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Abstract Logmessages, which are generated by the debug statements that developers insert
into the code at runtime, contain rich information about the runtime behavior of software
systems. Log messages are used widely for system monitoring, problem diagnoses and legal
compliances. Yuan et al. performed the first empirical study on the logging practices in open
source software systems. They studied the development history of four C/C++ server-side
projects and derived ten interesting findings. In this paper, we have performed a replica-
tion study in order to assess whether their findings would be applicable to Java projects in
Apache Software Foundations. We examined 21 different Java-based open source projects
from three different categories: server-side, client-side and supporting-component. Similar
to the original study, our results show that all projects contain logging code, which is actively
maintained. However, contrary to the original study, bug reports containing log messages
take a longer time to resolve than bug reports without log messages. A significantly higher
portion of log updates are for enhancing the quality of logs (e.g., formatting & style changes
and spelling/grammar fixes) rather than co-changes with feature implementations (e.g.,
updating variable names).
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1 Introduction

Logging code refers to debug statements that developers insert into the source code. Log
messages are generated by the logging code at runtime. Log messages, which are generated
in many open source and commercial software projects, contain rich information about the
runtime behavior of software projects. Compared to program traces, which are generated
by profiling tools (e.g., JProfiler or DTrace) and contain low level implementation details
(e.g., methodA invoked methodB), the information contained in the log messages is usually
higher level, such as workload related (e.g., “Registration completed for user John Smith”)
or error related (e.g., “Error associated with adding an item into the shopping cart: dead-
lock encountered”). Log messages are used extensively for monitoring (Shang et al. 2014),
remote issue resolution (BlackBerry Enterprise Server Logs Submission 2015), test analysis
(Jiang et al. 2008, 2009) and legal compliance (Summary of Sarbanes-Oxley Act of 2002
2015). There are already many tools available for gathering and analyzing the information
contained in log messages (e.g., logstash - open source log management (2015), Nagios
Log Server - Monitor and Manage Your Log Data (2015), and Splunk (2015)). According
to Gartner, tools for managing log messages are estimated to be a 1.5 billion market and
have been growing more than 10 % every year (Gartner 2014).

There are three general approaches to instrumenting the projects with log messages
(Woodside et al. 2007):

1. Ad-hoc logging: developers can instrument the projects with console output statements
like “System.out” and “printf”. Although ad-hoc logging is the easiest to use, extra care
is needed to control the amount of data generated and to ensure that the resulting log
messages are not garbled in the case of concurrent logging.

2. General-purpose logging libraries: compared to ad-hoc logging, instrumentation
through general-purpose logging libraries provides additional programming support
like thread-safe logging and multiple verbosity levels. For example, in LOG4J a logging
library for Java (2016), developers can set their logging code with different verbosity
levels like TRACE, DEBUG, INFO, WARN, ERROR, and FATAL, each of which can
be used to support different development tasks.

3. Specialized logging libraries: these libraries can be used to facilitate recording par-
ticular aspects of the system behavior at runtime. For example, ARM (Application
Response Measurement) (Group 2014) is an instrumentation framework, that is spe-
cialized at gathering performance information (e.g., response time) from the running
projects.

The work done by Yuan et al. (2012) is the first work that empirically studies the logging
practices in different open source software projects. They studied the development history
of four open source software projects (Apache httpd, OpenSSH, PostgreSQL and Squid) and
obtained ten interesting findings on the logging practices. Their findings can provide sug-
gestions for developers to improve their existing logging practices and give useful insights
for log management tools. However, it is not clear whether their findings are applicable
to other software projects, as the four studied projects are server-side projects written in
C/C++. The logging practices may not be the same for projects from other application cat-
egories, or projects written in other programming languages. For example, would projects
developed in managed programming languages (e.g., Java or C#) log less compared to
projects developed in unmanaged programming languages (e.g., C or C++) due to their
additional programming constructs (e.g., automated memory management) and enhanced
security? As log messages are used extensively in servers for monitoring and remote
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issue debugging (Hassan et al. 2008), would server-side projects log more than client-side
projects?

Replication studies, which are very important in empirical sciences, address one of the
main threats to validity (External Validity). Recent replication study in psychology has
found that the findings in more than fifty out of the previous published one hundred stud-
ies did not hold (Estimating the reproducibility of psychological science 2015). Replication
studies are also very important in empirical software engineering, as they can be used to
compare the effectiveness of different techniques or to assess the validity of findings across
various projects (Basili et al. 1999; Robles 2010). There have been quite a few replication
studies done in the area of empirical software engineering (e.g., code ownership (Greiler
et al. 2015), software mining techniques (Ghezzi and Gall 2013) and defect predictions
(Premraj and Herzig 2011; Syer et al. 2015).

In this paper, we have replicated this study by analyzing the logging practices of 21
Java projects from the Apache Software Foundation (ASF) (2016). The projects in ASF
are ideal case study subjects for this paper due to the following two reasons: (1) ASF
contains hundreds of software projects, many of which are actively maintained and used
by millions of people worldwide; (2) the development process of these ASF projects
is well-defined and followed (Mockus et al. 2002). All the source code has been care-
fully peer-reviewed and discussed (Rigby et al. 2008). The studied 21 Java projects are
selected from the following three different categories: server-side, client-side or support-
component-based projects. Our goal is to assess whether the findings from the original
study would be applicable to our selected projects. The contributions of this paper are as
follows:

1. This is the first empirical study (to the best of our knowledge) on characterizing the
logging practices in Java-based software projects. Each of the 21 studied projects is
carefully selected based on its revision history, code size and category.

2. When comparing our findings against the original study, the results are analyzed in
two dimensions: category (e.g., server-side vs. client-side) and programming language
(Java vs. C/C++). Our results show that certain aspects of the logging practices (e.g.,
the pervasiveness of logging and the bug resolution time) are not the same as in the
original study. To allow for easier replication and to encourage future research on this
subject, we have prepared a replication package (The replication package 2015).

3. To assess the bug resolution time with and without log messages, the authors from the
original study manually examined 250 randomly sampled bug reports. In this repli-
cation study, we have developed an automated approach that can flag bug reports
containing log messages with high accuracy and analyzed all the bug reports. Our new
approach is fully automated and avoids sampling bias (Bird et al. 2009; Rahman et al.
2013).

4. We have extended and improved the taxonomy of the evolution of logging code based
on our results. For example, we have extended the scenarios of consistent updates
to the log printing code from three scenarios in the original study to eight scenarios
in our study. This improved taxonomy should be very useful for software engineer-
ing researchers who are interested in studying software evolution and recommender
systems.

Paper Organization The rest of the paper is organized as follows. Section 2 summarizes
the original study and introduces the terminology used in this paper. Section 3 provides an
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overview of our replication study and proposes five research questions. Section 4 explains
the experimental setup. Sections 5, 6, 7, 8 and 9 describe the findings in our replication study
and discuss the implications. Section 10 presents the related work. Section 11 discusses the
threats to validity. Section 12 concludes this paper.

2 Summary of the Original Study

In this section, we give a brief overview of the original study. First, we introduce the
terminologies and metrics used in the original study. These terminologies and metrics
are closely followed in this paper. Then we summarize the findings in the original
study.

2.1 Terminology

Logging code refers to the source code that developers insert into the software projects
to track the runtime information. Logging code includes log printing code and log non-
printing code. Examples of non-log printing code can be logging object initialization (e.g.,
“Logger logger = Logger.getLogger(Log4JMetri-csContext.class)”) and other code related
to logging such as logging object operation (e.g., “eventLog.shutdown()”). The majority of
the source code is not logging code but code related to feature implementations.

Log messages are generated by log printing code, while a project is running. For
example, the log printing code “Log.info(‘username’ + userName + ‘ logged in from’
+ location.getIP())” can generate the following log message: “username Tom logged in
from 127.0.0.1” at runtime. As mentioned in Section 1, there are three approaches to add
log printing code into the systems: ad-hoc logging, general-purpose logging libraries and
specialized logging libraries.

There are typically four components contained in a piece of log-printing code: a logging
object, a verbosity level, static texts and dynamic contents. In the above example, the logging
object is “Log”; “info” is the verbosity level; “username” and “ logged in from” are the static
texts; “userName” and “location.getIP()” are the dynamic contents. Note that “userName” is
a variable and “location.getIP()” is a method invocation. Compared to the static texts, which
remain the same at runtime, the dynamic contents could vary each time the log-printing
code is invoked.

2.1.1 Taxonomy of the Evolution of the Logging Code

Figure 1 illustrates the taxonomy of the evolution of the logging code. The most general
concept, the evolution of logging code, resides at the top of the hierarchy. It refers to any
type of changes on the logging code. The evolution of logging code can be further broken
down into four categories: log insertion, log deletion, log move and log update as shown
in the second level of the diagram. Log deletion, log move and log update are collectively
called log modification.

The four types of log changes can be applied on log printing code and non-log printing
code. For example, log update can be further broken down into log printing code update
and log non-printing code update. Similarly, log move can be broken into log printing code
move and log non-printing code move. Since the focus of the original study is on updates to
the log printing code, for the sake of brevity, we do not include further categorizations on
log insertion, log deletion, and log move in Fig. 1.
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Fig. 1 Taxonomy of the evolution of the logging code

There are two types of changes related to updates to the log printing code: consistent
update and after-thought update, as illustrated in the fourth level of Fig. 1. Consistent
updates refer to changes to the log printing code and changes to the feature implementation
code that are done in the same revision. For example, if the variable “userName” referred
to in the above logging code is renamed to “customerName”, a consistent log update would
change the variable name inside log printing code to be like “Log.info(‘customername’ +
customerName + ‘logged in from’ + location.getIP())”. We have expanded the scenarios of
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System.out.println(var1 + “static content” + a.invoke());

Logging code in previous revision

Logger.debug(var2 + “Revised static content” + b.invoke());

Logging code in current revision

a

b

Fig. 2 Log printing code update example

consistent updates from three scenarios in the original study to eight scenarios in our study.
For details, please refer to Section 8.

After-thought updates refer to updates to the log printing code that are not consistent
updates. In other words, after-thought updates are changes to log-printing code that do not
depend on other changes. There are four kinds of after-thought updates, corresponding to
the four components to the log printing code: verbosity updates, dynamic content updates,
static text updates and logging method invocation updates. Figure 2 shows an example
with different kinds of changes highlighted in different colours: the changes in the logging
method invocation are highlighted in red (System vs. Logger), the changes in the verbosity
level in blue (out vs. debug), the changes in the dynamic contents in italic (var1 vs. var2 and
a.invoke() vs. b.invoke()), the changes in static texts in yellow (“static content” vs. “Revised
static content”). A dynamic content update is a generalization of a variable update in the
original study. In this example, the variable “var1” is changed to “var2”. In the original
study, such an update is called variable update. However, there is the case of “a.invoke()”
getting updated to “b.invoke()”. This change is not a variable update but a string invoca-
tion method update. Hence, we rename these two kinds of updates to be dynamic content
updates. There could be various reasons (e.g., fixing grammar/spelling issues or deleting
redundant information) behind these after-thought updates. Please refer to Section 9 for
details.

2.1.2 Metrics

The following metrics were used in the original study to characterize various aspects of
logging:

– Log density measures the pervasiveness of software logging. It is calculated using this
formula: T otal lines of source code (SLOC)

T otal lines of logging code(LOLC)
. When measuring SLOC and LOLC, we only

study the source code and exclude comments and empty lines.
– Code churn refers to the total number of lines of source code that is added, removed or

updated for one revision (Nagappan and Ball 2005). As for log density, we only study
the source code and exclude the comments and empty lines.

– Churn of logging code, which is defined in a similar way to code churn, measures the
total number lines of logging code that is added, deleted or updated for one revision.

– Average churn rate (of source code) measures the evolution of the source code. The
churn rate for one revision (i) is calculated using this formula: Code churn f or revision i

SLOC f or revision i
.

The average churn rate is calculated by taking the average value of the churn rates
across all the revisions.
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– Average churn rate of logging code measures the evolution of the logging code. The
churn rate of the logging code for one revision (i) is calculated using this formula:
Churn of logging code f or revision i

LOLC f or revision i
. The average churn rate of the logging code is calcu-

lated by taking the average value among the churn rate of the logging code across all
the revisions.

2.2 Findings from the Original Study

In the original study, the authors analyzed the logging practices of four open-source projects
(Apache httpd, OpenSSH, PostgreSQL and Squid). These are server-side projects written in
C and C++. The authors of the original study reported ten major findings. These findings,
shown in the second column of Table 1 as “F1”, “F2”, ..., “F10”, are summarized below. For
the sake of brevity, F1 corresponds to Finding 1, and so on.

First, they studied the pervasiveness of logging by measuring the log density of the afore-
mentioned four projects. They found that, on average, every 30 lines of code contained one
line of logging code (F1).

Second, they studied whether logging can help diagnose software bugs by analyzing the
bug resolution time of the selected bug reports. They randomly sampled 250 bug reports
and compared the bug resolution time for bug reports with and without log messages. They
found that bug reports containing log messages were resolved 1.4 to 3 times faster than bug
reports without log messages (F2).

Third, they studied the evolution of the logging code quantitatively. The average churn
rate of logging code was higher than the average churn rate of the entire code in three out
of the four studied projects (F3). Almost one out of five code commits (18 %) contained
changes to the logging code (F4).

Among the four categories of log evolutionary changes (log update, insertion, move and
deletion), very few log changes (2 %) were related to log deletion or move (F6).

Fourth, they studied further one type of log changes: the updates to the log-printing code.
They found that the majority (67 %) of the updates to the log-printing code were consistent
updates (F5).

Finally, they studied the after-thought updates. They found that about one third (28 %)
of the after-thought updates are verbosity level updates (F7), which were mainly related
to error-level updates (and F8). The majority of the dynamic content updates were about
adding new variables (F9). More than one third (39 %) of the updates to the static contents
were related to clarifications (F10).

The authors also implemented a verbosity level checker which detected inconsistent ver-
bosity level updates. The verbosity level checker is not replicated in this paper, because
our focus is solely on assessing the applicability of their empirical findings on Java-based
projects from the ASF.

3 Overview

This section provides an overview of our replication study. We propose five research ques-
tions (RQs) to better structure our replication studies. During the examination of these
five RQs, we intend to validate the ten findings from the original study. As shown in
Table 1, inside each RQ, one or multiple findings from the original study are checked.
We compare our findings (denoted as “NF1”, “NF2”, etc.) against the findings in the
original study (denoted as “F1”, “F2”, etc.) and report whether they are similar or
different.
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RQ1: How pervasive is software logging? Log messages have been used widely for
legal compliance (Summary of Sarbanes-Oxley Act of 2002 2015), monitoring (Splunk
2015; Oliner et al. 2012) and remote issue resolution (Hassan et al. 2008) in server-side
projects. It would be beneficial to quantify how pervasive software logging is. In this
research question, we intend to study the pervasiveness of logging by calculating the log
density of different software projects. The lower the log density is, the more pervasive
software logging is.
RQ2: Are bug reports containing log messages resolved faster than the ones with-
out log messages? Previous studies (Bettenburg et al. 2008; Zimmermann et al. 2010)
showed that artifacts that help to reproduce failure issues (e.g., test cases, stack traces)
are considered useful for developers. As log messages record the runtime behavior of the
system when the failure occurs, the goal of this research question is to examine whether
bug reports containing log messages are resolved faster.
RQ3: How often is the logging code changed? Software projects are constantly main-
tained and evolved due to bug fixes and feature enhancement (Rajlich 2014). Hence, the
logging code needs to be co-evolved with the feature implementations. This research
question aims to quantitatively examine the evolution of the logging code. Afterwards,
we will perform a deeper analysis on two types of evolution of the log printing code:
consistent updates (RQ4) and after-thought updates (RQ5).
RQ4: What are the characteristics of consistent updates to the log printing code?
Similar to out-dated code comments (Tan et al. 2007), out-dated log printing code can
confuse and mislead developers and may introduce bugs. In this research question, we
study the scenarios of different consistent updates to the log printing code.
RQ5: What are the characteristics of the after-thought updates to the log printing
code? Ideally, most of the changes to the log printing code should be consistent updates.
However, in reality some changes in the logging printing code are after-thought updates.
The goal of this research question is to quantify the amount of after-thought updates and
to find out the rationales behind them.

Sections 5, 6, 7, 8, 9 cover the above five RQs, respectively. For each RQ, we first
explain the process of data extraction and data analysis. Then we summarize our findings
and discuss the implications. As shown in Table 1, each research question aims to replicate
one or more of the findings from the original study. Our findings may agree or disagree with
the original study, as shown in the last column of Table 1.

4 Experimental Setup

This section describes the experimental setup for our replication study. We first explain our
selection of software projects. Then we describe our data gathering and preparation process.

4.1 Subject Projects

In this replication study, 21 different Java-based open source software projects from Apache
Software Foundation (2016) are selected. All of the selected software projects are widely
used and actively maintained. These projects contain millions of lines of code and three to
ten years of development history. Table 2 provides an overview of these projects including
a description of the project, the type of bug tracking systems, the start/end code revision
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Table 2 Studied Java-based ASF projects

Category Project Description Bug Code History Bug History

Tracking (First, Last) (First, Last)

System

Server Hadoop Distributed computing Jira (2008-01-16, (2006-02-02,

system 2014-10-20) 2015-02-12)

Hbase Hadoop database Jira (2008-02-04, (2008-02-01,

2014-10-27) 2015-03-25)

Hive Data warehouse Jira (2010-10-08, (2008-09-11,

infrastructure 2014-11-02) 2015-04-21)

Openmeetings Web conferencing Jira (2011-12-9, (2011-12-05,

2014-10-31) 2015-04-20)

Tomcat Web server Bugzilla (2005-08-05, (2009-02-17,

2014-11-01) 2015-04-14)

Client Ant Building tool Bugzilla (2005-04-15, (2000-09-16,

2014-10-29) 2015-03-26)

Fop Print formatter Jira (2005-06-23, (2001-02-01,

2014-10-23) 2015-09-17)

JMeter Load testing tool Bugzilla (2011-11-01, (2001-06-07,

2014-11-01) 2015-04-16)

Rat Release audit tool Jira (2008-05-07, (2008-02-03,

2014-10-18) 2015-09-29)

Maven Build manager Jira (2004-12-15, (2004-04-13,

2014-11-01) 2015-04-20)

SC ActiveMQ Message broker Jira (2005-12-02, (2004-4-20,

2014-10-09) 2015-3-25)

Empire-db Relational database Jira (2008-07-31, (2008-08-08,

abstraction layer 2014-10-27) 2015-03-19)

Karaf OSGi based Jira (2010-06-25, (2009-04-28,

runtime 2014-10-14) 2015-04-08)

Log4j Logging library Jira (2005-10-09, (2008-04-24,

2014-08-28) 2015-03-25)

Lucene Text search Jira (2005-02-02, (2001-10-09,

engine library 2014-11-02) 2015-03-24)

Mahout Environment for Jira (2008-01-15, (2008-01-30,

scalable algorithms 2014-10-29) 2015-04-16)

Mina Network application Jira (2006-11-18, (2005-02-06,

framework 2014-10-25) 2015-03-16)

Pig Programming tool Jira (2010-10-03, (2007-10-10,

2014-11-01) 2015-03-25)

Pivot Platform for building Jira (2009-03-06, (2009-01-26,

installable Internet applications 2014-10-13) 2015-04-17)

Struts Framework for Jira (2004-10-01, (2002-05-10,

web applications 2014-10-27) 2015-04-18)

Zookeeper Configuration service Jira (2010-11-23, (2008-06-06,

2014-10-28) 2015-03-24)
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date and the first/last creation date for bug reports. We classify these projects into three
categories: server-side, client-side, and supporting-component based projects:

1. Server-side projects: In the original study, the authors studied four server-side projects.
As server-side projects are used by hundreds or millions of users concurrently, they
rely heavily on log messages for monitoring, failure diagnosis and workload character-
ization (Oliner et al. 2012; Shang et al. 2014). Five server-side projects are selected in
our study to compare the original results on C/C++ server-side projects. The selected
projects cover various application domains (e.g., database, web server and big data).

2. Client-side projects: Client-side projects also contains log messages. In this study,
five client-based projects, which are from different application domains (e.g., software
testing and release management), are selected to assess whether the logging practices
are similar to the server-based projects.

3. Supporting-component based (SC-based) projects: Both server and client-side
projects can be built using third party libraries or frameworks. Collectively, we call
them supporting components. For the sake of completeness, 11 different SC-based
projects are selected. Similar to the above two categories, these projects are from
various applications domains (e.g., networking, database and distributed messaging).

4.2 Data Gathering and Preparation

Five different types of software development datasets are required in our replication study:
release-level source code, bug reports, code revision history, logging code revision history
and log printing code revision history.

4.2.1 Release-Level Source Code

The release-level source code for each project is downloaded from the specific web page of
the project. In this paper, we have downloaded the latest stable version of the source code
for each project. The source code is used for the RQ1 to calculate the log density.

4.2.2 Bug Reports

Data Gathering The selected 21 projects use two types of bug tracking systems: BugZilla
and Jira, as shown in Table 2. Each bug report from these two systems can be downloaded
individually as an XML file. These bug reports are automatically downloaded in a two-step
process in our study. In step one, a list of bug report IDs are retrieved from the BugZilla and
Jira website for each of the project. Each bug report (in XML format) corresponds to one
unique URL in these systems. For example, in the Ant project, bug report 8689 corresponds
to https://bz.apache.org/bugzilla/show bug.cgi?ctype=xml&id=8689. Each URL for the bug
reports is similar except for the “id” part. We just need to replace the id number each time.
In step two, we automatically downloaded the XML format files of the bug reports based on
the re-constructed URLs from the bug IDs. The Hadoop project contains four sub-projects:
Hadoop-common, Hdfs, Mapreduce and Yarn, each of which has its own bug tracking web-
site. The bug reports from these sub-projects are downloaded and merged into the Hadoop
project.

Data Processing Different bug reports can have different status. A script is developed to
filter out bug reports whose status are not “Resolved”, “Verified” or “Closed”. The sixth

https://bz.apache.org/bugzilla/show_{b}ug.cgi?ctype=xml&id=8689
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column in Table 2 shows the resulting dataset. The earliest bug report in this dataset was
opened in 2000 and the latest bug report was opened in 2015.

4.2.3 Fine-Grained Revision History for Source Code

Data Gathering The source code revision history for all the ASF projects is archived in
a giant subversion repository. ASF hosts periodic subversion data dumps online (Dumps of
the ASF Subversion repository 2015). We downloaded all the svn dumps from the years
between 1999 (the earliest) and 2014 (the latest). A local mirror of the software repositories
is built for all the ASF projects. The 64 GB of dump files result in more than 200 GB of
subversion repository data.

Data Processing We use the following tools to extract the evolutionary information from
the subversion repository:

– J-REX (Shang et al. 2009) is an evolutionary extractor, which we use to automatically
extract the source code as well as meta information (e.g., committer names, commit
logs, etc.) for all the revisions of the 21 projects. Different revisions of the same source
code files are recorded as separate files. For example, the source code of the first and
the second revisions of Foo.java are recorded as Foo v1.java, Foo v2.java, respectively.

– ChangeDistiller (CD) (Fluri et al. 2007) parses two adjacent revisions (e.g., Foo v1.java
and Foo v2.java) of the source code into Abstract Syntax Trees (ASTs), compares
the ASTs using a tree differencing algorithm and outputs a list of fine-grained code
changes. Examples of such changes can be updates to a particular method invocation
or removing a method declaration.

– We have developed a post-processing script to be used after CD to measure the file-level
and method-level code churn for each revision.

The above process is applied to all the revisions of all the Java files from the selected
21 projects. The resulting dataset records the fine-grained evolutionary information. For
example, for Hadoop, there are a total of 25,944 revisions. For each revision, the name
of the committer, the commit time, commit log, the code churn as well as the detailed
list of code changes are recorded. For example, revision 688920 was submitted by oma-
lley at 19:33:43 on August 25, 2008 for “HADOOP-3854. Add support for pluggable
servlet filters in the HttpServers.”. In this revision, 8 Java files are updated and no
Java files are added or deleted. Among the 8 updated files, four methods are updated
in “/hadoop/core/trunk/src/core/org/apache/hadoop/http/HttpServer.java”, along with five
methods that are inserted. The code churn for this file is 125 lines of code.

4.2.4 Fine-Grained Revision History for the Logging Code

Based on the above fine-grained historical code changes, we applied heuristics to iden-
tify the changes of the logging code among all the source code changes. Our approach,
which is similar to previous work (Fu et al. 2014; Shang et al. 2015; Yuan et al. 2012),
uses regular expressions to match the source code. The regular expressions used in this
paper are “.*?(pointcut|aspect|log|info|debug|error |fatal|warn |trace|(system\.out)|(syst-
em\.err)).*?(.*?);”:
– “(system\.out)|(system\.err))” is included to flag source code that uses standard output

(System.out) and standard error (System.err).
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– Keywords like “log” and “trace” are included, as the logging code, which uses logging
libraries like log4j, often uses logging objects like “log” or “logger” and verbosity levels
like “trace” or “debug”.

– Keywords like “pointcut” and “aspect” are also include to flag logging code that uses
the AspectJ (The AspectJ project 2015).

After the initial regular expression matching, the resulting dataset is further filtered to
removed code snippets that contain wrongly matched words like “login”, “dialog”, etc. We
manually sampled 377 pieces of logging code, which corresponds to a 95 % of confidence
level with a 5 % confidence interval. The accuracy of our technique is 95 %, which is
comparable to the original study (94 % accuracy).

4.2.5 Fine-Grained Revision History for the Log Printing Code

Logging code contains log printing code and non-log printing code. The dataset obtained
above (Section 4.2.4) is further filtered to exclude code snippets that contain assignments
(“=”) and does not have quoted strings. The resulting dataset is the fine-grained revision
history containing only the log printing code. We also manually verified 377 log printing
code from different projects. The accuracy of our approach is 95 %.

5 (RQ1:) How Pervasive is Software Logging?

In this section, we studied the pervasiveness of software logging.

5.1 Data Extraction

We downloaded the source code of the recent stable releases of the 21 projects and ran
SLOCCOUNT (Wheeler http://www.dwheeler.com/sloccount/) to obtain the SLOC for each
project. SLOCCOUNT only counts the actual lines of source code and excludes the com-
ments and the empty lines. A small utility, which uses regular expressions and JDT (JDT
Java development tools 2015), is applied to automatically recognize the logging code and
count LOLC for this version. Please refer to Section 4.2.4 for the approach to automatically
identify logging code.

5.2 Data Analysis

Log density is defined as the ratio between SLOC and LOLC. Smaller log density indicates
higher likelihood that developers write logging code in this project. As we can see from
Table 3, the log density value from the selected 21 projects varies. For server-side projects,
the average log density is bigger in our study compared to the original study (51 vs. 30). In
addition, the range of the log density in server-side projects is wider (29 to 83 in our study
vs. 17 to 38 in the original study). The log density is generally bigger in client-side projects
than server-side projects (63 vs. 51). For SC-based projects, the average log density is the
lowest (48) among all three categories. The range of the log density in SC-side project is the
widest (6 to 277). Compared to the original study, the average log density across all three
categories is higher in our study.

The Spearman rank correlation is calculated for SLOC vs. LOLC, SLOC vs. log density,
and LOLC vs. log density among all the project. Our results show that there is a strong

http://www. dwheeler.com/sloccount/
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Table 3 Logging code density of all the projects

Category Project Total lines of Total lines of Log density

source code (SLOC) logging code (LOLC)

Server Hadoop (2.6.0) 891,627 19,057 47

Hbase (1.0.0) 369,175 9,641 38

Hive (1.1.0) 450,073 5,423 83

Openmeetings (3.0.4) 51,289 1,750 29

Tomcat (8.0.20) 287,499 4,663 62

Subtotal 2,049,663 40,534 51

Client Ant (1.9.4) 135,715 2,331 58

Fop (2.0) 203,867 2,122 96

JMeter (2.13) 111,317 2,982 37

Maven (2.5.1) 20,077 94 214

Rat (0.11) 8,628 52 166

Subtotal 479,604 7,581 63

SC ActiveMQ (5.9.0) 298,208 7,390 40

Empire-db (2.4.3) 43,892 978 45

Karaf (4.0.0.M2) 92,490 1,719 54

Log4j (2.2) 69,678 4,509 15

Lucene (5.0.0) 492,266 1,779 277

Mahout (0.9) 115,667 1,670 69

Mina (3.0.0.M2) 18,770 303 62

Pig (0.14.0) 242,716 3,152 77

Pivot (2.0.4) 96,615 408 244

Struts (2.3.2) 156,290 2,513 62

Zookeeper (3.4.6) 61,812 10,993 6

Subtotal 1,688,404 35,414 48

Total 4,217,671 83,529 50

correlation between SLOC and LOLC (0.69), indicating that projects with bigger code-base
tend to have more logging code. However, the density of logging is not correlated with the
size of the system (0.11).

5.3 Summary

NF1: Compared to the original result, the log density for server-side projects is bigger
(51 vs. 30). In addition, the average log density of the server-side, client-side and SC-
base projects are all different. The range of the log density values varies dramatically
among different projects.
Implications: The pervasiveness of logging varies from projects to projects. Although
larger projects tend to have more logging code, there is no correlation between SLOC
and log density. More research like (Fu et al. 2014) is needed to study the rationales for
software logging.
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6 (RQ2:) Are Bug Reports Containing Log Messages Resolved Faster
than the Ones Without Log Messages?

Bettenburg et al. (2008) (Zimmermann et al. 2010) have found that developers preferred
bug reports that contain test cases and stack traces, as these artifacts help reproduce the
reported issues. However, they did not look into bug reports that contain log messages. As
log messages may provide useful runtime information, the goal of this RQ is to check if bug
reports containing log messages are resolved faster than bug reports without.

In the original study, the authors randomly sampled 250 bug reports and categorized
them into bug reports containing log messages (BWLs) or bug reports not containing any
log messages (BNLs). Then they compared the median of the bug resolution time (BRT)
between these two categories. In this RQ, we improved the original technique in two ways.
First, rather than manual sampling, we have developed a categorization technique that can
automatically flag BWLs with high accuracy. Our technique, which analyzes all the bug
reports, can avoid the potential risk of sampling bias (Bird et al. 2009; Rahman et al. 2013).
Second, we carried out a more thorough statistical analysis to compare the BRT between
BWLs and BNLs.

6.1 Data Extraction

The data extraction process of this RQ consists of two steps: we first categorized the bug
reports into BWLs and BNLs. Then we compared the resolution time for bug reports from
these two categorizes.

6.1.1 Automated Categorization of Bug Reports

The main objective of our categorization technique is to automatically recognize log mes-
sages in the description and/or comments sections of the bug reports. Figure 3 illustrates the
process. We provide a step-by-step description of our technique using real-world examples
illustrated in following figures(the texts highlighted in blue are the log messages):

– bug reports that contain neither log messages nor log printing code (Fig. 4a);
– bug reports that contain log messages not coming from this project (Fig. 4b);
– bug reports that contain log messages in the Description section (Fig. 5a);
– bug reports that contain log messages in the Comments section (Fig. 5b);
– bug reports that do not contain log messages but only the log printing code(in red)

(Fig. 6a);

Evolution of
log printing

code

Log message patterns
& log printing code

patterns

Pattern
extraction

Bug reports

Bug reports with
matching log message

pattern

Bug report pre-
processing Bug reports

containing log
messages

Data
refinement

Fig. 3 An overview of our automated bug report categorization technique
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In HBASE-10044, attempt was made to filter attachments according to known file extensions.
However, that change alone wouldn't work because when non-patch is attached, QA bot doesn't
provide attachment Id for last tested patch.This results in the modified test-patch.sh to seek
backward and launch duplicate test run for last tested patch. If attachment Id for last tested patch
is provided, test-patch.sh can decide whether there is need to run test.

a

b
A sample of bug report with no match to logging code or log messages [Hadoop-10163]

This happens when we terminate the JT using control-C. It throws the following exception
Exception closing file my-file
java.io.IOException: Filesystem closed
at org.apache.hadoop.hdfs.DFSClient.checkOpen(DFSClient.java:193)
at org.apache.hadoop.hdfs.DFSClient.access$700(DFSClient.java:64)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.closeInternal(DFSClient.java:2868)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.close(DFSClient.java:2837)
at org.apache.hadoop.hdfs.DFSClient$LeaseChecker.close(DFSClient.java:808)
at org.apache.hadoop.hdfs.DFSClient.close(DFSClient.java:205)
at org.apache.hadoop.hdfs.DistributedFileSystem.close(DistributedFileSystem.java:253)
at org.apache.hadoop.fs.FileSystem$Cache.closeAll(FileSystem.java:1367)
at org.apache.hadoop.fs.FileSystem.closeAll(FileSystem.java:234)
at org.apache.hadoop.fs.FileSystem$ClientFinalizer.run(FileSystem.java:219)
Note that my-file is some file used by the JT.Also if there is some file renaming done, then the
exception states that the earlier file does not exist. I am not sure if this is a MR issue or a DFS
issue. Opening this issue for investigation.

A sample of bug report with unrelated log messages [Hadoop-3998]

Fig. 4 Sample bug reports with no related log messages

– bug reports that contain both the log messages and log printing code(in red) (Fig. 6b);
– bug reports that do not contain log messages but contain the keywords(in red) from log

messages in the textual contents (Fig. 7).

Description: A job with 38 mappers and 38 reducers running on a cluster with 36 slots.
All mapper tasks completed. 17 reducer tasks completed. 11 reducers are still in the running state
and one is in the oending state and stay there forever.
Comments: The below is the relevant part from the job tracker:
2008-11-09 05:09:16,215 INFO org.apache.hadoop.mapred.TaskInProgress: Error from
task_200811070042_0002_r_000009_0:
java.io.IOException: subprocess exited successfully ...

A sample of bug report with log messages in the description section [Hadoop-10028]

Description:
The ssl-server.xml.example file has malformed XML leading to DN start error if the example file is
reused.
2013-10-07 16:52:01,639 FATAL conf.Configuration (Configuration.java:loadResource(2151)) - error
parsing conf ssl-server.xmlorg.xml.sax.SAXParseException: The element type "description" must be
terminated by the matching end-tag "</description>".
at com.sun.org.apache.xerces.internal.parsers.DOMParser.parse(DOMParser.java:249)
at com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderImpl.parse(DocumentBuilderImpl.java:284)
at javax.xml.parsers.DocumentBuilder.parse(DocumentBuilder.java:153)
at org.apache.hadoop.conf.Configuration.parse(Configuration.java:1989)
Comments:
The patch only touches the example XML files. No code changes.

A sample of bug report with log messages in the comments section [Hadoop-4646]

a

b

Fig. 5 Sample bug reports with log messages
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I'm occasionally (1/5000 times) getting this error after upgrading everything to hadoop-0.18:
08/09/09 03:28:36 INFO dfs.DFSClient: Exception in createBlockOutputStream java.io.IOException:
Could not read from stream
08/09/09 03:28:36 INFO dfs.DFSClient: Abandoning block blk_624229997631234952_8205908
DFSClient contains the logging code:
LOG.info("Exception in createBlockOutputStream " + ie);
This would be better written with ie as the second argument to LOG.info, so that the stack trace could be
preserved. As it is, I don't know how to start debugging.

Looking at my Jetty code, I see this code to set mime mappings. public void addMimeMapping(String
extension, String mimeType){ log.info("Adding mime mapping " + extension + " maps to " +
mimeType); MimeTypes mimes = getServletContext().getMimeTypes();
mimes.addMimeMapping(extension, mimeType); }Maybe the filter could look for text/html and text/
plain content types in the response and only change the encoding value if it matches these types.

A sample of bug report with only log printing code [Hadoop-6496]

A sample of bug report with both logging code and log messages [Hadoop-4134]

a

b

Fig. 6 Sample bug reports with logging code

Our technique uses the following two types of datasets:

– Bug Reports: The contents of the bug reports, whose status are “Closed”, “Resolved”
or “Verified”, from the 21 projects have been downloaded and stored in the XML file
format. Please refer to Section 4.2.2 for a detailed description of this process.

– Evolution of the Log Printing Code: A historical dataset, which contains the fine-
grained revision history for the log printing code (log update, log insert, log deletion
and log move), has been extracted from the code repositories for all the projects. For
details, please refer to Section 4.2.5.

Pattern Extraction For each project, we extract two types of patterns: static log-printing
code patterns and log message patterns. Static log-printing code patterns refer to all the snip-
pets of log printing code that ever existed throughout the development history. For example,
“log.info(‘Adding mime mapping’ + extension + ‘maps to’ + mimeType’)” in Fig. 6a is
a static log-printing code pattern. Subsequently, log message patterns are derived based on
the static log-printing code patterns. The above log printing code pattern would yield the
following log message pattern: “Adding mime mapping * maps to *”. The static log-printing
code patterns are needed to remove the false alarms (a.k.a., all the log printing code) in a
bug report, whereas the log message patterns are needed to flag all the log messages in a
bug report.

1. Incorporated Hairong's review comments. getPriority() now handles the case when there is
only one replica of the file and that node is beingdecommissioned.
2. Enhanced the test case to have a test case for decommissioning a node that has the only replica
of a block.
3. Removed the checkDecommissioned() method from the ReplciationMonitor because there is
already a separate thread that checks whether the decommissioning was complete.
4. Fixed a bug introduced in hadoop-988 that caused pendingTransfers to ignore replicating
blocks that have only one replica on a being-decommissioned node.

Fig. 7 A sample of bug report with textual contents mistakenly matched to logging patterns [Hadoop-1184]
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Pre-processing Only bug reports containing log messages are relevant for this RQ. Hence,
bug reports like the one shown in Fig. 6a should be filtered out. However, the structure
and the content of the logging code are very similar to the log messages, as log messages
(e.g., “Tom logged in at 10:20”) are generated as a result of executing the log printing code
(“Log.info(user+ ‘logged in at’+ date.time())”). We cannot directly match the log message
patterns with the bug reports, as bug reports containing only the logging code (e.g., Fig. 6a)
would be also mistakenly matched. Hence, if the contents of the description or the comments
sections match the static log-printing code patterns, they are replaced with empty strings.
Take Hadoop bug report 4134 (shown in Fig. 6b) as an example. The static log-printing
code patterns can only match the logging code “LOG.info(‘Exception in createBlock-
OutputStream’ + ie);”, but not the log message “Exception in createBlockOutputStream
java.io.IOException ...”.

Scenario Examples

1. Adding the

textual 

description of  

the dynamic 

contents

ActiveMQSession.java from ActiveMQ

2. Deleting

redundant 

information

DistributedFileSystem.java from Hadoop

3. Updating

dynamic

contents

ResourceLocalizationService.java from Hadoop

4. Spell/grammar

changes

HiveSchemaTool.java from Hive

5. Fixing

misleading 

information

CellarSampleDosgiGreeterTest.java from Karaf

6. Format &

style changes

DataLoader.java from Mahout

7. Others

StreamJob.java from Hadoop

LOG.debug(getSessionId() + " Transaction Rollback");

LOG.debug(getSessionId() + " Transaction Rollback, txid:" + 

transactionContext.getTransactionId());

Revision: 

1071259

Revision: 

1143930

LOG.info("Found checksum error in data stream at block=" + dataBlock + " on datanode=" + 

dataNode[0]);

LOG.info("Found checksum error in data stream at " + dataBlock + " on datanode=" + 

dataNode[0]);

Revision: 

1390763

Revision: 

1407217

Revision: 

1087462 LOG.info("Localizer started at " + locAddr);

LOG.info("Localizer started on port " + server.getPort());Revision: 

1097727

Revision: 

1529476
System.out.println("schemaTool completeted");

Revision: 

1579268
System.out.println("schemaTool completed");

Revision: 

1239707 System.err.println(("Child1:" + node1));

System.err.println(("Node1:" + node1));
Revision: 

1339222

log.error(id + ": " + string);

log.error("{}: {}", id, string);

Revision: 

891983

Revision: 

901839

Revision: 

681912

Revision: 

696551

System.out.println("  -jobconf dfs.data.dir=/tmp/dfs");

System.out.println("  -D stream.tmpdir=/tmp/streaming");

Fig. 8 A sample of falsely categorized bug report [Hadoop-11074]
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Pattern Matching In this step, a bug report is selected, if its textual contents from the
description or the comments sections match any of the log message patterns. The selected
bug reports are the likely candidates for BWLs. In this step, bug reports like the ones shown
in Figs. 4b, 5a, b, and 7 are selected.

Data Refinement However, there could still be false positives in the resulting bug report
dataset. One of the main reasons is that some words used in the log messages may overlap
with the textual content. For example, although “block replica decommissioned” in Fig. 7
matches one of the log message patterns, it is not a log message but part of the textual con-
tents of this bug report. To further refine the dataset, a new filtering rule is introduced so
that bug reports without any timestamps are excluded, as log messages are usually printed
with timestamps showing the generation time for the log messages. Various format of times-
tamps used in the selected projects (e.g. “2000-01-02 19:19:19” or “2010080907”, etc.) are
included in this filter rule. In this step, bug reports in Fig. 7 are removed. The remaining
bug reports after this step are BWLs. All the other bug reports are BNLs.

To evaluate our technique, 370 out of 9,646 bug reports are randomly sampled from the
Hadoop Common project (which is a sub project of Hadoop). The samples correspond to
a confidence level of 95 % with a confidence interval of ±5 %. The performance of our
categorization technique is: 100 % recall, 96 % precision and 99 % accuracy. Our technique
cannot hit 100 % precision as some short log message patterns may frequently appear as the
regular textual contents in the bug report. Figure 8 shows one example. Although Hadoop
bug report 11074 contains the date string, the textual contents also match the log pattern
“adding exclude file”. However, these texts are not log messages but build errors.

6.2 Data Analysis

Table 4 shows the number of different types of bug reports for each project. Overall, among
81,245 bug reports, 4,939 (6 %) bug reports contain log messages. The percentage of bug
reports with log messages varies among projects. For example, 16 % of the bug reports in
HBase contain log messages but only 1% of the bug reports in Tomcat contain log messages.
None of the bug reports from Pivot and Rat contain log messages.

Figure 9 plots the distribution of BRT for BWLs and BNLs. Each plot is a beanplot
(Kampstra 2008), which visually compares the distributions of BRT for bug reports with
log messages (the left part of the plot) and the ones without (the right part of the plot).
The vertical scale is shown in the natural logarithm of days. The 21 selected projects have
very different distributions of BRT for BNLs and BWLs, except a few ones (e.g., Pig and
Zookeeper). For example, BRT for BWLs has a much wider distribution than BNLs for
EmpireDB. We did not show the plots for Pivot and Rat, as they do not have any bug reports
containing log messages.

Table 5 shows the median BRT for both BNLs and BWLs in each project. For example,
in ActiveMQ, the median of BRT for BNLs is 12 days and 57 days for BWLs. The median
BRTs for BNLs and BWLs are split across the 21 projects: 8 projects have longer median
BRTs for BNLs and 10 projects have shorter median BRTs for BNLs. The other two projects
(Pivot and Rat) do not contain any BWLs, as none of their bug reports contain log messages.
For server-side and SC-based projects, the median of BRT of BNLs is shorter than that of
BWLs, whereas the median of BRT of BNLs is longer than that of BWLs for client projects.
Our finding is different from that of the original study, which shows the BRT is shorter in
BWLs for server-side projects.
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To compare the BRT for BWLs and BNLs across all the projects, the original study
calculated the average of the median BRT for all the projects. The result is shown in the
brackets of the last row of Table 5. In our selected 21 projects, Ant and Fop have very
long BRT in general (>1000 days). Taking the average for all the median BRTs from all
the projects could result in a long BRTs overall (around 200 days). This number is not
representative of all the projects, as most projects have a median BRT smaller than 30
days. Hence, we introduce a new metric in our study, which is the median of the BRT for
all the projects. The results of this new metric are shown in the last row of Table 5. The
overall median BRT for BNLs (14 days) is shorter than BWLs (17 days) across all the
projects.

We performed the non-parametric Wilcoxon rank-sum test (WRS) to compare the BRT
for BWLs and BNLs across all the projects. Table 5 shows our results. The two-sided
WRS test shows that the BRT for BWLs is significantly different from BRT for BNLs
(p < 0.05) in nearly half (10/21) of the studied projects. Among three categories, the
BRT for BWLs is statistically significant in server-side and SC-based projects. When

Table 4 The number of BNLs and BWLs for each project

Category Project # of Bug reports # of BNLs # of BWLs

Server Hadoop 20,608 19,152 (93 %) 1,456 (7 %)

HBase 11,208 9,368 (84 %) 1,840 (16 %)

Hive 7,365 6,995 (95 %) 370 (5 %)

Openmeetings 1,084 1,080 (99 %) 4 (1 %)

Tomcat 389 388 (99 %) 1 (1 %)

Subtotal 40,654 36,983 (91 %) 3,671 (9 %)

Client Ant 5,055 4,955 (98 %) 100 (2 %)

Fop 2,083 2,068 (99 %) 15 (1 %)

Jmeter 2,293 2,225 (97 %) 68 (3 %)

Maven 4,354 4,299 (99 %) 55 (1 %)

Rat 149 149 (100 %) 0 (0 %)

Subtotal 13,934 13,696 (98 %) 238 (2 %)

SC ActiveMQ 5,015 4,687 (93 %) 328 (7 %)

Empire-db 205 204 (99 %) 1 (1 %)

Karaf 3,089 3,049 (99 %) 40 (1 %)

Log4j 749 704 (94 %) 45 (6 %)

Lucene 5,254 5,241 (99 %) 13 (1 %)

Mahout 1,633 1,603 (98 %) 30 (2 %)

Mina 907 901 (99 %) 6 (1 %)

Pig 3,560 3,188 (90 %) 372 (10 %)

Pivot 771 771 (100 %) 0 (0 %)

Struts 4,052 4,007 (99 %) 45 (1 %)

Zookeeper 1,422 1,272 (89 %) 150 (11 %)

Subtotal 26,657 25,627 (96 %) 1,030 (4 %)

Total 81,245 76,306 (94 %) 4,939 (6 %)
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Fig. 9 Comparing the bug resolution time between BWLs and BNLs for each project

we aggregate the data across 21 projects, the BRT between BNLs and BWLs is also
different.

To assess the magnitude of the differences between the BRT for BNLs and BWLs, we
have also calculated the effect sizes using Cliff’s Delta (only for the projects of which the
BRT for BWLs and BNLs are significantly different according to WRS result) in Table 5.
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The strength of the effects and the corresponding range of Cliff’s Delta (d) values (Romano
et al. 2006) are defined as follows:

effect size =

⎧
⎪⎪⎨

⎪⎪⎩

negligible if |d| ≤ 0.147
small if 0.147 < |d| ≤ 0.33
medium if 0.33 < |d| ≤ 0.474
large if 0.474 < ‖d|

Our results show that the effect sizes for majority of the projects are small or negligible.
Across the three categories and overall, the effect sizes of BRT between BNLs and BWLs
are also small and negligible.

Table 5 Comparing the bug resolution time of BWLs and BNLs

Category Project BNLs BWLs p-values for WRS Cliff’s Delta (d)

Server Hadoop 16 13 <0.001 0.07 (negligible)

HBase 5 4 <0.001 0.12 (negligible)

Hive 7 7 <0.001 0.25 (small)

Openmeetings 3 8 0.51 0.19 (small)

Tomcat 3 2 0.86 −0.11 (negligible)

Subtotal 10 14 <0.001 0.08 (negligible)

Client Ant 1,478 1,665 <0.05 0.16 (small)

Fop 2,313 2,510 0.35 0.13 (negligible)

Jmeter 24 19 0.50 −0.05 (negligible)

Maven 46 4 <0.05 −0.25 (small)

Rat 8 N/A N/A N/A

Subtotal 548 499 0.50 −0.03 (negligible)

SC ActiveMQ 12 57 <0.001 0.23 (small)

Empire-db 13 3 0.50 −0.39 (medium)

Karaf 3 12 <0.05 0.22 (small)

Log4j 4 23 <0.05 0.26 (small)

Lucene 5 1 0.29 −0.16 (small)

Mahout 15 31 0.05 0.20 (small)

Mina 12 34 0.84 0.05 (negligible)

Pig 11 20 <0.001 0.13 (negligible)

Pivot 5 N/A N/A N/A

Struts 20 13 0.6 −0.04 (negligible)

Zookeeper 24 40 <0.05 0.14 (negligible)

Subtotal 9 28 <0.001 0.20 (small)

Overall 14(192) 17(236) <0.001 0.04 (negligible)

The p-values for WRS are bolded if they are smaller than 0.05. The values for the effect sizes are bolded if
they are medium or large
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6.3 Summary

NF2: Different from the original study, the median BRT for BWLs is longer than the
median BRT for BNLs in server-side projects and SC-based projects. The BRT for BNLs
is statistically different from the BRT for the BWLs in nearly half of the studied projects
(10/21). However, the effect sizes for BRT between the BNLs and BWLs are small.
Implications: As shown in the previous studies (Bettenburg et al. 2008; Zimmermann
et al. 2010), multiple factors (e.g., test cases and stack traces) are considered useful for
developers to replicate issues reported in the bug reports. However, the factor of software
logging was not studied in those works. Further research is required to re-visit these
studies to examine the impact of various factors on bug resolution time.

7 (RQ3:) How Often is the Logging Code Changed?

In this section, we quantitatively analyze the evolution of the logging code. We measure the
churn rate for both the logging code and the entire source code. We compare the number
of revisions with and without log changes. We also categorize and measure the evolution of
the logging code (e.g., the amount of insertion and deletion of the logging code).

7.1 Data Extraction

The data extraction step for this RQ consists of four parts: (1) calculating the average churn
rate of source code, (2) calculating the average churn rate of the logging code, (3) cate-
gorizing code revisions with or without log changes, and (4) categorizing the types of log
changes.

7.1.1 Part 1: Calculating the Average Churn Rate of Source Code

The SLOC for each revision can be estimated by measuring the SLOC for the initial version
and keeping track of the total number of lines of source code that are added and removed
for each revision. For example, the SLOC for the initial version is 2,000. In version 2, two
files are changed: file A (3 lines added and 2 lines removed) and file B (10 lines added and
1 lines removed). Hence, the SLOC for version 2 would be 2000+ 3− 2+ 10− 1 = 2010.
The churn rate for version 2 is 3+2+10+1

2010 = 0.008. The average churn rate of the source
code is calculated by taking the churn rate for all the revisions. The resulting average churn
rate of source code for each project is shown in Table 6.

7.1.2 Part 2: Calculating the Average Churn Rate of the Logging Code

The average churn rate of the logging code is calculated in a similar manner as the average
churn rate of source code. First, the initial set of logging code is obtained by writing a parser
to recognize all the logging code with JDT. Then, the LLOC is calculated by keeping track
of lines of logging code added and removed for each revision (please refer to Section 4.2.4
for details). Afterwards, the churn rate of the logging code for each revision is calculated.
Finally, the average churn rate of the logging code is obtained by taking the average of the
churn rates for all the revisions. The resulting average churn rate of logging code for each
project is shown in Table 6.
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7.1.3 Part 3: Categorizing Code Revisions with or Without Log Changes

We have already obtained a historical dataset that contains the revision history for all the
source code (Section 4.2.3) and another historical dataset that contains all the revision his-
tory just for the logging code (Section 4.2.4). We write a script to count the total number of
revisions in the above two datasets. Then we calculate the percentage of code revisions that
contain changes in the logging code.

7.1.4 Part 4: Categorizing the Types of Log Changes

In this step, we write another script that parses the revision history for the logging code
and counts the total number of code changes that have log insertions, deletions, updates and
moves. The results are shown in Table 7.

Table 6 Average churn rate of source code vs. average churn rate of logging code for each project

Category Project Logging code Entire source code

(%) (%)

Server Hadoop 8.7 2.4

HBase 3.2 2.4

Hive 3.9 2.1

Openmeetings 3.7 3.0

Tomcat 2.6 1.7

Subtotal 4.4 2.3

Client Ant 5.1 2.4

Fop 5.5 3.4

Jmeter 2.6 2.0

Maven 7.0 4.0

Rat 7.4 4.1

Subtotal 5.5 3.2

SC ActiveMQ 5.4 3.1

Empire-db 5.0 2.4

Karaf 11.7 4.7

Log4j 6.1 2.8

Lucene 3.4 2.0

Mahout 10.8 4.0

Mina 7.0 3.2

Pig 4.3 2.3

Pivot 7.0 2.0

Struts 4.3 2.8

Zookeeper 5.2 3.4

Subtotal 6.4 3.0

Total 5.7 2.9
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7.2 Data Analysis

Code Churn Table 6 shows the code churn rate for the logging code and the entire code
for all the projects. For server-side projects, the churn rate of the logging code is 1.9 times
higher than that of entire code. This result is similar to the original result. The churn rate
of logging code in client-side projects and SC based projects is also higher than that of
the entire code. The highest churn rate of the logging code is from Karaf (11.7 %) and the
lowest from Tomcat and JMeter (2.6 %). Across all the studied projects, the logging code
churn rate is higher than the source code churn rate. Similar to the original study, the average
churn rate of the logging code for all the projects is 2.3 times higher than the churn rate of
source code.

Table 7 Committed revisions with or without logging code

Category Project Revisions with Total Percentage

changes to revisions (%)

logging code

Server Hadoop 8,969 25,944 34.5

Hbase 4,393 12,245 35.8

Hive 1,053 4,047 26.0

Openmeetings 861 2,169 39.6

Tomcat 4,225 26,921 15.6

Subtotal 19,501 71,326 27.3

Client Ant 1,771 11,331 15.6

Fop 1,298 6,941 18.7

Jmeter 300 2,022 14.8

Maven 5,736 29,362 19.5

Rat 24 825 2.9

Subtotal 9,129 50,481 18.1

SC ActiveMQ 2,115 9,677 21.9

Empire-db 123 515 23.9

Karaf 802 2,730 29.3

Log4j 1,919 6,073 31.5

Lucene 2,946 28,842 10.2

Mahout 573 2,249 25.4

Mina 486 3,251 14.9

Pig 470 2,080 22.5

Pivot 280 3,604 7.76

Struts 712 5,816 12.2

Zookeeper 499 1,109 44.9

Subtotal 10,925 65,946 16.6

Total 39,555 187,753 21.1
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Code Commits with Log Changes Table 7 tabulates the number of revisions that contain
changes to the logging code, the total number of revisions, and the percentage of revisions
containing log changes for each project and each category. The percentage of code revisions
containing log changes varies among different projects and categories. Compared to the
original study, the server-side projects in our study have a slightly higher percentage of
revisions with changes to logging code (27.3 % vs. 18.1 %). This percentage for client-side
(18.1 %) and SC-based (16.6 %) projects is similar to the original study. Overall, 21.1 % of
revisions contain changes to the logging code.

Types of Log Changes There are four types of changes on the logging code: log inser-
tion, log deletion, log update and log move. Log deletion, log update and log move are
collectively called log modification. Table 8 shows the percentage of each change opera-
tion among all the projects and all categories. In general, log insertion and log update are
the most frequent log change operations across all the projects (32 % for both operations),
followed by log deletion (26 %) and log move (10 %). Our results are different from the

Table 8 Breakdown of different changes to the logging code

Category Project Log insertion Log deletion Log update Log move

Server Hadoop 16,338 (32 %) 13,983 (28 %) 15,324 (30 %) 5,205 (10 %)

HBase 7,527 (32 %) 6,042 (26 %) 7,681 (33 %) 2,113 (9 %)

Hive 2,314 (39 %) 1,844 (31 %) 1,331 (21 %) 515 (9 %)

Openmeetings 1,545 (32 %) 1,854 (38 %) 1,027 (22 %) 429(8 %)

Tomcat 5,508 (36 %) 4,120 (27 %) 4,215 (28 %) 1,409 (9 %)

Subtotal 33,232 (33 %) 27,843 (27 %) 29,578 (30 %) 9,671 (10 %)

Client Ant 2,331 (28 %) 2,158 (26 %) 3,217 (39 %) 588 (7 %)

Fop 1,707 (29 %) 1,859 (32 %) 1,776 (31 %) 484 (8 %)

Jmeter 202 (34 %) 115 (19 %) 207 (35 %) 74 (12 %)

Rat 14 (30 %) 7 (15 %) 21 (45 %) 5 (10 %)

Maven 6,689 (33 %) 5,810 (29 %) 5,583 (27 %) 2,265 (11 %)

Subtotal 10,943 (31 %) 9,949 (28 %) 10,804 (31 %) 3,416 (10 %)

SC ActiveMQ 2,295 (32 %) 1,314 (19 %) 2,978 (42 %) 489 (7 %)

Empire-db 181 (35 %) 129 (25 %) 161 (31 %) 53 (9 %)

Karaf 998 (26 %) 817 (21 %) 1,542 (40 %) 521 (13 %)

Log4j 2,740 (27 %) 2,101 (20 %) 4,698 (46 %) 722 (7 %)

Lucene 6,119 (36 %) 4,175 (25 %) 4,737 (28 %) 1,801 (11 %)

Mahout 698 (18 %) 754 (19 %) 2,122 (55 %) 306 (8 %)

Mina 608 (29 %) 518 (25 %) 759 (36 %) 220 (10 %)

Pig 394 (32 %) 392 (32 %) 315 (26 %) 127 (10 %)

Pivot 239 (41 %) 215 (37 %) 116 (20 %) 16 (2 %)

Struts 718 (27 %) 718 (27 %) 879 (33 %) 345 (13 %)

Zookeeper 778 (35 %) 575 (26 %) 626 (28 %) 239 (11 %)

Subtotal 15,768 (31 %) 11,708 (23 %) 18,933 (37 %) 4,839 (9 %)

Total 59,943 (32 %) 49,500 (26 %) 59,315 (32 %) 17,926 (10 %)
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original study, in which there are very few (2 %) log deletions and moves. We manually ana-
lyzed a few commits which contain log deletion and move. We found that they are mainly
due to code refactorings and to changes in testing code.

7.3 Summary

F3 and F4: Similar to the original study, the logging code churn rate is two times higher
than that of the entire code base and around 20 % of the code commits contain log
changes.
Implications: Similar to C/C++ projects in the original study, the logging code in Java
projects in our study is also actively maintained. The evolution and maintenance of the
logging code is a crucial activity in the evolution of software projects. There are many log
analysis applications developed to monitor and debug the health of server-based projects
(Oliner et al. 2012). The frequency of changes in the logging code bring great challenges
in maintaining these log analysis applications. Additional tools and research are required
to manage the co-evolution of logging code and log monitoring applications.

NF6: There are much more log deletions and moves (36 % vs. 2 %) across all three
categories in our study.
Implications: Deleting and moving logging code may hinder the understanding of run-
time behavior of these projects. New research is required to assess the risk of deleting
and moving logging code for Java-based systems.

8 (RQ4:) What are the Characteristics of Consistent Updates to the Log
Printing Code?

Both our results and the original study show that changes (churn) to the logging code are
more frequent than changes to the source code. Among all the changes to the logging code,
log update is one of the most frequent operations. As log messages are generated by the log-
printing code at runtime, it is important to study the developers’ behavior on updates to the
log printing code. The updates to the log printing code can be further classified into con-
sistent updates and after-thought updates. An update to the log printing code is a consistent
update, if this piece of log printing code is changed along with other non-log related source
code. Otherwise, the log update operation is an after-thought update. In this RQ, we study
the characteristics of the consistently updated log printing code. In the next section, we will
study the after-thought updates.

8.1 Data Extraction

The original study classified consistent updates to the log printing code into three scenarios:
log update along with changes to condition expressions, log update along with variable re-
declaration, and log update along with method renaming. Based on manual investigation
on some code revisions, we have identified a few additional scenarios (e.g., log update
following changes to the method parameters). This manual investigation was repeated by
both authors in this paper, until no new scenarios of consistent updates were found. As a
result, we have identified eight in our study. We wrote a Java program that automatically
parses each code revision using JDT and categorized the log printing code according to one
of the aforementioned eight scenarios.
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Below, we explain these eight scenarios of consistent update using real-world examples.
For the sake of brevity, we do not include “log update along with” at the beginning of
each scenario. The scenario is indicated as “(new)” if it is a new scenario identified in our
study.

1. Changes to the condition expressions (CON) In this scenario, the log printing
code is updated along with the conditional expression in a control statement (e.g.,
if/else/for/while/switch). The second row in Fig. 10 shows an example: the if expres-
sion is updated from “isAccessTokenEnabled” to “isBlockTokenEnabled”, while the
static text of the log printing code is updated from “Balancer will update its access keys
every” to “Balancer will update its block keys every”.

2. Changes to the variable declarations (VD) is a modified scenario of variable re-
declaration in the original study. In Java projects, the variables can be declared or
re-declared in each class, method or any code block. For example, the third row of
Fig. 10 show that the variable “bytesPerSec” is changed to “kbytesPerSec”. The static
text of the log message is updated accordingly.

3. Changes to the feature methods (FM) is an expanded scenario of method renaming in
the original study. We expand this scenario to include not only method renaming, but
also all the methods updated in the same revision. In the example, the static text is added
“Sending SHUTDOWN signal to the NodeManager.”, and the method “shutdown” is
changed in the same revision according to our historical data.

4. Changes to the class attributes (CA)(new) In Java classes, the instance variables for
each class are called “class attributes”. If the value or the name of the class attribute
gets updated along with the log printing code, it falls into this scenario. In the example
shown in the fourth row of Fig. 10: both the log printing code and the class attributes
are changed from “AUTH SUCCESSFULL FOR” to “AUTH SUCCESSFUL FOR”.

5. Changes to the variable assignments (VA)(new) In this scenario, the value of a local
variable in a method has been changed along with the log printing code. For the example
shown in the sixth row of Fig. 10: variable “fs” is assigned to a new value in the new
revision, while the log printing code adds “fs” to its list of output variables.

6. Changes to the string invocation methods (MI) (new) In this scenario, the changes are
in the string invocations of the logging code. For the example shown in the seventh row
of Fig. 10: a method name is updated from “getApplicationAttemptId” to “getAppId”,
and the change is also made in the log printing code.

7. Changes to the method parameters (MP)(new) In this scenario, the changes are in the
names of the method parameters. For the example shown in the eighth row of Fig. 10:
there is an added variable “ugi” in the list of parameters for the “post” method. The log
printing code also adds “ugi” to its list of output variables.

8. Changes to the exception conditions (EX)(new) In this scenario, the changes reside in
a catch block and record the exception messages. For the example shown in the ninth
row of Fig. 10: the variable in the log printing code is also updated due to changes in
the catch block from “exception” to “throwable”.

8.2 Data Analysis

Table 9 shows the breakdown of different scenarios for consistent updates and the total num-
ber of the remaining updates, i.e., after-thought updates, for each project. To conserve space,
we use the short names introduced above for each scenario. Within consistent updates, the
frequency of each scenario is also shown. Around 50 % of all the updates to the log printing
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Scenarios Examples

Changes to 
the condition 
expressions

Balancer.java

Revision: 1077252

Changes to 
the variable 
declarations

TestBackpressure.java

Changes to 
the feature 

methods

ResourceTrackerService.java

Changes to 
the class 
attributes

Server.java

Changes to 
the variable 
assignment

DumpChunks.java

Changes to 
the  string 
invocation 
methods

CapacityScheduler.java

Changes to 
the method 
parameters

DatanodeWebHdfsMethods.java

Changes to 
the exception 

conditions

ContainerLauncherImpl.java

Revision: 
1077137

Revision: 
1077252

if (isAccessTokenEnabled) {
...
LOG.info(“Balancer will update its access keys every ” + keyUpdaterInterval / (60 * 1000) + 
“ minute(s)”); … }

if (isBlockTokenEnabled) {
...
LOG.info(“Balancer will update its block keys every ” + keyUpdaterInterval / (60 * 1000) + 
“ minute(s)”);
… }

long bytesPerSec = Long.valueOf(stat.split(" ")[3]) / SLEEP_SEC / 1000;
System.out.println("data rate was " + bytesPerSec + " kb /second");

long kbytesPerSec = Long.valueOf(stat.split(" ")[3]) / TEST_DURATION_SECS / 1000;
System.out.println("data rate was " + kbytesPerSec + " kb /second");

LOG.info("Disallowed NodeManager from " + host);

LOG.info("Disallowed NodeManager from " + host + ", Sending SHUTDOWN signal to the 
NodeManager.");

private static final String AUTH_SUCCESSFULL_FOR = "Auth successfull for ";
AUDITLOG.info(AUTH_SUCCESSFULL_FOR + user);

private static final String AUTH_SUCCESSFUL_FOR = "Auth successful for ";
AUDITLOG.info(AUTH_SUCCESSFUL_FOR + user);

dump(args, conf, System.out);

fs = FileSystem.getLocal(conf);
dump(args, conf, fs, System.out);

LOG.info("Skipping scheduling since node " + nm + " is reserved by application " + 
node.getReservedContainer().getContainerId().getApplicationAttemptId());

LOG.info("Skipping scheduling since node " + nm + " is reserved by application " + 
node.getReservedContainer().getContainerId().getAppId());

public Response post( final InputStream in, ...){…
LOG.trace(op + ": " + path + Param.toSortedString(", ", bufferSize)); …}

public Response post( final InputStream in, @Context final UserGroupInformation ugi, ...){...
LOG.trace(op + ": " + path + ", ugi=" + ugi + Param.toSortedString(", ", 

try {...} catch (Exception e) { ...
LOG.warn("cleanup failed for container " + event.getContainerID() , e); …}

try {...} catch (Throwable t) {...
LOG.warn("cleanup failed for container " + event.getContainerID() , t); …}

Revision: 
803762

Revision: 
806335

Revision: 
1179484

Revision: 
1196485

Revision: 
1329947

Revision: 
1334158

Revision: 
796033

Revision: 
797659

Revision: 
1169485

Revision: 
1169981

Revision: 
1189411

Revision: 
1189418

Revision: 
1138456

Revision: 
1141903

Fig. 10 Examples of the eight scenarios of consistent updates to the log printing code

code for server-side projects are consistent updates. This percentage of consistent updates
for server-side projects is much lower in our study compared to the original study. This num-
ber is even smaller for client-side (37.8 %) and SC-based (28.5 %) projects. Out of all the
updates to the log printing code, 41 % of the updates on the log printing code are consistent
updates.
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Table 9 Detailed classifications of log printing code updates for each scenario

Category Project CON VD FM CA VA MI MP EX After-thought

(%) (%) (%) (%) (%) (%) (%) (%) (%)

Server Hadoop 13.1 12.6 3.9 2.8 2.5 8.6 6.3 0.4 49.7

HBase 10.2 13.3 4.0 4.4 1.9 11.4 4.8 0.2 49.7

Hive 9.8 8.1 3.8 16.3 1.9 5.5 2.7 0.4 51.5

Openmeetings 7.9 5.6 18.3 0.1 2.7 3.2 13.9 0.1 48.2

Tomcat 21.7 7.4 5.4 4.2 1.9 4.0 5.3 1.0 49.1

Subtotal 13.0 11.6 4.8 3.9 2.3 8.3 6.0 0.4 49.7

Client Ant 12.9 4.9 34.1 8.2 3.6 5.5 4.1 0.0 26.6

Fop 19.8 6.6 2.0 2.0 1.5 4.3 5.2 0.1 58.6

JMeter 13.8 7.7 0.5 11.7 3.1 1.5 4.6 0.0 57.1

Maven 14.3 5.8 1.6 0.4 1.6 2.8 3.7 0.1 69.6

Rat 11.1 22.2 0.0 0.0 0.0 0.0 0.0 0.0 66.7

Subtotal 15.5 6.1 4.0 1.9 1.8 3.3 4.1 0.2 63.2

SC ActiveMQ 14.4 4.3 1.1 2.0 0.7 1.9 0.8 0.0 74.6

Empire-db 8.0 7.3 0.0 0.0 0.7 2.7 3.3 0.0 78.0

Karaf 8.4 6.1 1.3 2.0 0.2 1.2 1.7 0.0 79.0

Log4j 4.9 3.2 3.6 1.9 0.9 2.7 5.1 0.2 77.6

Lucene 7.8 9.4 6.3 2.5 2.1 5.5 4.4 1.5 60.4

Mahout 8.1 1.6 0.5 0.0 0.2 1.7 4.4 0.1 83.4

Mina 26.1 6.1 0.7 0.3 1.3 2.5 0.7 0.2 62.3

Pig 15.4 11.1 4.7 1.7 0.0 0.4 7.3 0.0 59.4

Pivot 4.8 0.0 3.2 0.0 3.2 9.5 4.8 0.0 74.6

Struts 33.0 3.9 4.5 0.3 0.3 2.2 2.5 0.5 52.7

Zookeeper 18.7 6.8 1.2 4.4 0.5 6.8 4.9 1.0 55.8

Subtotal 11.9 5.2 2.6 1.6 0.9 2.8 3.1 0.4 71.5

Total 13.0 8.7 3.9 2.8 1.7 5.7 4.8 0.3 59.0

When we examine the different scenarios of the consistent updates, changes to the con-
dition expressions are the most frequent scenarios across all three categories. This finding
is similar to the original study. However, the portion of this scenario is much lower in our
study (13 % vs. 57 %).

Compared to the original study, the amount of after-thought updates is much higher in our
study (59 % vs. 33 %). Through manual sampling of a few after-thought updates, we find
that many after-thoughts are related to the changes in logging style. For example, the Karaf
project contains a very high portion (79 %) of after-thought updates. The static texts are
updated in many updates to the log printing code for logging style changes. For example, the
log printing code “LOGGER.warn(“Could not resolve targets.”);” from revision 1171011 of
ObrBundleEventHandler.java, is changed to “LOGGER.warn(“CELLAR OBR: could not
resolve targets”);” in the next revision. In this same revision, “CELLAR OBR” is added as
a prefix in four other updates to the log printing code. These changes are made to reflect the
addition of the “CELLAR ORB” component.
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We further group the data from each project into their corresponding categories. For
server-side projects, the frequency of consistent updates is higher than for the other two
categories. This result suggests that developers of server-side projects tend to maintain
log printing code more carefully, as log messages play an important role in monitoring
and debugging server-side systems. For SC-based projects, the frequency of after-thought
updates is the highest (71 %).

We will further investigate the characteristics of after-thought updates in the next section.

8.3 Summary

NF5: We have identified more scenarios of consistent updates (8 vs. 3 scenarios) in our
study compared to the original study. However, the percentage of consistent updates of
the log printing code is much smaller (50 % vs. 67 %). The percentage of consistent
updates is even smaller in client-side (38 %) and SC-based (29 %) projects. Similar to
the original study, CON is the most frequent consistent update scenario across all three
categories of projects.
Implications: As there are more programming constructs (e.g., exception and class
attributes) in Java, there are more scenarios related to consistent updates in our study.
More consistent update scenarios bring additional challenges for Java developers to
maintain the logging code. This highlights the need for additional research and tools for
recommending changes in the logging code during each code commit.

9 (RQ5:) What are the Characteristics of After-Thought Updates on Log
Printing Code?

Any log printing code updates that do not belong to consistent updates are after-thought
updates. For after-thought updates, there are four scenarios depending on the updated com-
ponents in the log printing code: verbosity level updates, static text updates, dynamic content
updates and logging method invocation updates. In this section, we first conduct a high level
quantitative study on the scenarios of after-thought updates. Then we perform an in-depth
study on the context and rationale for each scenario.

9.1 High Level Data Analysis

Wewrite a small program that automatically compares the differences between two adjacent
revisions of the log printing code. For each snippet of the after-thought updates, this pro-
gram outputs whether there are verbosity level updates, static texts updates, dynamic content
updates or logging method invocation updates. Within the dynamic contents updates, we
further separate them into whether the differences are changes in variables or changes in
string invocation methods.

Table 10 shows the frequency of each scenario of the after-thought updates. The total
percentage from each scenarios may exceed 100 %, as a snippet of log printing code may be
updated in multiple components (e.g., in both the logging method invocations and the static
text). Similar to the original study, we find that the most frequent after-thought scenario for
server-side projects is static text changes (53 % vs. 44 %). The dynamic content updates
come next with 46 %. In addition, we also study the portion of updates to the invocation of
the logging method (e.g., changing from “System.out.println” to “LOG.ERROR”). This is a
new scenario introduced in our study. This scenario only accounts for 14.4 %, which is the
lowest in all three categories.
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Table 10 Scenarios of after-thought updates

Category Project Total Verbosity Dynamic Static Logging method

level contents texts invocation

Server Hadoop 4,821 1,076 (22.3 %) 2,259 (46.9 %) 2,587 (53.7 %) 705 (14.6 %)

HBase 2,176 312 (14.3 %) 1,155 (53.1 %) 1,391 (63.9 %) 99 (4.5 %)

Hive 436 178 (40.8 %) 147 (33.7 %) 186 (42.7 %) 42 (9.6 %)

Openmeetings 423 160 (37.8 %) 125 (29.6 %) 179 (42.3 %) 99 (23.4 %)

Tomcat 1,056 276 (26.1 %) 423 (40.1 %) 390 (36.9 %) 334 (31.6 %)

Subtotal 8,912 2,002 (22.5 %) 4,109 (46.1 %) 4,733 (53.1 %) 1,279 (14.4 %)

Client Ant 97 33 (34.0 %) 22 (22.7 %) 14 (14.4 %) 54 (55.7 %)

Fop 725 148 (16.1 %) 138 (15.0 %) 179 (19.5 %) 452 (39.3 %)

JMeter 112 26 (23.2 %) 36 (32.1 %) 58 (51.8 %) 10 (8.9 %)

Maven 2,203 535 (24.3 %) 444 (20.2 %) 888 (40.3 %) 892 (40.5 %)

Rat 6 2 (33.3 %) 0 (0.0 %) 2 (33.3 %) 2 (33.3 %)

Subtotal 3,335 742 (22.2 %) 642 (19.3 %) 1,141 (34.2 %) 1,410 (42.3 %)

SC ActiveMQ 2,053 423 (20.6 %) 408 (19.9 %) 437 (21.3 %) 1,433 (69.8 %)

Empiredb 117 40 (34.2 %) 69 (59.0 %) 43 (36.8 %) 22 (18.8 %)

Karaf 1,118 243 (21.7 %) 132 (11.8 %) 729 (65.2 %) 236 (21.1 %)

Log4j 1,213 99 (8.2 %) 237 (19.5 %) 300 (24.7 %) 892 (73.5 %)

Lucene 1,300 357 (27.5 %) 599 (46.1 %) 791 (60.8 %) 317 (24.4 %)

Mahout 1,459 146 (10.0 %) 183 (12.5 %) 373 (25.6 %) 1,049 (71.9 %)

Mina 380 77 (20.3 %) 89 (23.4 %) 107 (28.2 %) 196 (51.6 %)

Pig 139 28 (20.1 %) 24 (17.3 %) 51 (36.7 %) 46 (33.1 %)

Pivot 47 23 (48.9 %) 24 (51.1 %) 19 (40.4 %) 24 (51.1 %)

Struts 337 39 (11.6 %) 91 (27.0 %) 141 (41.8 %) 166 (49.3 %)

Zookeeper 230 70 (30.4 %) 106 (46.1 %) 146 (63.5 %) 10 (4.3 %)

Subtotal 8,393 1,545 (18.4 %) 1,962 (23.4 %) 3,137 (37.4 %) 4,391 (52.3 %)

Total 20,640 4,289 (20.8 %) 6,713 (32.5 %) 9,011 (43.7 %) 7,080 (34.3 %)

The results for client-side projects and SC-based projects have a similar trend. But they
are quite different from server-side projects. Logging method invocation updates are the
most frequent scenario (42 % and 52 %). We manually sampled a few such updates and
checked their commit logs. They are all due to switching from ad-hoc logging to the use
of general-purpose logging libraries. For example, there are 95 logging method invocation
updates in revision 397249 from ActiveMQ. As indicated in the commit log, the purpose
was to transform “a bunch of System.out.println() to log.info()”. The static text updates are
the second most frequent scenario (34 % and 37 %). Dynamic content updates come in third
and the verbosity level updates are last.

9.2 Verbosity Level Updates

Similar to the original study, we separate the verbosity level updates into two types: (1)
error-level updates refer to log updates in which the verbosity levels are updated to/from
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Table 11 Scenarios related to verbosity-level updates

Category Project Total Non-default From/to default Error

Server Hadoop 1,076 147 (13.7 %) 717 (66.6 %) 212 (19.7 %)

HBase 312 50 (16.0 %) 193 (61.9 %) 69 (22.1 %)

Hive 178 9 (5.1 %) 134 (75.3 %) 35 (19.7 %)

Openmeetings 160 54 (33.8 %) 12 (7.5 %) 94 (58.8 %)

Tomcat 276 35 (12.7 %) 179 (64.9 %) 62 (22.5 %)

Subtotal 2,002 295 (14.7 %) 1,235 (61.7 %) 472 (23.6 %)

Client Ant 33 1 (3.0 %) 28 (84.8 %) 4 (12.1 %)

Fop 148 38 (25.7 %) 78 (52.7 %) 32 (21.6 %)

JMeter 26 2 (7.7 %) 8 (30.8 %) 16 (61.5 %)

Maven 535 69 (12.9 %) 375 (70.1 %) 91 (17.0 %)

Rat 0 0 0 0

Subtotal 742 110 (14.8 %) 489 (65.9 %) 143 (19.3 %)

SC ActiveMQ 423 67 (15.8 %) 312 (73.8 %) 44 (10.4 %)

Empire-db 40 1 (2.5 %) 10 (25.0 %) 29 (72.5 %)

Karaf 243 129 (53.1 %) 83 (34.2 %) 31 (12.8 %)

Log4j 99 23 (23.2 %) 37 (37.4 %) 39 (39.4 %)

Lucene 357 13 (3.6 %) 300 (84.0 %) 44 (12.3 %)

Mahout 146 5 (3.4 %) 140 (95.9 %) 1 (0.7 %)

Mina 77 3 (3.9 %) 65 (84.4 %) 9 (11.7 %)

Pig 28 4 (14.3 %) 22 (78.6 %) 2 (7.1 %)

Pivot 23 0 (0.0 %) 23 (100.0 %) 0 (0.0 %)

Struts 39 10 (25.6 %) 16 (41.0 %) 13 (33.3 %)

Zookeeper 70 9 (12.9 %) 29 (41.4 %) 32 (45.7 %)

Subtotal 1,545 264 (17.1 %) 1,037 (67.1 %) 244 (15.8 %)

Total 4,289 669 (15.6 %) 2,761 (64.4 %) 859 (20.0 %)

error levels (a.k.a., ERROR and FATAL); and (2) non-error level updates, refer to log
updates in which the verbosity levels of neither the previous nor the current revision are
error levels (e.g., DEBUG to INFO). In non-error level updates, for each project we first
manually identify the default logging level, which is set in the configuration file of a project.
Then we further break non-error level updates into two categories depending on whether
they involve the default verbosity level or not.

The results are shown in Table 11. The majority (76 %) of the verbosity level updates for
server-side projects are non-error event updates. Our finding is the opposite of the original
study, which reported that only 28 % of verbosity level updates are non-error level updates.

In our results, all three categories have the similar trend. Verbosity level updates contain-
ing the default level is the most frequent one (around 65 %). In the original study, developers
updating logging levels among non-default levels accounts for 57 % of the verbosity level
changes. These changes are called as logging trade-offs, as the authors of the original study
suspect the cause is no clear boundary among multiple verbose levels, taking use, benefit,
and cost into consideration. In our study, this number drops to only 15 % in general and there
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are no much differences among the three categories. This finding probably implies that in
the Java projects, the logging levels, which often come from common logging libraries like
log4j, are better defined compared to the C/C++ projects.

9.2.1 Summary

NF7: Contrary to the original study, the majority (80 %) of the verbosity level
modifications are between non-error levels.
NF8: Contrary to the original study, the majority (65 %) of the non-error verbosity level
updates involve the default level.
Implications: Contrary to the original study, we find that verbosity levels of Java projects
in the ASF are less frequently updated among non-default levels. Further qualitative
studies (e.g., developer surveys) are required to understand the rationales behind such
differences.

9.3 Dynamic Content Updates

Based on our definition, there are two kinds of dynamic contents in log printing code: vari-
ables (Var) and string invocation methods (SIM). Each change can be classified into three
types: added, updated or deleted. The details of the variable updates and string invocation
method updates are shown in Table 12.

In our study, the percentage of added dynamic contents, updated dynamic contents, and
deleted dynamic contents are similar among all three categories. Nearly half (42 %) of the
updates are added dynamic content updates, followed by deleted dynamic content updates
(33 %) and updated dynamic content updates (23 %).

Similar to the original study, added variables are the most common changes in vari-
able updates. Since we have introduced a new category (SIM), the added variable updates
account for 30 % in server-side projects, which is much less than that in the original study
(62 %). The percentage of added variable updates in client-side projects is 24 and 33 % in
SC-based projects.

Among string invocation method updates, deleted SIM updates are the most common
(20 %). The added and updated SIM update account for 14 and 10 % of all dynamic updates,
respectively. For server-side and client-side projects, deleted SIM updates are the most com-
mon scenario. In SC based projects, the added SIM update is the most common scenario. In
addition, among all three categories, the updated SIM update is the least common scenario.

9.3.1 Summary

NF9: Similar to the original study, adding variables into the log printing code is the most
common after-thought change related to variables. Different from the original study, SIM
is a new type of dynamic content update identified in our study. The majority of the
changes to the SIMs (20 %) are deleted SIMs.
Implications: Among all the after-thought updates, there are much more dynamic con-
tent updates compared to the original study. This is due to the addition of SIMs for
Java-based projects. Research on log enhancement should not only focus on suggesting
which variables to log (e.g., Yuan et al. 2011; Zhu et al. 2015) but also on suggesting
updates to the string invocation methods.
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9.4 Static-Text Updates

44 % of the after-thought updates change the static text. Similar to the original study, we
manually sample some static text changes to understand the their rationales.

In the original study, the authors manually sampled 200 static text changes. In this paper,
we used the stratified sampling technique (Han 2005) to ensure representative samples are
selected and studied from each project. Overall, a total of 372 static text modifications
are selected from the 21 projects. This corresponds to a confidence level of 95 % with a
confidence interval of ± 5 %. The portion of the sampled static text updates from each
project is equal to the relative weight of the total number of static text updates for that
project. For example, there are 437 static text updates of ActiveMQ out of a total of 9,011
updates from all the projects. Hence, 18 updates from ActiveMQ updates are picked. As a
result, six scenarios are identified in our study. Below, we explain each of these scenarios
using real world examples.

Table 12 Dynamic content updates

CategoryProject Added dynamic contents Updated dynamic contents Deleted dynamic contents

Var SIM Var SIM Var SIM

Server Hadoop 745 (33.0 %) 256 (11.3 %)244 (10.8 %)280 (12.4 %) 235 (10.4 %)499 (22.1 %)

HBase 269 (23.3 %) 178 (15.4 %)148 (12.8 %)145 (12.6 %) 149 (12.9 %)266 (23.0 %)

Hive 68 (46.3 %) 15 (10.2 %) 2 (1.4 % ) 18 (12.2 %) 13 (8.8 % ) 31 (21.1 %)

Openmeetings36 (28.8 %) 17 (13.6 %) 19 (15.2 %) 16 (12.8 %) 11 (8.8 % ) 26 (20.8 %)

Tomcat 126 (29.8 %) 65 (15.4 %) 43 (10.2 %) 45 (10.6 %) 48 (11.3 %) 96 (22.7 %)

Subtotal 1,244 (30.3 %)531 (12.9 %)456 (11.1 %)504 (12.3 %) 456 (11.1 %)918 (22.3 %)

Client Ant 2 (9.1 % ) 2 (9.1 % ) 4 (18.2 %) 2 (9.1 % ) 4 (18.2 %) 8 (36.4 %)

Fop 49 (35.5 %) 14 (10.1 %) 24 (17.4 %) 8 (5.8 % ) 16 (11.6 %) 27 (19.6 %)

JMeter 6 (10.0 %) 14 (23.3 %) 2 (3.3 % ) 8 (13.3 %) 3 (5.0 % ) 27 (45.0 %)

Maven 97 (21.8 %) 82 (18.5 %) 28 (6.3 % ) 76 (17.1 %) 56 (12.6 %) 105 (23.6 %)

Rat 2 (100.0 %) 0 (0.0 % ) 0 (0.0 % ) 0 (0.0 % ) 0 (0.0 % ) 0 (0.0 % )

Subtotal 156 (24.3 %) 118 (18.4 %)58 (9.0 % ) 91 (14.2 %) 79 (12.3 %) 140 (21.8 %)

SC ActiveMQ 107 (26.2 %) 120 (29.4 %)19 (4.7 % ) 27 (6.6 % ) 88 (21.6 %) 47 (11.5 %)

Empiredb 31 (44.9 %) 5 (7.2 % ) 1 (1.4 % ) 1 (1.4 % ) 2 (2.9 % ) 29 (42.0 %)

Karaf 70 (53.0 %) 24 (18.2 %) 7 (5.3 % ) 5 (3.8 % ) 9 (6.8 % ) 17 (12.9 %)

Log4j 80 (33.8 %) 24 (10.1 %) 41 (17.3 %) 11 (4.6 % ) 28 (11.8 %) 53 (22.4 %)

Lucene 276 (46.1 %) 89 (14.9 %) 50 (8.3 % ) 28 (4.7 % ) 77 (12.9 %) 79 (13.2 %)

Mahout 25 (13.7 %) 3 (1.6 % ) 74 (40.4 %) 12 (6.6 % ) 49 (26.8 %) 20 (10.9 %)

Mina 9 (10.1 %) 19 (21.3 %) 4 (4.5 % ) 12 (13.5 %) 23 (25.8 %) 22 (24.7 %)

Pig 6 (25.0 %) 4 (16.7 %) 8 (33.3 %) 1 (4.2 % ) 0 (0.0 % ) 5 (20.8 %)

Pivot 4 (16.7 %) 5 (20.8 %) 8 (33.3 %) 0 (0.0 % ) 5 (20.8 %) 2 (8.3 % )

Struts 22 (24.2 %) 16 (17.6 %) 12 (13.2 %) 2 (2.2 % ) 26 (28.6 %) 13 (14.3 %)

Zookeeper 36 (34.0 %) 11 (10.4 %) 16 (15.1 %) 15 (14.2 %) 13 (12.3 %) 15 (14.2 %)

Subtotal 666 (33.9 %) 320 (16.3 %)240 (12.2 %)114 (5.8 % ) 320 (16.3 %)302 (15.4 %)

Total 2,066 (30.8 %)969 (14.4 %)754 (11.2 %)709 (10.6 %) 855 (12.7 %)1,360 (20.3 %)
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Scenario Examples

1.Adding the 
textual 

description of  
the dynamic 

contents

ActiveMQSession.java from ActiveMQ

2.Deleting 
redundant 

information

DistributedFileSystem.java from Hadoop

3.Updating 
dynamic 
contents

ResourceLocalizationService.java from Hadoop

4.Spell/grammar 
changes

HiveSchemaTool.java from Hive

5.Fixing 
misleading 
information

CellarSampleDosgiGreeterTest.java from Karaf

6.Format & 
style changes

DataLoader.java from Mahout

7.Others

StreamJob.java from Hadoop

LOG.debug(getSessionId() + " Transaction Rollback");

LOG.debug(getSessionId() + " Transaction Rollback, txid:" + 
transactionContext.getTransactionId());

Revision: 
1071259

Revision: 
1143930

LOG.info("Found checksum error in data stream at block=" + dataBlock + " on datanode=" + 
dataNode[0]);

LOG.info("Found checksum error in data stream at " + dataBlock + " on datanode=" + 
dataNode[0]);

Revision: 
1390763

Revision: 
1407217

Revision: 
1087462

LOG.info("Localizer started at " + locAddr);

LOG.info("Localizer started on port " + server.getPort());Revision: 
1097727

Revision: 
1529476

System.out.println("schemaTool completeted");

Revision: 
1579268

System.out.println("schemaTool completed");

Revision: 
1239707

System.err.println(("Child1:" + node1));

System.err.println(("Node1:" + node1));
Revision: 
1339222

log.error(id + ": " + string);

log.error("{}: {}", id, string);

Revision: 
891983

Revision: 
901839

Revision: 
681912

Revision: 
696551

System.out.println("  -jobconf dfs.data.dir=/tmp/dfs");

System.out.println("  -D stream.tmpdir=/tmp/streaming");

Fig. 11 Examples of static text changes

1. Adding textual descriptions of the dynamic contents: When dynamic contents are
added in the logging line, the static texts are also updated to include the textual descrip-
tion of the newly added dynamic contents. The first scenario in Fig. 11 shows an
example: a string invocation method called “transactionContext.getTransactionId()”
is added in the dynamic contents, since developers need to record more runtime
information.

2. Deleting redundant information refers to the removal of static text due to redundant
information. The second scenario in Fig. 11 shows an example: the text “block=” is
deleted, since “at” and “block=” mean the same thing.

3. Updating dynamic contents refers to the changing of dynamic content like variables,
string invocation methods, etc. The third scenario in Fig. 11 shows an example: the
variable “locAddr” is replaced with string invocation method “server.getPort()” and the
static text is updated to reflect this change.
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18%

3%

12%

30%

8%

24%

5%

Adding textual descriptions for
dynamic contents

Updating dynamic contents

Deleting redundant information

Fixing misleading information

Spell/grammar

Formats & style change

Others

Fig. 12 Breakdown of different types of static content changes

4. Fixing spelling/grammar issues refers to the change in the static texts to fix the spelling
or grammar mistakes. The fourth scenario in Fig. 11 shows an example: the word
“completed” is misspelled and so it is corrected in the revision.

5. Fixing misleading information refers to the change in the static texts due to clarifi-
cations of this piece of log printing code. This scenario is a combination of the two
scenarios (clarification and fixing inconsistency) proposed in the original study, as we
feel both of them are related to fixing misleading information. The fifth scenario in
Fig. 11 shows an example: the developer thinks that “Node” instead of “Child” better
explains the meaning of the printed variable.

6. Formatting & style changes refer to changes to the static texts due to formatting changes
(e.g., indentation). The sixth scenario in Fig. 11 shows an example: the code changes
from string concatenation to the use of a format string output while the content stays
the same.

7. Others Any other static text updates that do not belong to the above scenarios are
labeled as others. One example shown in the last row Fig. 11 is for updating command
line options.

Figure 12 shows the breakdown of different types of static text changes: the most frequent
scenario is fixing misleading information (30 %), followed by formatting & style changes
(24 %) and adding the textual description of the dynamic contents (18 %).

9.4.1 Summary

F10: Similar to the original study, fixing misleading changes account for nearly one third
of the static text updates. There is also a significant portion of textual changes due to the
formatting & style changes and adding the textual description of the dynamic contents.
Implications: The static contents of log printing code is actively maintained to properly
enhance the execution contexts. Misleading or outdated static contents of log printing
code confuse developers and cause bugs. Currently, developers tend to manually update
these contents to ensure log messages properly reflect the execution contexts. Addi-
tional research is needed to leverage techniques from natural language processing and
information retrieval to detect such inconsistencies automatically.
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Table 13 Empirical studies on logs

Previous work (Fu et al. 2014; Zhu et al. 2015) (Yuan et al. 2012) (Shang et al. 2015)

Main focus Categorizing logging code Characterizing logging Studying the relation between

snippets practices logging and post-release bugs

Predicting the location of Predicting inconsistent Proposing code metrics related

logging verbosity levels to logging

Projects Industry and GitHub Open-source projects Open-source projects in

projects in C# in C/C++ Java

Studied log No Yes Yes

modifications

10 Related Work

In this section, we discuss two areas of related works on software logging: research done on
the logging code and research done on log messages.

10.1 Logging Code

We define several criteria (Table 13) to summarize the differences among previous empirical
studies on logs.

– Main focus presents the main objectives for each work;
– Projects show the programming languages of the subject projects in each work; and
– Studied log modifications indicates whether the work studied modifications on

logs.

The work done by Yuan et al. (2012) is the first empirical study on characterizing
the logging practices. The authors studied four different open-source applications written
in C/C++. Fu et al. studied the location of software logging (Fu et al. 2014; Zhu et al.
2015) by systematically analyzing the source code of two large industrial systems from
Microsoft and two open source projects from GitHub. All these projects are written in C#.
Shang et al. (2015) found that log related metrics (e.g., log density) were strong predictors
of post release defects. Ding et al. (2015) tried to estimate the performance overhead of
logging.

Two works have proposed techniques to assist developers in adding additional logging
code to better debug or monitor the runtime behavior of the systems. Yuan et al. (2011) use
program analysis techniques to automatically instrument the application to diagnose fail-
ures. Zhu et al. (2015) use machine leaning techniques to derive common logging patterns
from the existing code snippets and provide logging suggestions to developers in similar
scenarios.

Most of the studies (Fu et al. 2014; Yuan et al. 2012, 2011; Zhu et al. 2015) are done in
C/C++/C# projects except the work of Shang et al. (2015). Our paper is a replication study
of Yuan et al. (2012). The goal of our study is to check whether their empirical findings can
be generalizable to software projects written in Java.
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10.2 Log Messages

Log messages are the messages generated by the log printing code at runtime. Log messages
have been used and studied extensively to diagnose field failures (Oliner et al. 2012; Yuan
et al. 2010), to understand the runtime behavior of a system (Beschastnikh et al. 2014;
Beschastnikh et al. 2011), to detect abnormal runtime behavior for big data applications
(Shang et al. 2013; Xu et al. 2009), to analyze the results of a load test (Jiang et al. 2008;
2009) and to customize and validate operational profiles (Hassan et al. 2008; Syer et al.
2014). Shang et al. (2014) performed an empirical study on the evolution of log messages
and found that log messages change frequently over time. There are also many open source
and commercial tools available for gathering and analyzing log messages (e.g., logstash -
open source log management (2015), Nagios Log Server - Monitor and Manage Your Log
Data (2015), and Splunk (2015)).

11 Threats to Validity

In this section, we will discuss the threats to validity related to this study.

11.1 External Validity

11.1.1 Subject Systems

The goal of this paper is to validate whether the findings in the original study can be
applicable to other projects or projects written in Java. In this study, we have studied 21
different Java-based projects, which are selected based on different perspectives (e.g. cate-
gories, sizes, development history and application domains). Based on our study, we have
found that many of our results do not match with some of the findings in the original study,
which was done on four C/C++ server-based projects. In addition, the logging practices in
server-side projects are also quite different than those in client-side and SC-based projects.
However, our results may not be generalizable to all the Java-based projects since we only
studied projects from Apache Software Foundation. Additional empirical studies on the
logging practices are needed for other Java-based projects (e.g., Eclipse and its ecosystem,
Android related systems, etc.) or projects written in other programming languages (e.g.,
.NET or Python).

11.1.2 Sampling Bias

Some of the findings from the original study are based on random sampling. However, the
sizes of the studied samples were not justified. In this paper, we have addressed this issue
in several aspects.

– Analyzing all instances in a dataset: in the case of RQ2 (bug resolution time with
and without log messages), we have studied all the bug reports instead of the selected
samples.

– Data-aware sampling: Whenever we are doing random sampling, we have always
ensured that the results fall under the confidence level of 95 % with a confidence inter-
val of ± 5 %. For sampling across multiple projects (e.g., RQ5), we have used stratified
sampling, so that a representative number of subjects is studied from each projects.
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11.2 Internal Validity

In our study, we have found that bug reports containing log messages often take a shorter
time to be resolved than bug reports without log messages for Java-based projects. Since
there are many additional factors (e.g., the severity, the quality of bug descriptions and
the types of bugs), which are not assessed in this study, we cannot extend the correlation
between log messages and long bug resolution time to causation.

11.3 Construct Validity

In this study, we have used J-REX and CD to extract the code revision history. Both tools
are very robust and have been used in quite a few other studies (e.g., Gall et al. 2009;
Ghezzi and Gall 2013; Shang et al. 2014, 2015). For most of our developed programs (e.g.,
for bug categorization or for categorizing consistent updates of log printing code), we have
performed thorough testing to ensure our results are correct.

12 Conclusion

Log messages have been used widely for developers, testers and system administers to
understand, debug and monitor the behavior of systems at runtime. Yuan et al. reported
a series findings regarding the logging practices based on their empirical study of four
server-side C/C++ projects. In this paper, we have performed a large-scale replication study
to check whether their findings can be applicable to 21 Java project in Apache Software
Foundation. In addition to server-side projects, the other projects are client-side projects or
support-component-based projects. Similar to the original study, we have found that logging
is pervasive in most of the software projects and the logging code is actively maintained.
Different from the original study, the median BRT of bug reports containing log messages
is longer than bug reports without log messages. In addition, there are more scenarios of
consistent updates to log printing code while the portion of after-thought updates is much
bigger. Our study shows that certain aspects of the logging practices in Java-based sys-
tems are different from C/C++ based systems. Further research study is needed to study the
rationales for these differences.
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