficient.

5.3 Traceability Process Comparison

A recurring topic in the case A interviews was how the Eiffel framework has made trace-
ability data more readily accessible, reducing the time spent “playing detective”. As a track
manager put it, previously there were “lots of different systems, so if you tried to trace
something from a [product release] you had to go look inside [it] to see what’s in that, then
perhaps in some other system, because that particular organization had their data in another
system, and if you had access there you could go in and see which sub-groups there were,
and so on and on. Now when I go into [a tool presenting Eiffel data] and look it’s fairly sim-
ple. It’s practically clickable, so I can drill fairly far down.” Such statements represent an
opportunity to quantitatively assess the improvement, and thereby verify the claims made
by the interviewees.

During the case study we found that four years earlier, in 2011, high level manage-
ment requested an investigation into lead times and frequency of integrations of a platform
— developed by a different organization — in the studied case, the background being
that no reliable data existed on who used which versions of the platform when. That
investigation was conducted by mailing and phoning project managers and integration
engineers to ask them about their integrations. Using the technology now available in the
same project, we repeated the exercise to fetch the same data and thereby benchmark the
tooling now available. A comparison of the two data collection procedures is presented
in Table 6.

The difference in data acquisition method and lead time is very clear, and corroborates
the statements made by interviewees that with the current tooling “you can tell what is
provided [in a given baseline]”, “in my role it’s [now] much, much easier to comprehend
the situation” and that “we have achieved transparency in things: [whereas] previously there
were a few individuals who could see the status of builds, now [...] you have access to data —
before it was very difficult, you had to be a UNIX expert to get to the data”. Consequently,
we find that this comparison supports Eiffel as a valid contribution by demonstrating its
ability to provide content traceability (see Section 4).
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Table 6 A comparison of the data collection procedures in 2011 and 2015 to measure the integration fre-
quency of a platform product into the studied case. The data acquisition lead time refers to the total time
from beginning to search for the data until that data is acquired — crucially different from effective time
spent. Similarly, the integration lead time refers to the time from a source change being committed until it is
integrated into a system revision. Note the differences in both data acquisition method and the acquired data,
discussed in Section 5.3

2011 2015

Data acquisition method Asking engineers by mail and phone Web based database interface

Data acquisition lead time 15 days 10 minutes

Integration lead time Varies, estimated average of 30 days Varies, up to 11 hours

Integration frequency Varies, 0-2 times a month Once every 5 days

Apart from this, there is also a striking difference in the actual data: integration lead times
have decreased, and frequency has increased. The interviewees stress that no single tool can
claim the credit for that, however, but that it’s caused by not only a number of improvements
on a broad front, but also changes in process and mindset. As a project manager puts it,
while he wants to “give credit” to Eiffel, “the big thing is the Lean thinking that’s emerged
and pushed us to start talking about flows”. In our own experience from observing the
deployment of Eiffel in multiple contexts, there is a synergy between culture and tooling:
the needs that Eiffel addresses are pushed to the fore by Lean and Agile ways of working,
and those ways of working are at the same time promoted and encouraged by the visibility it
affords. Such observations and interviewee statements like the one above lead us to believe
that this synergy, where new technologies have the potential to change the way engineers
approach their work, may explain the differences in mindset observed between those using
Eiffel and those who do not (see Section 5.2).

5.4 Systematic Literature Review

To investigate whether solutions comparable to Eiffel have been presented in published lit-
erature, a systematic literature review (Kitchenham 2004) was conducted. A review protocol
was created, containing the question driving the review (”Which solutions to the traceability
problem in a continuous integration and/or delivery context have been proposed in litera-
ture?”) and the inclusion and exclusion criteria (see Table 7). The protocol was informally
reviewed by colleagues and then applied.

As shown in Table 7, the initial search in four databases yielded a total of 26 unique
results. These were then culled through subsequent application of exclusion criteria to five
papers, which are discussed in detail below.

In (Dabrowski et al. 2012) a graph based description of related software artifacts is pro-
posed, and a case is made for its usefulness in ensuring traceability from e.g. requirements
to code. This is highly interesting work, but does not address the identified challenges. First,
this work focuses on describing the relationships between individual source code files at a
given time, functioning as a detailed snapshot of the project’s anatomy, rather than automat-
ically recording how the software and artifact dependencies change over time and tracking
e.g. real time content (see Section 4). Second, it does not consider the problem of obtain-
ing the required information in a heterogeneous, dispersed and changing tooling landscape.
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Table 7 Inclusion and exclusion criteria of the systematic literature review, along with the number of papers
yielded from the performed searches and remaining after application of exclusion criteria, respectively

Inclusion Criteria Yield

IC1 Scopus search on 2016-02-16 for TITLE-ABS-KEY(("continuous
integration" OR "continuous delivery") AND
("traceability" OR "trace link" OR "trace" OR
"artifact")) AND SUBJAREA(COMP)

21

IC2 Web of Science search on 2016-02-16 for TS=("continuous
integration" OR "continuous delivery") AND
TS=("traceability" OR "trace link" OR "trace" OR
"artifact") AND SU=Computer Science

3

IC3 IEEE Xplore search on 2016-02-16 for (("continuous integration"
OR "continuous delivery") AND ("traceability" OR
"trace link" OR "trace" OR "artifact"))

7

IC4 Engineering Village search on 2016-02-20 for (("continuous
integration" OR "continuous delivery") AND
("traceability" OR "trace link" OR "trace" OR
"artifact"))

8

Exclusion Criteria Remaining set

EC1 Union of results, excluding duplicates (in which case the most recent
publication is used) but not extensions

26

EC2 Exclusion of conference reviews, posters for industry talks or workshop
proceedings, or other items lacking available content beyond abstract
and/or references

22

EC3 Exclusion of publications that, through review of abstracts, are shown
not to address any of the software engineering concerns of continuous
integration, continuous delivery or traceability

13

EC4 Exclusion of publications that, through full review, are shown not to pro-
pose any tooling or framework based solution to the traceability problem

5

In other words it does not address the problems outlined in Section 1. Even then, keep-
ing such a graph up to date in a project with hundreds or thousands of commits every day
would require complete automation — and therefore some form of integration with every
employed tool — to be feasible.

This work is expanded upon by (Dabrowski et al. 2013), where a tool set that supports
the above graph approach is described. The tool integration aspect is still missing, however,
and in its current form the computation times call its applicability to continuous integra-
tion into question: following the trend lines of the reported times for detecting and storing
source code relationships alone shows that it will soon run into days for an enterprise scale
project. Consequently, while representing promising work in an exciting area of software
engineering, it does not satisfy the needs of the studied cases.

TRICA, a collection of integrated open source tools for revision control (Subversion),
issue tracking (Trac) and continuous integration (Hudson) is introduced by (Ki and Song
2009). Unfortunately, the very fact that it focuses on alignment of a selection of tools inval-
idates it from the point of view of the outlined challenges (see Section 1). Not only do our
cases (see Section 4.1) encompass organizations using dozens of tools in these three cate-
gories alone, but this inventory is constantly in flux. As a case in point, at the time when the
paper proposing TRICA was published all three of its tools saw use in Ericsson, but have
since been largely abandoned in favor of more recent alternatives.
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CodeAware (Abreu et al. 2015) proposes a system of static and dynamic probes inserted
in a continuous integration environment, as well as coordinators and actors listening and
responding to these probes. This concept is similar to the Eiffel approach in that it is a dis-
tributed system providing real time data to stakeholders and potentially driving the behavior
of the continuous integration system, and also mentions the possibility of emitting events
to subscribers. While early and highly interesting work, in its current form it focuses on
facilitating test and verification, rather than traceability per se. Consequently, it is altogether
conceivable that a CodeAware-like system and Eiffel could coexist and even complement
one another.

Finally, (Rylander 2008) discusses the approach of tracking built artifacts in the context
of a “pipeline” of stages. In the years since this article was published, similar solutions
have become standard features of popular continuous integration servers such as Jenkins,
Bamboo or TeamCity, but fail to address the problems of dispersed, multi-server, multi-
process and multi-tool contexts described in Section 1.

Consequently, we find that solutions to the identified problems are lacking in literature,
strengthening Eiffel’s position as a valid contribution.

5.5 Validation Summary

In this section we have shown that the Ericsson developed Eiffel framework for continu-
ous integration and delivery traceability is a valid solution supporting the critical software
engineering capabilities discussed in Section 4:

– Troubleshooting faults discovered in continuous integration and delivery is enabled
by generating trace links to test results, system revisions, baselines and source code
revisions, so that “when we create [release candidates] they sometimes fail [but] using
just that [Eiffel] data we can actually in 95 % of cases [locate] the fault, revert that and
the next build will be ok”.

– Discovering problems such as congestion or resource scarcity in the continuous
integration delivery system is enabled by “specially tailored” visualizations of Eiffel
data that present a “view of how we’re faring right now, across the entire flow”.

– Determining the content of system revisions is enabled by generating trace links
between source code revisions, baselines, system revisions and work items et cetera, so
that “modules can tell me which [bugs] they have tried to correct in a given delivery”
and “you can tell what is provided” in a given system revision. The improvement
brought by Eiffel is confirmed by a quantitative comparison of traceability data gather-
ing before and after its deployment.

– Monitoring the progress of features, requirement implementations, bug fixes et
cetera is enabled by the automated real time generation of trace links as these artifacts
progress through the continuous integration and delivery system, whereby one is
able to “know where a feature is in our development chain [...] for instance, ’It’s in a
[system revision] now, and now it has achieved [a specified quality threshold]’; or a
[change request], a [work item] or a [bug report]”.

– Providing developers with relevant feedback with regards to the source code
changes they commit is enabled by visualization of real time Eiffel data, allowing
developers to answer the question “What is the status of a [commit] right now?”.



990 Empir Software Eng (2017) 22:967–995

In addition, the Eiffel framework is applicable to the aggravating circumstances also
discussed in Section 1:

– Scale, Geographical diversity and Technology and process diversity through the
demonstrated in vivo efficacy of the system in case A — a project encompassing thou-
sands of software engineers spread across three continents and multiple organizations,
each with their unique processes, nomenclatures, backgrounds and technology stacks
(see Section 4.1).

– Continuous integration and delivery through actually being a part of and utilizing the
continuous integration and delivery system itself, rather than struggling to cope with
its consequences in terms of accelerated speeds and frequencies. In this aspect it is
crucially different from the (particularly manual) traceability solutions of other projects
(see Sections 4 and 5.2).

Furthermore, we have been unable to find comparable alternatives available to the studied
industry cases or described in published literature.

6 Threats to Validity

External validity must always be considered when drawing conclusions from a case study. In
this work we have mitigated the threat by confirming that the traceability concerns raised are
also relevant in other projects, one of them in a separate company, with the caveat that they
are all large scale project with multiple tiers of system completeness and that the concerns
and needs of the interviewees mostly related to the larger system level, as opposed to the
smaller component level. We have also shown that technology similar to what has been
developed in case A in order to address those needs is not available in the other cases or in
literature, supporting the generalizability of that solution.

Threats to internal validity include selection and compensatory rivalry (Cook et al. 1979).
Selection, because interviewees were not randomly selected. Instead, purposive sampling
was used — in case A in order to cover as many roles and perspectives as possible, and in
cases B and C to find perspectives correlating to those having the most articulate functional
needs in case A. Compensatory rivalry, because it is conceivable that interviewees feel com-
pelled to put their project into the best light. It should be noted, however, that there were
no incentives in the study to provide positive answers and, in our view, most interviewees
tended towards self-criticism, rather than self-praise.

Due to the involvement of two of the researchers in the development of the studied frame-
work, researcher bias is a concern. To defend against this, apart from participant observation,
three additional methods of validation have been employed to maximize triangulation (see
Section 5).

7 Conclusions and Further Work

In this paper we have studied three very-large-scale, geographically dispersed software
development projects. Driven by the traceability challenges identified in related work, we
have confirmed through interviews that traceability is a serious concern to software pro-
fessionals of multiple roles, not least in the context of continuous integration and delivery,
where it is in fact regarded as a prerequisite to successful large scale implementation of
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these practices. Particularly, based on these findings, we conclude that the lack of adequate
traceability solutions poses a threat to several important software engineering abilities:

– Troubleshooting faults discovered in continuous integration and delivery.
– Discovering problems such as congestion or resource scarcity in the continuous

integration delivery system.
– Determining the content of system revisions.
– Monitoring the progress of features, requirement implementations, bug fixes et cetera.
– Providing developers with relevant feedback with regards to the source code changes

they commit.

In addition, we have established through a systematic review of related work that satis-
factory solutions for achieving traceability in a continuous integration and delivery context,
particularly in large scale development efforts, are lacking.

In response to this situation, Ericsson has developed Eiffel — a framework “fully inte-
grated with the software development tool chain”, as called for in related work (Rempel
et al. 2013) and designed to generate in situ trace links throughout the continuous integration
and delivery process.

In this paper we have presented the Eiffel framework and discussed its design, char-
acteristics and deployment. Furthermore, we have validated the solution using multiple
methods:

– Seven software professionals of multiple roles using the Eiffel framework in their day-
to-day work have been interviewed to capture their experiences, concluding that the
Eiffel framework not only addresses the software engineering abilities listed above,
but is also regarded as a long term solution and “a very solid foundation” to build
upon.

– Eight software professionals of corresponding roles in projects not using the Eiffel
framework have been interviewed to establish whether they have access to traceabil-
ity capabilities comparable to those offered by Eiffel, concluding that not only do they
not have access to comparable functionality, but that this lack is identified as a prob-
lem to the extent that a satisfactory solution to traceability in continuous integration
and delivery is regarded as a prerequisite for the large scale implementation of those
practices.

– The methods of gathering relevant traceability data in the same project before and after
the deployment of Eiffel have been quantitatively compared, concluding that using the
framework the time and effort required are dramatically reduced, as shown in Table 6.

– Published literature has been reviewed in search for comparable solutions, concluding
that none are available.

Our conclusion is that this industry developed solution to continuous integration and
delivery traceability is — to the best of our knowledge — unique and addresses sev-
eral critical concerns of large scale software engineering, which otherwise lack adequate
solutions.

Furthermore, while carrying out this work we have observed differences in mindset with
regards to developer responsibility to understand and monitor their impact in a larger system
context, as opposed to a limited component context, between investigated industry projects.
We hypothesize that this difference represents an example of positive synergy between tool-
ing and process in that it correlates with the availability of sufficient traceability data to
enable such an expanded developer responsibility.
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7.1 Further Work

We find that the work reported from in this paper opens up several promising avenues of
further research.

7.1.1 Development Activity Extension

As the interviewed engineers state themselves, their work on Eiffel is an ongoing process,
with a number of foreseen challenges and opportunities. One of particular interest for further
research is the possibility to extend the framework to development activities, e.g. automati-
cally generating trace links to relevant requirements and bug reports as the developer writes
his or her code, similar to what is described by (Asuncion and Taylor 2009). Such an exten-
sion has great potential for complementing current Eiffel functionality, which currently
relies on developers entering references to artifacts outside of the continuous integration
and delivery system — e.g. bug reports, work items and requirements — with consequent
risks of inconsistent formatting, forgetfulness and other human error factors. Automated
real time analysis of the developer’s work, as proposed in related work, would address these
vulnerabilities.

7.1.2 Developer Responsibility Mindset

As discussed in Section 5.2, we find the observed differences in developer responsi-
bility mindset to be highly interesting and worthy of further investigation, not least
from a large scale software development methodology perspective. Intriguing ques-
tions include the interaction between available infrastructure and mindset, as well
as how that difference in responsibility and mindset affects actual behavior and
outcome.

7.1.3 Improved Trace Link Analysis

Many of the use cases for analyzing and visualizing traceability data observed in the studied
cases requires information to be aggregated from large sets of individual trace links. To
exemplify, the Follow Your Commit visualization (see Fig. 2) mines various trace links —
to builds, automated activities queuing, starting and stopping, tests executions, work items
et cetera — and populate data objects representing the life-cycle of a source code revision
as it progresses through the integration pipeline. Another example is statistical analysis of
traceability data, e.g. to monitor the system and identify congestion or resource scarcity
issues (see Section 4).

The implementations for such analyses and visualizations that we have witnessed are,
while based on the shared Eiffel protocol, still custom ad-hoc implementations. At the same
time, the possibility for conducive generic solutions exists, e.g. in the form of distributed
real time computing systems as Apache Storm and Apache Spark. We consider research
into the application of such systems to the problem of processing real time traceability data
to be highly interesting.
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