
Empir Software Eng (2016) 21:2413–2455
DOI 10.1007/s10664-015-9412-6

An automated software reliability prediction system
for safety critical software

Xiang Li1 · Chetan Mutha2 · Carol S. Smidts3

Published online: 23 November 2015
© Springer Science+Business Media New York 2015

Abstract Software reliability is one of the most important software quality indicators. It
is concerned with the probability that the software can execute without any unintended
behavior in a given environment. In previous research we developed the Reliability Predic-
tion System (RePS) methodology to predict the reliability of safety critical software such
as those used in the nuclear industry. A RePS methodology relates the software engineer-
ing measures to software reliability using various models, and it was found that RePS’s
using Extended Finite State Machine (EFSM) models and fault data collected through var-
ious software engineering measures possess the most satisfying prediction capability. In
this research the EFSM-based RePS methodology is improved and implemented into a tool
called Automated Reliability Prediction System (ARPS). The features of the ARPS tool are
introduced with a simple case study. An experiment using human subjects was also con-
ducted to evaluate the usability of the tool, and the results demonstrate that the ARPS tool
can indeed help the analyst apply the EFSM-based RePS methodology with less number of
errors and lower error criticality.

Communicated by: Nachiappan Nagappan

� Xiang Li
li.984@buckeyemail.osu.edu

Chetan Mutha
mutha.4@osu.edu

Carol S. Smidts
Smidts.1@osu.edu

1 Nuclear Engineering Program at The Ohio State University, Columbus, OH, USA

2 Oblon, McClelland, Maier & Neustadt, LLP, Washingston D.C Metro Area, USA

3 Department of Mechanical and Aerospace Engineering at The Ohio State University, Columbus,
OH, USA

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10664-015-9412-6-x&domain=pdf
mailto:li.984@buckeyemail.osu.edu
mailto:mutha.4@osu.edu
mailto:Smidts.1@osu.edu


2414 Empir Software Eng (2016) 21:2413–2455

Keywords Software reliability · Reliability modeling · Experimental validation ·
Operational profile · Finite state machine

1 Introduction

Software reliability is defined as “the ability of a system or component to perform its
required functions under stated conditions for a specified period of time (IEEE 1990)”. It
is one of the most important indicators of software quality (ISO/IEC 2001). Much research
has been dedicated to the evaluation of software reliability. This includes the various soft-
ware reliability growth models (SRGM) (Musa J 1975; Huang C 2005; Huang C et al.
2007), the fault-seeding models (Mills H 1972; Walia and Carver 2008) and models relat-
ing software engineering measu res to reliability (Li and Smidts 2003; Pham 2007; Smidts
et al. 2015; Huang and Liu 2013, 2015). In previous research we investigated the relation-
ship between software engineering measures and software reliability (Smidts and Li 2004;
Smidts et al. 2010; Li et al. 2013). The Reliability Prediction System (RePS) (Smidts and Li
2004; Smidts et al. 2010) methodology was developed which pairs software measures with
associated models. Among the RePS’s that have been investigated, it is found that the ones
possess the highest predictive power should: 1) rely on software measures that can deter-
mine software defects (or software faults, used interchangeably in this paper) throughout
the entire lifecycle of software development and 2) be paired with structural models of the
software of interest. The advantage of structural models is that they allow the study of fault
propagation, which is essential for correctly predicting software reliability. Eventually the
Extended Finite State Machine (EFSM) model (Wang and Liu 1993) was selected among
the possible structural models because the RePS based on EFSM was particularly promis-
ing. However, it was also found that the construction of the EFSMmodel is time-consuming
and error-prone. Training and automation are two means to reduce the error rate, and this
research focuses on the latter one.

The ARPS tool functions as follows: first it allows the user to load the original version of
the software documentation (Software Requirement Specifications, SRS; Software Design
Documents, SDD; and source code). These documents are called “original” because they
contain uncovered defects that will be fixed in the next version of the software under study.
Second the analyst uses the features provided by the tool to construct the EFSM model,
which models the logic of the software. The resulting EFSM model is called the original
EFSM model that contains the same uncovered defects from the SRS/SDD/code. After that,
the analyst enters the defect information and the tool will automatically map the defects
onto the original EFSM model, from which the modified EFSM model is generated. Even-
tually the analyst needs to enter information related to the Operational Profile (OP) (Chen
et al. 2006) of the software and the tool will calculate the software reliability using the
Execution, Infection and Propagation analysis derived from the PIE theory (Li et al. 2013;
Voas 1992). Our model of the software is hierarchical: the SRS level is considered to be
the top layer of this hierarchy; the SDD level is the middle layer and the code is the bot-
tom layer. This is because functions and requirements that are initially defined in the SRS
are usually elaborated in the SDD, and are eventually implemented at the code level. Simi-
larly, the hierarchical model follows the same pattern. The lower the layer, the more details
it contains.



Empir Software Eng (2016) 21:2413–2455 2415

A question that needs to be answered is whether the ARPS tool helps reduce the number
of errors committed as well as low down the criticality of the errors. Thus an experiment to
evaluate the usability of the ARPS tool was conducted. The experiment used undergraduate
engineering students as research subjects. They were trained with our EFSM-based RePS
methodology and the ARPS tool and their performance was evaluated at the end of the
experiment. Their performance was analyzed using statistical approaches and our findings
show that the ARPS tool indeed helps the subjects reduce both the number of errors and the
error criticality.

Note that although the ARPS tool was originally inspired from safety critical software in
the nuclear industry, its usage is not limited to safety critical systems. The major assump-
tions of our methodology, as discussed in Section 6.1, are that the number of defects should
be small and that they should be distributed sparsely. Therefore, software systems that fol-
low these assumptions can be analyzed using the ARPS tool. These systems include other
critical systems such as ultra-high reliability and ultra-high availability systems.

2 Related Work

The main features of the ARPS tool are to model the software logic and evaluate software
reliability. Thus this section on related work will review software reliability modeling tech-
niques. Lyu M (1996); Smidts C, Li B et al. (2002); Pandey A and Goyal N (2013) provide
a summary on software reliability models. In Smidts C, Li B et al. (2002), all models are
roughly categorized based on 1) the phases of the software development life-cycle, 2) the
information involved in the modeling, and 3) if the model requires the specific software
structure or not. Typical modeling techniques for each categorization criterion are reviewed
below.

Prediction models can be categorized into early-prediction and late-prediction models.
Cheung L, Roshandel R et al (2008) describes an early prediction research study where a
software component reliability prediction framework is developed by investigating archi-
tectural models. The work tries to address the problem of uncertainties associated with
components under development, which is a major issue for existing architectural level reli-
ability prediction approaches. Software reliability growth models (SRGM) (Musa J 1975;
Huang C 2005; Huang C et al. 2007) fall into the late-prediction models’ category. This is
because these models are applicable to the software testing phases, where software faults are
identified and removed dynamically. If it is assumed that the rate of introducing new faults
during testing is lower than that of fault removal, software reliability increases as the test-
ing progresses. In our case, because the EFSM-based RePS methodology uses SRS, SDD
and code information, it does not really fall into early or late categories. In other words,
if the EFSM-based RePS methodology only uses SRS or SDD information to predict soft-
ware reliability, it is early-prediction; if it uses the code information (which involves testing
information), it is a late-prediction approach. Gaffney G and Pietrolewiez J (1990) also dis-
cuss a phase-based model to predict software reliability. In their method the fault statistics
obtained during the review of SRS, SDD and the coding phases are used, from which the
software reliability is evaluated.

Based on the information involved in modeling, the prediction models can be catego-
rized into failure-based models (e.g., the SRGMs introduced earlier), fault-based models



2416 Empir Software Eng (2016) 21:2413–2455

and development information-based models. One typical fault-based model is introduced
by Mills (1972), where capture-recapture models that originated in biology are adopted to
software engineering. In this study, an independent researcher seeds NS faults which are
designed to be representative of the indigenous faults into the software. Other researchers
review or test the modified software and should identify seeded and indigenous faults. From
the number of seeded and indigenous faults one can obtain an estimation of the number of
faults remaining in the software. In our case the EFSM-based RePS methodology makes
use of software fault information at the SRS, SDD and code level. However, our methodol-
ogy only uses the indigenous faults already identified and hence significantly differs from
the existing fault-based models. Bayesian Belief Networks (BBN) (Fenton and Neil 1999;
Langseth and Portinale 2007) can be used as development information-based models. BBNs
utilize a graphical network representation to illustrate the probability relationships among
uncertain events. BBNs are all directed acyclic graphs where nodes represent random vari-
ables and edges represent conditional dependencies. For example, software reliability is
represented as a random variable that connects to “number of latent faults” and “operational
usage” (Fenton and Neil 1999). The software reliability can hence be evaluated using this
relationship and the associated probability values.

Many prediction models can be categorized as black box models because they only rely
on the number of faults or failures without considering the implementation of the software.
On the other hand, some of the models require the software’s structural information, and
hence are categorized as architectural models. The early prediction research in (Cheung
et al. 2008) falls into this category. In Gokhale and Trivedi (2006), the SRS level func-
tional architecture is constructed and used as the system representation, from which the
software failure probability is evaluated from the failure probability of each element. In
our case the EFSM-based RePS methodology also requires the architectural information of
the software which is used to generate the EFSM system representation. In addition, the
defect information is mapped onto the EFSM model to illustrate the local effect of each
defect. Therefore, one can consider that the EFSM-based RePS methodology belongs to the
category of architectural models for software reliability modeling.

Tools have been developed to support software reliability prediction/assessment. For
instance, (Lyu and Nikora 1992; Ramani et al. 2000; Chen et al. 2006) discuss tools
implementing various SRGMs; Wang and Scannell (2005) discusses an architecture-
based modeling tool and its support to teaching; Boudali and Dugan (2006) introduces
a continuous-time BBN based framework. These tools are different from the ARPS tool
because ARPS is based on PIE-based reliability assessment (Li et al. 2013; Voas 1992),
which is not among the traditional software reliability modeling methodologies. In addition,
although ARPS utilizes some of the architecture information, it represents the architec-
ture using a hierarchical EFSM. These two characteristics differentiate ARPS from existing
software reliability tools.

The following sections of this paper are organized as follows: Section 3 introduces the
high level layout of the ARPS tool. Sections 4 to 9 elaborate the main features of the ARPS
tool. Section 10 discusses our experimental validation for assessing the usability of the tool.
The paper concludes in Section 11 and discusses future research.

3 Layout of the ARPS Tool

This section provides an overview of the ARPS tool. Detailed information can be found
from Sections 4 to 9. Figure 1 shows the overall layout of the ARPS tool. Because the



Empir Software Eng (2016) 21:2413–2455 2417

Load SRS 
Info

Generate 
Original 

HLEFSM

Mapping 
Defects to 
HLEFSM

Generate 
Modified 
HLEFSM

Load SDD
Info

Generate 
Original 
LLEFSM

Mapping 
Defects to 
LLEFSM

Reliability 
Assessment

Infection 
Analysis

Generate 
Modified 
LLEFSM

Fig. 1 Overall layout of the ARPS tool

implementation of the code level features has not yet been undertaken, only SRS and SDD
level features are provided. From Fig. 1 it can be seen that the SRS level and the SDD level
share some common characteristics. For a SRS level analysis, the process starts with loading
the software under study’s (SUS’s) documents (the original SRS which contains defects and
defect reports). The documents are used to guide the users to construct the original High
Level EFSM (HLEFSM, or SRS Level EFSM), which is the graphical representation of
the high level logic of the entire software. The documents include defect reports listing the
location, category and a detailed description of the defects. In this research a set of typical
defects were identified and templates to model the impact of these defects are defined (Li
et al. 2013). These templates are implemented in the ARPS tool so that once a defect is
pinpointed the corresponding template is applied automatically.

There are two branches coming out from “Mapping defects to HLEFSM” in Fig. 1. The
top branch goes to “Generate Modified HLEFSM”, where the original HLEFSM is modified
to visualize the defects. The bottom branch that goes to “Load SDD Info” is shown in a
dash line. This indicates the fact that the SDD information and the following analyses are
not always necessary. As long as the defect is “large” enough to be modeled precisely at
the SRS level, there is no need to further refine the model to the SDD level. However, from
later sections in this paper it will be seen that some of the defects such as “Function with
Incorrect Logic” cannot be appropriately modeled at the SRS level, and hence SDD level
information must be factored in the model. In this case, the SDD information characterizing
the defective state transition will be loaded into the ARPS tool. The user will then follow
a procedure similar to the SRS level analysis to generate the original Low Level EFSM
(LLEFSM, or SDD Level EFSM). This LLEFSM displays the local logic for the defective
state transition or predicate in the HLEFSM. The defect that originates from the SRS level
is decomposed into one or multiple SDD level defect(s). These SDD defects will be mapped
onto the original LLEFSM using the corresponding templates. Similar to mapping the SRS
defects, mapping the SDD defects leads to the modified LLEFSM, which illustrates the local
effect of the SDD defects. These defects are also used to calculate the failure probability
of this state transition (the box titled “Infection Analysis”), which will be fed back into the
reliability calculation at the SRS level.

Our methodology is hierarchical. There are currently two major levels: the SRS level
(i.e., high level) and the SDD level (i.e., low level). The SRS level is used to represent the
logic of the entire program. There are two levels within the SRS level: level 0 and level
1 (see Fig. 2). The SRS level 0 only contains the SRS level 0 function which is the SUS
itself; the SRS level 1 contains all the functions, variables and predicates that compose the
SRS level 0 function. They are hence called SRS level 1 functions, SRS level 1 variables
and SRS level 1 predicates, respectively. The SDD level is used to represent the specific



2418 Empir Software Eng (2016) 21:2413–2455

Program, SRS level 0

funm, SDD level 0

funm, SRS level 1 
(Defective)

funn,SRS 
level 1...

funi, SDD
level 1

funj,SDD level 1 
(Defective)...

Fig. 2 Hierarchical levels in our methodology

logic of certain SRS level 1 functions, if they are (1) defective and (2) the defect cannot be
precisely represented at the SRS level. Within the SDD level there are also two levels: level
0 and level 1. The SDD level 0 contains the SRS level 1 defective function that must be
modeled at the SDD level. This function is also called the SDD level 0 function. The SDD
level 1 contains the SDD functions, variables and predicates that constitute the SDD level
0 function. They are hence called SDD level 1 functions, SDD level 1 variables and SDD
level 1 predicates, respectively.

4 Collecting Information About the Software Requirement Specification
(SRS) and Constructing the Original HLEFSM

In this section the SRS level information collection and the HLEFSM construction are dis-
cussed. They correspond to the “Load SRS Info” and “Generate Original HLEFSM” blocks
in Fig. 1. In the EFSM-based RePS methodology the logic of the software at the SRS and
SDD level is visualized using the EFSM model. As is discussed in Li X, Li et al. (2013) and
Wang and Liu (1993), “an EFSM in this study is a septuple (�, �, S, T, P, IV, OP) which is
defined as follows:

• � is the set of input variables of the software. These variables cross the boundary of
the software application.

• � is the set of output variables of the software. These variables cross the boundary of
the software application.

• S is a finite, non-empty set of states. A state usually corresponds to the real-world
condition of the system.

• T is the set of transitions. An event causes a state change and this state change is
represented by a transition from one state to another.

• P is the set of predicates. The logical value of the predicates is attached to the related
transition.

• IV is the set of internal variables defined and used within the software application
boundary.

• OP is the set of probabilities of the variables that are used in the predicates. These
variables can be from �, � or IV.”



Empir Software Eng (2016) 21:2413–2455 2419

Software Requirement Specification for the Valve-Control System (VCS) 
1. Introduction 

… (Information ignored here)  

2. Overall Description  

The logic of the system is as follows: First the system is initialized based on temperature and 
pressure. If the temperature is greater than or equal to 45 ºC, valve V1 is opened, and then 
valve V2 is opened. Otherwise valve V3 is opened. At last post processing is conducted. 

... (Information ignored here)

3. Specific Requirements 

3.1 External Interface Requirements 

… (Information ignored here) 

3.2 Functional Requirements 

3.2.1 Initialize the system: (Information ignored)

3.2.2 Open valve 1: (Information ignored)

3.2.3 Open valve 2: (Information ignored)

3.2.4 Open valve 3: open valve V3 based on the temperature 

3.2.5 Post processing: conduct post processing tasks 

… (Information ignored here) 

Fig. 3 A snippet of the SRS for a simple valve-control system

In the above definitions, the inputs, outputs and internal variables are essentially all
variables, but the inputs and outputs cross the boundary of the software application. This
characteristic distinguishes them from the internal variables. � (inputs) and � (outputs) are
user meaningful variables while the set IV is not. For convenience a set V can be defined
which is the superset of �, � and IV, and some of the members of V are associated with the
operational profile (OP). Note that both the correct and the defective elements of a program
can be modeled using the above notation. In this section the features that are necessary for
collecting information for all elements of the original SRS except for OP are discussed.

The features are introduced along with a case study SUS called the Valve-Control System
(VCS) software. Figure 3 shows a snippet of the original SRS for VCS written in the format
recommended by IEEE Std 830 (1998). In Fig. 3 only information regarding the logic of the
software and a portion of the functional requirements is provided. The Overall Description
section names the four functions which are further defined in the “Specific Requirements”
section.

As mentioned earlier the program itself is defined as the SRS level 0 function in the
HLEFSM. All functions defined in the specific requirements section are called SRS level 1
functions and each corresponds to one state transition. The predicate within the SRS level

VCS, Level 0

SNI SI

V1_C V1_O V2_C V2_O

V3_C V3_O

T≥45

initializeTheSystem

openValve3

openValve2openValve1

INP IP

postProcessing

Fig. 4 The original HLEFSM corresponding to the SRS provided in Fig. 3



2420 Empir Software Eng (2016) 21:2413–2455

0 function is the SRS level 1 predicate. Thus VCS consists of four SRS level 1 state tran-
sitions and one predicate, and represent the same logic as provided in the plain text of the
original SRS. VCS also has input variables “Temperature” and “Pressure” while no output
is declared. Therefore, the user can gather the following information:

� = Temperature, Pressure;
� = Ø;
S = “System not initialized”, “System initialized”, “Valve1 closed”, “Valve1 opened”,

“Valve2 closed”, “Valve2 opened”, “Valve3 closed”, “Valve3 opened”, “Information not
post processed”, “Information post processed”;

T = initializeTheSystem, openValve1, openValve2, openValve3, postProcessing;
P = “Temperature ≥ 45”;
IV = Ø.

OP is not used until the Execution, Infection and Propagation analysis are discussed. It
should be noted that since this SRS is the original, it contains uncovered defects. Section 5
will discuss in detail how to handle these defects.

The HLEFSM in Fig. 4 displays the logic of VCS at the SRS level, which is built based
upon the logic discussed in Fig. 3. Each function leads to a state transition which connects
two states of S (note that in Fig. 4 all state names are acronyms). In our notation each state is
bounded by a square with rounded corners and linked by an arrow. The name of the function
that causes the state transition is written on the arrow. A predicate is a diamond with the
condition written in the middle. In this case it is abbreviated as “T ≥ 45”, where “T” is one
of the input “Temperature”.

Figure 5 displays a snapshot of the ARPS tool panel for collecting the original SRS infor-
mation. The left side displays the original SRS, to which the analyst can refer, extract and
record the relevant information into the tool. In the middle window one can see that the
functions form a tree structure where VCS is at the top and all other functions are one level
lower. The right side window shows the details of each function. A procedural language is
introduced to allow logic entry at the SRS and SDD level. This language is called EFSM

Fig. 5 Snapshot of the ARPS tool panel for collecting the original HLEFSM



Empir Software Eng (2016) 21:2413–2455 2421

language since one of its major missions is to help constructing the EFSM representation.
Currently this language possesses the most typical binary and unary operators such as arith-
metic operators, relational operators and so forth. It also supports function calls and different
flow control statements such as the if-else structure and while loop. Because the language
shares many features with the other popular procedural languages such as C, it is supposed
to be easily understandable and usable by analysts with engineering background and aver-
age programming language knowledge. This is also a hypothesis that should be evaluated
in our experiment. Once the logic of the original SRS is described using the EFSM lan-
guage, a MATLAB (Mathworks 2014) script is generated and executed to draw the original
HLEFSM. Figure 6 provides the snapshot of the MATLAB generated original HLEFSM for
Fig. 4. The only difference is in the fact that the logic flow in Fig. 4 is from left to right while
the logic flow in Fig. 6 is from top to down. In addition, this graphical representation is only
for view but not for execution at this point. However, this could be part of future research.

5 Mapping SRS Defects to the Original HLEFSM

As discussed in Section 4, the HLEFSM constructed is the original and as such it contains
uncovered defects. Currently 26 defects have been identified based on previous experience
on software inspection and reliability modeling (Smidts et al. 2010). These 26 defect types

Fig. 6 Snapshot of the original HLEFSM automatically generated by MATALAB



2422 Empir Software Eng (2016) 21:2413–2455

can be categorized into 5 categories as shown in Table 1. Note that these terminologies are
applicable to both SRS and SDD level, but in this section only the SRS level defects are dis-
cussed. Category 1 defects are about the definitions of the level 1 functions. If any of these

Table 1 SRS/SDD Defect studies in this research

Defect category Defect name

Category 1: 1. Missing (definition of) Function: The entire definition of a function is missing

Defects for from the SRS/SDD.

the definition 2. Extra (definition of) Function: The entire function definition is extra in the SRS/SDD.

of level 1 3. Function with Incorrect Logic: The functionality of a function is valid

functions but the logic is erroneous.

4. Incorrect Functionality: The functionality of the function is not valid.

5. Incorrect/Ambiguous Function Name: The name of the function is

incorrect/ambiguous.

Category 2: 1. Missing Input: The definition of an input is missing from the SRS/SDD.

Defects related 2. Extra Input: The definition of an input is extra in the SRS/SDD.

to inputs 3. Incorrect/Ambiguous Input Name: The name of the input is incorrect or ambiguous

when it is defined.

4. Input with Incorrect Type: The type of the input is erroneously defined.

5. Input with Incorrect Range: The range of the input is erroneously defined.

Category 3: 1. Missing Output: The definition of an output is missing from the SRS/SDD.

Defects related 2. Extra Output: The definition of an output is extra in the SRS/SDD.

to outputs 3. Incorrect/Ambiguous Output Name: The name of the output is incorrect or

ambiguous when it is defined.

4. Output with Incorrect Type: The type of the output is erroneously defined.

5. Output with Incorrect Range: The range of the output is erroneously defined.

Category 4: 1. Missing Variable: The definition of a variable is missing from the SRS/SDD.

Defects related 2. Extra Variable: The definition of a variable is extra in the SRS/SDD.

to internal 3. Incorrect/Ambiguous Variable Name: The name of the variable is incorrect or

variables ambiguous when it is defined.

4. Variable with Incorrect Type: The type of the variable is erroneously defined.

5. Variable with Incorrect Range: The range of the variable is erroneously defined.

Category 5: 1. Missing Instance of Function: The definition of a function is correct, but a call to

Defects for that function is missing.

the logic of 2. Extra Instance of Function: The definition of a function is correct, but there is

the level 0 an extra call to that function.

function 3. Incorrect/Ambiguous Function Call: The definition of a function is correct, but

when it is called by another function, the name is incorrect or ambiguous.

4. Missing Predicate: A predicate of the function is missing.

5. Extra Predicate: A predicate of the function is extra.

6. Incorrect/Ambiguous Predicate: The logical expression of a predicate is incorrect or

ambiguous.



Empir Software Eng (2016) 21:2413–2455 2423

Table 2 SRS level defect report for the VCS exaple

Defect # Defect Type Original Description Correct Description

1 Missing Predicate “. . . valve V1 is “. . . valve V1 is opened.

opened, and then If pressure is greater than

valve V2 is opened” or equal to 106 Pa then valve

V2 is opened”

2 Function with “open valve 3 based on The specific design of this

Incorrect Logic the temperature” function is defective.

defects exist, they will affect all instances of that function. Categories 2 to 4 are about the
inputs, outputs and internal variables. In our methodology they all have the same properties:
name, type, range and whether they cross the application boundary. Thus the defect types
are similar. It should be noted that inputs, outputs are both for the level 0 function and the
level 1 functions, while the internal variables are only for the level 0 function. The internal
details of each level 1 function (which include the internal variables and logic) are only dis-
cussed when necessary, i.e., there exist defects in this level 1 function and they cannot be
precisely represented at the SRS level. This is because our methodology relies on an impor-
tant underlying philosophy, i.e. details of level 1 functions should remain hidden as long
as their exploration is unnecessary. This underlying philosophy helps save significant mod-
eling time and computational resources. Sections 7 and 9 will discuss how to handle SDD
defects. Category 5 defects are concerned with the logic of the level 0 function. Also Defect
#1 of Category 5 should not be confused with Defect #1 of Category 1. While Category 1
defects apply to all instances of a function, Category 5 defects apply to a single instance of
this function.

The defect categorization discussed above originates from the software failure mode
taxonomy discussed in Li et al. (2005). In this reference the software failure modes are cate-
gorized based on software functions and their interactions, which are investigated to identify
where/how software failures may occur. The function, attribute and function set failures in
Table 1 of the reference correspond to the Category 1 and 5 defects in our categorization.
The input and output failure modes in Table 2 of the reference correspond to Category 2 and
3 defects in our categorization. Our Category 4 defects are extensions of our Category 2 and
3 defects. In Li et al., the failure mode taxonomy was also validated using both subjective
evidence, i.e., expert judgment, and, objective evidence, i.e., actual failure mode data. The
validation process shows that the taxonomy is applicable to the domain of aerospace appli-
cations, which is one of the major categories of safety critical systems. In reference Smidts
et al. (2010) a similar defect categorization as the one in this paper is proposed, where the

fmissing

fprev fnextOriginal (incorrect)

Modified (correct)

Fig. 7 Defect template for “Missing Instance of Function”



2424 Empir Software Eng (2016) 21:2413–2455

fprev

PC

fnextfun

fun

Original (incorrect)

Modified 
(correct)

T

F

Fig. 8 Defect template for “Missing Predicate”

possibility of using EFSM as a software logic representation and mapping software defects
to the EFSM model to evaluate software reliability is discussed.

A template allowing us to map each defect type to the original HLEFSM (thus there
are 26 templates) has been introduced. Figures 7 and 8 provide the templates for “Miss-
ing Instance of Function” and “Missing Predicate”, respectively. It can be seen that there
are two branches in the middle portion of each Figure. The upper branch is the original
branch that contains the defect; the lower branch is the modified branch which displays the
corrected representation. Therefore, for “Missing Instance of Function” in Fig. 7 the upper
branch is just an arrow linking the previous state transition block “fprev” with the next state
transition block “fnext”. There is no state transition block in the middle. However, the lower
branch contains the missing state transition block “fmissing” and hence is correct. Similarly,
in Fig. 8 the upper branch is just a state transition block “fun” and the predicate that should
have been evaluated before “fun” is missing. In the lower branch one can see that the miss-
ing predicate “PC” is added, and when “PC” is evaluated as false (F), no state transition
occurs.

The defects’ templates can be applied to the VCS example in Fig. 3 to illustrate how
mapping defects is performed. Suppose a defect report such as the one provided in Table 2

VCS, Level 0

T≥45

initialize

openValve3 (original)

openValve2 (original)openValve1

openValve3 (modified)

P≥106

openValve2

Defect #2

Defect #1

postProcessing

(modified)

Fig. 9 The modified HLEFSM corresponding to the defect report provided in Table 2



Empir Software Eng (2016) 21:2413–2455 2425

is available. Two defects exist: one is a “Missing Predicate” and the other is a “Function
with Incorrect Logic”. (It should be noted that this defect report is designed for the sake
of demonstrating how multiple defects are mapped to the HLEFSM. In reality there should
not be so many defects in such a small system, especially not in a safety critical system.)
Fig. 9 is the modified HLEFSM with both defects mapped, where each defective fragment
is delineated by a dotted line. “T ≥ 45” is short for “Temperature ≥ 45” and “P ≥ 106” is
short for “Pressure ≥ 106”. Similar as the templates provided in Figs. 7 and 8, the upper
branch is the original (incorrect) version and the lower branch is the modified (correct)
version. Defect #1 is mapped in the same way as was shown in Fig. 8. Defect #2 is about
the inner logic of the function “openValve3”, and the template for “Function with Incorrect
Logic” follows the same style as the other templates. However, for this type of defect it
is very common that the SRS level information is insufficient for conducting the Infection
analysis (see Section 6). Therefore, the user will need to delve into the SDD level to model
the defect more precisely. When using the ARPS tool to map defects, the EFSM language
is used to capture the correct functions/predicates and MATLAB is called to generate the
modified HLEFSM.

6 Execution, Infection and Propagation Analysis for Software Reliability
Evaluation

6.1 Formula for Software Reliability Calculation

The modified HLEFSM is helpful in visualizing the logic of the SRS. In addition, it can
serve as a system representation on which the Execution, Infection and Propagation analysis
for reliability evaluation can be carried out. In the EFSM-based RePS methodology, a soft-
ware fault (i.e., defect) causes a software failure only when three constraints are satisfied.
First the defect must be executed (i.e., Execution). Second the execution of the defect must
make a difference in the data state of the software (i.e., Infection). Third the data state dif-
ference must be preserved and propagated to the end of the software and hence visible from
the outside (i.e., Propagation). The Execution, Infection and Propagation analysis are intro-
duced to assess the probability that the three constraints are satisfied for each defect. Once
the analysis is conducted for all defects, (1) and (2) can be applied to obtain software relia-
bility. Previous research has shown that these two equations are valid when the total number
of defects in software is very small and the defects are distributed sparsely (Smidts et al.
2010; Li et al. 2013; Voas 1992). These conditions are reasonable for safety critical soft-
ware which has undergone thorough software testing, software verification and validation
processes.

Prob (f ailure) =
∑N

i=0
Ei × Ii × Pi (1)

Re = 1 − Prob (f ailure) (2)

where in the above formula,

Ei : The execution probability for the i-th uncovered fault
Ii : The infection probability for the i-th uncovered fault
Pi : The propagation probability for the i-th uncovered fault



2426 Empir Software Eng (2016) 21:2413–2455

N : The total number of uncovered faults
Prob(failure): Probability of failure
Re: Software reliability

The Execution, Infection and Propagation analysis all require the operational profile (OP)
of the software. The operational profile is defined as a set of probabilities characterizing the
environment within which a software system is to carry out its mission (Musa et al. 1987;
Musa 1993). In this study it is assumed that the user of ARPS has access to the OP data.

6.2 Execution Analysis

The Execution analysis identifies the probability that each defect is executed. This analysis
is conducted during the compile time of our EFSM language. More specifically, an inherited
attribute (Lam et al. 2006) “Precondition” is introduced for each statement, which consists
of all the predicates passed down from the parent node in the parse tree. Assuming there are
N predicates, the “Precondition” can be expressed as:

Precondition = P1
(
vP11 , vP12 , . . .

) ∧ P2
(
vP21 , vP22 , . . .

) ∧ . . . ∧ PN(vPN1vPN2 , . . . vPNM
)

Where each predicate Pican be either true or false, and vPNM
is the last variable of PN .

The Execution probability is then equal to Prob(P recondition). If all vP variables are
input variables (i.e., they belong to I) and the joint probability distribution function (pdf)
fVP11 ,VP12 ,...VPNM

(vP11vP12 , . . . vPNM
) is available from the OP, the Execution probability

can be calculated as:

Prob (P recondition) =
∫

VP11∈
[
vP11,min

,vP11,max

]
,...VPNM

∈
[
vP11,min

,vP11,max

]

fVP11 ,VP12 ,...VPNM
(vP11 , vP12 , . . . vPNM

)dvP11 . . . dvPNM

(3)

In formula (3), the domain on which the predicates hold (i.e.,
[
vP11,min

, vP11,max

]
,[

vP12,min
, vP12,max

]
, etc.) can be calculated by calling a symbolic solver (e.g., Mathematica

(Wolfram 2014) and MATLAB (Mathworks 2014)). Then the OP is used to calculate the
probability by solving the multiple integral (3).

If some of the vP variables are internal variables of the program, their pdfs are unavailable
from OP. However, the relationship between the internal variables and the input variables
can be examined based on the program logic. Because these variables are at the SRS level,
the relationship should be straightforward. Assume the input variables of a program are x
and y, and the variables of a predicate are u and v. The relationship between the variables is
as follows: {

x = x(u, v)

y = y(u, v)
or

{
u = u(x, y)

v = v(x, y)

Thus the pdf for the random vector (U, V) can be obtained from that of (X, Y):

fU,V (u, v) = fX,Y (x(uv), y(uv))

∣∣∣∣
∂x
∂

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣



Empir Software Eng (2016) 21:2413–2455 2427

Stmt
P1

P2

P3

…

…

…

true

true

true

false

false

false

Fig. 10 Preconditions of the statement “Stmt”

Where the last term is the Jacobian determinant. This formula can be inserted into (3) to
calculate Prob(Precondition). For random vectors with more than 2 variables, the formula
can be extended. Now let us consider an example. The statement “Stmt” in Fig. 10 is exe-
cuted when: 1) the predicate “P1” evaluates as true and 2) “P2” evaluates as false and 3)
“P3” evaluates as true. Thus the “Precondition” of “Stmt” can be expressed as (P1==true∧

P2==false
∧

P3==true). The problem of Execution analysis for “Stmt” is hence to find
out the value of Prob(P1==true

∧
P2==false

∧
P3==true).

Assume x, y and z are the input variables involved in each predicate, respectively. Let
X, Y and Z be the corresponding random variables. The “Precondition” holds when X ε

[x1, x2], Y ε [y1, y2] and Z ε [z1, z2]. Also assume that the joint pdf is fX,Y,Z(x,y,z), the
Execution probability is thus:

Prob
(
P1,X (x) == truele ∧ P2,Y (y) == f alse ∧ P3,Z (z) == true

)

=
∫

X∈[x1,x2],Y∈[y1,y2],Z∈[z1,z2]
fX,Y,Z(x, y, z)dxdydz

For the VCS example in Fig. 3, only the input variable Temperature is used in the pred-
icate. The OP for Temperature is listed in Table 3. The pdf of Temperature is a truncated
normal distribution. For Defect #1 the Execution probability is given by Prob(T ≥ 45),
which is equal to 84.1 %; for Defect #2 the Execution Probability is given by Prob(T<45),
which is equal to 15.9 %.

From Fig. 10 it can be seen that there is a back edge from “Stmt” to “P3”, which means
that “P3” is the predicate of a loop structure. In the EFSM-based RePS methodology these
predicates are treated in the same way as the predicates of “if-else” structures. i.e., if a
statement is within a loop body like “Stmt”, its “Precondition” should be the conjunction of
the “Precondition” of the parent node “P3” and the loop predicate.

Table 3 Operational profile of the VCS example

Key Input Variable Probability Distribution Function

Temperature, Temp in ◦C fT emp (temp) = 1√
2πσtemp

exp[− (temp−μtemp)2

2σ 2
temp

]
where temp ∈ [0, 100], σtemp = 5, μtemp = 50

Pressure, Pres in Pascal fPres (pres) = 2
2025×1010

pres − 2
405×105

where pres ∈ [5 × 105, 5 × 106]



2428 Empir Software Eng (2016) 21:2413–2455

6.3 Infection Analysis

The Infection analysis identifies the probability that the defect causes a difference in the
data state that immediately follows the defective block. Because the data state difference
studied is local, the analysis is specific to each type of defect in Table 1. First let us only
consider SRS level defects. Our study indicates that for Category 5 defects the Infection
analysis can be conducted at the SRS level while for the other four categories the analysis
should be conducted at the SDD level. This stems from the fact that for Category 5 defects
the information at the SRS level is sufficient to determine the Infection probability, but for
the other categories of defects this is usually not true. In this section only Category 5 defects
are discussed. The other four categories are discussed in Section 7 and 8.

The six defects of Category 5 can be further classified as 1) function call related and 2)
predicate related. Defect #1, #2 and #3 are function call related, and in all cases a wrong
function call takes place. In our methodology it is assumed that a function call to an incor-
rect function always leads to a local data state difference, therefore the Infection probability
linked to these three defects conservatively assumed to be 100 %, although other values can
be specified by the user if need be. This conservative assumption is called “incorrect func-
tion assumption”. It holds when each functionality (defective and correct) is significantly
different from the others. This is usually the case for SRS level 1 functions because they are
at a high level of abstraction.

Defect #4, #5 and #6 in Category 5 are predicate-related. Based on the “incorrect function
assumption”, the Infection probability related to Defects #4, #5 and #6 can be determined
as well. Defect #6, Incorrect/Ambiguous Predicate, is the most general case among these
three. Figure 11 provides the defect template for Incorrect/Ambiguous Predicate. The PO
in the upper branch is the original (i.e., incorrect) predicate, and PC in the lower branch
is the modified (i.e., correct) predicate. Defect #4 and #5 are two special cases of Incor-
rect/Ambiguous Predicate: for Missing Predicate, PO is a predicate always evaluating to
true (Fig. 8); for Extra Predicate, one can imagine that there is a predicate PC (not shown)
on the modified branch which is always evaluated to true (Fig. 12).

fprev

PC

fnext

fun

Original (incorrect)

Modified 
(correct)

T

F

PO

fun
T

F

Fig. 11 Defect template for “Incorrect/Ambiguous Predicate”



Empir Software Eng (2016) 21:2413–2455 2429

fprev

PO

fnext

fun

fun

Original (incorrect)

Modified 
(correct)

T

F

Fig. 12 Defect template for “Extra Predicate”

The Infection analysis consists in assessing the probability Prob (PO is incorrect).
First let us focus on an Incorrect/Ambiguous Predicate. The function call to “fun” remains
the same in both branches (see Fig. 11) while the predicate in each branch is different. The
event “PO is incorrect” can be decomposed based on PC, as shown in (4).

Prob (PO is incorrect) = Prob((PO is incorrect ∩PC)∪(PO is incorrect ∩PC)) (4)

For the term (PO is incorrect ∩ PC), when PC is true, the event “PO is incorrect” cor-
responds to PO being false. This is because when PO is false, the wrong branch is taken.
Hence this term can be written as P̄O ∩ PC . For the term (PO is incorrect ∩ P̄C), when
PC is false, the event “PO is incorrect” corresponds to PO being true. This is again because
when PO is true, the wrong branch is taken. Hence this term can be written as PO ∩ P̄C .
Therefore, (4) can be further rewritten as (5).

ID#6 = Prob (PO is incorrect) = Prob((PO ∩ PC) ∪ (PO ∩ PC)) (5)

This equation is also applicable to Defect #4 and #5. More specifically, for a Missing Pred-
icate the original (incorrect) branch only contains a function call to “fun” (Fig. 8). Thus
PO = � and P̄O = ∅ (the universal set). Equation (5) can be modified as:

ID#4 = Prob
((
Ø ∩ PC

) ∪ (
� ∩ PC

)) = Pro(PC) (6)

which means that the Infection probability for Missing Predicate is equal to the probability
that PC is false.

To apply (5) to an Extra Predicate (Fig. 12), an imaginary predicate PC can be added onto
the modified (correct) branch before “fun”. It is always evaluated as true and thus PC = �

and P̄C = ∅. Therefore, (5) can be modified as:

ID#5 = Prob
((

PO ∩ �
) ∪ (

PO ∩ Ø
)) = Prob(PO) (7)

Equations (5) to (7) can be calculated if the OP of the related variables is available. The
specific process is similar to the Execution analysis, where symbolic solvers may be needed
to compute the domain on which the predicates hold. For the VCS example, Defect #1
(Fig. 9) falls into the category of Missing Predicate. Applying (6) it is found that Prob(PC)

is equal to Prob(¬(P res ≥ 106)). Based on Table 3 this probability is equal to 1.2 %.
The other four categories of defects are different from Category 5. The Infection analysis

for Defects #1 and #2 of Category 1 depends on whether these two defects actually lead
to erroneous instantiations. If they do, the Infection probability of the affected functions is



2430 Empir Software Eng (2016) 21:2413–2455

also 100 % as for Defect #1 and #2 of Category 5. For the other Category 1 defects and all
Category 2, 3 and 4 defects the analysis usually needs to be conducted at the SDD level,
since there isn’t sufficient information at the SRS level. This topic will be further discussed
in Sections 7 and 8. Table 4 summarizes the Infection analysis methodology for each defect
category.

6.4 Propagation Analysis

The Propagation analysis is one of the most challenging topics in this research. How the
data state transforms when passing through the downstream state transitions and predi-
cates should be considered. Currently the theoretical portion of the Propagation analysis for
defects affecting functions with one input variable has been completed and is described in
a companion paper. The Propagation analysis is currently not implemented into the ARPS
tool and Propagation probabilities are currently set to 100 % by default. However, the user is
allowed to provide values other than 100 %. For the VCS example in Fig. 9, the Propagation
probability for both SRS level defects is set to 10 %.

7 SDD Level Analysis I: Constructing the Original LLEFSM Using the
SDD Information

A general philosophy of the EFSM-based RePS methodology is that the analysis should
stay at the SRS level (the highest level) which contains the minimal amount of information
about the software system. Performing analysis at the highest level and hiding lower level
information will significantly reduce the modeling effort. However, as has been discussed in
Section 6.3, occasionally the information at the SRS level is not detailed enough to conduct
the Infection analysis. This is usually the case for the SRS level 1 functions. Because the
SDD level information is more detailed, this information can be loaded to better model the
defective functions. Defects #3, #4 and #5 of Category 1 and all defects of Category 2, 3
and 4 in Table 1 are introduced for this purpose.

Currently the SDD level modeling bears many similarities with the SRS level modeling.
First, the SDD information about a certain SRS level 1 function is loaded. The analyst will

Table 4 Summary of the Infection analysis methodology

Defect Category Infection Methodology

Category 1 Defect #1 and #2: If the defective function is instantiated, apply the

“incorrect function assumption”

Defect #3 to #5: Apply the SDD level analysis.

Category 2 to 4 All defects need to be analyzed at the SDD level.

Category 5 Defect #1 to #3: Apply the “incorrect function assumption”

Defect #4: Calculate Prob(P̄C)

Defect #5: Calculate Prob(P̄O)

Defect #6: Calculate Prob((P̄O ∩ PC) ∪ (PO ∩ P̄C))



Empir Software Eng (2016) 21:2413–2455 2431

Software Design Document for the Open Valve #3 function of the Valve-
Control System (VCS)

1. Introduction to the Open Valve #3 function 

… (Information ignored here) 

2. System Overview

The logic of this function is as follows: First the current position of Valve #3 is obtained. 
If the position is below 2 mm, then Valve #3 should be rotated clockwise. Otherwise it 
should be rotated counter clockwise. 

… (Information ignored here) 

3. System Architecture 

3.1 External Interface Requirements

… (Information ignored here) 

3.2 Functional Requirements

3.2.1 Obtain the current valve position: (Information ignored)

3.2.2 Rotate the valve clockwise: (Information ignored)

3.2.3 Rotate the valve counter clockwise: (Information ignored)

… (Information ignored here)

Fig. 13 A snippet of the SDD for the “openValve3” function

be working with a panel whose layout is identical to the one displayed in Fig. 5. When a cer-
tain SRS level 1 function is analyzed at the SDD level, this function becomes the SDD level
0 function. It has inputs, outputs, internal variables, state transitions that are caused by SDD
level 1 functions and SDD level predicates. The SDD level 1 functions also have inputs and
outputs but do not have internal variables, state transitions or predicates. All defects listed in
Table 1 exist at the SDD level, but the “level 0 function” and “level 1 function” should now
be interpreted as “SDD level 0 function” and “SDD level 1 function”, respectively. Note
that at this point the SDD level 1 defects cannot be modeled automatically because the code
level features have not been implemented. A manual analysis example is provided in Sec-
tion 9. This topic will be further elaborated in Section 11, Conclusions and Future Research.

Fig. 14 Snapshot of the ARPS panel for entering the SDD information for “openValve3”



2432 Empir Software Eng (2016) 21:2413–2455

Fig. 15 Snapshot of the original LLEFSM generated by MATALB

As an example, Defect #2 for “openValve3” in Table 2 falls into the category of “Func-
tion with Incorrect Logic” and can be decomposed and analyzed at the SDD level. Assume
that the original (i.e., defective) SDD in Fig. 13 is developed based on the SDD template
provided in IEEE Std 1016 (1998). The function logic is explained in System Overview.
The ARPS tool allows the user to load the original SDD, enter the relevant information and
construct the original Low Level EFSM (LLEFSM). The specific procedure is the same as
the SRS level information recording and HLEFSM construction. Occasionally the SDD is
developed following other formats. For instance, it may consist mostly of diagrams or is
written in UML (Booch et al. 2005). This will not cause fundamental differences in using
the ARPS tool because the analyst can still view the SDD file from the tool panel and gather
useful information.

The SDD document for “openValve3” is first loaded. Then the SDD level 1 functions
for “openValve3” are specified by first clicking on the function name and then the “Adding
Function” button (see Fig. 5). The ARPS panel will change to Fig. 14. The detailed SDD

Table 5 SDD level defect report for “openValve3”

Defect # Defect Type Original Description Correct Descriptio

1 Incorrect/ “. ..If the position is below “. If the position is below

Ambiguous 2 mm, then Valve #3 should 3 mm, then Valve #3 should

Predicate be rotated clockwise. be rotated clockwise.

Otherwise it should be Otherwise it should be

rotated counter clockwise.” rotated counter clockwise.”



Empir Software Eng (2016) 21:2413–2455 2433

Table 6 SDD level OP for “openValve3”

Key Input Variable Probability Distribution Function

Position, in mm The relationship between Pressure and Position is:

Pressure = 5 × 105 × Position

Thus the pdf of Position is:

fPOS (pos) = 2
81pos − 2

81 where pos ∈ [1, 10]

information for “openValve3” is still displayed on the left hand side. The middle portion is
the SDD level function tree. The right hand side displays the logic of the original (defective)
“openValve3”, which needs to be added by the user following the EFSM language syn-
tax. Figure 15 displays the original LLEFSM generated by MATLAB following the EFSM
language commands.

8 SDD Level Analysis II: Mapping SDD Defects to the Original LLEFSM
and Performing the Infection Analysis

8.1 Mapping Defect #2 to the Original LLEFSM and Performing the Infection
Analysis

Because the SRS level Execution, Infection and Propagation analysis are introduced for
failure probability analysis, they are applicable to the SDD level as well. The resulting SDD
level failure probability is hence the Infection probability of the same function at the SRS
level. Mathematically, this relationship can be expressed as follows:

If uni ,SRS = Probf uni ,SDD (f ailure) =
∑M

j=0
Ej,SDD × Ij,SDD × Pj,SDD (8)

where M is the total number of SDD level defects for function funi.
The specific Execution, Infection and Propagation analysis are the same as Section 6

and hence are not repeated. The SDD level defect reports and OP are still needed for the
analysis. For function “openValve3” discussed in Figs. 13 and 15, the SDD level defect
report says that there is a defect of type “Incorrect/Ambiguous Predicate”. The defect report
and the OP table are provided in Tables 5 and 6, respectively. There is a linear relationship
between the internal variable “Position” and the input variable “Pressure”, from which the
pdf of “Position” can be derived. In addition, since there is no SDD level 1 function after
the “if” structure, the Propagation probability of Defect #1 is simply 100 %. Applying the
defect template in Fig. 11 as well as (1) the failure probability (i.e., the SRS level Infection
probability) of “openValve3” is calculated as follows:

ProbopenV alve3,SRS (f ailure) = E1,SDD × I1,SDD × P1,SDD

= 100 % × (P rob( Position is greater than 2 and Position is less than 3 )) × 100 %

= 3.7 %



2434 Empir Software Eng (2016) 21:2413–2455

The Execution, Infection and Propagation probabilities of the two SRS level defects of the
VCS example have been obtained. Thus the software reliability can be assessed as follows:

ProbV CS (f ailure) = E1,SRS × I1,SRS × P1,SRS + E2,SRS × I2,SRS × P2,SRS

= 85.1 % × 1.2 % × 10 % + 14.9 % × 3.7 % × 10 % = 0.16 %

ReV CS = 1 − ProbV CS (f ailure) = 99.84 %

The above analysis can be automatically conducted with the assistance of the ARPS tool.
The “Mode” tab at the top-left corner of Fig. 14 is used to switch the mode between the
“information collection mode” and the “defect collection mode”. Once in the “defect col-
lection mode”, the user can further specify how exactly “openValve3” is defective based
on the defect report. Since it is an “Incorrect/Ambiguous Predicate” at the SDD level, the
logic panel should be selected and the modified logic should be entered. Figure 16 dis-
plays the SDD level logic panel with the modified EFSM language command. Comparing
to the original logic on the right hand side in Fig. 14, we can see that the differences are
the tags “<IAP BEGIN>”, “[PC=...]”, “[PROPAGATION = ...]” and “<IAP END>”.
These tags fully specify that the incorrect of “Position less than 2”, and the correct version
should be ?Position less than 3?. Once this information is provided, the failure probability
of “openValve3” (or Infection probability at the SRS level) can be automatically calculated
as 3.7 %.

Fig. 16 Snapshot of the ARPS panel for specifying the range of the internal variable “Position”



Empir Software Eng (2016) 21:2413–2455 2435

8.2 Another Example to Demonstrate the SRS-SDD Defect Mapping and Failure
Probability Assessment

So far Section 7 and 8.1 demonstrate how to analyze the SRS level defect of type “Function
with Incorrect/Ambiguous Logic” at the SDD level. A similar principle can be applied to
other types of defects that cannot be processed at the SRS level. For instance, Category
4 defects that are about SRS level internal variables usually need to be modeled at the
SDD level. Assume that the SRS level defect on “openValve3” is “Variable with Incorrect
Range” instead of “Function with Incorrect Logic”, and the defective internal variable is
“Position” The inner logic of “openValve3” is correct. Figure 17 displays the snapshot of
the ARPS panel where the analyst specifies the range of “Position”. Here the analyst enters
the original (incorrect) range of Position which is [1, 9]. Figure 18 displays how the analyst
can specify the correct range for “Position” He/she needs to switch to defect collection
mode and enter the correct range of [1, 10] based on the new SDD level defect report
provided in Table 7

As provided in Table 6, the correct pdf of “Position” is fPOS(pos) = 2 / 81 * pos – 2 / 81
and is distributed on [1, 10]. From the correct description of Table 6 we also know that
“Position” is involved in the predicate “Position is below 3 mm”. Because the incorrect
range is [1, 9], this predicate will be affected. The likelihood of Position being in (9, 10] will
be suppressed because of the boundary checking mechanisms. Thus the failure probability
(i.e., the SRS level Infection probability) of “openValve3” is calculated as follows:

Prob′
openV alve3,SRS (f ailure) = E′

1,SDD × I ′
1,SDD × P ′

1,SDD

= 100 % × (P rob( Position is greater than 9 and Position is less than equal to 10 )) × 100 %

= 20.1 %

Fig. 17 Snapshot of the ARPS panel for specifying the range of the internal variable “Position”



2436 Empir Software Eng (2016) 21:2413–2455

Table 7 SDD level defect report for “openValve3”

Defect # Defect Typ Original Description Correct Descriptio

1 Variable with The range of the internal The range of the internal

Incorrect Range variable “Position” is [1, 9] variable “Position” is [1, 10]

And the software reliability can be assessed as follows:

Prob′
V CS (f ailure) = E1,SRS × I1,SRS × P1,SRS + E′

2,SRS × I ′
2,SRS × P ′

2,SRS

= 85.1 % × 1.2 % × 10 % + 14.9 % × 20.1 % × 10 % = 0.4 %

Re′
V CS = 1 − Prob′

V CS (f ailure) = 99.6 %

9 Code Level Analysis

The code level automatic analysis features are still under development. Thus in this sec-
tion a SDD-code level defect mapping example is provided, which is conducted manually.
Assume that in addition to the two defects in the VCS case study that are already discussed,
there is one more defect at the SRS level 1 function “postProcessing”. This defect is of type
“Function with incorrect logic”, which has to be elaborated at the SDD level (see the left
hand side to the middle of Fig. 19). However, unfortunately this defect at the SDD level is
again a “Function with incorrect logic” defect located in the SDD level 1 function “gener-
ateLog”. Therefore, this defect has to be investigated at the code level, as displayed in the
right hand side of Fig. 19

The C function corresponding to the “generateLog” SDD level 1 function is provided.
This function writes the temperature (Temp), pressure (Pres), and the three valves’ positions
(p1, p2 and p3, respectively) to the log file. It also reports when each valve’s position is high.
The code level defect report shows that the predicate “if (p3>9.6)” is erroneous, and should

Fig. 18 Snapshot of the ARPS panel for specifying the incorrect range of ”Position”



Empir Software Eng (2016) 21:2413–2455 2437

VCS, Level 0

…

postProcessing
(Defective) postProcessing, Level 0

generateLog
(Defective)

…

generateLog.c

void generateLog(double p1, double p2, double p3) {
FILE* log = fopen(“log.txt”, “w”);
fprintf(log, “T %f, P %f, V1 %d, V2 %d, V3 %d 

\n”, Temp, Pres, p1, p2, p3);
if (p1>9.5)

fprintf(log, “Valve 1 high\n”);
if (p2>9.5)

fprintf(log, “Valve 2 high\n”);
if (p3>9.6) // Error! Should be p3>9.5

fprintf(log, “Valve 3 high\n”);
fclose(log);

}

Fig. 19 How to map a SDD level defect into code level

have been written as “if (p3>9.5)”. The defective portion is 9.5≤p3<9.6. This defective
line of code will affect the output of the subroutine, which will be reflected in the Infection
probability of the “generateLog” SDD level 1 function. Table 6 provides the information
about Valve3’s position, from which the probability of the defective portion of the erroneous
predicate can be calculated. The rule is the same as that used for “Incorrect/ambiguous
predicate” at the SRS and SDD levels:

ProbgenerateLog,code (f ailure) = E1,code × I1,code × P1,code

= 100 % × Prob (9.5 ≤ p3 <9.6) × 100 %

= 100 %×
∫ 9.6

9.5

(
2

81
pos − 2

81

)
dpos×100 % = 2.1 %

The above failure probability at the code level is the Infection probability of the “gener-
ateLog” SDD level 1 function. The Execution and Propagation probabilities of the erroneous
predicate are 100 % since the erroneous predicate is at the main logic branch and not
succeeded by any other statement The failure probability of “generateLog” SDD level 1
function is hence:

ProbgenerateLog,SDD (f ailure) = E1,SDD × I1,SDD × P1,SDD

= 100 % × 2.1 % × 100 %= 2.1 % (9)

The Execution and Propagation probabilities at the SDD level are 100 % again since
“generateLog” SDD level 1 function is on the main SDD logic branch and is the last function
in “postProcessing”. This failure probability is the Infection probability of the SRS level 1
function “postProcessing”. Adding this defect into the reliability calculation in Section 8.1,
the updated software reliability can be calculated. Note that the Execution probability of



2438 Empir Software Eng (2016) 21:2413–2455

“postProcessing” is 100 % since it is on the main logic branch; the Propagation probability
is 100 % since this is the last function on this branch

ProbV CS (f ailure) = E1,SRS × I1,SRS × P1,SRS + E2,SRS

×I2,SRS × P2,SRS + E3,SRS × I3,SRS × P3,SRS

= 85.1 % × 1.2 % × 10 % + 15.9 % × 3.7 %

×10 % + 100 % × 2.1 % × 100 % = 2.26 %

ReV CS = 1 − ProbV CS (f ailure) = 97.74 %

So far we have discussed the EFSM-based RePS methodology and the corresponding fea-
tures in the ARPS tool. The authors have conducted research to compare the reliability
evaluation result using the EFSM-based RePS methodology and the observed reliability
of the software of a real nuclear reactor protection system (Smidts et al. 2010). The com-
parison results showed that the EFSM-based RePS methodology is able to provide precise
evaluation results, which helps substantiate our approach.

10 Experimental Validation of ARPS’ Usability

10.1 Introduction

As discussed before, one of the main reasons for developing the ARPS tool is to reduce
the EFSM construction time and the error rate compared to the manual application of the
EFSM-based RePS methodology. Thus an experimental validation is required to investigate
whether the potential users can learn the ARPS tool and to collect their feedback as well.
During our study we recruited engineering undergraduate students as our research subjects.
We taught them the SRS level EFSM-based RePS methodology and the corresponding fea-
tures of the tool. At the final stage of the experiment the subjects were asked to solve
problems by both manually applying the methodology and using the tool. It was found that
the ARPS tool not only assisted the subjects in achieving a better performance but was
preferred to the manual analysis.

10.2 Research Subject Identification

From the previous sections it can be seen that the potential user of the ARPS tool should
have a bachelor’s degree in engineering or related disciplines. More specifically, he/she
should possess the following knowledge:

1) An understanding of engineering mathematics such as calculus and probability theory.
2) An understanding of the concepts of system modeling.
3) The capability to (yet not necessarily master) program with procedural languages.

Note that although ARPS requires certain experience of programming with procedural
languages, the specific requirement for this experiment is not very stringent. In addition,
Huang et al. (2014) indicates that the performance of a programmer on a certain task
depends on whether the programmer’s knowledge base matches the expertise required by
the task. If a task is new yet feasible for all, more experienced programmers do not necessar-
ily perform better than less experienced ones. This phenomenon corresponds to the situation



Empir Software Eng (2016) 21:2413–2455 2439

encountered in the case of the ARPS tool. Therefore, it was decided to use junior/senior
level engineering students from mechanical engineering, electrical engineering, computer
science and engineering and integrated system engineering as research subjects. Eventually
15 subjects were recruited and were equally divided into two groups based on their year
of study and major. All subjects underwent the same training sessions and test problems.
However, the approaches they applied to solve the exam problems were different. I.e., when
group #1 subjects were solving a certain exam problem manually, group #2 was solving the
same problem using the ARPS tool, or vice versa. It will be seen that the sample size can be
effectively doubled by this setting.

10.3 Research Design

The goal of this experiment is to evaluate the usability of the ARPS tool. The proposed
experimental design is as follows:

10.3.1 Questions to be Answered in this Experiment.

The question to be answered in this experiment is: “Determine whether the original
HLEFSM construction, the defect mapping and the reliability assessment with ARPS tool
support are more usable than without tool support”.

10.3.2 The Variables of the Experiment.

1) The independent variable—the software reliability modeling approach. The approach
is either manual or tool-based. In other words, experiment groups either manually apply
the EFSM-based RePS methodology (will be referred asM) or use the ARPS tool (will
be referred as A).

2) The controlled variable—the background knowledge and experience of the subjects
and it is measured on an ordinal scale.

3) The dependent variable—the dependent variable is the usability measures (defined
below) of the software reliability modeling techniques.

10.3.3 The Usability Measures

The following six usability measures are investigated in this experiment.

1) Error Index (EI): EI is a score expressed as the percentage of an exam problem cor-
rectly completed by a subject. A higher EI indicates a higher performance. Table 8
provides the specific grading policy used in this study. The grading policy is based on
the type of errors a subject may commit.

Each exam problem, whether solved manually or using the ARPS tool, consists of three
steps: 1) reading the SRS and constructing the original HLEFSM; 2) reading the SRS level
defect report and mapping the defects to the original HLEFSM; 3) conducting the Execu-
tion, Infection and Propagation analysis to assess the software reliability. The specific errors
made by the subjects vary from one step to another. In step 1) and 2) the commonly made
mistakes include missing links between the state transitions and an incorrect interpretation
of the SRS logic; in step 3) the subjects sometimes found manually applying the analysis



2440 Empir Software Eng (2016) 21:2413–2455

Table 8 Grading policy used in
our study No Error Type Points obtained

1 Missing 0

2 Partially incorrect 0.5

3 Correct 1

4 Extra −1

relating to predicates difficult. However, the grading policy in Table 8 is designed to be
general for all three steps.

2) Time (T): T is the total amount of time to complete a test problem, in number of min-
utes. Each subject completed one small problem manually, one small problem using
the tool, one larger problem manually and one larger problem using the tool. Therefore,
which method is more time consuming can be investigated.

3) Total Number of Errors (NE): The total number of errors committed by a sub-
ject. This measure only counts the total number of errors committed by a subject
without considering the specific error type. It is a complement of EI because the
grading policy of EI is subjective, and the researcher’s evaluation of the error
type is subjective, too.

4) Difference between number of “missing” errors for the manual analysis and number
of “missing” errors for the tool analysis (Missing). This measure only considers the
number of “missing” errors committed by a subject. For a certain subject, this measure
is defined as the number of “missing” errors committed during manual analysis minus
the number of “missing” errors committed during tool analysis.

5) Difference between number of “partially incorrect” errors for the manual analysis and
number of “partially incorrect” errors for the tool analysis (Incorrect). This measure
only considers the number of “partially incorrect” errors committed by a subject. For
a certain subject, this measure is defined as the number of “partially incorrect” errors
committed during manual analysis minus the number of “partially incorrect” errors
committed during tool analysis.

6) Ease of Learning (Ease): A subjective measure evaluating the ease of learning. Four
levels of ease are considered: 4-very easy, 3-easy, 2-moderately difficult, 1-very
difficult. The subjects were asked to select one of the four options.

7) Satisfaction (Sat): A subjective measure evaluating the degree of subject satisfaction.
Four levels of satisfaction are considered: 4-very satisfied, 3-satisfied, 2-moderately
dissatisfied, 1-very dissatisfied. The subjects were asked to select one of the four
options.

10.3.4 Hypothesis Test

The general null hypothesis (H0) is that there is no difference between the usability mea-
sures of the manual analysis (M) and those of the ARPS tool analysis (A). The general
alternative hypothesis (HA) is that the difference in the usability measures ofM and A is sig-
nificant. These two hypotheses are tailored for different measures. Based on the normality
of the data, different statistical testing methods are used.



Empir Software Eng (2016) 21:2413–2455 2441

Table 9 The design of experiment

Testing Session #1 Testing Session #2

Group1 Training MT1 AT2 MT3 AT4

Group2 Training AT1 MT2 AT3 MT4

10.3.5 The Design of Experiment

Table 9 summarizes the design of experiment. Group #1 and Group #2 subjects were lec-
tured using the same materials and instructors. However, they did not know that they would
be divided into two groups and taking the test in the way shown in Table 9. This is helpful
to avoid the potential bias caused by grouping the subjects. The training session lasted three
and half days. The two test sessions amount to 1.5 days. The duration for Session #1 and
Session #2 was half day and one day, respectively. There was no time limit for each testing
session, and the subjects spent approximately 3 hours for Session #1 and 6 hours for Session
#2. There were two exam problems in both sessions. In Table 9 MT1 stands for “manually
solve Test #1” and AT2 stands for “solve Test #2 using the ARPS tool”, respectively. The
size of Test #1 and #2 are identical and similarly the size of Test #3 and #4 are identical.
The size is determined by the number of state transitions and predicates in the HLEFSM.
The size of Test #1 and #2 are approximately 10 units and the size of Test #3 and #4 are
approximately 50 units. in scale is a factor of 5.

The main advantage of this design of experiment is that the data collected from Test #1
and Test #2 (i.e., the two small scale problems) can be combined, and the data collected
from Test #3 and Test #4 (i.e., the two larger scale problems) can be combined. Therefore,
the sample size effectively doubles. Eventually 15 data points were obtained for both the
small scale problems and the larger scale problems.

10.4 Training

The training session lasted 3.5 days. There were two 80 minutes classes each morning and
each afternoon. Between the two classes there was a 15 minutes break. The training session
was conducted in a typical classroom and the materials were displayed on slides. Because

y = 0.8781x - 6E-17
R² = 0.8455

-2.5

-1.5

-0.5

0.5

1.5

2.5

-2.5 -1.5 -0.5 0.5 1.5 2.5

EI (Manual) for Small Scale Problems (T1 & T2)

Manual Result
for T1 & T2

Linear (Manual
Result for T1 &
T2)

Fig. 20 Normal probability plot for the manual analysis of the small scale problems



2442 Empir Software Eng (2016) 21:2413–2455

y = 0.7926x - 3E-17
R² = 0.6888

-2.5

-1.5

-0.5

0.5

1.5

2.5

-2.5 -1.5 -0.5 0.5 1.5 2.5

EI (Tool) for Small Scale Problems (T1 & T2)

Tool Result for
T1 & T2

Linear (Tool
Result for T1 &
T2)

Fig. 21 Normal probability plot for the tool analysis of the small scale problems

the training session was fairly short, only a portion of the methodology and corresponding
tool features were discussed. More specifically, the lectures were about the SRS level, the
Execution and Infection analysis for the following four defects: 1) Missing Instance of Func-
tion; 2) Function with Incorrect Logic; 3) Missing Predicate and 4) Incorrect/Ambiguous
Predicate. The Propagation analysis was not introduced because of the time limit. All Propa-
gation probabilities were directly provided to the subjects. No homework assignments were
given but the students were encouraged to review the class materials by themselves.

10.5 Data Analysis

10.5.1 Error Index (EI)

Figures 20 and 21 display the normal probability plots (Chambers et al. 1983) for the manual
analysis and the tool analysis for the small scale problems (i.e., Test #1 and #2), respectively.
In both cases the data is not normally distributed. The results obtained for manual and tool
for Test #3 and #4 are not normally distributed, either (but they were not shown due to space
limitation). Therefore, the traditional t-test for difference is not applicable and nonparamet-
ric testing methodologies are considered. Both Wilcoxon test (Siegel 1956) and Sign test

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EI

Student Identity

EI for Small Scale Problems (T1 & T2)

manual

tool

Fig. 22 EI of the small scale problems



Empir Software Eng (2016) 21:2413–2455 2443

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EI

Student Identity

EI for Larger Scale Problems (T3 & T4)

manual

tool

Fig. 23 EI of the larger scale problems

(Mendenhall et al. 1989; Dixon 1953) are commonly used nonparametric methodologies.
However, the Wilcoxon test requires a symmetric distribution of the data, a requirement
which is not satisfied in this case. Therefore, the Sign test was applied.

Figures 22 and 23 provide plots for EI for the small scale problems and the larger scale
problems, respectively. For the small scale problems, the tool result is not obviously superior
to (higher than) the manual result, since the two lines cross each other. However, for the
larger scale problems, the tool result is systematically superior to the manual result. Sign test
was applied to both the small scale problems and the larger scale problems. The statistics
are summarized in Table 10.

From Table 10 it can be seen that the two-tailed p-value for the small scale problems is
fairly large (0.180), which means that the null hypothesis cannot be rejected at the signifi-
cance level of α = 0.05, i.e., the tool EI is not obviously different from the manual EI.
The statistical power is also small (0.195). However, for the larger scale problems, the p-
value is very small (1E-4), which means that the tool EI is very different from the manual
EI. The corresponding statistical power is large (0.970). The 98.7 % confidence intervals
are also listed in the table (98.7 % is calculated based on the total number of non-zero data
points, which is 14). Similar inference can be obtained: for the small scale problems the tool
EI is not obviously better than the manual EI, since the confidence interval is symmetric

Table 10 EI statistics summary (a score expressed as the percentage of a task correctly completed by a
subject)

EITool – EIManual (%)

Tests Test 1&2 Test 3&4

No. data points 15 (14 nonzero) 15 (14 nonzero)

Mean 1.4 15.5

Standard Deviation 15.8 15.3

p-value (two-tailed) 0.180 1E-4

Statistical Power (α ≤ 0.05) 0.195 0.970

Confidence Interval (CI) 98.7 % CI is (-20.3, 13.4) 98.7 % CI is (1.0, 28.9)



2444 Empir Software Eng (2016) 21:2413–2455

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T (Min)

Student Identity

T for Small Scale Problems (T1 & T2)

manual

tool

Fig. 24 T for the small scale problems

with respect to 0. However, for the larger scale problems the tool EI is seemingly superior
to the manual EI, since the entire confidence interval is above 0.

10.5.2 Time (T)

The measure Time does not follow a normal distribution either. Hence the Sign test is used.
(In fact none of the measures follow a normal distribution and hence the Sign test is used in
all cases). Figures 24 and 25 provide the plots for T for the small scale problems and larger
scale problems, respectively. For the small scale problems the manual analysis and the tool
analysis prove to be equally time consuming. However, for the larger scale problems the
tool analysis saves time for 12 out of 15 subjects. Table 11 lists the specific statistics: for
the small scale problems the p-value is large (0.791) and the statistical power is small; how-
ever, for the larger scale problems the p-value is small (0.035), meaning that the difference
between the manual T value and the tool T value is significant. The statistical power (0.648)
is also much larger than that observed for small scale problems.

10.5.3 Total Number of Errors (NE)

Figures 26 and 27 display the plots for NE and Table 12 lists the specific statistics.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T (Min)

Student Identity

T for Larger Scale Problems (T3 & T4)

manual

tool

Fig. 25 T for the larger scale problems



Empir Software Eng (2016) 21:2413–2455 2445

Table 11 T statistics summary

TManual – TTool (Min)

Tests Test 1&2 Test 3&4

No. data points 15 (14 nonzero) 15 (15 nonzero)

Mean 5.5 25.8

Standard Deviation 29.6 62.6

p-value (two-tailed) 0.791 0.035

Statistical Power (α ≤ 0.05) 0.028 0.648

Confidence Interval (CI) 94.3 % CI is (-30.0, 30.0) 96.5 % CI is (11.0, 60.0)

Figure 26 displays that the manual NE for small scale problems crosses the tool NE,
which indicates that the difference is not significant. The p-value is 0.180, which is fairly
large. The 98.7 % confidence interval is (-4, 6) which contains 0. However, for the larger
scale problems the difference is significant as illustrated in Table 12. The statistics in
Fig. 27 shows the same conclusion. The p-value is very small (0.002) and the 98.7 % con-
fidence interval is above 0. The power of the test is also large (0.915). Therefore, it can
be concluded that the tool NE for the larger scale problems is superior to (i.e., smaller
than) the manual NE. The subjects tend to make fewer mistakes with the assistance of the
tool.

10.5.4 Number of “Missing” Errors (Missing) and “Partially Incorrect” Errors
(Incorrect)

The tool is effect on the number of “missing” errors and “partially incorrect” errors is also
investigated. Note that the number of “extra” errors is not considered because there are too
few to support any statistically meaningful comparisons.

Figure 28 displays the plot for (the number of errors of type) Missing, where the dif-
ference between the manual Missing and the tool Missing is directly shown. When the test
problems are small, the tool does not really help reduce the number of “missing” errors,
since the plot oscillates around the horizontal axis. However, when the problems become
larger, the manual Missing is much larger than the tool Missing, implying that the tool sig-
nificantly reduces the number of “missing” errors. Table 13 provides the detailed statistical

0

5

10

15

20

25

0 5 10 15

NE

Student Identity

NE for Small Scale Problems (T1 & T2)

manual

tool

Fig. 26 NE for small scale problems



2446 Empir Software Eng (2016) 21:2413–2455

0
20
40
60
80

100
120
140
160

0 5 10 15

NE

Student Identity

NE for Larger Scale Problems (T3 & T4)

manual

tool

Fig. 27 NE for larger scale problems

results: For the small scale problems the p-value is very large (0.774) meaning that the null
hypothesis cannot be rejected, while for the larger scale problems the p-value is very small
(0.006). Both confidence intervals support the statistical inference, too.

Figure 29 provides the plot for (the number of errors of type) Incorrect, where the dif-
ference between the manual Incorrect and the tool Incorrect is displayed. In this case both
plots are mostly above the horizontal axis, which means that the tool is useful for mitigat-
ing “partially incorrect” errors, regardless of the problem scale. Table 14 shows that both
p-values are small. However, it should be noted that for both cases the statistical power is
medium.

10.5.5 Ease of Learning (Ease)

Figure 30 displays the plot for Ease, which is designed to investigate the subjects’ percep-
tion of the ease of use of the two methodologies. For all subjects the tool Ease is higher
than or equal to the manual Ease. However, in only 4 instances is the difference differ-
ent from zero and hence the statistics are not adequate: The two-tailed p-value is 0.125,
which is not small enough to make any meaningful inference. Neither confidence inter-
val nor statistical power can be calculated because of the small number of non-zero data
points.

Table 12 T statistics summary

NEManual – NETool

Tests Test 1&2 Test 3&4

No. data points 15 (14 nonzero) 15 (14 nonzero)

Mean 1.4 22.1

Standard Deviation 4.3 22.2

p-value (two-tailed) 0.180 0.002

Statistical Power (α ≤ 0.05) 0.195 0.915

Confidence Interval (CI) 98.7 % CI is (-4, 6) 98.7 % CI is (1, 46)



Empir Software Eng (2016) 21:2413–2455 2447

-10

0

10

20

30

40

50

60

70

80

0 5 10 15

Missing

Student Identity

Missing (Manual - Tool) 

Small Scale

Larger Scale

Fig. 28 Plot for Missing

10.5.6 Satisfaction (Sat)

Figure 31 displays the plot for Sat, which is designed to investigate the subjects’ perceived
level of satisfaction with the two methodologies. For 14 out of 15 subjects, the level of sat-
isfaction with the tool is equal to or higher than the level of satisfaction with the manual
analysis. However, because the number of non-zeros is small (6), the statistics are inade-
quate: the two-tailed p-value is as high as 0.219 and the statistical power is still fairly low
(0.339).

10.5.7 Summary of all Results

Table 15 summarizes all results. As already discussed, the usability measures for the ARPS
tool are not superior to those for the manual analysis when applied to the small scale prob-
lems (Test 1&2): for EI, T, NE and Missing, the two-tailed p-values are large and the
statistical powers are small. However, for the larger scale problems (Test 3&4) these four
usability measures indicate that the tool not only helps mitigate various types of errors but
also saves time for the analyst. All four p-values are small and the corresponding statistical
powers are fairly large. The measure Incorrect is slightly different from the others: for both
small scale and larger scale problems the p-values are small and the statistical powers are
medium. While there is evidence that the tool helps avoid “Partially incorrect” errors, the
statistics indicate that further evidence is needed.

Table 13 NE statistics summary

Missing

Tests Test 1&2 Test 3&4

No. data points 15 (12 nonzero) 15 (12 nonzero)

Mean -0.5 18.4

Standard Deviation 4.1 20.9

p-value (two-tailed) 1.000 0.006

Statistical Power (α ≤ 0.05) 0.039 0.920

Confidence Interval (CI) 96.1 % CI is (-6, 3) 96.1 % CI is (3, 38)



2448 Empir Software Eng (2016) 21:2413–2455

-4

-2

0

2

4

6

8

10

12

14

0 5 10 15

Incorrect

Student Identity

Incorrect (Manual - Tool) 

Small Scale

Larger Scale

Fig. 29 Plot for Incorrect

Observation of subjects’ performance shows that the automation features of the ARPS
tool help avoid errors. When the subjects applied the defect templates to map the defects
manually, they made mistakes in drawing the modified branches. This did not occur during
the tool analysis since the tool automatically generated the modified branches. Mistakes in
the modified HLEFSM also propagated to the reliability assessment, which further dete-
riorated the manual results. Additional mistakes were made during the manual Execution,
Infection and Propagation analysis, which can be effectively avoided by using the tool as
well. Therefore, automation features are the most valuable contribution of our tool and
hence more such features should be introduced in the future.

10.5.8 Threats to Validity

Internal validity The subjects used in this experiment are different from the potential
users of the ARPS tool, which may pose threats to validity. In this subsection possible threats
to internal validity are discussed.

1) Selection bias

Our research subjects are junior and senior engineering undergraduate students.
Although it is possible that senior students are more knowledgeable than juniors, the differ-
ence should not affect the results. The reason is that the EFSM-based RePS methodology

Table 14 Incorrect statistics summary

Incorrect

Tests Test 1&2 Test 3&4

No. data points 15 (14 nonzero) 15 (14 nonzero)

Mean 1.7 2.8

Standard Deviation 2.0 3.9

p-value (two-tailed) 0.013 0.057

Statistical Power (α ≤ 0.05) 0.676 0.4

Confidence Interval (CI) 94.3 % CI is (1, 3) 94.3 % CI is (1, 5)



Empir Software Eng (2016) 21:2413–2455 2449

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 5 10 15

Ease

Student Identity

Plot for Ease

manual

tool

Fig. 30 Plot for Ease

and ARPS tool are new to all subjects. They are not based on pre-existing knowledge selec-
tively accessible to some of the subjects. In addition, the difference in subjects’ major should
have no effect on the results. This is because learning our techniques requires an average
level of programming knowledge and mathematics shared by all engineering students.

2) Rivalry

All subjects were trained identically and did not know a priori that they would be grouped.
Thus there was no possible rivalry between the two groups during the training session. The
subjects were informed that the exams taken by each group were the same. However, they
did not know that the techniques applied by the other group to solve the same problems were
actually different. Therefore, the desire to out-perform the other group should be minimized.

3) History

The duration of the entire experiment was only 5 days and it was during the summer
break. Thus the possibility that any events outside the experiment happened to all 15 subjects
and further caused changes to their attributes can be ignored.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 5 10 15

Sat

Student Identity

Plot for Sat

manual

tool

Fig. 31 Plot for Sat



2450 Empir Software Eng (2016) 21:2413–2455

Table 15 Summary of all the results

Small Scale Larger Scale

Two-tailed Hypothesis Two-tailed Hypothesis

Measure p-value Power Accepted? p-value Power Accepted?

EITool−Manual 0.180 0.195 No 1E-4 0.97 Yes

TManual−Tool 0.791 0.028 No 0.035 0.648 Yes

NEManual−Tool 0.180 0.195 No 0.002 0.915 Yes

MissingManual−Tool 1.000 0.039 No 0.006 0.920 Yes

IncorrectManual−Tool 0.013 0.676 Yes 0.057 0.4 No

Ease Based on observation, tool is equally or easier to learn than manual analysis

P-value is 0.125. Power cannot be calculated

Sat Based on observation, tool is equally or more satisfying than manual

analysis. P-value is 0.219. Power is 0.339

4) Maturation in skill level

Because the duration of the training was only 3.5 days and the subjects were only encour-
aged to review the materials, it is possible that their level of skill improved during the exams.
However, because (1) two small tests were completed by the subjects in the first test session
where no time limit was assigned and (2) these two tests were sufficiently complex, it is
believed that the subjects reached sufficient level of maturation. In other words, even if the
results for the small scale tests may suffer a loss of internal validity due to maturation, the
results for the larger scale tests should not.

5) Repeated testing

Although exam problems with the same format were used to test the subjects four times,
the possible gain in score does not affect the result. First, the scale of the two problems in
the second day of tests is 5 times larger than the one used in the first day of tests. This helps
mitigate the gain in score. Second, the phenomenon of interest is the difference between
manual and tool analysis. Even if the subjects did better in the second day of tests, as long
as the difference between the subjects’ skill for manual and tool analysis is preserved, the
experimental result is not affected.

6) Mortality/differential attrition

Two subjects dropped after the first morning session. However, only background informa-
tion and an introduction to the techniques was discussed during that session. Thus this bias
does not exist.

External validity Our research subjects are junior and senior engineering undergraduates.
This is because the average users of our tool are from engineering fields with at least a
bachelor’s degree. Therefore, generalizing our findings should be valid since our subjects
have similar background and learning potential as the expected users. Although it is possible
that the expected users are more knowledgeable than the subjects in their particular field
of expertise, learning our methodologies just requires an average level of proficiency in
mathematics, programming and modeling. These characteristics are shared by the potential



Empir Software Eng (2016) 21:2413–2455 2451

users and the student subjects. In addition, it is expected that both students and industry
users are equally novices with regard to this particular technology.

The four tests used during the experiment were designed in such a way that all aspects
of the techniques available at that time were covered. In addition, the example systems used
in the tests are independent of the techniques. Different scales were considered as well.
Therefore, possible biases introduced by the tests themselves should be minimized, and
should not affect external validity.

11 Conclusions and Future Research

In this paper the EFSM-based RePS methodology, the ARPS tool and the experimental
validation are discussed. The ARPS tool extends and implements the EFSM-based RePS
methodology, which is developed to model and calculate software reliability for safety
related software. The EFSM-based RePS methodology is based on the software devel-
opment artifacts and the operational profile information. The SRS and SDD are used to
develop the system representation, which is based on EFSM. Defect templates are intro-
duced for commonly found software defects, which are used to map the defects to the
EFSM representation. The Execution, Infection and Propagation analysis are developed for
software reliability calculation.

An experiment which uses human subjects was conducted to evaluate the usability of the
ARPS tool. During this experiment 15 engineering undergraduate students were recruited,
trained and tested. The result shows that the ARPS tool can help the subjects avoid mistakes
during their analysis as well as reduce the criticality of the mistakes. The subjects seemed to
display a higher level of satisfaction when using the tool and felt the tool was easier to learn.

The future research will be three-folds. First, the theory for the Propagation analysis
should be completed and implemented into the ARPS tool. Second, the code level analysis
should be developed and added into the tool, and the combination and connection between
different hierarchies of the tool need to be studied. Third, the experimental validation on the
other measures of the ARPS tool should be conducted, with more subjects recruited, more
features of the tool involved and more complex exam problems used.

Acknowledgments This paper was prepared as an account of work sponsored by an agency of the U.S.
Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for any third party’s use, or the
results of such use, of any information, apparatus, product, or process disclosed in this report, or represents
that its use by such third party would not infringe privately owned rights. The views expressed in this paper
are not necessarily those of the U.S. Nuclear Regulatory Commission. We are grateful to Kevin Smearsoll
and Boyuan Li for supporting this research.

Appendix

Appendix. List of Acronyms Used in this Paper

A Solve a test problem using ARPS tool
ARPS Automated Reliability Prediction System
BBN Bayesian Belief Networks
EFSM Extended Finite State Machine



2452 Empir Software Eng (2016) 21:2413–2455

Ei The Execution probability of the i-th defect
EI Error index
F False
H Null hypothesis
HA Alternative hypothesis
HLEFSM High Level Extended Finite State Machine
IAP Incorrect/Ambiguous Predicate
Ii The Infection probability of the i-th defect
INP Information Not Post-processed
IP Information Post-processed
IV Internal Variables
LLEFSM Low Level Extended Finite State Machine
M Manually solve a test problem
NE Number of errors
OP Operational Profile
P Set of Predicates; Pressure
PC The correct predicate
pdf Probability density function
Pi The Propagation probability of the i-th defect
PIE Propagation, Infection and Execution analysis
pos Position
PO The original predicate
Pres Pressure
prev Previous
Prob Probability
Re Reliability
RePS Reliability Prediction System
S Set of States
Sat Satisfactory
SDD Software Design Document
SI State Initialized
SNI State Not Initialized
SRGM Software Reliability Growth Model
SRS Software Requirement Specification
SUS’s Software under study’s
T Set of Transactions; Temperature; True
T Time
T1 Test #1
T2 Test #2
Temp Temperature
V1 C Valve #1 closed
V1 O Valve #1 opened
V2 C Valve #2 closed
V2 O Valve #2 opened
V3 C Valve #3 closed
V3 O Valve #3 opened
VCS Valve Control System
� Output Variables
� Input Variables



Empir Software Eng (2016) 21:2413–2455 2453

References

IEEE (1990) IEEE Standard Glossary of Software Engineering Terminology, IEEE Std.610.12-1990. IEEE,
New York

ISO/IEC (2001) ISO/IEC 9126-1: 2001, Software Engineering – Product Quality – Part 1: Quality model
Musa J (1975) A theory of software reliability and its application. IEEE Trans Softw Eng 1(3):312–327
Huang C (2005) Performance analysis of software reliability growth models with testing-effort and change-

point. J Syst Softw 76(2):181–194
Huang C, Kuo S et al. (2007) An assessment of testing-effort dependent software reliability growth models.

IEEE Trans Reliab 56(2):198–211
Mills H (1972) On the statistical validation of computer programs. IBM Federal Systems Division Report:72–

6015
Walia G, Carver J (2008) The Effect of the Number of Defects on Estimates Produced by Capture-Recapture

Models. In: Software Reliability Engineering, 2008. ISSRE 2008. 19th International Symposium on, pp.
305-306

Li M, Smidts C (2003) A ranking of software engineering measures based on expert opinion, vol 29, pp 24–
811

Pham H (2007) System software reliability. Springer
Smidts C, Huang F et al. (2015) A Method for Quantifying the Dependability Attributes of Software-

Based Safety Critical Instrumentation Control Systems in Nuclear Power Plants. In: Proc. NPIC-HMIT
2015

Huang F, Liu B (2013) Study on the correlations between program metrics and defect rate by a controlled
experiment. Int J Softw Eng 7(3):114–120

Huang F, Liu B et al. (2015) The impact of software process consistency on residual defects. Journal of
Software Evolution and Process

Smidts C, Li M (2004) Validation of A Methodology for Assessing Software Quality. NUREG/CR-6848,
Office of Nuclear Regulatory Research, Washington DC

Smidts C, Li M et al. (2010) A Large Scale Validation of a Methodology for Assessing Software Reliability.
NUREG/CR-7042, Office of Nuclear Regulatory Research, Washington DC

Li X, Gupta J et al. (2013) ARPS: An Automated Reliability Prediction System Tool for Safety Critical
Software, PSA 2013, Columbia, South Carolina, September 22-27

Wang CJ, Liu MT (1993) Generating Test Cases for EFSM with Given Fault Models. In: Proceedings of 12th
IEEE Computer and Communications Societies

Voas J (1992) PIE: A Dynamic Failure-Based Technique. IEEE Trans Softw Eng 18(8)
Lyu M (1996) Handbook of software reliability engineering. Vol. 222. IEEE computer society press, CA
Smidts C, Li B et al. (2002) Software Reliability Models, vol 2, 2nd ed. Wiley, New York, pp 1594–1610
Pandey A, Goyal N (2013) Early Software Reliability Prediction. Springer
Cheung L, Roshandel R et al. (2008) Early prediction of software component reliability. In: Proceedings of

the 30th international conference on Software engineering, pp. 111–120
Gaffney G, Pietrolewiez J (1990) An automated model for software early error prediction (SWEEP). In:

Proceeding of 13th Minnow Brook Workshop on Software Reliability
Fenton N, Neil M (1999) A critique of software defect prediction models. IEEE Trans Softw Eng 25(5):675–

689
Langseth H, Portinale L (2007) Bayesian networks in reliability. Reliab Eng Syst Saf 92(1):92–108
Gokhale S, Trivedi K (2006) Analytical models for architecture-based software reliability prediction: a

unification framework. IEEE Trans Reliab 55(4):578–590
Lyu M, Nikora A (1992) CASRE: a computer-aided software reliability estimation tool. In: Computer-Aided

Software Engineering, 1992. Proceedings., Fifth International Workshop on, pp. 264-275
Ramani S, Gokhale S et al. (2000) SREPT: software reliability estimation and prediction tool. Perform Eval

39(1):37–60
Chen C, Lin C et al. (2006) CARATS: a computer-aided reliability assessment tool for software based on

object-oriented design. In: TENCON 2006. 2006 IEEE Region 10 Conference, pp. 1-4
Wang W, Scannell D (2005) An architecture-based software reliability modeling tool and its support for

teaching. In: Frontiers in Education, 2005. FIE’05. Proceedings 35th Annual Conference, pp. T4C-T4C
Boudali H, Dugan J (2006) A continuous-time Bayesian network reliability modeling, and analysis

framework. IEEE Trans Reliab 55(1):86–97
IEEE Computer Society (1998) Software Engineering Standards Committee, and IEEE-SA Standards Board.

IEEE Recommended Practice for Software Requirements Specifications. IEEE Std 830 -1998, Institute
of Electrical and Electronics Engineers



2454 Empir Software Eng (2016) 21:2413–2455

Musa J, Lannino A et al. (1987) Software Reliability-Measurement, Prediction, Applications. McGraw-Hill,
New York

Musa J (1993) Operational profiles in software-reliability engineering. Software, IEEE 10(2):14–32
Lam M, Sethi R et al. (2006) Compilers: Principles, Techniques, and Tools
Wolfram (2014) Equation solving. http://reference.wolfram.com/language/guide/EquationSolving.html.

[Retrieved: 2014-10-14]
Mathworks (2014) Solve equations and inequalities. http://www.mathworks.com/help/symbolic/mupad ref/

solve.html. [Retrieved: 2014-10-14]
IEEE Computer Society (1998) Software & System Engineering Standards Committee, IEEE Standard

for Information Technology—Systems Design—Software Design Descriptions IEEE Std 1016-1998,
Institute of Electrical and Electronics Engineers

Booch G, Rumbaugh J et al. (2005) Unified Modeling Language User Guide, the 2nd Edition. Addison-
Wesley

Huang F, Liu B et al. (2014) The links between human error diversity and software diversity: Implications
for fault diversity seeking. Science of Computer Programming 89(Part C):350–373

Chambers J, Cleveland W et al. (1983) Graphical Methods for Data Analysis. Wadsworth
Siegel S (1956) Non-parametric statistics for the behavioral sciences, New York: McGraw-Hill, pp 75–83
Mendenhall W, Wackerly D et al. (1989) 15: Nonparametric statistics, Fourth ed. PWS-Kent, pp 674–679
Dixon W (1953) Power functions of the sign test and power efficiency for normal alternatives. Ann Math

Stat:467–473
Li B, Li M et al. (2005) Integrating software into PRA: A software-related failure mode taxonomy. Risk Anal

26(4)

Dr. Xiang Li received his PhD from the Nuclear Engineering Program in the Ohio State University (OSU)
in 2015. Before joining to OSU he obtained his B.S and M.S from the Department of Engineering Physics
in Tsinghua University. His research interests include software reliability, automatic software testing and
software safety. His research has been funded by government agencies such as FAA, NRC, and DOE.

http://reference.wolfram.com/language/guide/EquationSolving.html.
http://www.mathworks.com/help/symbolic/mupad_ref/solve. html.
http://www.mathworks.com/help/symbolic/mupad_ref/solve. html.


Empir Software Eng (2016) 21:2413–2455 2455

Dr. Chetan Mutha has a Phd in Mechanical Engineering from The Ohio State University advised by Pro-
fessor Smidts. His research interests include systems and software reliability assessment, integrated system
design and analysis, and fault diagnosis early in the design phase. He has published several conference and
journal papers. His research has been funded through government agencies such as the Air Force Office of
Scientific Research (AFOSR), DoD, and NRC. Currently, he works as technical advisor at Oblon, llc.

Dr. Carol S. Smidts is a Professor in the Department of Mechanical and Aerospace Engineering at Ohio
State University. She graduated with a BS/MS and PhD from the Université Libre de Bruxelles, Belgium,
in 1986 and 1991, respectively. She was a Professor at the University of Maryland at College Park in the
Reliability Engineering Program from 1994 to 2008. Her research interests are in software reliability, SW
safety, SW testing, PRA, and human reliability. She is a senior member of the Institute of Electrical and
Electronic Engineers; an Associate Editor of IEEE Transactions on Reliability; and a member of the editorial
board of Software Testing, Verification, and Reliability.


	An automated software reliability prediction system for safety critical software
	Abstract
	Introduction
	Related Work
	Layout of the ARPS Tool
	Collecting Information About the Software Requirement Specification (SRS) and Constructing the Original HLEFSM
	Mapping SRS Defects to the Original HLEFSM
	Execution, Infection and Propagation Analysis for Software Reliability Evaluation
	Formula for Software Reliability Calculation
	Execution Analysis
	Infection Analysis
	Propagation Analysis

	SDD Level Analysis I: Constructing the Original LLEFSM Using the SDD Information
	SDD Level Analysis II: Mapping SDD Defects to the Original LLEFSM and Performing the Infection Analysis
	Mapping Defect #2 to the Original LLEFSM and Performing the Infection Analysis
	Another Example to Demonstrate the SRS-SDD Defect Mapping and Failure Probability Assessment

	Code Level Analysis
	Experimental Validation of ARPS' Usability
	Introduction
	Research Subject Identification
	Research Design
	Questions to be Answered in this Experiment.
	The Variables of the Experiment.
	The Usability Measures
	Hypothesis Test
	The Design of Experiment

	Training
	Data Analysis
	Error Index (EI)
	Time (T)
	Total Number of Errors (NE)
	Number of ``Missing'' Errors (Missing) and ``Partially Incorrect'' Errors (Incorrect)
	Ease of Learning (Ease)
	Satisfaction (Sat)
	Summary of all Results
	Threats to Validity
	Internal validity
	 External validity



	Conclusions and Future Research
	Acknowledgments
	Appendix 1 
	References


