
Empir Software Eng (2017) 22:474–504
DOI 10.1007/s10664-016-9434-8

A stability assessment of solution adaptation techniques
for analogy-based software effort estimation

Passakorn Phannachitta1 · Jacky Keung2 ·
Akito Monden3 ·Kenichi Matsumoto1

Published online: 31 May 2016
© Springer Science+Business Media New York 2016

Abstract Among numerous possible choices of effort estimation methods, analogy-based
software effort estimation based on Case-based reasoning is one of the most adopted meth-
ods in both the industry and research communities. Solution adaptation is the final step of
analogy-based estimation, employed to aggregate and adapt to solutions derived during the
case-based reasoning process. Variants of solution adaptation techniques have been pro-
posed in previous studies; however, the ranking of these techniques is not conclusive and
shows conflicting results, since different studies rank these techniques in different ways.
This paper aims to find a stable ranking of solution adaptation techniques for analogy-
based estimation. Compared with the existing studies, we evaluate 8 commonly adopted
solution techniques with more datasets (12), more feature selection techniques included
(4), and more stable error measures (5) to a robust statistical test method based on the
Brunner test. This comprehensive experimental procedure allows us to discover a stable
ranking of the techniques applied, and to observe similar behaviors from techniques with
similar adaptation mechanisms. In general, the linear adaptation techniques based on the
functions of size and productivity (e.g., regression towards the mean technique) outperform
the other techniques in a more robust experimental setting adopted in this study. Our empir-

Communicated by: Martin Shepperd

� Passakorn Phannachitta
phannachitta-p@is.naist.jp

� Jacky Keung
Jacky.Keung@cityu.edu.hk

1 Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan

2 Department of Computer Science, City University of Hong Kong, Hong Kong, China

3 Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-016-9434-8&domain=pdf
mailto:phannachitta-p@is.naist.jp
mailto:Jacky.Keung@cityu.edu.hk

Empir Software Eng (2017) 22:474–504 475

ical results show that project features with strong correlation to effort, such as software
size or productivity, should be utilized in the solution adaptation step to achieve desirable
performance. Designing a solution adaptation strategy in analogy-based software effort esti-
mation requires careful consideration of those influential features to ensure its prediction is
of relevant and accurate.

Keywords Software effort estimation · Analogy-based estimation · Solution adaptation
techniques · Ranking instability · Robust statistical method

1 Introduction

Analogy-based estimation is a widely used approach to estimate the amount of software
development effort required in a software project. This approach is used mainly because of
its excellent estimation performance and its intuitive appeal to practitioners (Keung 2009).
The principle of estimation by analogy is based on the hypothesis that software projects with
similar characteristics should require a similar amount of effort to complete (Shepperd and
Schofield 1997). Thus, the estimation procedure for a new project consists of a retrieval of
the similar historical projects and then reuse of the retrieved efforts. One of the major issues
of conventional analogy-based estimation is that, even though the most similar past projects
are correctly retrieved, their characteristics often deviate somewhat from the new project
(Jørgensen et al. 2003; Li et al. 2007, 2009). Therefore, correctly adjusting the reused effort
is necessary to provide an accurate estimate.

The imperative procedure to adjust the effort is known as solution adaptation (case adap-
tation in Case-based reasoning). It procures a solution estimate from a set of similar and
known past project cases by evaluating the degree of difference between similar retrieved
projects and the new project to be estimated, and refining the estimated effort based on that
degree difference (Li et al. 2009). To date, various solution adaption techniques have been
proposed such as linear size adaptation, non-linear adaptation based on neural networks,
and many others (Chiu and Huang 2007; Jørgensen et al. 2003; Kirsopp et al. 2003; Li et al.
2007, 2009; Walkerden and Jeffery 1999); however, the performance of many techniques
were reported differently in different studies, producing conflicting findings. For example,
in a more recent replicated study by Azzeh (2012) covering 8 most commonly adopted
techniques in practice, the replicated evaluation of a technique based on neural networks
produced results that contradict those of another study by Li et al. (2009). Azzeh also sug-
gested that there is no single best technique; most of the techniques are still a long way from
reaching optimal solutions, and some techniques perform well in a certain dataset and at a
certain configuration (e.g. a fixed number of similar projects to retrieve), while they do not
in any other cases.

Based on these conflicting results and inconsistent behaviors observed in many solution
adaptation techniques in recent studies, we recognize that the conclusion instability prob-
lem exists and speculate that weaknesses of the experimental method were the main causes
of the issue. As suggested by Menzies et al. (2010), the precise stable results require well-
controlled experimental conditions of (1) the method to generate training/test instances,
(2) the performance evaluation criteria used, and (3) the datasets used. We then observed
these weaknesses in the existing studies and found many studies of solution adaption tech-
niques had applied different feature subset selection methods, with different performance
measures, and had recorded the performance regarding different fixed numbers of similar
projects to retrieve. Additionally, we also observed unconvincing experimental designs such

476 Empir Software Eng (2017) 22:474–504

as the use of malformed datasets, and the misuse of deprecated evaluation criteria such as
MMRE, despite proof that MMRE has been a biased and untrustworthy measure for over a
decade (Foss et al. 2003; Kitchenham and Mendes 2009). We believe that a more compre-
hensive experimental design than that of the existing studies may be required to discover
a more stable conclusion of different performances of solution adaptation techniques, an
important study that should provide a reliable guideline for identifying superior techniques
to build estimation models.

Our aim in this study, therefore, is to determine a stable ranking of different effort adap-
tation techniques commonly adopted in analogy-based software effort estimation, through
a comprehensive experimental procedure that has been used to draw conclusion stabil-
ity in the software effort estimation literature. As suggested by Menzies et al. (2010)
and Keung et al. (2013), conclusion stability in software effort estimation requires suf-
ficiently large variants of datasets, dataset preprocessors, evaluating criteria, and also,
other control factors according to the focus and scope of particular studies. Our hypothe-
ses in this study are that (1) with thorough comparisons of the widely used solution
adaptation techniques for analogy-based estimation, undertaken by a comprehensive eval-
uation method, and evaluated with a robust statistical test method, we can assess a stable
ranking list of solution adaptation techniques commonly adopted for analogy-based esti-
mation. In addition, (2) if we are able to assess and rank all the adaptation techniques
correctly, we can observe similar behavior of similar adaptation techniques in other settings,
such as techniques with similar adaptation mechanisms that should have similar accurate
performances.

Specifically, this study highlights the novelty in the adopted comprehensive experimental
methodology and the conclusion stability of solution adaptation techniques produced from
the experiments and analyses based on this methodology. In a short summary, the present
study makes several noteworthy points as follows:

• The main evaluation framework used in this study is our improvements to the Stable
ranking indication method proposed by Keung et al. (2013) in two main components:

– Our evaluation criteria replaces the list of measures being criticized as biased
measures with 5 stable error measures (MAR, MdAR, SD, LSD, and RSD),
in which their stability has been statistically validated in Foss et al.’s study on
evaluation criteria (Foss et al. 2003).

– The performance recorded by the 5 error measures is subject to Brunner et al.’s
test (Brunner et al. 2002), one of the most robust non-parametric test method.
This test method was strongly suggested to be more robust and reliable than
Wilcoxon rank-sum test (Demšar 2006) used in the proposed study of Keung
et al. (2013).

• In place of using only a single feature subset selection method versus using the entire
feature set, as commonly seen in the literature (Azzeh 2012), our experiment adopts a
total of 4 methods in order to avoid possible bias, if the only selected method tends to
favor some solution adaptation techniques over others.

• For each particular training/test instance, we tune the number of similar retrieved
projects (the parameter k) and use the value of k that provides the most fit to the training
instance (Baker’s best-k (Baker 2007)).

• To compensate for a lack of number of datasets to draw stable conclusions, we use 12
datasets from the tera-PROMISE repository (Menzies et al. 2015), where 3 of which
are homogenized datasets being decomposed from the Nasa93 dataset.

Empir Software Eng (2017) 22:474–504 477

• Leveraged by this comprehensive experimental methodology, we are able to assess
a stable ranking of the 8 adaptation techniques, commonly adopted in practice
(Azzeh 2012).

Our further analyses of results show that we found some results that agreed with exist-
ing studies but others that contradicted previous results. For example, we agree with Azzeh
(2012) that neural networks consistently perform poorly, but, in contrast, we found that
genetic algorithms also perform poorly. Hence, the contributions of this study are not limited
only to a comprehensive ranking list of solution adaptation techniques itself, but hope-
fully the study also encourages researchers or practitioners to seek a robust and consistent
methodology when undertaking a research study of this kind.

Our primary motivations and experiments are organized to answer these following
research questions:

RQ1 How stable is the ranking list we discovered?
RQ2 Which are the high-performance solution adaption techniques for analogy-based
estimation?
RQ3 What is the overall performance of each solution adaption technique?

This paper is structured as follows: Section 2 presents the background and related work
about analogy-based estimation and the importance of solution adaptation techniques, and
briefly overviews an assessment of the stable ranking of estimation methods. Section 3
presents the methodologies that generate a stable ranking list. Section 4 presents the results
regarding each research question. Section 5 and Section 6 discuss the findings and threats
to the validity of this study, respectively. Finally, Section 7 concludes this paper.

2 Background

2.1 Analogy-Based Effort Estimation (ABE)

Analogy-based estimation is a reasoning-based estimation method, which estimates an
amount of effort for a new project case following a hypothesis such that software projects
with similar characteristics should require a similar amount of effort to complete. When a
new case arrives for an estimate, the case is treated as a query for retrieving a set of the past
project cases that are the most similar to the new case. Without any adaptation applied, the
new case will directly reuse the effort value of the most similar past project as its estimated
effort; otherwise, solution adaptation is applied to the retrieved multiple similar solutions
from the selected projects, and to refine and finally arrive an estimated effort solution that
is most appropriate to the new case. Figure 1 graphically explains an estimation by analogy
when solution adaptation is being applied, focusing from the arrival of a new case up to
produce the estimated effort value for the case.

The name ABE0-kNN was coined by Keung et al. (2013) as a basic and standard form of
an ABE framework. ABE0-kNN uses a variant of Euclidean distance function that combines
with the Hamming distance function (Wilson and Martinez 1997) to calculate the similarity
between project cases, and uses k nearest neighbor (kNN) technique to select the k software
project cases that are most similar to the new case. The default solution adaptation technique
of ABE0-kNN is an unweighted mean of the effort values of the k software projects selected
by kNN. The k parameter value is commonly fixed as a static value in the literature. For
example, Walkerden and Jeffery (1999) set the number statically to 1 in their experiment.

478 Empir Software Eng (2017) 22:474–504

Fig. 1 A graphical explanation of the analogy based estimation process

Kirsopp and Shepperd observed k = 2 in Kirsopp et al. (2003). Mendes et al. examined the
number in a range from 1 to 3 in Mendes et al. (2003) to be appropriate. Li et al. used k = 5
in the study discussed in Li et al. (2009). However, Baker (2007) tuned the k parameter value
by a method called wrapping and used the best-k value that fits the best to the training set.

In our study, we adopt only the method developed by Baker (2007), which is considered
the most optimal procedure for such an operation. We denote the name ABE0-best-kNN
as the basic ABE0-kNN having the k parameter selected by the Baker’s best-k approach,
and adopt the ABE0-best-kNN as the baseline framework used in this paper to evaluate the
performance solution adaptation technique.

2.2 Solution (Case) Adaptation Techniques

Compared with an analogy-based estimation process without any solution adaptation
applied, an effort value estimated by a process in which the estimated effort value was
adjusted by any adaptation technique is on average more robust and reliable as stated
by a number of studies, such as in (Azzeh 2012; Li et al. 2007, 2009; Walkerden
and Jeffery 1999). This is because the effort used in similar retrieved projects often
deviate from the new project case. In this study we replicate 8 solution adaptation tech-
niques, often appearing in analogy-based estimation studies (Azzeh 2012; Chiu and Huang
2007; Jørgensen et al. 2003; Kirsopp et al. 2003; Li et al. 2007, 2009; Walkerden and
Jeffery 1999). The list of 8 techniques are the choices of our study because they were
recently replicated in the study by Azzeh (Azzeh 2012), in which several inconsistent
behaviors among the adaptation techniques were observed. In the study of Azzeh (2012),
these 8 techniques were evaluated based on 7 datasets, and the author concluded that most
adaptation techniques are still long way from reaching the optimal solutions, because their
behaviors are inconsistent with those techniques that performed well in certain selected
studies, but did not consistently performed well in other studies. Table 1 lists and sum-
marizes the 8 adaptation techniques used in this study, and a detailed explanation of the 8
techniques is as follows:

Adaptation Technique #1 Unweighted average of the effort (UAVG) is a primitive adap-
tion technique to adjust the effort value for the basic ABE0-kNN (Shepperd and Schofield

Empir Software Eng (2017) 22:474–504 479

Table 1 Summary of 8 adaptation techniques included in this study

Abbrev. Solution adaptation techniques Adjustment Adjustment

function feature

1 UAVG Unweighted mean of the k analogues (Shepperd and Kadoda 2001) Arithmetic Effort

mean

2 IRWM Inverse-rank weighted mean of the k analogues (Mendes et al. 2003) Arithmetic Effort

mean

3 LSA Linear size adaptation (Walkerden and Jeffery 1999) Linear Size feature

4 MSA Multiple size adaptation (Kirsopp et al. 2003) Linear Size feature(s)

5 RTM Regression towards the mean (Jørgensen et al. 2003) Linear Size feature

6 AQUA Similarity-based adaptation (Li et al. 2007) Linear All features

7 GA Adaptation based on Genetic algorithm (Chiu and Huang 2007) Linear All features

8 NNet Non-linear adaptation based on Neural networks (Li et al. 2009) Non-linear All features

1997; Keung et al. 2013). UAVG aggregates effort values of the selected k analogues
(neighbours) by using an unweighted mean:

Eff ort (Pnew) = 1

k

k∑

i=1

Eff ort (Panaloguei
), (1)

where k is the total number of project analogues, and Eff ort (Pnew) is the estimated effort
for the new case.

Adaptation Technique #2 Inverse-rank weighted mean (IRWM) applies different weight
values to different project analogues. The weight used in IRWM is based on the similarity
ranking between each project analogue and the new case, as the technique assumes that
project analogues that are closer to the new case are more important (Mendes et al. 2003).
The IRWM formula is depicted in (2).

Eff ort (Pnew) = 1
∑k

i=1 i

k∑

i=1

(
(k − i + 1) × Eff ort (Panaloguei

)
)

(2)

where i = 1 refers to the nearest analogue, and i = k refers to the most distant analogue to
the new case.

Adaptation Technique #3 Linear size adaption (LSA) is based on the linear extrapola-
tion between a software size variable of the new case and of its retrieved similar projects
(Walkerden and Jeffery 1999). The software size variable is, for example, Adjusted Func-
tion Points, Raw Function Points, and Lines of code. Walkerden and Jeffery (1999), based
on their observations, suggested that adjusting the effort using a size variable can provide a
robust estimate because software size always has a strong correlation with the effort vari-
able. Furthermore, adjusting the effort value using software size allows the estimation to
scale the retrieved effort value up or down to the expected size of the new case, if the new

480 Empir Software Eng (2017) 22:474–504

case is planned to be developed in a different size from that of its similar projects. Equation 3
depicts the formula of the LSA technique.

Eff ort (Pnew) = Size(Pnew)

1
k

∑k
i=1 Size(Panaloguei

)
× 1

k

k∑

i=1

Eff ort (Panaloguei
) (3)

Note that in the case where a dataset consists of multiple variables indicating software
size, the single software size variable selected in the experiment is the one that exhibits the
highest correlation coefficient with the effort.

Adaptation Technique #4 Multiple size adaptation (MSA) extends the LSA technique to
handle the case in which software size is described by multiple arbitrary attributes. These
cases are commonly seen in web application development (Kirsopp et al. 2003). MSA aggre-
gates multiple size variables using a mathematical mean, and then applies the mean of the
size variables to the Size terms in (3).

Adaptation Technique #5 Regression toward the mean (RTM) calibrates the productivity
of project cases in which the productivity value may not consistent with each of the other
project cases (Jørgensen et al. 2003) before applying the calibrated productivity to adjust the
effort. The essential hypothesis for the productivity calibration follows the statistical phe-
nomenon, known as Regression toward the mean, stating that, any extreme instance on its
first measurement will tend to move toward the population mean on its second measurement.
In the estimation process, projects are divided into groups by a single categorical variable,
selected prior to the estimation. Then, the productivity of the similar retrieved projects are
adjusted towards the average productivity among projects in the same group. The adjusted
productivity is then calculated into the estimated effort by following the triangular relation
of the Eff ort = Size × Productivity (Walkerden and Jeffery 1999). The entire formula
for the RTM technique is depicted in (4).

Eff ort (Pnew) = Size(Pnew) ×
(

1

k

k∑

i=1

Productivity(Panaloguei
)

+
(

M − 1

k

k∑

i=1

Productivity(Panaloguei
)

)
× (1 − r)

)
(4)

where M is the mean productivity of the project in the same group, and r is the correlation
coefficient between the productivity of the project analogues and the actual productivity of
the projects in the same group.

In the experiments, there are two important parameters for RTM to be configured: a
single software size variable and a categorical variable used to divide datasets into multiple
coherence groups. For the single size variable, we used the same criteria as for LSA. That is
the selected size variable is the one that exhibits the highest correlation coefficient with the
effort. For the other categorical variable, unfortunately, our literature review found none of
the existing studies discussed the selection criteria when there are more than one categorical
variables being presented in a dataset. Hence, we adopted simple criteria as follows:

• In the case where no categorical variable existed in a dataset, we treated the entire
dataset as a single coherent data group.

• In the case where there is one or more categorical variables existed in a dataset, the
categorical variable of our choice was the one that generated coherence groups with

Empir Software Eng (2017) 22:474–504 481

the minimum sum of pairwise difference of the effort, calculated across all the divided
coherence groups.

Adaptation Technique #6 Similarity-based adaptation (AQUA) adjusts the estimated
effort value by the aggregated degree of similarity between pairs of project features of the
new case and its retrieved similar projects. The degree of similarity is an inverse of dis-
tance, which is used in identifying similar projects of the new case. The aggregation formula
involves the sum of the product of the normalized global similarity degree as depicted in
(5). Note that the term global similarity refers to the similarity between the paring of the
new case and its analogues, measured based on all project features. In addition, Global sim-
ilarity is the product of the sum of the local similarity, which is referred to as the similarity
between paring of the new case and its similar projects, measured based on only a single
project feature.

Gsim(Pnew, Panaloguei
) =

f∑

j=1

Similarity
(
Featurej (Pnew), Featurej (Panaloguei

)
)

Eff ort (Pnew) = 1

k
×

∑k
i=1

(
Gsim(Pnew, Panaloguei

) × Eff ort (Panaloguei
)
)

∑k
i=1 Gsim(Pnew, Panaloguei

)
,

(5)

where Gsim is the global similarity, Featurej (Pnew) is the value of feature j of the new
case, and k is the number of project analogues of the new case.

Adaptation Technique #7 Adaptation based on Genetic algorithm (GA), proposed by
Chiu and Huang (2007), adopts a Genetic algorithm method to adjust the effort values
retrieved from project analogues. The adaptation mechanism is similar to AQUA, which is
based on the similarity degrees between the new case and its similar past projects. One
genetic algorithm model is adopted for one single project feature to derive a suitable linear
model that approximates the effort difference by local similarity (i.e. the same notion as
described in AQUA). Then GA aggregates each optimized linear models by the sum of its
products into a single linear equation for adjustment, and applies the aggregated model to
effort in additive form as shown in (6).

e(Pnew, Panaloguei
) =

f∑

j=1

βj × Similarity
(
Featurej (Pnew), Featurej (Panaloguei

)
)

Eff ort (Pnew) = 1

k

k∑

i=1

(
Eff ort (Panaloguei

) + e(Pnew, Panaloguei
)
)
, (6)

where e(Pnew, Panaloguei
) is an aggregation of the optimized linear models, each of which

is optimized by a Genetic algorithm based on one single project feature, and βj is the coef-
ficient of Featurej and Eff ort which is learned by the Genetic algorithm. According to
the replicated study by Azzeh (2012), this adaptation techniques is on average the most
accurate.

In our experiment, we optimized the genetic algorithm based on an absolute error mea-
sure called MAR, i.e., the absolute difference between actual and predicted effort values.
This optimization criteria are different from both the proposed study by Chiu and Huang

482 Empir Software Eng (2017) 22:474–504

(2007) and the replicated study by Azzeh (2012), which relied on error measures named
MMRE and Pred. These two error measures were strongly criticized as being the measures
no longer believed to be reliable and trustworthy (Foss et al. 2003; Kitchenham and Mendes
2009).

Adaptation Technique #8 Non-linear Adaptation based on neural networks (NNet) pro-
posed by Li et al. (2009), trains a neural network to capture the degree of difference of
project features between pairs of project cases. Then the degree of difference is converted
to the amount of effort difference in the adjustment process. The main benefit of adopting a
neural network is that it is considerably an optimal solution for datasets which do not have
underlying Gaussian distribution. The adaptation mechanism is also in an additive form the
same as in the GA technique. The formula of the NNet technique is depicted as:

Eff ort (Pnew) = 1

k

k∑

i=1

(
Eff ort (Panaloguei

) + f (Pnew, Panaloguei
)
)
, (7)

where f (Pnew, Panaloguei
) is an output value from the neural network model, trained to tell

the effort difference of a pair of project cases, given their difference in project features. The
main difficulty in adopting this adaptation technique is due to a very large configuration
possibility for its optimization. This possibly requires many parameter optimizations such as
a number of hidden layers and learning procedures. Therefore, neural network approaches
in many studies cannot be reproduced. For example, while many replicated results from the
Azzeh study (Azzeh 2012) were in agreement with the other proposed studies, the results
based on neural networks contradicted the results of Li et al. (2009).

2.3 Assessing a Stable Ranking of Estimation Methods

A few years earlier, conflict results regarding comparisons of multiple effort estimation
methods (a.k.a. ranking instability) were an issue subject to debate in software effort esti-
mation research (Kocaguneli et al. 2012c), and the answer to questions which often came
up such as “Which is the best estimator?” were not easily addressed. This debate existed
because if a researcher or an industrial practitioner read through the literature of avail-
able methods, divergent conclusions regarding the performance or superiority of a selected
method could be found. For examples (Li et al. 2009) reported that the solution adaptation
based on the NNet technique was accurate, whereas its replication by Azzeh (2012) was not.

Most recently, Keung et al. (2013) revisited the ranking instability issue in effort esti-
mation methods following the guideline suggested in Menzies et al. (2010). They proposed
a Stable ranking indication method for model-based effort predictors, and also proved
that their indication method provided a stable ranking list of 90 variants of effort predic-
tors, which commonly appeared in the effort estimation literature. According to Keung
et al. (2013), 3 conditions should be carefully controlled for a stable ranking result when
undertaking experiments to compare multiple methods:

• Variants of dataset instances are sufficient to draw a conclusion;
• The procedure to sample the training/test instances is logical and replicable;
• The performance evaluation criteria are sufficient in amount and are valid.

In the study of Keung et al. (2013), the leave-one-out approach was selected as the sam-
pling method, because it does not rely on a random selection of training/test split (Kohavi

Empir Software Eng (2017) 22:474–504 483

1995). The validity of the performance criteria was maximized by a means of 7 error mea-
sures, and the method for summarizing the 7 measures was a robust statistical method,
namely, win-tie-loss statistics (Demšar 2006). Also, for the generalization of the results,
they applied 20 datasets, together with different model design options to draw a stable
conclusion.

3 Methodologies

In order to generate the stable ranking list of solution adaptation techniques, we adopted and
extended the Stable ranking indication method proposed by Keung et al. (2013). The aim of
the extension to this method is validity improvement. This section explains procedures we
adopted and extended in detail.

All the adaptation techniques we evaluated in this study are implemented in the solution
adaptation stage of the basic ABE0-kNN framework (Keung 2009) with the best-k selected
in every single test (Baker 2007). We denote the name of the framework as ABE0-best-
kNN for reference later in this paper. All the implementations were developed in MATLAB
and were executed on a standard Intel Core i7 notebook with 16 GB of main memory. For
compute-intensive experiments such as the adaptation techniques based on neural networks,
we tailored these experiments with General-purpose computing on graphics processing units
(GPGPU) technology to accelerate the experiment, as suggested by Phannachitta et al. in
their proposal of the ABE-CUDA framework (Phannachitta et al. 2013).

Given that there are 8 adaptation techniques in combination with 4 feature subset selec-
tion methods to evaluate in this study, we generated 32 variants of configurations by
implementing all the pairing between adaptation techniques and feature subset selection
methods in the ABE0-best-kNN framework, i.e., feature selections were applied in the
project retrieval stage, and adaptation techniques were adopted in solution adaptation stage.
Keung et al. (2013) suggested the need to examine different feature subsets in experiments
because the same estimation model often shows varying performance on different feature
subsets selected prior to the model building.

3.1 Dataset Instances

We selected 12 real world software project datasets in our experiments. All the datasets
were available in the tera-PROMISE software engineering repository (accessible through
(Menzies et al. 2015)), where datasets are made available and commonly reused in software
development effort estimation studies. As listed and detailed in Table 2, the selected 12
datasets consisting of 951 software projects are diversified in software size and project
characteristics.

For a brief explanation for each selected dataset, Albrecht contains software projects
from IBM completed in 70s (Albrecht and Gaffney 1983). China contains software projects
from multiple Chinese companies (Menzies et al. 2015). Project cases in Cocomo-sdr were
from various companies in Turkey (Bakır et al. 2010). The Cocomo81 dataset (Boehm 1981)
contains NASA software projects. Desharnais is a well-known dataset containing soft-
ware project developed in Canada (Shepperd and Schofield 1997). Finnish contains project
cases from different companies in Finland (Kitchenham and Känsälä 1993). Kemerer
is a small dataset from large business (Kemerer 1987). Maxwell contains project cases
from commercial banks in Finland (Maxwell 2002). Miyazaki94 contains many software
projects developed in COBOL language (Miyazaki et al. 1994). Nasa93-c1, Nasa93-c2, and

484 Empir Software Eng (2017) 22:474–504

Table 2 The 12 selected datasets consisting of 951 software project cases (F = number of features, FCat =
number of categorical variables, SS = number of software size variables, N = number of projects)

Datasets F FCat SS N The effort variables

Unit Min Mean Median Max

Albrecht 7 0 2 24 months 0.5 21.9 11.5 105.2

China 18 0 1 499 hours 26.0 3921.1 1829.0 54620.0

Cocomo-sdr 22 0 1 24 months 2.0 32.0 12.0 342.0

Cocomo81 17 1 1 63 months 5.9 683.5 98.0 11400.0

Desharnais 11 1 2 81 hours 546.0 4833.9 3542.0 23940.0

Finnish 8 2 1 38 hours 460.0 7678.3 5430.0 26670.0

Kemerer 7 2 2 15 months 23.2 219.2 130.3 1107.0

Maxwell 27 6 1 62 hours 583.0 8223 5190.0 63694.0

Miyazaki94 8 0 1 48 months 5.6 87.5 38.1 1586.0

Nasa93-c1 16 4 1 12 months 24.0 139.9 66.0 360.0

Nasa93-c2 16 4 1 37 months 8.4 222.9 82.0 1350.0

Nasa93-c5 16 4 1 48 months 72.0 1011.0 571.4 8211.0

Total 951

Nasa93-c5 are homogenized datasets being decomposed from the Nasa93 dataset. The post-
fix c-1, c-2, and c-5 indicated the development centers where each software project was
developed.

Out of the 12 datasets, 3 datasets (Nasa93-c1, Nasa93-c2, and Nasa93-c5) are homog-
enized datasets. In the literature (Keung et al. 2013; Kocaguneli et al. 2012a, b), dataset
decomposition is a technique commonly applied to the Cocomo81, Desharnais, and Nasa93
datasets before performing an experiment based on them. The common policy used to
decompose these datasets is to divide project cases into separated datasets based on a cat-
egorical variable that clearly distinguishes the cases with the same attribute values from
the others. This policy is the same as that commonly used in providing categorical vari-
ables for the RTM adaptation technique. Specifically, the Desharnais dataset is commonly
divided by an “Environment” variable into 3 subsets called Desharnais-L1, Desharnais-L2,
and Desharnais-L3. The Cocomo81 dataset is commonly decomposed into 3 datasets named
Cocomo81-e, Cocomo81-s, and Cocomo81-o using its “Mode” variable. For the Nasa93
dataset, the “Development center” was the variable of concern, which is commonly used to
divide it into Nasa93-c1, Nasa93-c2, and Nasa93-c5 datasets.

However, one possible major concern is that the use of some decomposed datasets may
be questionable unless it can be confirmed that the distributions of all those decomposed
from the same datasets should be treated as independent. In contrast to the previous stud-
ies (Keung et al. 2013; Kocaguneli et al. 2012a, b), we question that decomposing the
Deshanais and Cocomo81 datasets may not be entirely valid. This is because, for example,
the Desharnais-L1 and Desharnais-L2 datasets being decomposed using the “Environment”
variable are divided into sub-datasets that were developed using Basic Cobol and Advanced
Cobol languages, respectively, while there seems to be no available information to assess
how is the difference between the two development languages. Similarly, decomposing
the Cocomo81 dataset by using the “Mode” variable would also lead to questionable sub-
datasets. That is, all the development languages and productivity are greatly overlapped

Empir Software Eng (2017) 22:474–504 485

0.0

0.1

0.2

0.3

0.4

0.5

510150
Productivity

D
en

si
ty

Nasa93−c1 Nasa93−c2 Nasa93−c5

Productivity distributions of Nasa93−c1, Nasa93−c2, and Nasa93−c5 datasets

Fig. 2 Kernel distribution plots of effort and productivity of the Nasa93-c1, Nasa93-c2, and Nasa93-c5
datasets

across all the datasets being decomposed from the Cocomo81. In our view, only the datasets
decomposed from Nasa93 appear to be valid as they are decomposed with regards to
the development centers. Nonetheless, their empirical distributions may still need to be
confirmed as being different.

As suggested by Kitchenham (2015), we used Kernel distribution plots to show the sum-
mary of the distributions of the Nasa93-c1, Nasa93-c2, and Nasa93-c5 datasets. Due to the
problem of space, we only show the Kernel distribution plots of productivity (i.e., effort /
software size) of all these 3 datasets in Fig. 2. In this figure, the Kernel distribution plots
show that the productivity distributions of the Nasa93-c1, Nasa93-c2, and Nasa93-c5 are
different. Hence, in our experiments of this study, we decided to use Nasa93-c1, Nasa93-c2,
and Nasa93-c5 as decomposed datasets, while treating Cocomo81 and Desharnais as full
datasets.

3.2 Four Feature Subset Selection Methods Adopted

Feature subset selection is one of the most important steps in the performance of analogy-
based estimation (Chen et al. 2005; Keung et al. 2013). We argue that a comparison of
the test instances between adopting of one single feature selection method versus adopting
no feature selection as in Azzeh (2012) may not be sufficient to draw a stable conclusion
because a method that relies on strong correlation between features and effort may bias a
feature selection criteria towards linear models. In our evaluation, we adopt 4 feature selec-
tion methods in our experiments, which have been commonly applied in effort estimation
literature (Kocaguneli et al. 2012c; Keung et al. 2013) namely:

486 Empir Software Eng (2017) 22:474–504

All selects all the features in a dataset;

Sfs (Sequential forward selection (Kittler 1986)): is a greedy algorithm that adds features
into an initially empty set one by one until there is no further improvement when adding
any of the other remaining features;

Swvs (Stepwise variable selection (Kittler 1986)): iteratively adds or removes features
from the feature set based on the statistical significance of a multilinear model in explain-
ing the objective variable. In each iteration it builds two models that include and exclude
one selected feature. The process is repeated until there is no additional improvement by
either adding or removing a feature from the list of selected features. The criteria we used
to decide whether to add or remove a feature is the same as used in stepwise regression,
which is the F-statistic significance of a regression model (Alpaydin 2014). The estimated
target value from Swvs is the regression result subject to the list of features, selected by the
last step of feature selection process;

Pca (Principal component analysis (Li et al. 2007; Wen et al. 2009; Tosun et al. 2009)):
can be used as a feature selection method since its main purpose in the machine learning
domain is to reduce the feature dimension. Pca uses a transformation function to map the
entire dataset into a new lower-dimensional space, where remaining values are uncorrelated
and retained the essential variance of the original dataset.

3.3 Procedure to Sample the Training and Test Instances

We sampled training and test instances by using leave-one-out approach (Kohavi 1995).
Given N project cases, 1 project at a time becomes a test instance of the model that is
trained from all the remaining N-1 cases. The leave-one-out approach performed over an
N -case dataset has N predictions, and all these N predictions will hold the same values
in every single run because the leave-one-out does not depend on a random sampling of
the cases. Leave-one-out is our choice of sampling procedure because leave-one-out has
proved to be the procedure that generates the lower estimation bias, and is more robust
when experimenting on small and medium-sized datasets (Kocaguneli and Menzies 2013;
Kosti et al. 2012) (i.e. less than 100 samples), where most of the available effort datasets
are within this range (Menzies et al. 2015).

3.4 Multiple Performance Measures (Evaluation Criteria)

Two types of performance measures were used in our experiment: (1) error measures and
(2) a statistical test method to summarize the error measures. Our choice of error measures
follows the suggestion by Foss et al. (2003), who performed a prominent statistical analysis
and proved that many performance measures used as accuracy indicators in effort estima-
tion, such as the well-known MMRE and Pred(25), are biased and are no longer believed to
be trustworthy measures. Therefore, our list of error measures is different from that which
commonly seen in the literature including that of Azzeh (2012) and Keung et al. (2013),
because we select 5 error measures from the list of more stable measures suggested by Foss
et al. (2003). A detailed explanation of the 5 error measures is as follows:

Empir Software Eng (2017) 22:474–504 487

The absolute residual (AR) is the absolute difference between the predicted and the actual
effort value. The overall average error AR is commonly derived as the Mean Absolute Error
(MAR), and Median Absolute Error (MdAR):

MAR = mean(all|Actuali − Predictedi |); (8)

MdAR = median(all|Actuali − Predictedi |), (9)

where Actuali , and Predicti are the actual and the predicted effort of a software project
case i.

The other 3 error measures are variants of standard deviation, which are simple mea-
sures of residual error: Standard Deviation (SD), Relative Standard Deviation (RSD), and
Logarithmic Standard Deviation (LSD), and they are computed as follows:

SD =
√∑N

i=1(Actuali − Predictedi)2

N − 1
; (10)

RSD =
√∑N

i=1

(
Actuali−Predictedi

Sizei

)2

N − 1
; (11)

LSD =
√∑N

i=1

(
ei − (− s2

2

))2

N − 1
, (12)

where Sizei is a single software size variable (e.g., adjusted Function points), ei is given
by ln(Actuali) − ln(P redicti), and s is an estimator of the variance of ei). As noted in
the proposed study by Foss et al. (2003), the mean and the variance of errors of a model
being taken by logarithms will be equal to −s2/2 and s2, respectively, if they exhibit normal
distribution. Hence, in other word, (12) indicates a simple standard deviation of errors being
normalized to logarithmic scale.

After the leave-one-out experiment produced N predictions, the estimation performance
was recorded by the 5 error measures subject to a statistical test based on Brunner test
(Brunner et al. 2002). The Brunner test can be considered as one of the most robust and
reliable variants of the Wilcoxon rank-sum test (Demšar 2006), a commonly adopted non-
parametric test in empirical software engineering studies (Kitchenham 2015; Kocaguneli
et al. 2012a, b; Keung et al. 2013) that is practically useful when the samples do not underly
normal distribution. Given 32 variants of configurations of analogy-based estimators (i.e.
ABE0-best-kNN being tailored with 8 adaptation techniques and 4 feature selection meth-
ods), the Brunner test collected the performance measures of 32 configuration variants of
ABE0-best-kNN estimators such that each was compared with the 31 others. A statistical
measure that states one variant is better, on par, or worse than how many other variants
is called win-tie-loss statistics (Azzeh 2012; Keung et al. 2013; Kocaguneli et al. 2012c,
2013a). We used this statistical method to summarize the overall performance for each pre-
dictor, and this overall performance was then used to generate the stable ranking list of the
32 ABE predictors.

The test procedure for comparing a pair of ABE0-best-kNN variants i and j is depicted
in Fig. 3. When the Brunner test showed that the estimated effort from any of the two ABE
variants were not significantly different (i.e., p-value > 0.05), we recorded no significant
difference between the two techniques (i.e., they are tied). Otherwise, the technique with the
lower error value will win the comparison. Note that for all the 5 error measures we used, a
lower number indicates a better performance.

488 Empir Software Eng (2017) 22:474–504

Fig. 3 Comparing the performance between estimator i and j , on their single error measure Erri and Errj .
Lower values indicate better performance for all 5 error measures

The main reason that we selected the Brunner test as our main statistical test method
of this study was that, as suggested in a simulation study by Zimmerman (2000), unequal
variance can greatly reduce the power of any test based on the Wilcoxon test, even if the
two test groups have equal sample sizes. To avoid such invalid statistical inferences, we
followed the guidelines provided by Wilcox (2011) and applied the Brunner test, which
can be considered as the Wilcoxon test based on the confidence interval of the p-hat met-
ric. This p-hat metric considers a probability of random observations instead of a direct
ranking comparison as done by the conventional Wilcoxon test. The direct ranking com-
parison was considered the main causes of problem, pointed out by (Zimmerman 2000).
Overall, the use of the p-hat metric contributes to the Brunner test as to improve the sta-
tistical power, reduce the risk of committing the type I error, and make the test better
prone to the effect of outliers (Kitchenham 2015; Wilcox 2011), compared with the con-
ventional Wilcoxon rank-sum test. These were otherwise especially problematic when the
samples’ size (e.g., the size of data points) are small, where most of the datasets avail-
able in the tera-PROMISE repository are this size (Menzies et al. 2015). We therefore
believe that using multiple stable error measures and a valid statistical test method will
enable replicability, and at the same time, will maximize the validity of the experimental
results.

For the implementation of the Brunner test in our experiments, we used a function named
bprm, being made avialable by Wilcox (2011) in a robust statistical test library named WRS
in R language system.

3.4.1 Interpretation of the Win-Tie-Loss Statistics

Based on the win-tie-loss statistics, the performance of effort estimators being evaluated
is commonly assessed by means of ranking in regard to the total counts of wins, losses,
or wins - losses. The rank of an effort estimator is based on how many times an estima-
tor significantly outperforms the others or being outperformed by the others, where the
level of significance is indicated by the Brunner test. According to Demšar (2006) and
Kocaguneli et al. (2012c), there is no generally accepted method to compare these sum-
mations. In this study we interpreted wins - losses to generalize the experimental results.
And for more specific results, we interpreted all of them to observe stability through the
agreement established across different rankings.

Empir Software Eng (2017) 22:474–504 489

The procedure in Fig. 3 was executed over all pairing of configurations between adap-
tation techniques and feature selection methods across all error measures. After a single
execution, the summations of wins, ties, and losses for each design variant held the val-
ues that indicated its estimation performance. Then, we interpreted the summations in the
following 3 ways:

1. We calculated wins - losses and ranked the 32 ABE variants based on win-tie-loss statis-
tics. In this way, we could clearly indicate the poorly performed predictors which have
wins - losses less than 0 (i.e., the number of wins is less than the losses). Furthermore,
according to our empirical results, the ranking based on wins - losses is in broad agree-
ment with most rankings computed separately for each error measure over wins, losses,
and wins - losses.

2. We calculated the mean rank change, which indicates the agreement among each single
error measure across different summation procedures of the win-tie-loss statistics. The
calculations are:

(a) Calculate wins, loss, and wins - losses across all error measures;
(b) Calculate wins, loss, and wins - losses separately for each error measure, each of

which has its own ordering of the 32 configuration variants;
(c) Calculate the absolute difference in ranking between (a) and (b) for each configu-

ration variant;
(d) The indicator for stable ranking is the mean rank changes derived from 5 error

measures × 3 statistics (wins, loss, and wins - losses).

3. From 2(b), we calculated the minimum rank, averaged rank, and maximum rank for
each of the 5 (error measures) × 3 (statistics) = 15 ranking lists, and averaged them
across the 5 error measures. These indicators can ensure stability in further detail which
is more specific than the summarized rank change.

4 Results

We applied the leave-one-out sampling approach to 12 datasets and recorded the esti-
mated effort values achieved by 32 configuration variants of the ABE0-best-kNN estimator.
Table 3 presents the ranking list of the 32 configuration variants of ABE0-best-kNN that
were cross-generated from 8 solution adaptation techniques and 4 feature subset selection
methods. The maximum number of wins - losses for a single configuration variant is 31
comparisons × 5 error measures × 12 datasets = 1,860 (i.e. all wins and no losses). The
result in Table 3 is ordered by the total number of wins - losses accumulated from all
comparisons.

4.1 RQ1 How Stable is the Ranking List We Discovered?

The column indicating the rank change in Table 3 shows that we are able to determine stable
ranks based on this ranking list of configuration variants of the ABE0-best-kNN estimator.
The majority of observations (over 70 %) had mean rank change ≤ 6 (less than 20 % of the
maximum possible changes). Therefore, this stable ranking list is leveraged by the robust
statistical method and the robust error measures used in our study to provide overall stability.

In addition to the low average rank change observed across Table 3, we see that the mean
average rank, which was averaged by 15 ranking lists (from 5 error measures × 3 summation

490 Empir Software Eng (2017) 22:474–504

Table 3 Win-tie-loss ranking results from the experiments

Rank wins- Solution Feature Mean

losses adaptation selection rank minimum maximum average

technique method change rank rank rank

1 449 RTM Pca 4 2.4 8.6 5.1

2 428 RTM Sfs 3 2.2 8.2 5.2

3 373 RTM All 5 3.6 11.6 7.3

4 336 RTM Swvs 5 7.2 9.8 8.5

5 325 LSA All 3 5.8 10.2 7.7

6 278 MSA All 4 8.8 12.4 10.3

7 275 UAVG Swvs 4 8.0 10.0 8.9

8 264 LSA Sfs 5 8.4 14.0 10.7

9 262 MSA Swvs 6 8.8 14.8 11.2

10 252 MSA Pca 3 5.4 12.4 9.3

11 232 MSA Sfs 6 10.2 17.0 12.9

12 220 LSA Swvs 4 10.2 15.0 12.1

13 180 LSA Pca 3 10.0 15.4 12.8

14 141 GA Swvs 3 10.0 15.2 13.0

15 96 IRWM Swvs 4 13.2 18.6 15.7

16 45 NNet Swvs 7 8.2 24.4 15.9

17 −6 AQUA Swvs 6 11.4 20.2 15.9

18 −89 UAVG Sfs 3 17.6 22.4 19.7

19 −138 IRWM Sfs 3 17.2 23.6 20.3

20 −155 UAVG All 3 20.6 24.2 22.0

21 −176 UAVG Pca 3 18.8 23.2 20.7

22 −189 IRWM All 2 21.8 24.2 22.7

23 −194 IRWM Pca 6 16.2 25.0 20.7

24 −250 AQUA All 8 15.4 23.0 20.1

25 −253 AQUA Pca 8 13.8 25.4 20.5

26 −279 AQUA Sfs 9 15.4 23.0 20.3

27 −284 NNet Pca 4 20.8 25.0 23.3

28 −321 GA Sfs 6 17.4 30.0 24.3

29 −338 GA All 6 17.2 31.0 24.9

30 −381 NNet All 4 23.0 29.6 26.4

31 −508 NNet Sfs 2 26.8 31.2 29.1

32 −595 GA Pca 2 28.2 31.4 30.2

Results for each combination of configuration variants of feature selection methods and solution adaption
techniques are sorted by wins - losses. The column that indicates mean rank change shows how stable a
configuration variant is; a lower number represents a more stable rank. The 3 columns to the right indi-
cate the mean minimum rank, mean maximum rank, and mean average rank, calculated separately for each
configuration variant by the 5 error measures (MAR, MdAR, SD, RSD, and LSD)

procedures of win-tie-loss statistics) were not much different to the ranking based on the
total summation of wins-losses. The maximum ranking difference between the ranking in

Empir Software Eng (2017) 22:474–504 491

Table 3 and the mean average rank was only 5.7 (at rank #26), and more than half of the
configuration variants of the analogy-based estimators had such difference values less than
2. This observation ensures the overall stability of the ranking methodology we used and
the ranking list we discovered.

Since our results were observed with many configuration variants between solution adap-
tion techniques and feature selection methods, and some solution adaption techniques are
based on similar adaptation mechanism, these configuration variants may thus have a very
similar accuracy performance. For example, UAVG and IRWM do not apply any descriptive
variables to adjust the effort, thus, we expect more tie results observed between pairs of con-
figuration variants with a similar adaptation mechanism. In our motivated study of Keung
et al. (2013), a massive change of ranking in some portions of their ranking list of effort
predictors could imply a situation in which all the predictors appearing in the same portions
of the unsteady ranking list would have a similar performance. However, as we increased
the robustness of the statistical method and of the error measures, the ranking based on
our extended method rarely changed across different measures. We therefore extended the
Keung et al.’s Stable ranking indication method to additionally observe the mean minimum
rank, mean maximum rank, and mean average rank, and we compared them all with the
mean rank change. Results based on an this extension show that we can now observe the
configuration variants in Table 3 which have a similar accuracy performance.

Observing the agreement of the ranking between the ranking based on the summation
by wins - losses and by the mean average rank, we can divide Table 3 into 5 portions
based on performance and the stability. We see that the top 2 ranks were very stable and
consistently outperformed. In the second group from rank #3 to rank #14, we see that all
these configuration variants may have the same performance, as their mean rank change,
mean maximum rank, and mean average rank were not much different (μmean average rank
= 10.4 and σ 2

mean average rank = 2.05). In the next portion of the ranking list between rank
#15 and rank #17, all the configuration variants in this portion consistently had the same
performance, as their mean average ranks were rounded to rank #16. After rank #16, the
ranking became interchangeable until rank #26. Similar to the second group, the configu-
ration variants between rank #18 to rank #26 also have very similar performance, as their
mean maximum rank and mean average rank were almost equal (μmean average rank = 20.8
and σ 2

mean average rank = 1.00). In summary, our ranking list of 32 configuration variants of the
ABE0-best-kNN estimator based on the extension to the Stable ranking indication method
by Keung et al. (2013) is stable. Also, when more indicators are used (e.g. mean average
rank), we can determine which portions of the stable ranking list are more stable than the
other portions.

4.2 RQ2 Which are the High-Performance Solution Adaption Techniques
for Analogy-Based Estimation?

In the study of Keung et al. (2013), the use of cut off between the portions of the ranking list
with a clearly different amount of rank changes could identify the number high-performance
effort learners. The authors indicated the stable-ranked effort learners on the top ranks above
the cut off as the learners with a high performance and high rank. We applied the same idea
of Keung et al. here, but we used the cut off criteria we explained in RQ1 since our ranking
list is too stable to apply the cut off by using only rank change.

In Table 3 the values of wins-losses and the mean average rank show a notable cut off
for the high-performance and high-ranked variants of the ABE0-best-kNN estimator at the
rank below #15. The configuration variants on the top 14 ranks had their wins-losses higher

492 Empir Software Eng (2017) 22:474–504

High performers Poor performers

Consistently
the best

Unsteady ranking within the same groups
i.e., rank #3 to rank #14, rank #15 to rank #17, and rank #18 to rank #26

Consistently
the worst

400

600

800

1000

1 2 23727141

ABE configuration variants ranked as per Table 3

T
ot

al
 w

in
s

or
 lo

ss
es

wins

losses

Fig. 4 The sum of win and loss values for all configuration variants of the ABE0-best-kNN (over all error
measures and all datasets). The maximum value of wins and losses is 31 comparison per one variant × 5
error measures × 12 datasets = 1,860

than 141 and their mean average ranks less than 13 when evaluated by any other means of
win-tie-loss statistics. The results suggest that these 14 configuration variants of the ABE0-
best-kNN estimator are the high-performers.

Table 3 shows that 12 out of the 14 configuration variants of the ABE0-best-kNN, they
were based on all the possible combinations between the RTM, LSA, and MSA techniques
and the 4 feature subset selection methods selected in this study. This thus narrows down
the set of high-performance solution adaptation techniques into a set of 3 techniques: RTM,
LSA, and MSA. The characteristics of these 3 techniques are distinctive from the others
in that they are based on a linear extrapolation between software size variable(s) and the
effort required. We therefore endorse the solution adaptation techniques with this adaptation
mechanism as a good bet for good performance when applied to an analogy-based estimator.

Since we see the overall stability of the ranking in Table 3 was very high, and the mean
minimum rank, the mean maximum rank, and the mean average rank could identify the cut
off to divide the ranking list by performance, Fig. 4 was produced as a summary of our
results of Table 3. The x axis of Fig. 4 represents the order of the 32 variants of ABE0-
best-kNN configured with 8 solution adaption techniques together with 4 feature selection
methods. The x axis is sorted by the ranking of Fig. 3 (by wins - losses in descending order).
The y axis shows the number of wins and losses of the 32 variants of ABE0-best-kNN
regarding the sorted order by wins - losses.

A summary of the performance and stability ranking of the 8 solution adaptation
techniques configured with 4 different feature selection methods is listed as follows:

1. The pairs of (solution adaptation technique, feature selection method) configured to the
ABE0-best-kNN appearing on the top 14 ranks had a high performance;

(a) The ranking of the top 2 variants were very stable;
(b) The variants in the ranking from rank #3 to rank #14 were very similar in terms of

performance;

2. ABE0-best-kNN variants in the ranking from rank #15 to rank #17 showed moderate
performance, and their performance were almost the same;

3. ABE0-best-kNN variants in the ranking from rank #18 to rank #26 were considerably
stable across their ranking, but they had relatively poor performance;

Empir Software Eng (2017) 22:474–504 493

Table 4 The average wins, losses, and wins-losses results that were aggregated from 4 feature selection
methods

Adaptation Average Average Average Group by

technique Wins Losses Wins - Losses Performance Mechanism

RTM 829.50 433.00 396.50 high type 1

MSA 685.25 429.25 256.00

LSA 685.00 437.75 247.25

UAVG 568.75 605.00 −36.25 moderate type 2

IRWM 551.75 658.00 −106.25

AQUA 490.00 687.00 −197.00 poor type 3

GA 348.50 626.75 −278.25

NNet 357.50 639.50 −282.00

This ranking list from the summation procedures based on wins and wins-losses are in broad agreement

4. The bottom 6 variants had consistently poor performance.

Note that we listed the variant configured with the AQUA adaptation technique and hav-
ing the feature subset selected by the Swvs method (rank #16) in the second group even if it
had wins - losses less than 0, because its mean average rank was rounded to its exact rank
of #16 and its mean minimum rank had almost reached rank #11.

4.3 RQ3 What is the Overall Performance of each Adaptation Technique?

To summarize the overall performance of each adaptation technique, we calculated the aver-
age of wins, losses, and wins - losses separately over each of the 4 feature selection methods.
The results are presented in Table 4, showing that the rankings by average wins and average
wins - losses were almost identical, with only the ranks difference between the GA and NNet
techniques. When we look closely at Table 4, we see that the average of wins and wins -
losses can clearly divide the 8 adaptation techniques into 3 ranges based on their accuracy of
performance. Furthermore, we observed that the ranking list of the adaptation techniques in
Table 4 also divide techniques based on their adaptation mechanism. Recall the mechanism
of the 8 solution adaptation techniques in this study as summarized in Table 1, we can group
similar adaptation techniques together by their adaptation mechanism and performance as
follows:

Tier 1 - highly performed techniques: RTM, MSA, and LSA are techniques that adjust effort
with linear extrapolation between one or a few feature variables to the effort.

Tier 2 - moderately performed techniques: UAVG and IRWM are techniques that only
aggregate effort from multiple project analogues.

Tier 3 - poorly performed techniques: AQUA, GA, and NNet are techniques that adjust
effort with the entire feature subsets selected by a feature selection method.

Following these mechanisms, we are able to indicate that the estimation performance of
the tier 3 techniques has its upper bound below tier 2, which is less desirable in most of the
cases. Therefore the ranking list of solution adaption techniques in Table 4 is conclusive and

494 Empir Software Eng (2017) 22:474–504

can be used to derived the speculation that adaptation techniques with similar adaptation
mechanisms will produce a similar performance in terms of estimation accuracy.

5 Discussions

5.1 General Discussion

The results from the comprehensive experimental procedure in our study show that we can
overcome the ranking instability issue (Keung et al. 2013) in choosing a solution adaptation
technique for analogy-based estimation. According to the study by Keung et al. (2013) that
overcame ranking instability in model-based effort predictions, there are many factors to
influence the rank changes of the effort estimators which are related to the methodologies
that generated the ranking list. The factors can be categorized into two general situations: (1)
the use of different methodologies among different literatures (e.g. using different sampling
methods to generate the training/test set), and (2) an inappropriate experimental design (e.g.
the commonly seen misuse of a biased MMRE error measure). Our results show that these
two general situations were also the causes of ranking instability in solution adaptation
techniques for analogy-based effort estimation.

The stability of our ranking was ensured by a broad agreement across multiple stable
measures that were used to assess all the 8 adaptation techniques selected in our study.
Furthermore similar behaviors were also observed, such as similar techniques in terms of
adaptation mechanism preferred similar feature selection methods and could deliver similar
accuracy performance. Thus, we can offer observations based on groups of techniques, in
which we can generalize the results of our study to other techniques which have similar
adaption mechanisms in this study. The general observations are as follows:

Finding 1 Solution adaptation techniques that utilized linear adjustment functions are con-
sistently more accurate than those of non-linear techniques. The evidence for this finding
is, the NNet technique, the only techniques that is based on non-linear techniques, consis-
tently ranked lower than the other 7 adaptation techniques. Nonetheless, any techniques that
adopted neural networks as a learning model are often very sensitive to the configuration
and setup parameters used. In our study we configured the network with the same configu-
ration parameters taken from the replication study by Azzeh (2012), which were said to be
taken exactly from the original proposed approach. Therefore, we believe that our finding
based on linear versus non-linear techniques is conclusive.

Finding 2 The assessment based on the win-tie-loss also revealed that adaptation tech-
niques that adjust the effort values using only one or a few features related to software size
performed consistently better than techniques that did not apply any features to the effort
adjustment, and were also considerably better than techniques that adjusted effort by learn-
ing to the difference among the entire set of features. This finding suggests the usefulness of
software size features in analogy-based estimation. Although (Kocaguneli et al. 2012b) sug-
gested that estimating an effort dataset with either software size present or absent showed
no significant difference in performance, we agree with them that the absence of size fea-
tures may not influence much in performance only if the size features are not extensively
used in the solution adaptation stage. According to our findings, we further suggest that if

Empir Software Eng (2017) 22:474–504 495

the software size features are presented in a dataset and they are also used as adaptation fea-
tures, then the performance should be significantly improved. This was especially the case
in RTM or LSA as the adaptation techniques.

Finding 3 We speculate that selection of feature selection methods was important and did
influence on the performance of all the adaption techniques. From the 3 groups of analogy-
based estimation variants configured across different solution adaptation techniques and
feature selection methods that we divided by performance and stability (i.e. as listed under
Section 4.2), we observed that, compared with the other groups, the performance of the
configuration variants in tier 1 was highly subject to different feature subset selection meth-
ods than others. The RTM technique performed best with Pca or Sfs method, and these
two pairs of analogy-based estimation variants were consistently the best performers. Also
for LSA, the mean average rank indicated that it performed better when software features
were selected using the All method than using any other methods. In this tier of techniques,
only the MSA technique showed the least difference between their ranking when software
features were selected by each of the different feature subset selection techniques.

On the other hand, Swvs was consistently the feature subset selection method of choice
for all the other solution adaptation techniques in tier 2 and tier 3. Regarding the config-
uration variants from rank #3 to rank #17, the Swvs generated the best ranks for UAVG,
GA, IRWM, NNet, and AQUA techniques. As seen in Table 3, the UAVG and GA techniques
having feature subsets selected by Swvs appeared among high-performance techniques,
while all their other variants appeared to be the poorly-performed techniques. Hence, these
results suggest that Swvs is a feature selection method for adaptation techniques with similar
adaption mechanism as those in tier 2 and tier 3.

5.2 Usefulness of ABE Models in Practice

Since ABE is a non-parametric estimation method, there might be situations where it does
not perform well in any of its forms. We therefore suggest a method named Analogy-X
(Keung et al. 2008) for a practitioner to test whether or not ABE models are suitable for a
local dataset, before performing an effort estimation based on it. Leveraged by a technique
based on Mantel’s correlation resampling test, Analogy-X has been a valid method to decide
whether to give up on the procedure and not using any forms of ABE at all in practice. A
more detailed explanation and discussion on the Analogy-X method is available in (Keung
2008; Keung and Kitchenham 2008; Keung et al. 2008).

Despite Analogy-X being a feasible method for the purpose, one of its inherent limitation
in regard to the use of compute intensive algorithm (i.e., Mantel’s correlation resampling
test) may hinder its use in resource-limited situations. However, we believe that the situa-
tions where ABE does not perform well in any of its forms are unlikely to arise in practice.
In our motivating study by Keung et al. (2013), the ABE0 model (i.e., the variant of ABE
models commonly referred to as a basic standard ABE model) was ranked #27 out of the
90 variants of effort models commonly adopted in practice. This result shows that despite
being one of the simplest variants of ABE models, the performance of ABE0 was not nec-
essarily consistently poor. This ABE0 model was also evaluated in our study. It is the ABE
model having feature subset selected by the All method and effort adapted with the UAVG
technique. Our results of Table 3 is in agreement with the study by Keung et al. (2013), indi-
cating that this basic ABE model was not consistently a poor performer. Furthermore, our
results of Table 3 could successfully indicate many other variants of ABE models, which
performed consistently better than ABE0, especially the variants on the top 14 ranks of

496 Empir Software Eng (2017) 22:474–504

Table 3. Hence, we strongly believe that these high performance variants of ABE models
are very less likely to become completely useless in practice.

5.3 The 3 Tiers of Adaptation Techniques

5.3.1 The Tier 1 Techniques (MSA, LSA, and RTM)

Although (Azzeh 2012) endorsed the RTM technique, Shepperd and Cartwright (Shepperd
and Cartwright 2005) opposed it because it was not a technique that perfectly fit with all
situations. For example, Shepperd and Cartwright suggested that RTM is entirely not a tech-
nique of choice when the correlation coefficient between predicted and actual productivity
is negative. Our empirical results (in Table 3) are in agreement with Azzeh (2012) showing
that RTM was a high performer for all the 12 datasets selected in our study. Only RTM has
reached the consistently best ranks by all means of the values of wins-losses, mean mini-
mum rank, mean maximum rank, and mean average rank. We therefore endorse RTM as a
solution adaptation technique being more accurate than others in a general situation. How-
ever, we also agree with Shepperd and Cartwright (Shepperd and Cartwright 2005) that
there must be certain situations where RTM may not perform well.

In our theoretical view, RTM needs improvement in its procedures. One obvious case
where RTM might not apparently be the technique of choice is when there are factors
influencing changes of productivity over time. This is because RTM assumes that the under-
lying mean productivity is itself stable for the entire project sources or within the same
group of project sources being divided by a categorical variable. Several studies such as
Kitchenham et al. (2002) and Premraj et al. (2005) suggested that, in practice, some factors
can influence on the relationship between effort and software size, and make them gradually
changed over time. For example, development might become more productive as individual
developer become more experienced or development methods are improved. Unfortunately,
to the best of our knowledge, there seems to be no existing solution yet to compensate this
limitation of RTM. In other direction, based on the equation defining RTM (4), productivity
is the ratio of software size to the effort, so it is not always distributed normally. Therefore,
the centre of the productivity distribution may not be an adequate measure to approximate
M. Furthermore, an estimation of r based on a small number of non-normally distributed
values is likely to be extremely error prone. Even if RTM appears to be the currently best
solution adaptation technique at the time of writing, we strongly suggest to improve these
components of the technique. One possibility is to improve the estimation of M to be based
on trimmed mean or Winsorized mean (Wilcox 2011). This will increase the chance of hav-
ing normally distributed productivity in a transformed space. Other future possibility is to
apply an idea of adjusting the software size variables to better measure the productivity. A
detailed explanation of an example approach for this purpose was suggested and discussed
by Kitchenham and Mendes in (Kitchenham and Mendes 2004). Taken together, even if the
present study can successfully conclude RTM as the best technique by means of generalized
performance produced, there are many more possibilities to improve its performance.

We also strongly believe that an improvement of productivity measurement would also
further improve the estimation accuracy of the other two techniques in tier 1. All the three
techniques in this tier make use of the software size variable in their adaptation proce-
dures following the triangular relationship between software size, productivity, and effort:
Eff ort = Size × Productivity (Boehm 1981). Therefore, we can say that these tier 1
adaptation techniques exploit the productivity in their adaption procedure by calibrating the
productivity of the new case before adjust the effort. It thus appears to be that the superiority

Empir Software Eng (2017) 22:474–504 497

of these techniques could be leveraged by a further exploitation of the productivity factor.
Therefore, interesting future research for the tier 1 techniques will be to further study the
productivity factor and its influence on solution adaptation for analogy-based estimation,
which will further improve the achievable accuracy performance.

5.3.2 The Tier 2 Techniques (UAVG and IRWM)

There is almost no significant difference between using an unweighted mean and an inverse-
ranked weighted mean to aggregated the effort values from the retrieved similar project
cases of the new case. When we look closely at Table 3, only their pairing with Swvs fea-
ture selection method showed different performance between UAVG and IRWM. However,
overall they were similar in both terms of performance and mechanism. Our view of UAVG
and IRWM is that, the two techniques are based on arithmetic aggregation, there is not much
possibility to extend the functions of these two techniques and expect much improvement.
Therefore, any other applications based on these two techniques such as building an ensem-
ble by using UAVG and IRWM as an aggregation function to combine multiple methods may
not generate a significantly different performance.

5.3.3 The Tier 3 Techniques (AQUA, GA, and NNet)

In general, more sophisticate learning models should perform better than simple heuristics
such that adapting to effort by genetic algorithm (GA) should perform better than by a sim-
ple aggregation or arithmetic mean. However our stable ranking results showed otherwise,
especially for all the techniques that adopted machine learning models. We rather suspect
that the nature of software project data used for performing effort estimation may not fully
suitable with parametric machine learning models. That is, in practice, it is very likely
occurred that software project cases having the same characteristic (e.g., software size)
may coincidentally have different development effort (Phannachitta et al. 2015). In such
cases, it is very difficult for any parametric machine learning model to produce an accurate
estimate.

In our opinion, a future possibility to improve solution adaptation techniques based on
parametric machine learning models is to better handle these coincided cases. At the same
time, the phenomenon where project cases with similar characteristics were completed with
diversified amount of effort can also be considered as inconsistent project cases (Bosu and
MacDonell 2013), which causes less-desirable estimation accuracy. Even if they are other-
wise, we believe that approaches to remove such inconsistent software project cases, such
as the TEAK method proposed by Kocaguneli et al. (2012a), are applicable for handling
these coincided cases, and would possibly contribute to the accuracy improvement of all the
solution adaptation techniques in this tier.

As a result, we suggest assessing the influence of data quality in project datasets prior
to model building as a more important future research than exploring the application pos-
sibility of other machine learning methods in solution adaption for analogy-based effort
estimation.

6 Threats to Validity

Internal Validity questions whether or not different conclusions can be drawn with regard
to the different parameter setups for the estimation. To ensure internal validity, (1) we used

498 Empir Software Eng (2017) 22:474–504

many feature selection methods to avoid bias that some particular model may favor only
some specific feature selection methods, and (2) we optimized the number of analogies (k)
selected for each local training instance in the leave-one-out cross-validation procedure,
rather than just statically fixed the k value as 1, 2, or 3, which we often encountered in effort
estimation literature (Azzeh 2012).

There are four main possible issues of internal validity in this study. One issue is the
single sampling method we used. The second issue is the choice of optimization parame-
ters for adaptation methods that adopted the learning model. The third issue is in regard
to massive aggregation of results from datasets with greatly diversified characteristics. The
forth issue is in regard to the comparison between MSA and LSA techniques. In this study,
we choose the leave-one-out as the sampling approach to generate training/test instances,
over the other widespread sampling approach, N-way cross validation. Following Hastie
et al. (2009) and Kocaguneli et al. (2012c), we chose the leave-one-out approach over the
other because the leave-one-out generates lower bias estimates and higher variance esti-
mates than the cross validation. Most importantly, leave-one-out is a deterministic algorithm
that enables reproducibility for future replication. For a choice of optimization parame-
ters for adaptation techniques based on a learning model, we used the same configuration
parameters taken from the replication study by Azzeh (2012) which were said to be taken
exactly from the original proposed approaches. However, these configurations may not be
yet optimal, as shown by the performance achieved. Hence, we suggest revisiting our stable
ranking of solution adaption method methods when the real optimal configure parame-
ters of the GA and the NNet techniques can be determined. For the third question, even
if the use of greatly diversified datasets may not be sound to fully consider the evalua-
tion based on them as well controlled multiple-comparison tests, this point appears to be
an inevitable validity threat of software effort estimation studies, where a lack of datasets
and scarcity of data points have continually been one of main challenges in this field
(Kocaguneli et al. 2013a). The limitation is that we cannot design or control the datasets
because they are already exists as standard benchmark datasets. Nonetheless, we truly
believe that the use of the statistical test method of our choice, i.e., the aggregation based
on the win-tie-loss statistics subject to the Brunner test (Brunner et al. 2002), can provide
sufficiently trustworthy results, where the present study shows empirical evidences that
stable conclusions can be drawn based on them. Furthermore, many recent research stud-
ies which analyzed the agreement in pairwise comparisons based on win-tie-loss statistics
have continually produced important research conclusions for the communities of soft-
ware effort estimation, even if the procedure of the statistics appear to be very simple
(Kocaguneli et al. 2010, 2012a, b, c). For example, Kocaguneli et al. (Kocaguneli et al.
2012c), in their experiments, analyzed both performance and ranking agreements and were
able to overcome a long-standing debate in the communities upon the useful of ensemble of
effort estimators.

Regarding the comparison between the MSA and LSA techniques, Table 2 shows that the
majority of datasets only have one single software size variable. This means that MSA acted
the same as LSA in the majority of the experiments of this study. In our view, even if in most
cases the win-tie-loss statistics exhibited tie results when comparing between MSA and LSA,
we see that the overall ranking results were sufficiently valid. This is because, in cases a
technique won against either MSA and LSA, it also won against the other. Empirically, the
results of Table 4 showed that the ranking of these two methods was consistent. That is,
MSA or LSA were consistently worse than RTM, while they performed consistently better
than all other techniques. However, future studies are still required to conclude whether one
of the methods (MSA and LSA) is better than the other. For the present study, the results

Empir Software Eng (2017) 22:474–504 499

based on the 12 selected datasets suggested that there seems to be no significant difference
between the MSA and LSA techniques.

External Validity questions the generalization of the results. Many findings in this study
were explained in a general manner. For example, we generalized and observed the MSA,
LSA, and RTM techniques as adaptation techniques of choice that linearly adjusted the effort
by using only a few features related to size. The external validity of this study has been main-
tained by the use of a large number of datasets. According to our reading of the literature
in solution adaptation for analogy-based estimation, the number of 12 datasets consisting
of 951 project cases are among the largest samples used in effort estimation studies so
far. Table 2 shows that the datasets we used were varied in both size and characteristics,
such as their origins, their distribution of the effort variables, and the time period in which
they were developed. We believe that a diversity of datasets being can produce generalized
findings.

Construct Validity questions whether or not we are measuring what we intend to mea-
sure. In this study our methodology to generate the stable ranking list of solution adaptation
techniques has extended the Stable ranking indication method, proposed by Keung et al.
(2013). We made two extensions to the method: (1) we replaced the biased and deprecated
error measures such as MMRE with more statistically stable error measures for the perfor-
mance evaluation, and (2) our statistical test method used a more robust test function based
on the confidence interval given by Brunner et al.’s p-hat metric (Brunner et al. 2002).
Leveraged by the robust methodology adopted, we presented a stable ranking list of solu-
tion adaptation techniques. Furthermore, the evidence for the stability of the ranking list is
that the results are based on all the interpretation of all the error measures and the statistical
methods provided are in broad agreement.

7 Conclusion

Motivated by instability performance results observed across different literatures of solution
adaptation techniques for effort estimation based on case-based reasoning (a.k.a. analogy-
based estimation), in this study we revisited 8 commonly adopted solution adaptation
techniques. Compared with all existing assessments of solution adaptation techniques, our
replication is performed on a more comprehensive experimental setup by using a greater
number (12) of datasets observed with many (4) feature selection methods, a greater num-
ber (5) of performance measures (MAR, MdAR, SD, LSD, and RSD (Foss et al. 2003))
which were all proved as stable measures, and more robust statistical methods (Brunner test,
one of the most robust and reliable alternative non-parametric test to the Wilcoxon rank-
sum test (Brunner et al. 2002)). We setup the analogy-based estimation framework with
the best-practice configuration, applied leave-one-out (Keung et al. 2013) to generate train-
ing/test instances, and tuned the optimal number of neighbors (best-k) for every training/test
instance (Kocaguneli and Menzies 2013; Kosti et al. 2012). Based on this comprehensive
evaluation study, the following findings have been concluded:

1. A more comprehensive evaluation method consisting of stable error measures and
a robust statistical test method enabled us to assess the stable rankings of solution
adaptation techniques commonly adopted for analogy-based effort estimation.

500 Empir Software Eng (2017) 22:474–504

2. Our ranking is stable. This stability was achieved based on the error measures and
statistical methods we provided, which are in broad agreement. In addition, we can also
observed similar behaviors from techniques with similar adaptation mechanisms.

3. Adaptation techniques that linearly adapted the effort by using a few relevant fea-
tures based on software size and productivity, such as regression toward the mean
(RTM) and linear size adaption (LSA) were both high performers and have stable ranks
consistently.

4. Adaptation techniques that only aggregated the effort from project analogues, such as
unweighted average of the analogues (UAVG), were moderately useful, but their ranks
were not stable.

5. Adaptation techniques that adjusted the effort value by using the entire list of features
either by modeling or heuristic, such as adaptation based on neural networks (NNet),
consistently performed worse than any others.

6. Selecting feature subset using principle component analysis (Pca) shows outstanding
performance with the RTM technique, and the results based on this combination of solu-
tion adaptation technique and feature selection method showed the best performance
among all the possible combinations.

7. The choice of feature selection method significantly influenced the accuracy per-
formance for the moderately performed and poorly performed solution adaptation
techniques, more so than for the highly performed techniques. Choosing the right
feature selection method for the on-average poorly performed techniques made them
ranked among moderately performed techniques. Furthermore, choosing the right selec-
tion method for the moderately performed techniques could make them rank higher,
with considerably better stability.

Based on the observations made throughout this study, we believe that an alternative sta-
ble ranking list of adaptation techniques may be generated when revisiting this study with
impurity-free datasets. Our ranking result suggests that adapting to effort by using fewer
features results in higher accuracy than using the entire set of features (as discussed in
Section 5). Hence, the ranking of adaptation techniques discovered in our experiments is
not only based on their ability to suggest a robust adjustment for the effort values, but also
based on their ability to tolerate dataset impurities. For future research in solution adaptation
for analogy-based effort estimation, studying how data quality influences the performance
of each individual solution adaptation technique is more important than improving the
performance of one single technique or proposing a yet another new technique.

Acknowledgments This research was supported by JSPS KAKENHI Grant number 26330086, was con-
ducted as a part of the JSPS Program for Advancing Strategic International Networks to Accelerate the
Circulation of Talented Researchers, and was supported in part by the City University of Hong Kong research
fund (Project number 7200354, 7004222, and 7004474).

References

Albrecht AJ, Gaffney JE (1983) Software function, source lines of code, and development effort prediction:
A software science validation. IEEE Trans Softw Eng 9(6):639–648

Alpaydin E (2014) Introduction to machine learning MIT press
Azzeh M (2012) A replicated assessment and comparison of adaptation techniques for analogy-based effort

estimation. Empirical Softw Eng 17(1–2):90–127
Baker DR (2007) A hybrid approach to expert and model based effort estimation. Master’s thesis, Lane

Department of Computer Science and Electrical Engineering West Virginia University

Empir Software Eng (2017) 22:474–504 501

Bakır A, Turhan B, Bener AB (2010) A new perspective on data homogeneity in software cost estimation: A
study in the embedded systems domain. Software Qual J 18(1):57–80

Boehm BW (1981) Software Engineering Economics, 1st edn. Prentice Hall PTR, Upper Saddle River, NJ USA
Bosu MF, MacDonell SG (2013) A taxonomy of data quality challenges in empirical software engineering.

In: Proceedings of the 2013 Australian Software Engineering Conference, pp 97–106
Brunner E, Munzel U, Puri ML (2002) The multivariate nonparametric behrens–fisher problem. J Stat Plan

and Inf 108(1):37–53
Chen Z, Menzies T, Port D, Boehm B (2005) Feature subset selection can improve software cost estimation

accuracy. SIGSOFT Softw Eng Notes 30(4):1–6
Chiu NH, Huang SJ (2007) The adjusted analogy-based software effort estimation based on similarity

distances. J Syst Softw 80(4):628–640
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Foss T, Stensrud E, Kitchenham B, Myrtveit I (2003) A simulation study of the model evaluation criterion

mmre. IEEE Trans Softw Eng 29(11):985–995
Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: Data mining Inference and

Prediction
Jørgensen M, Indahl U, Sjøberg D (2003) Software effort estimation by analogy and r̈egression toward the

mean. J Syst Softw 68(3):253–262
Kemerer CF (1987) An empirical validation of software cost estimation models. Commun ACM 30(5):416–429
Keung J (2008) Empirical evaluation of analogy-x for software cost estimation. In: Proceedings of the 2nd

ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, pp 294–296
Keung J (2009) Software development cost estimation using analogy: A review. In: Proceedings of the 2009

Australian Software Engineering Conference, pp 327–336
Keung J, Kitchenham B (2008) Experiments with analogy-x for software cost estimation. In: Proceeding of

the 19th Australasian Software Engineering Conference, pp 229–238
Keung J, Kocaguneli E, Menzies T (2013) Finding conclusion stability for selecting the best effort predictor

in software effort estimation. Automated Software Eng 20(4):543–567
Keung JW, Kitchenham B, Jeffery DR, etal (2008) Analogy-x: Providing statistical inference to analogy-

based software cost estimation. IEEE Trans Softw Eng 34(4):471–484
Kirsopp C, Mendes E, Premraj R, Shepperd M (2003) An empirical analysis of linear adaptation techniques

for case-based prediction. In: Proceedings of the 5th international conference on Case-based reasoning:
Research and Development, pp 231–245

Kitchenham B (2015) Robust statistical methods: why, what and how: keynote. In: Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineering, vol 1

Kitchenham B, Känsälä K (1993) Inter-item correlations among function points. In: Proceedings of the 15th
International Conference on Software Engineering, pp 477–480

Kitchenham B, Lawrence Pfleeger S, McColl B, Eagan S (2002) An empirical study of maintenance and
development estimation accuracy. J Syst Softw 64(1):57–77

Kitchenham B, Mendes E (2004) Software productivity measurement using multiple size measures. IEEE
Trans Softw Eng 30(12):1023–1035

Kitchenham B, Mendes E (2009) Why comparative effort prediction studies may be invalid. In: Proceedings
of the 5th International Conference on Predictor Models in Software Engineering, p 4

Kittler J (1986) Feature selection and extraction. Handbook of pattern recognition and image processing 59–83
Kocaguneli E, Gay G, Menzies T, Yang Y, Keung JW (2010) When to use data from other projects for

effort estimation. In: Proceedings of the International Conference on Automated Software Engineering,
pp 321–324

Kocaguneli E, Menzies T, Bener A, Keung JW (2012a) Exploiting the essential assumptions of analogy-
based effort estimation. IEEE Trans Softw Eng 38(2):425–438

Kocaguneli E, Menzies T, Hihn J, Kang BH (2012b) Size doesn’t matter?: On the value of software size
features for effort estimation. In: Proceedings of the 8th International Conference on Predictive Models
in Software Engineering. ACM, New York, pp 89-98

Kocaguneli E, Menzies T, Keung J (2012c) On the value of ensemble effort estimation. IEEE Trans Softw
Eng 38(6):1403–1416

Kocaguneli E, Menzies T (2013) Software effort models should be assessed via leave-one-out validation. J
Syst Softw 86(7):1879–1890

Kocaguneli E, Menzies T, Keung JW (2013a) Kernel methods for software effort estimation - effects of
different kernel functions and bandwidths on estimation accuracy. Empir Software Eng 18(1):1–24

Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In:
Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp 1137–1143

Kosti MV, Mittas N, Angelis L (2012) Alternative methods using similarities in software effort estimation. In:
Proceedings of the 8th International Conference on Predictive Models in Software Engineering, pp 59–68

Li J, Ruhe G, Al-Emran A, Richter MM (2007) A flexible method for software effort estimation by analogy.
Empirical Softw Eng 12(1):65–106

502 Empir Software Eng (2017) 22:474–504

Li YF, Xie M, Goh TN (2009) A study of the non-linear adjustment for analogy based software cost
estimation. Empirical Softw Eng 14(6):603–643

Maxwell K (2002) Applied Statistics for Software Managers. Englewood Cliffs, NJ. Prentice-Hall
Mendes E, Mosley N, Counsell S (2003) A replicated assessment of the use of adaptation rules to improve

web cost estimation. In: Proceedings of the 2003 International Symposium on Empirical Software
Engineering, pp 100–109

Menzies T, Jalali O, Hihn J, Baker D, Lum K (2010) Stable rankings for different effort models. Automated
Software Eng 17(4):409–437

Menzies T, Rees-Jones M, Krishna R, Pape C (2015) Tera-promise: One of the largest repositories of se
research data http://openscience.us/repo/index.html

Miyazaki Y, Terakado M, Ozaki K, Nozaki H (1994) Robust regression for developing software estimation
models. J Syst Softw 27(1):3–16

Phannachitta P, Keung J, Matsumoto K (2013) An empirical experiment on analogy-based software cost
estimation with cuda framework. In: Proceedings of the 2013 22nd Australian Conference on Software
Engineering, pp 165–174

Phannachitta P, Monden A, Keung J, Matsumoto K (2015) Case consistency: a necessary data quality prop-
erty for software engineering data sets. In: Proceeding of the 19th International Conference on Evaluation
and Assessment in Software Engineering, p 19

Premraj R, Shepperd M, Kitchenham B, Forselius P (2005) An empirical analysis of software productivity
over time. In: Proceedings of the 11th IEEE International Software Metrics Symposium, p 37

Shepperd M, Cartwright M (2005) A replication of the use of regression towards the mean (r2m) as an
adjustment to effort estimation models. In: Proceedings of the 11th IEEE International Software Metrics
Symposium, pp 38–47

Shepperd M, Schofield C (1997) Estimating software project effort using analogies. IEEE Trans Softw Eng
23(11):736–743

Shepperd M, Kadoda G (2001) Comparing software prediction techniques using simulation. IEEE Trans
Softw Eng 27(11):1014–1022

Tosun A, Turhan B, Bener AB (2009) Feature weighting heuristics for analogy-based effort estimation
models. Expert Syst Appl 36(7):10,325–10,333

Walkerden F, Jeffery R (1999) An empirical study of analogy-based software effort estimation. Empirical
Softw Eng 4(2):135–158

Wen J, Li S, Tang L (2009) Improve analogy-based software effort estimation using principal compo-
nents analysis and correlation weighting. In: Proceeding of the 2009 Asia-Pacific Software Engineering
Conference, pp 179–186

Wilcox R (2011) Modern statistics for the social and behavioral sciences: A practical introduction CRC press
Wilson DR, Martinez TR (1997) Improved heterogeneous distance functions. J Artif Int Res 6(1):1–34
Zimmerman DW (2000) Statistical significance levels of nonparametric tests biased by heterogeneous

variances of treatment groups. J Gen Psychol 127(4):354–364

Passakorn Phannachitta received his B.E. (Hons) in Computer Engineering from Kasetsart University
Thailand, and his M.E. and Ph.D. in Information Science from Nara Institute of Science and Technology
(NAIST), Japan. He is a postdoctoral researcher in the Graduated School of Information Science at NAIST.
His research interests include quantitative methods in empirical software engineering (ESE), software effort
and cost estimation, and quality measurement and improvement of ESE datasets.

http://openscience.us/repo/index.html

Empir Software Eng (2017) 22:474–504 503

Jacky Keung received his B.Sc. (Hons) in Computer Science from the University of Sydney, and his Ph.D.
in Software Engineering from the University of New South Wales, Australia. He is Assistant Professor in
the Department of Computer Science, City University of Hong Kong. His main research area is in software
effort and cost estimation, empirical modeling and evaluation of complex systems, and intensive data mining
for software engineering datasets. He has published papers in prestigious journals including IEEE-TSE,
IEEE-SOFTWARE, EMSE and many other leading journals and conferences.

Akito Monden received the B.E. degree in 1994 in electrical engineering from Nagoya University, and the
M.E. and D.E. degrees in 1996 and 1998 in information science from Nara Institute of Science and Tech-
nology. He is Professor in the Graduate School of Natural Science and Technology at Okayama University,
Japan. He was honorary research fellow at the University of Auckland, New Zealand (2003-2004). He is a
member of the IEEE, ACM, IEICE, IPSJ, and JSSST.

504 Empir Software Eng (2017) 22:474–504

Kenichi Matsumoto received the B.E., M.E., and Ph.D. in Information and Computer sciences from Osaka
University, Japan, in 1985, 1987, and 1990, respectively. Dr.Matsumoto is currently Professor in the Gradu-
ated School of Information Science at Nara Institute of Science and Technology, Japan. His research interests
include software measurement and software process. He is an IEICE and IPSJ Fellow, an IEEE senior
member, and a member of ACM and JSSST.

	A stability assessment of solution adaptation techniques for analogy-based software effort estimation
	Abstract
	Introduction
	Background
	Analogy-Based Effort Estimation (ABE)
	Solution (Case) Adaptation Techniques
	Adaptation Technique #1
	Adaptation Technique #2
	Adaptation Technique #3
	Adaptation Technique #4
	Adaptation Technique #5
	Adaptation Technique #6
	Adaptation Technique #7
	Adaptation Technique #8

	Assessing a Stable Ranking of Estimation Methods

	Methodologies
	Dataset Instances
	Four Feature Subset Selection Methods Adopted
	All
	Sfs
	Swvs
	Pca

	Procedure to Sample the Training and Test Instances
	Multiple Performance Measures (Evaluation Criteria)
	Interpretation of the Win-Tie-Loss Statistics

	Results
	RQ1 How Stable is the Ranking List We Discovered?
	RQ2 Which are the High-Performance Solution Adaption Techniques for Analogy-Based Estimation?
	RQ3 What is the Overall Performance of each Adaptation Technique?

	Discussions
	General Discussion
	Finding 1
	Finding 2
	Finding 3

	Usefulness of ABE Models in Practice
	The 3 Tiers of Adaptation Techniques
	The Tier 1 Techniques (MSA, LSA, and RTM)
	The Tier 2 Techniques (UAVG and IRWM)
	The Tier 3 Techniques (AQUA, GA, and NNet)

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusion
	Acknowledgments
	References

