
Empir Software Eng (2016) 21:1533–1578
DOI 10.1007/s10664-015-9401-9

Automated bug assignment: Ensemble-based machine
learning in large scale industrial contexts

Leif Jonsson1,2 ·Markus Borg3 ·David Broman4,5 ·
Kristian Sandahl2 ·Sigrid Eldh1 ·Per Runeson3

Published online: 10 September 2015
© Springer Science+Business Media New York 2015

Abstract Bug report assignment is an important part of software maintenance. In partic-
ular, incorrect assignments of bug reports to development teams can be very expensive in
large software development projects. Several studies propose automating bug assignment
techniques using machine learning in open source software contexts, but no study exists for
large-scale proprietary projects in industry. The goal of this study is to evaluate automated
bug assignment techniques that are based on machine learning classification. In particular,

Communicated by: Sunghun Kim

� Leif Jonsson
leif.jonsson@ericsson.com

Markus Borg
markus.borg@cs.lth.se

David Broman
dbro@kth.se

Kristian Sandahl
kristian.sandahl@liu.se

Sigrid Eldh
sigrid.eldh@ericsson.com

Per Runeson
per.runeson@cs.lth.se

1 Ericsson AB, Torshamnsgatan 35 Kista, Stockholm, Sweden

2 Department of Computer and Information Science, Linköping University,
SE-581 83 Linköping, Sweden

3 Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden

4 KTH Royal Institute of Technology, 164 40 Kista, Sweden

5 UC Berkeley, Berkeley, CA 94720, USA

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10664-015-9401-9-x&domain=pdf
http://orcid.org/0000-0002-8989-0251
mailto:leif.jonsson@ericsson.com
mailto:markus.borg@cs.lth.se
mailto:dbro@kth.se
mailto:kristian.sandahl@liu.se
mailto:sigrid.eldh@ericsson.com
mailto:per.runeson@cs.lth.se

1534 Empir Software Eng (2016) 21:1533–1578

we study the state-of-the-art ensemble learner Stacked Generalization (SG) that combines
several classifiers. We collect more than 50,000 bug reports from five development projects
from two companies in different domains. We implement automated bug assignment and
evaluate the performance in a set of controlled experiments. We show that SG scales to
large scale industrial application and that it outperforms the use of individual classifiers
for bug assignment, reaching prediction accuracies from 50 % to 89 % when large train-
ing sets are used. In addition, we show how old training data can decrease the prediction
accuracy of bug assignment. We advice industry to use SG for bug assignment in pro-
prietary contexts, using at least 2,000 bug reports for training. Finally, we highlight the
importance of not solely relying on results from cross-validation when evaluating automated
bug assignment.

Keywords Machine learning · Ensemble learning · Classification · Bug reports ·
Bug assignment · Industrial scale; Large scale

1 Introduction

In large projects, the continuous inflow of bug reports1 challenges the developers’ abil-
ities to overview the content of the Bug Tracking System (BTS) (Bettenburg et al.
2008; Just et al. 2008). As a first step toward correcting a bug, the corresponding
bug report must be assigned to a development team or an individual developer. This
task, referred to as bug assignment, is normally done manually. However, several stud-
ies report that manual bug assignment is labor-intensive and error-prone (Baysal et al.
2009; Jeong et al. 2009; Bhattacharya et al. 2012), resulting in “bug tossing” (i.e., reas-
signing bug reports to another developer) and delayed bug corrections. Previous work
report that bug tossing is frequent in large projects; 25 % of bug reports are reas-
signed in the Eclipse Platform project (Anvik and Murphy 2011) and over 90 % of the
fixed bugs in both the Eclipse Platform project and in projects in the Mozilla foun-
dation have been reassigned at least once (Bhattacharya et al. 2012). Moreover, we
have previously highlighted the same phenomenon in large-scale maintenance at Ericsson
(Jonsson et al. 2012).

Several researchers have proposed improving the situation by automating bug assign-
ment. The most common automation approach is based on classification using supervised
Machine Learning (ML) (Anvik et al. 2006; Jeong et al. 2009; Alenezi et al. 2013) (see
Section 2 for a discussion about machine learning and classification). By training a classi-
fier, incoming bug reports can automatically be assigned to developers. A wide variety of
classifiers have been suggested, and previous studies report promising prediction accura-
cies ranging from 40 % to 60 % (Anvik et al. 2006; Ahsan et al. 2009; Jeong et al. 2009;
Lin et al. 2009). Previous work has focused on Open Source Software (OSS) development
projects, especially the Eclipse and Mozilla projects. Only a few studies on bug assignment
in proprietary development projects are available, and they target small organizations (Lin
et al. 2009; Helming et al. 2011). Although OSS development is a relevant context to study,
it differs from proprietary development in aspects such as development processes, team

1Other common names for bug report include issues, tickets, fault reports, trouble reports, defect reports,
anomaly reports, maintenance requests, and incidents.

Empir Software Eng (2016) 21:1533–1578 1535

structure, and developer incentives. Consequently, whether previous research on automated
bug assignment applies to large proprietary development organizations remains an open
question.

Researchers have evaluated several different ML techniques for classifying bug reports.
The two most popular classifiers in bug assignment are Naive Bayes (NB) and Support
Vector Machines (SVM), applied in pioneering work by Cubranic and Murphy (2004) and
Anvik et al. (2006), respectively. Previous work on bug assignment has also evaluated sev-
eral other classifiers, and compared the prediction accuracy (i.e., the proportion of bug
reports assigned to the correct developer) with varying results (Anvik et al. 2006; Ahsan
et al. 2009; Helming et al. 2011; Anvik and Murphy 2011; Bhattacharya et al. 2012). To
improve the accuracy, some authors have presented customized solutions for bug assign-
ment, tailored for their specific project contexts (e.g., Xie et al. (2012) and Xia et al. (2013)).
While such approaches have the potential to outperform general purpose classifiers, we
instead focus on a solution that can be deployed as a plug-in to an industrial BTS with
limited customization. On the other hand, our solution still provides a novel technical con-
tribution in relation to previous work on ML-based bug assignment by combining individual
classifiers.

Studies in other domains report that ensemble learners, an approach to combine clas-
sifiers, can outperform individual techniques when there is diversity among the individual
classifiers (Kuncheva and Whitaker 2003). In recent years, combining classifiers has been
used also for applications in software engineering. Examples include effort estimation (Li
et al. 2008), fault localization (Thomas et al. 2013), and fault classification (Xia et al.
2013). In this article, we propose using Stacked Generalization (SG) (Wolpert 1992) as the
ensemble learner for improving prediction accuracy in automated bug assignment. SG is a
state-of-the-art method to combine output from multiple classifiers, used in a wide variety
of applications. One prominent example was developed by the winning team of the Net-
flix Prize, where a solution involving SG outperformed the competition in predicting movie
ratings, and won the $1 million prize (Sill et al. 2009). In the field of software engineer-
ing, applications of SG include predicting the numbers of remaining defects in black-box
testing (Li et al. 2011), and malware detection in smartphones (Amamra et al. 2012). In
a previous pilot study, we initially evaluated using SG for bug assignment with promising
results (Jonsson et al. 2012). Building on our previous work, this paper constitutes a deeper
study using bug reports from different proprietary contexts. We analyze how the prediction
accuracy depends on the choice of individual classifiers used in SG. Furthermore, we study
learning curves for different systems, that is, how the amount of training data impacts the
overall prediction accuracy.

We evaluate our approach of automated bug assignment on bug reports from five large
proprietary development projects. Four of the datasets originate from product development
projects at a telecom company, totaling more than 35,000 bug reports. To strengthen the
external validity of our results, we also study a dataset of 15,000 bug reports, collected from
a company developing industrial automation systems. Both development contexts constitute
large-scale proprietary software development, involving hundreds of engineers, working
with complex embedded systems. As such, we focus on software engineering much different
from the OSS application development that has been the target of most previous work.
Moreover, while previous work address bug assignment to individual developers, we instead
evaluate bug assignment to different development teams, as our industrial partners report
this task to be more important. In large scale industrial development it makes sense to assign
bugs to a team and let the developers involved distribute the work internally. Individual
developers might be unavailable for a number of reasons, e.g., temporary peaks of workload,

1536 Empir Software Eng (2016) 21:1533–1578

sickness, or employee turnover, thus team assignment is regarded as more important by our
industry partners.

The overall goal of our research is to support bug assignment in large proprietary
development projects using state-of-the-art ML. The focus of the paper is not to compare
how specific classifiers behave on OSS data and industry data. Instead, the aim is to see if
ML strategies, which have been applied in OSS contexts, also are applicable in industrial
settings. This is particularly important because there are many differences in the way
people are working in OSS projects and large scale industry projects. We further refine this
goal into four Research Questions (RQ):

RQ1 Does stacked generalization outperform individual classifiers?
RQ2 How does the ensemble selection in SG affect the prediction accuracy?
RQ3 How consistent learning curves does SG display across projects?
RQ4 How does the time locality of training data affect the prediction accuracy?

To be more specific, our contributions are as follows:

• We synthesize results from previous studies on automated bug assignment and present
a comprehensive overview (Section 3).

• We present the first empirical studies of automated bug assignment with data originat-
ing from large proprietary development contexts, where bug assignments are made at
team level (Section 4).

• We conduct a series of experiments to answer the above specified research ques-
tions (Section 5) and report the experimental results and analysis from a practical bug
assignment perspective (Section 6), including analyzing threats to validity (Section 7).

• We discuss the big picture, that is, the potential to deploy automated support for bug
assignment in the two case companies under study (Section 8).

2 Machine Learning

Machine learning is a field of study where computer programs can learn and get better at
performing specific tasks by training on historical data. In this section, we discuss more
specifically what machine learning means in our context, focusing on supervised machine
learning—the type of machine learning technique used in this paper.

2.1 Supervised Machine Learning Techniques and Their Evaluation

In supervised learning, a machine learning algorithm is trained on a training set (Bishop
2006). A training set is a subset of some historical data that is collected over time. Another
subset of the historical data is the test set, used for evaluation. The evaluation determines
how well the system performs with respect to some metric. In our context, an example
metric is the number of bug reports that are assigned to correct development teams, that
is, the teams that ended up solving the bugs. The training set can, in turn, be split into
disjoint sets for parameter optimization. These sets are called hold-out or validation sets.
After the system has been trained on the training data, the system is then evaluated on each
of the instances in the test set. From the point of view of the system, the test instances are
completely new since none of the instances in the training set are part of the test set.

Empir Software Eng (2016) 21:1533–1578 1537

To evaluate the predictions, we apply cross-validation with stratification (Kohavi 1995).
Stratification means that the instances in the training sets and the test sets are selected to be
proportional to their distribution in the whole dataset. In our experiments, we use stratified
10-fold cross-validation, where the dataset is split into ten stratified sets. Training and eval-
uation are then performed ten times, each time shifting the set used for testing. The final
estimate of accuracy of the system is the average of these ten evaluations.

In addition to 10-fold cross-validation, we use two versions of timed evaluation to closely
replicate a real world scenario: sliding window and cumulative time window. In the slid-
ing window evaluation, both the training set and the test set have fixed sizes, but the time
difference between the sets varies by selecting the training set farther back in time. Sliding
window is described in more details in Section 5.5.4. The sliding window approach makes
it possible to study how time locality of bug reports affects the prediction accuracy of a
system.

The cumulative time window evaluation also has a fixed sized test set, but increases the
size of the training set by adding more data farther back in time. This scheme is described
in more details in Section 5.5.5. By adding more bug reports incrementally, we can study if
adding older bug reports is detrimental to prediction accuracy.

2.2 Classification

We are mainly concerned with the type of machine learning techniques called classifica-
tion techniques. In classification, a software component, called a classifier, is invoked with
inputs that are named features. Features are extracted from the training data instances. Fea-
tures can, for instance, be in the form of free text, numbers, or nominal values. As an
example, an instance of a bug report can be represented in terms of features where the sub-
ject and description are free texts, the customer is a nominal value from a list of possible
customers, and the severity of the bug is represented on an ordinal scale. In the evaluation
phase, the classifier will—based on the values of the features of a particular instance—
return the class that the features correspond to. In our case, the different classes correspond
to the development teams in the organization that we want to assign bugs to. The features
can vary from organization to organization, depending on which data that is collected in the
bug tracking system.

2.3 Ensemble Techniques and Stacked Generalization

It is often beneficial to combine the results of several individual classifiers. The general idea
to combine classifiers is called ensemble techniques. Classifiers can be combined in several
differet ways. In one ensemble technique, called bagging (Breiman 1996), many instances
of the same type of classifier are trained on different versions of the training set. Each clas-
sifier is trained on a new dataset, created by sampling with replacement from the original
dataset. The final result is then obtained by averaging the results from all of the classi-
fiers in the ensemble. Another ensemble technique, called boosting, also involves training
several instances of the same type of classifier on a modified training set, which places dif-
ferent weights on the different training instances. The classifiers are trained and evaluated in
sequence with subsequent classifiers trained with higher weights on instances that previous
classifiers have misclassified. A popular version of boosting is called Adaboost (Freund and
Schapire 1995). Both bagging and boosting use the same type of classifiers in the ensemble
and vary the data the classifiers are trained on.

1538 Empir Software Eng (2016) 21:1533–1578

Stacked Generalization (SG) (Wolpert 1992) (also called stacking or blending) is an
ensemble technique that combines several level-0 classifiers of different types with one
level-1 classifier (see Fig. 1) into an ensemble. The level-1 classifier trains and evalu-
ates all of the level-0 classifiers on the same data and learns (using a separate learning
algorithm) which of the underlying classifiers (the level-0 classifiers) that perform well
on different classes and data. The level-1 training algorithm is typically a relatively
simple smooth linear model (Witten et al. 2011), such as logistic regression. Note that
in stacking, it is completely permissible to put other ensemble techniques as level-0
classifiers.

In this study (see Sections 5 and 6), we are using stacked generalization because this
ensemble technique meets our goal of combining and evaluating different classifiers.

3 Related Work on Automated Bug Assignment

Several researchers have proposed automated support for bug assignment. Most previ-
ous work can either be classified as ML classification problems or Information Retrieval
(IR) problems. ML-based bug assignment uses supervised learning to classify bug reports
to the most relevant developer. IR-based bug assignment on the other hand, consid-
ers bug reports as queries and developers as documents of various relevance given the
query. A handful of recent studies show that specialized solutions for automated bug
assignment can outperform both ML and IR approaches, e.g., by combining informa-
tion in the BTS with the source code repository, or by crafting tailored algorithms
for matching bug reports and developers. We focus the review of previous work on
applications of off-the-shelf classification algorithms, as our aim is to explore combi-
nations of readily available classifiers. However, we also report key publications both
from IR-based bug assignment and specialized state-of-the-art tools for bug assignment
in Section 3.2.

Stacked
Generalizer

Decision Tree
Classifier

SVM
Classifier

KNN
Classifier

Naive Bayes
Classifier

Bayes Net
Classifier

w1

w2 w3 w4
w5

Final Prediction
Classifier

Classifier

Prediction Prediction
Prediction

Legend

Fig. 1 Stacked Generalization

Empir Software Eng (2016) 21:1533–1578 1539

3.1 Automated Bug Assignment Using General Purpose Classifiers

Previous work on ML-based bug assignment has evaluated several techniques. Figure 2
gives a comprehensive summary of the classifiers used in previous work on ML-based bug
assignment. Cubranic and Murphy (2004) pioneered the work by proposing a Naive Bayes
(NB) classifier trained for the task. Anvik et al. (2006) also used NB, but also introduced
Support Vector Machines (SVM), and C4.5 classifiers. Later, they extended that work and
evaluated also rules-based classification and ExpectationMaximization (EM) (Anvik 2007),
as well as Nearest Neighbor (NN) (Anvik and Murphy 2011). Several other researchers
continued the work by Anvik et al by evaluating classification-based bug assignment on
bug reports from different projects, using a variety of classifiers. Ahsan et al. (2009) were
the first to introduce Decision Trees (DT), RBF Network (RBF), REPTree (RT), and Ran-
dom Forest (RF) for bug assignment. The same year, Jeong et al. (2009) proposed to use
Bayesian Networks (BNet). Helming et al. (2011) used Neural Networks (NNet) and Con-
stant Classifier (CC). In our work, we evaluate 28 different classifiers, as presented in
Section 5.

Two general purpose classification techniques have been used more than the others,
namely NB and SVM (cf. Fig. 2). The numerous studies on NB and SVM are in line with
ML work in general; NB and SVM are two standard classifiers with often good results that
can be considered default choices when exploring a new task. Other classifiers used in at
least three previous studies on bug assignment are Bayesian Networks (BNET), and C4.5.
We include both NB and SVM in our study, as presented in Section 5.

Eight of the studies using ML-based bug assignment compare different classifiers. The
previously largest comparative studies of general purpose classifiers for bug assignment
used seven and six classifiers, respectively, (Ahsan et al. 2009; Helming et al. 2011). We
go beyond previous work by comparing more classifiers. Moreover, we propose applying
ensemble learning for bug assignment, i.e., combining several different classifiers.

Figure 2 also displays the features used to represent bug reports in previous work on ML-
based bug assignment. Most previous approaches rely solely on textual information, most
often the title and description of bug reports. Only two of the previous studies combine
textual and nominal features in their solutions. Ahsan et al. (2009) include information about
product, component, and platform, and Lin et al. (2009) complement textual information
with component, type, phase, priority, and submitter. In our study, we complement textual
information by submitter site, submitter type, software revision, and bug priority.

Figure 3 shows an overview of the previous evaluations of automated bug assignment
(including studies presented in Section 3.2). It is evident that previous work has focused
on the context of Open Source Software (OSS) development, as 23 out of 25 studies have
studied OSS bug reports. This is in line with general research in empirical software engi-
neering, explained by the appealing availability of large amounts of data and the possibility
of replications (Robinson and Francis 2010). While there is large variety within the OSS
domain, there are some general differences from proprietary bug management that impact
our work. First, the bug databases used in OSS development are typically publicly avail-
able; anyone can submit bug reports. Second, Paulson et al. (2004) report that defects are
found and fixed faster in OSS projects. Third, while proprietary development often is orga-
nized in teams, an OSS development community rather consists of individual developers.
Also, the management in a company typically makes an effort to maintain stable teams over
time despite employee turnover, while the churn behavior of individual developers in OSS
projects is well-known (Asklund and Bendix 2002; Robles and Gonzalez-Barahona 2006).
Consequently, due to the different nature of OSS development, it is not clear to what extent

1540 Empir Software Eng (2016) 21:1533–1578

Fig. 2 Techniques used in previous studies on ML-based bug assignment. Bold author names indicate com-
parative studies, capital X shows the classifier giving the best results. IR indicates Information Retrieval
techniques. The last row shows the study presented in this paper

previous findings based on OSS data can be generalized to proprietary contexts. Moreover,
we are not aware of any major OSS bug dataset that contains team assignments with which
we can directly compare our work. This is unfortunate since it would be interesting to use
the same set of tools in the two different contexts.

As the organization of developers in proprietary projects tend to be different from
OSS communities, the bug assignment task we study differs accordingly. While all pre-
vious work (including the two studies on proprietary development contexts by Lin et al.
(2009) and Helming et al. (2011)) aim at supporting assignment of bug reports to indi-
vidual developers, we instead address the task of bug assignment to development teams.
Thus, as the number of development teams is much lower than the number of devel-
opers in normal projects, direct comparisons of our results to previous work can not
be made. As an example, according to Open HUB2 (Dec 2014), the number of con-
tributors to some of the studied OSS projects in Fig. 3 are: Linux kernel (13,343),
GNOME (5,888), KDE (4,060), Firefox (3,187), NetBeans (893), gcc (534), Eclipse plat-
form (474), Bugzilla (143), OpenOffice (124), Mylyn (92), ArgoUML (87), Maemo (83),
UNICASE (83), jEdit (55), and muCommander (9). Moreover, while the number of bugs
resolved in our proprietary datasets is somewhat balanced, contributions in OSS commu-
nities tend to follow the “onion model” (Aberdour 2007), i.e., the commit distribution is
skewed, a few core developers contribute much source code, but most developers contribute
only occasionally.

2Formerly Ohloh.net, an open public library presenting analyses of OSS projects (www.openhub.net).

www.openhub.net

Empir Software Eng (2016) 21:1533–1578 1541

Fig. 3 Evaluations performed in previous studies with BTS focus. Bold author names indicate studies eval-
uating general purpose ML-based bug assignment. Results are listed in the same order as the systems appear
in the fourth column. The last row shows the study presented in this paper, even though it is not directly
comparable

Bug reports from the development of Eclipse are used in 14 out of the 21 studies (cf.
Fig. 3). Still, no set of Eclipse bugs has become the de facto benchmark. Instead, differ-
ent subsets of bug reports have been used in previous work, containing between 6,500 and
300,000 bug reports. Bug reports originating from OSS development in the Mozilla founda-
tion is the second most studied system, containing up to 550,000 bug reports (Bhattacharya
et al. 2012). While we do not study bug repositories containing 100,000s of bug reports, our
work involves much larger datasets than the previously largest study in a proprietary con-
text by (Lin et al. 2009) (2,576 bug reports). Furthermore, we study bug reports from five
different development projects in two different companies.

The most common measure to report the success in previous work is accuracy,3 reported
in 10 out of 21 studies. As listed in Fig. 3, prediction accuracies ranging from 0.14 to 0.78
have been reported, with an average of 0.42 and standard deviation of 0.17. This suggests
that a rule of thumb could be that automated bug assignment has the potential to correctly
assign almost every second bug to an individual developer.

3Equivalent to recall when recommending only the most probable developer, aka. the Top-1 recommendation
or Rc@1.

1542 Empir Software Eng (2016) 21:1533–1578

3.2 Other Approaches to Automated Bug Assignment

Some previous studies consider bug assignment as an IR problem, meaning that the incom-
ing bug is treated as a search query and the assignment options are the possible documents
to retrieve. There are two main families of IR models used in software engineering: alge-
braic models and probabilistic models (Borg et al. 2014). For automated bug assignment,
four studies used algebraic models (Chen et al. 2011; Kagdi et al. 2012; Nagwani and Verma
2012; Shokripour et al. 2012). A probabilistic IR model on the other hand, has only been
applied by Canfora and Cerulo (2006). Moreover, only (Linares-Vasquez et al. 2012) eval-
uated bug assignment using both classification and IR in the same study, and reported that
IR displayed the most promising results.

Most studies on IR-based bug assignment report F-scores instead of accuracy. In Fig. 3
we present F-scores for the first candidate developer suggested in previous work (F@1).
The F-scores display large variation; about 0.60 for a study on muCommander and one of
the studies of Eclipse, and very low values on work on Firefox, gcc, and jEdit. The variation
shows that the potential of automated bug assignment is highly data dependent, as the same
approach evaluated on different data can display large differences (Anvik andMurphy 2011;
Linares-Vasquez et al. 2012). A subset of IR-based studies reports neither accuracy nor F-
score. Chen et al. (2011) conclude that their automated bug assignment significantly reduces
bug tossing as compared to manual work. Finally, Kagdi et al. (2012) and Nagwani and
Verma (2012) perform qualitative evaluations of their approaches. Especially the former
study reports positive results.

Three studies on automated bug assignment identified in the literature present tools based
on content-based and collaborative filtering, i.e., techniques from research on Recommen-
dation Systems (Robillard et al. 2014). Park et al. (2011) developed an RS where bug
reports are represented by their textual description extended by the nominal features: plat-
form, version, and development phase. Baysal et al. (2009) presented a framework for
recommending developers for a given bug report, using a vector space analysis of the his-
tory of previous bug resolutions. Matter et al. (2009) matched bug reports to developers
by modelling the natural language in historical commits and comparing them to the textual
content of bug reports.

More recently, some researchers have showed that the accuracy of automated bug assign-
ment can be improved by implementing more advanced algorithms, tailored for both the
task and the context. Tamrawi et al. (2011) proposed Bugzie, an automated bug assignment
approach they refer to as fuzzy set and cache-based. Two assumptions guide their work: 1)
the textual content of bug reports is assumed to relate to a specific technical aspect of the
software system, and 2) if a developer frequently resolves bugs related to such a technical
aspect, (s)he is capable of resolving related bugs in the future. Bugzie models both tech-
nical aspects and developers’ expertise as bags-of-words and matches them accordingly.
Furthermore, to improve the scalability, Bugzie recommends only developers that recently
committed bug resolutions, i.e., developers in the cache. Bugzie was evaluated on more
than 500,000 bug reports from seven OSS projects, and achieved an prediction accuracies
between 30 % and 53 %.

Wu et al. (2011) proposed DREX, an approach to bug assignment using k-nearest neigh-
bour search and social network analysis. DREX recommends performs assignment by:
1) finding textually similar bug reports, 2) extracting developers involved in their resolu-
tion, and 3) ranking the developers expertise by analyzing their participation in resolving
the similar bugs. The participation is based on developers’ comments on historical bug
reports, both manually written comments and comments automatically generated when

Empir Software Eng (2016) 21:1533–1578 1543

source code changes are committed. DREX uses the comments to construct a social net-
work, and approximated participation using a series of network measures. An evaluation
on bug reports from the Firefox OSS project shows the social network analysis of DREX
outperforms a purely textual approach, with a prediction accuracy of about 15 % and recall
when considering the Top-10 recommendations (Rc@10, i.e., the bug is included in the 10
first recommendations) of 0.66.

Servant and Jones (2012) developed WhoseFault, a tool that both assigns a bug to a
developer and presents a possible location of the fault in the source code. WhoseFault is
also different from other approaches reported in this section, as it performs its analysis
originating from failures from automated testing instead of textual bug reports. To assign
appropriate developers to a failure, WhoseFault combines a framework for automated test-
ing, a fault localization technique, and the commit history of individual developers. By
finding the likely position of a fault, and identifying the most active developers of that piece
of source code, WhoseFault reaches a prediction accuracy of 35 % for the 889 test cases
studied in the AspectJ OSS project. Moreover, the tool reports the correct developer among
the top-3 recommendations for 81.44 % of the test cases.

A trending technique to process and analyze natural language text in software engineer-
ing is topic modeling. Xie et al. (2012) use topic models for automated bug assignment in
their approach DRETOM. First, the textual content of bug reports is represented using topic
models (Latent Dirichlet Allocation (LDA) Blei et al. (2003)). Then, based on the bug-topic
distribution, DRETOM maps each bug report to a single topic. Finally, developers and bug
reports are associated using a probabilistic model, considering the interest and expertise of
a developer given the specific bug report. DRETOM was evaluated on more than 5,000 bug
reports from the Eclipse and Firefox OSS projects, and achieved an accuracy of about 15
%. However, considering the Top-5 recommendations the recall reaches 80 % and 50 % for
Eclipse and Firefox, respectively.

Xia et al. (2013) developed DevRec, a highly specialized tool for automated bug assign-
ment, that also successfully implemented topic models. Similar to the bug assignment
implemented in DREX, DevRec first performs a k-nearest neighbours search. DevRec how-
ever calculates similarity between bug reports using an advanced combination of the terms
in the bug reports, its topic as extracted by LDA, and the product and component the bug
report is related to (referred to as BR-based analysis). Developers are then connected to bug
reports based on multi-label learning using ML-KNN. Furthermore, DevRec then also mod-
els the affinity between developers and bug reports by calculating their distances (referred
to as D-based analysis). Finally, the BR-analysis and the D-based analyses are combined to
recommend developers for new bug reports. Xia et al. (2013) evaluated DevRec on more
than 100,000 bug reports from five OSS projects, and they also implemented the approaches
proposed in both DREX and Bugzie to enable a comparison The authors report average
Rc@5 and Rc@10 of 62 % and 74 %, respectively, constituting considerable improvements
compared to both DREX and Bugzie.

In contrast to previous work on specialised tools for bug assignment, we present an
approach based on general purpose classifiers. Furthermore, our work uses standard fea-
tures of bug reports, readily available in a typical BTS. As such, we do not rely on advanced
operations such as mining developers’ social networks, or data integration with the com-
mit history from a separate source code repository. The reasons for our more conservative
approach are fivefold:

1. Our study constitutes initial work on applying ML for automated bug assignment in
proprietary contexts. We consider it an appropriate strategy to first evaluate general

1544 Empir Software Eng (2016) 21:1533–1578

purpose techniques, and then, if the results are promising, move on to further refine
our solutions. However, while we advocate general purpose classifiers in this study, the
way we combine them into an ensemble is novel in automated bug assignment.

2. The two proprietary contexts under study are different in terms of work processes and
tool chains, thus it would not be possible to develop one specialized bug assignment
solution that fits both the organizations.

3. As user studies on automated bug assignment are missing, it is unclear to what extent
slight tool improvements are of practical significance for an end user. Thus, before stud-
ies evaluate the interplay between users and tools, it is unclear if specialized solutions
are worth the additional development effort required. This is in line with discussions on
improved tool support for trace recovery (Borg and Pfahl 2011), and the difference of
correctness and utility of recommendation systems in software engineering (Avazpour
et al. 2014).

4. Relying on general purpose classifiers supports transfer of research results to indus-
try. Our industrial partners are experts on developing high quality embedded software
systems, but they do not have extensive knowledge of ML. Thus, delivering a highly
specialized solution would complicate both the hand-over and the future maintenance
of the tool. We expect that this observation generalizes to most software intensive
organizations.

5. Using general purpose techniques supports future replications in other companies. As
such replications could be used to initiate case studies involving end users, a type of
studies currently missing, we believe this to be an important advantage of using general
purpose classifiers.

4 Case Descriptions

This section describes the two case companies under study, both of which are bigger than
the vast majority of OSS projects. In OSS projects a typical power-law behavior is seen
with a few projects, such as the Linux kernel, Mozilla etc, having large number of contrib-
utors. We present the companies guided by the six context facets proposed by Petersen and
Wohlin (2009), namely product, processes, practices and techniques, people, organization,
and market. Also, we present a simplified model of the bug handling processes used in the
companies. Finally, we illustrate where in the process our machine learning system could
be deployed to increase the level of automation, as defined by Parasuraman et al. (2000).4

4.1 Description of Company Automation

Company Automation is a large international company active in the power and automation
sector. The case we study consists of a development organization managing hundreds of
engineers, with development sites in Sweden, India, Germany, and the US. The develop-
ment context is safety-critical embedded development in the domain of industrial control
systems, governed by IEC 61511.5 A typical project has a length of 12-18 months and fol-
lows an iterative stage-gate project management model. The software is certified to a Safety

4Ten levels of automation, ranging from 0, for fully manual work, to 10, when the computer acts
autonomously ignoring the human.
5Functional safety - Safety instrumented systems for the process industry sector.

Empir Software Eng (2016) 21:1533–1578 1545

Integrity Level (SIL) of 2 as defined by IEC 615086 mandating strict processes on the
development and maintenance activities. As specified by IEC 61511, all changes to safety
classified source code requires a formal impact analysis before any changes are made. Fur-
thermore, the safety standards mandate that both forward and backward traceability should
be maintained during software evolution.

The software product under development is a mature system consisting of large amounts
of legacy code; parts of the code base are more than 20 years old. As the company has a
low staff turnover, many of the developers of the legacy code are still available within the
organization. Most of the software is written in C/C++. Considerable testing takes place to
ensure a very high code quality. The typical customers of the software product require safe
process automation in very large industrial sites.

The bug-tracking system (BTS) in Company Automation has a central role in the change
management and the impact analyses. All software changes, both source code changes and
changes to documentation, must be connected to an issue report. Issue reports are catego-
rized as one of the following: error corrections (i.e., bug reports), enhancements, document
modification, and internal (e.g., changes to test code, internal tools, and administrative
changes). Moreover, the formal change impact analyses are documented as attachments to
individual issue reports in the BTS.

4.2 Description of Company Telecom

Company Telecom is a major telecommunications vendor based in Sweden. We are studying
data from four different development organizations within Company Telecom, consisting
of several hundreds of engineers distributed over several countries. Staff turnover is very
low and many of the developers are senior developers that have been working on the same
products for many years.

The development context is embedded systems in the Information and Communications
Technology (ICT) domain. Development in the ICT domain is heavily standardized, and
adheres to standards such as 3GPP, 3GPP2, ETSI, IEEE, IETF, ITU, and OMA. Company
Telecom is ISO 9001 and TL 9000 certified. At the time the study was conducted, the project
model was based on an internal waterfall-like model, but has since then changed to an Agile
development process.

Various programming languages are used in the four different products. The majority
of the code is written in C++ and Java, but other languages, such as hardware description
languages, are also used.

Two of the four products are large systems in the ICT domain, one is a middleware
platform, and one is a component system. Two of the products are mature with a code base
older than 15 years, whereas the other two products are younger, but still older than 8 years.
All four products are deployed at customer sites world-wide in the ICT market.

Issue management in the design organization is handled in two separate repositories; one
for change requests (planned new features or updates) and one for bug reports. In this study
we only use data from the latter, the BTS.

Customer support requests to Company Telecom are handled in a two layered approach
with an initial customer service organization dealing with initial requests, called Customer
Service Requests (CSR). The task of this organization is to screen incoming requests so that
only hardware or software errors and no other issue, such as configuration problems, are

6Functional safety of Electrical/Electronic/Programmable Electronic safety-related systems.

1546 Empir Software Eng (2016) 21:1533–1578

sent down to the second layer. If the customer support organization believes a CSR to be
a fault in the product, they file a bug report based on the CSR in the second layer BTS. In
this way, the second layer organization can focus on issues that are likely to be faults in the
software. In spite of this approach, some bug reports can be configuration issues or other
problems not directly related to faults in the code. In this study, we have only used data from
the second layer BTS, but there is nothing in principle that prevents the same approach to be
used on the first layer CSR’s. The BTS is the central point in the bug handling process and
there are several process descriptions for the various employee roles. Tracking of analysis,
implementation proposals, testing, and verification are all coordinated through the BTS.

4.3 State-of-Practice Bug Assignment: A Manual Process

The bug handling process of both Company Automation and Telecom are substantially
more complex than the standard process described by Bugzilla (Mozilla 2013). The two
processes are characterized by the development contexts of the organizations. Company
Automation develops safety-critical systems, and the bug handling process must therefore
adhere to safety standards as described in Section 4.1. The standards put strict require-
ments on how software is allowed to be modified, including rigorous change impact
analyses with focus on traceability. In Company Telecom on the other hand, the sheer
size of both the system under development and the organization itself are reflected on
the bug handling process. The resource allocation in Company Telecom is complex and
involves advanced routing in a hierarchical organization to a number of development
teams.

We generalize the bug handling processes in the two case companies and present an
overview model of the currently manual process in Fig. 4. In general, three actors can file
bug reports: i) the developers of the systems, ii) the internal testing organization, and iii)
customers that file bug reports via helpdesk functions. A submitted bug report starts in a bug
triaging stage. As the next step, the Change Control Board (CCB) assigns the bug report
to a development team for investigation. The leader of the receiving team then assigns the
bug report to an individual developer. Unfortunately, the bug reports often end up with the
wrong developer, thus bug tossing (i.e., bug report re-assignment) is common, especially
between teams. The longer history the BTS stores about the bug tossing that takes place, the
more detailed estimate of the savings of our approach can be done. With only the last entry
saved in the BTS one can estimate the prediction accuracy of the system but to calculate the
full saving, the full bug tossing history is needed.

Development

Test

Customer
Support

Bug

Tracking
System
(BTS)

Team 1

Team N

Developer 1

Developer N

Team Leader
CCB

New Bug
Report

New Bug
Report

New Bug
Report

Automatic
Assignment

Bug
Tossing

Fig. 4 A simplified model of bug assignment in a proprietary context

Empir Software Eng (2016) 21:1533–1578 1547

4.4 State-of-the-Art: Automated Bug Assignment

We propose, in line with previous work, to automate the bug assignment. Our approach is
to use the historical information in the BTS as a labeled training set for a classifier. When a
new bug is submitted to the BTS, we encode the available information as features and feed
them to a prediction system. The prediction system then classifies the new bug to a specific
development team. While this resembles proposals in previous work, our approach differs
by: i) aiming at supporting large proprietary organizations, and ii) assigning bug reports to
teams rather than individual developers.

Figure 4 shows our automated step as a dashed line. The prediction system offers deci-
sion support to the CCB, by suggesting which development team that is the most likely
to have the skills required to investigate the issue. This automated support corresponds
to a medium level of automation (“the computer suggests one alternative and executes
that suggestion if the human approves”), as defined in the established automation model
by Parasuraman et al. (2000).

5 Method

The overall goal of our work is to support bug assignment in large proprietary develop-
ment projects using state-of-the-art ML. As a step toward this goal, we study five sets of
bug reports from two companies (described in Section 4), including information of team
assignment for each bug report. We conduct controlled experiments using Weka (Hall et al.
2009), a mature machine learning environment that is successfully used across several
domains, for instance, bioinformatics (Frank et al. 2004), telecommunication (Alshammari
and Zincir-Heywood 2009), and astronomy (Zhao and Zhang 2008). This section describes
the definition, design and setting of the experiments, following the general guidelines
by Basili et al. (1986) and Wohlin et al. (2012).

5.1 Experiment Definition and Context

The goal of the experiments is to study automatic bug assignment using stacked gen-
eralization in large proprietary development contexts, for the purpose of evaluating its
industrial feasibility, from the perspective of an applied researcher, planning deployment of
the approach in an industrial setting.

Table 1 reminds the reader of our RQs. Also, the table presents the rationale of each
RQ, and a high-level description of the research approach we have selected to address
them. Moreover, the table maps the RQs to the five sub-experiments we conduct, and the
experimental variables involved.

5.2 Data Collection

We collect data from one development project at Company Automation and four major
development projects at Company Telecom. While the bug tracking systems in the two
companies show many similarities, some slight variations force us to perform actions to
consolidate the input format of the bug reports. For instance, in Company Automation a
bug report has a field called “Title”, whereas the corresponding field in Company Telecom
is called “Heading”. We align these variations to make the semantics of the resulting fields
the same for all datasets. The total number of bug reports in our study is 15,113 + 35,266 =
50,379. Table 2 shows an overview of the five datasets.

1548 Empir Software Eng (2016) 21:1533–1578

Table 1 Overview of the research questions, all related to the task of automated team allocation
RQ1 RQ2 RQ3 RQ4

Description Does stacked general-
ization outperform in-
dividual classifiers?

How does the ensem-
ble selection in SG af-
fect the prediction ac-
curacy?

How consistent learn-
ing curves does SG dis-
play across projects?

How does the time lo-
cality of training data
affect the prediction
accuracy?

Rationale Confirm the re-
sult of our previous
work (Jonsson et al,
2012).

Explore which ensem-
ble selection performs
the best.

Study how SG per-
forms on different data,
and understand how
much training data is
required.

Understand how SG
should be retrained as
new bug reports are
submitted.

Approach Test the hypothesis:
“SG does not perform
better than individual
classifiers wrt. predic-
tion accuracy”.

Based on RQ1: evalu-
ate three different en-
semble selections.

Using the best en-
semble selection from
RQ2: evaluate learning
curves.

Using the best ensem-
ble selection from RQ2
with amount of train-
ing data from RQ3:
evaluate SG sensitivity
to freshness of training
data.

Related experi-
ments

Exp A, Exp B Exp B Exp C Exp D, Exp E

Dependent
variable

Prediction accuracy

Independent
variables

Individual classifier Ensemble selection Size of training set Time locality of train-
ing data (Exp D), size
of training set (Exp E)

Fixed variables Preprocessing, feature selection, training size Preprocessing, feature
selection, ensemble se-
lection

Preprocessing, feature
selection, ensemble se-
lection

Each question is listed along with the main purpose of the question, a high-level description of our study
approach, and the experimental variables involved

We made an effort to extract similar sets of bug reports from the two companies. How-
ever, as the companies use different BTSs, and interact with them according to different
processes, slight variations in the extraction steps are inevitable. Company Automation uses
a BTS from an external software vendor, while Company Telecom uses an internally devel-
oped BTS. Moreover, while the life-cycles of bug reports are similar in the two companies
(as described in Section 4.3), they are not equivalent. Another difference is that Company
Automation uses the BTS for issue management in a broader sense (incl. new feature devel-
opment, document updates, and release management), Company Telecom uses the BTS
for bug reports exclusively. To harmonize the datasets, we present two separate filtering
sequences in Sections 5.2.1 and 5.2.2.

Table 2 Datasets used in the experiments

Dataset #Bug reports Timespan #Teams

Automation 15,113 July 2000 – Jan 2012 67

Telecom 1 > 9,000 > 5 years 28

Telecom 2 > 8,000 > 5 years 36

Telecom 3 > 3,000 > 5 years 17

Telecom 4 > 10,000 > 5 years 64

Total > 50,000

Note: At the request of our industry partners the table only lists lower bounds for Telecom systems, but the
total number of sums up to an excess of 50,000 bug reports

Empir Software Eng (2016) 21:1533–1578 1549

5.2.1 Company Automation Data Filtering

The dataset from Company Automation contains in total 26,121 bug reports submitted
between July 2000 and January 2012, all related to different versions of the same software
system. The bug reports originate from several development projects, and describe issues
reported concerning a handful of different related products. During the 12 years of develop-
ment represented in the dataset, both the organization and processes have changed towards
a more iterative development methodology. We filter the dataset in the following way:

1. We included only CLOSED bug reports to ensure that all bugs have valid team assign-
ments, that is, we filter out bug reports in states such as OPEN, NO ACTION, and
CHANGE DEFERRED. This step results in 24,690 remaining bug reports.

2. We exclude bug reports concerning requests for new features, document updates,
changes to internal test code, and issues of administrative nature. Thus, we only keep
bug reports related to source code of the software system. The rationale for this step
is to make the data consistent with Company Telecom, where the BTS solely contains
bug reports. The final number of bug reports in the filtered dataset is 15,113.

5.2.2 Company Telecom Data Filtering

Our first step of the data filtering for Company Telecom is to identify a timespan char-
acterized by a stable development process. We select a timespan from the start of the
development of the product family to the point in time when an agile development process is
introduced (Wiklund et al. 2013). The motivation for this step is to make sure that the study
is conducted on a conformed data set. We filter the bug reports in the timespan according to
the following steps:

1. We include only bug reports in the state FINISHED.
2. We exclude bug reports marked as duplicates.
3. We exclude bug reports that do not result in an source code update in a product.

After performing these three steps, the data set for the four products contains in total
35,2667 bug reports.

5.3 ML Framework Selection

To select a platform for our experiments, we study features available in various machine
learning toolkits. The focus of the comparison is to find a robust, well tested, and com-
paratively complete framework. The framework should also include an implementation of
stacked generalizer and it should be scalable. As a consequence, we focus on platforms that
are suitable for distributed computation. Another criterion is to find a framework that has
implemented a large set of state-of-the-art machine learning techniques. With the increased
attention of machine learning and data mining, quite a few frameworks have emerged dur-
ing the last couple of years such as Weka (Hall et al. 2009), RapidMiner (Hofmann and
Klinkenberg 2013), Mahout (Owen et al. 2011), MOA (Bifet et al. 2010), Mallet (McCal-
lum 2002), Julia (Bezanson et al. 2012), and Spark (Zaharia et al. 2010) as well as increased
visibility of established systems such as SAS, SPSS, MATLAB, and R.

7Due to confidentiality reasons these numbers are not broken down in exact detail per project.

1550 Empir Software Eng (2016) 21:1533–1578

For this study, we select to use a framework called Weka (Hall et al. 2009). Weka is a
comparatively well documented framework with a public Java API and accompanying book,
website, forum, and active community. Weka has many ML algorithms implemented and it
is readily extensible. It has several support functionalities, such as cross-validation, strati-
fication, and visualization. Weka has a built-in Java GUI for data exploration and it is also
readily available as a stand alone library in JAR format. It has some support for paralleliza-
tion. Weka supports both batch and online interfaces for some of its algorithms. The meta
facilities of the Java language also allows for mechanical extraction of available classifiers.
Weka is a well established framework in the research community and its implementation is
open source.

5.4 Bug Report Feature Selection

This section describes the feature selection steps that are common to all our data sets. We
represent bug reports using a combination of textual and nominal features. Feature selec-
tions that are specific to each individual sub-experiment are described together with each
experiment.

For the textual features, we limit the number of words because of memory and execution
time constraints. To determine a suitable number of words to keep, we run a series of pilot
experiments, varying the method and number of words to keep, by varying the built in
settings of Weka. We decide to represent the text in the bug reports as the 100 words with
highest TF-IDF8 as calculated by the Weka framework. Furthermore, the textual content of
the titles and descriptions are not separated. There are two reasons for our rather simple
treatment of the natural language text. First, Weka does not support multiple bags-of-words;
such a solution would require significant implementation effort. Second, our focus is not on
finding ML configurations that provide the optimal prediction accuracies for our datasets,
but rather to explore SG for bug assignment in general. We consider optimization to be an
engineering task during deployment.

The non-textual fields available in the two bug tracking systems vary between the com-
panies, leading to some considerations regarding the selection of non-textual features. Bug
reports in the BTS of Company Automation contain 79 different fields; about 50% of these
fields are either mostly empty or have turned obsolete during the 12 year timespan. Bug
reports in the BTS of Company Telecom contain information in more than 100 fields. How-
ever, most of these fields are empty when the bug report is submitted. Thus, we restricted
the feature selection to contain only features available at the time of submission of the bug
report, i.e., features that do not require a deeper analysis effort (e.g., faulty component,
function involved). We also want to select a small set of general features, likely to be found
in most bug tracking systems. Achieving feasible results using a simple feature selection
might simplify industrial adaptation, and also it limits the ML training times. Based on dis-
cussions with involved developers, we selected the features presented in Table 3. In the rest
of the paper, we follow the nomenclature in the leftmost column.

A recurring discussion when applying ML concerns which features are the best for pre-
diction. In our BTS’es we have both textual and non-textual features, thus we consider it
valuable to compare the relative predictive power of the two types of features. While out
previous research has indicated that including non-textual features improves the prediction

8Term Frequency-Inverse Document Frequency (TF-IDF) is a standard weighting scheme for information
retrieval and text mining. This scheme is common in software engineering applications (Borg et al. 2014).

Empir Software Eng (2016) 21:1533–1578 1551

accuracy (Jonsson et al. 2012), many other studies rely solely on the text (see Fig. 2). To
motivate the feature selection used in this study, we performed a small study comparing
textual vs. non-textual features for our five datasets.

Figure 5 shows the results from our small feature selection experiment. The figure dis-
plays results from three experimental runs, all using SG with the best individual classifiers
(further described in Section 6.1). The three curves represent three different sets of fea-
tures: 1) textual and non-textual features, 2) non-textual features only, and 3) textual features
only. The results show that for some systems (Telecom 1, 2 and 4) the non-textual features
performs better than the textual features alone, while for some systems (Telecom 3 and
Automation) the results are the opposite. Thus, our findings strongly suggest that we should
combine both non-textual features and textual features for bug assignment.

As stated earlier, the main goal of this work is not to optimize classifier performance.
We suspect, however, that more sophisticated text modeling techniques, such as LDA (Blei
et al. 2003), may improve the overall classification result.

5.5 Experiment Design and Procedure

Figure 6 shows an overview of our experimental setup. The five datasets originate from two
different industrial contexts, as depicted by the two clouds to the left. We implement five
sub-experiments (c.f. A–E in Fig. 6), using the Weka machine learning framework. Each
sub-experiment is conducted once per dataset, that is, we performed 25 experimental runs.
A number of steps implemented in Weka are common for all experimental runs:

1. The complete dataset set of bug reports is imported.
2. Bug reports are divided into training and test sets. In sub-experiments A–C, the

bug reports are sampled using stratification. The process in sub-experiments D–E is
described in Sections 5.5.4 and 5.5.5.

3. Feature extraction is conducted as specified in Section 5.4.

We executed the experiments on two different computers. We conduct experiments on
the Company Automation dataset on a Mac Pro, running Mac OS X 10.7.5, equipped with

Table 3 Features used to represent bug reports. For company Telecom the fields are reported for Telecom
1,2,3,4 respectively

Company Automation Company Telecom Description
Textual features

Text Title+Description Heading+Observation One line summary and
full description of the
bug report

Nominal features
SubmitterType SubmitterClass Customer Affiliation of the issue

submitter
#Possible values 17 >170,>50,>120,>150
Site SubmitterSite SiteId Site from where the

bug was submitted
#Possible values 14 >250,>60,>80,>200
Revision Revision Faulty revision Revision of the prod-

uct that the bug was
reported on

#Possible values 103 547,1325,999,982
Priority Priority Priority Priority of the bug
#Possible values 5 3,3,3,3

1552 Empir Software Eng (2016) 21:1533–1578

0

25

50

75

100

0 5000 10000 15000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Type
BEST
BEST−notext−only
BEST−text−only

Automation
(a)

0

25

50

75

100

0 2500 5000 7500 10000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Type
BEST
BEST−notext−only
BEST−text−only

Telecom 1
(b)

0

25

50

75

100

0 2000 4000 6000 8000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Type
BEST
BEST−notext−only
BEST−text−only

Telecom 2
(c)

0

25

50

75

100

0 1000 2000 3000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Type
BEST
BEST−notext−only
BEST−text−only

Telecom 3
(d)

0

25

50

75

100

0 5000 10000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Type
BEST
BEST−notext−only
BEST−text−only

Telecom 4
(e)

Fig. 5 The prediction accuracy when using text only features (“text-only”) vs. using non-text features only
(“notext-only”)

24 GB RAM and two Intel(R) Xeon(R) X5670 2.93 GHz CPUs with six cores each. The
computer used for the experiments on the Company Telecom datasets had the following
specification: Linux 2.6.32.45-0.3-xen, running SUSE LINUX, equipped with eight 2.80
GHz Intel(R) Xeon(R) CPU and 80 GB RAM.

As depicted in Fig. 6, there are dependencies among the sub-experiments. Several sub-
experiments rely on results from previous experimental runs to select values for both fixed
and independent variables. Further details are presented in the descriptions of the individual
sub-experiments A–E.

We evaluate the classification using a top-1 approach. That is, we only consider a cor-
rect/incorrect classification, i.e., we do not evaluate whether our approach correctly assigns
bug reports to a set of candidate teams. In IR evaluations, considering ranked output of
search results, it is common to assess the output at different cut-off points, e.g., the top-5
or top-10 search hits. Also some previous studies on bug assignment present top-X evalu-
ations inspired by IR research. However, our reasons for a top-1 approach are three-fold:
First, for fully automatic bug assignment a top-1 approach is the only reasonable choice,

Empir Software Eng (2016) 21:1533–1578 1553

Fig. 6 Overview of the controlled experiment. Vertical arrows depict independent variables, whereas the
horizontal arrow shows the dependent variable. Arrows within the experiment box depict dependencies
between experimental runs A–E: Experiment A determines the composition of individual classifiers in the
ensembles studied evaluated in Experiment B-E. The appearance of the learning curves from Experiment C
is used to set the size of the time-based evaluations in Experiment D and Experiment E

since an automatic system would not send a bug report to more than one team. Second,
a top-1 approach is a conservative choice in the sense that the classification results would
only improve with a top-k approach. The third motivation is technical; to ensure high qual-
ity evaluations we have chosen to use the built-in mechanisms in the well established Weka.
Unfortunately, Weka does not support a top-k approach in its evaluation framework for
classifiers.

5.5.1 Experiment A: Individual Classifiers

Independent Variable: Choice Of Individual Classifier Experiment A investigates
RQ1 and the null hypothesis “SG does not perform better than individual classifiers wrt.
prediction accuracy”. We evaluate the 28 available classifiers in Weka Development version
3.7.9, listed in Table 4. The list of possible classifiers is extracted by first listing all classes in
the corresponding .jar file in the “classifier” package and then trying to assign them one by
one to a classifier. The independent variable is the individual classifier. For all five datasets,
we execute 10-fold cross-validation once per classifier. We use all available bug reports in
each dataset and evaluated all 28 classifiers on all datasets. The results of this experiment is
presented in Section 6.1.

5.5.2 Experiment B: Ensemble Selection

Independent Variable: Ensemble Selection Experiment B explores both RQ1 and
RQ2, i.e., both if SG is better than individual classifiers and which ensemble of classifiers
to choose for bug assignment. As evaluating all combinations of the 28 individual classifiers
in Weka is not feasible, we restrict our study to investigate three ensemble selections, each

1554 Empir Software Eng (2016) 21:1533–1578

Ta
bl
e
4

In
di
vi
du
al
cl
as
si
fi
er
s
av
ai
la
bl
e
in

W
ek
a
D
ev
el
op
m
en
tv

er
si
on

3.
7.
9

ba
ye
s.

fu
nc
tio

ns
.

la
zy
.

ru
le
s.

tr
ee
s.

m
is
c.

B
ay
es
N
et

L
og
is
ti
c

IB
k

D
ec
is
io
nT

ab
le

D
ec
is
io
nS

tu
m
p

In
pu
tM

ap
pe
dC

la
ss
if
ie
r

N
ai
ve
B
ay
es

M
ul
ti
la
ye
rP

er
ce
pt
ro
n

K
St
ar

JR
ip

J4
8

N
ai
ve
B
ay
es
M
ul
tin

om
ia
l

Si
m
pl
eL

og
is
ti
c

LW
L

O
ne
R

L
M
T

N
ai
ve
B
ay
es
M
ul
tin

om
ia
lT
ex
t

SM
O

Z
er
oR

PA
R
T

R
an
do
m
Fo

re
st

N
ai
ve
B
ay
es
M
ul
tin

om
ia
lU
pd
at
ea
bl
e

R
an
do
m
T
re
e

N
ai
ve
B
ay
es
U
pd

at
ea
bl
e

R
E
PT

re
e

ne
t.B

ay
es
N
et
G
en
er
at
or

ne
t.
B
IF
R
ea
de
r

ne
t.
E
di
ta
bl
eB

ay
es
N
et

C
ol
um

n
he
ad
in
gs

sh
ow

pa
ck
ag
e
na
m
es

in
W
ek
a.
C
la
ss
if
ie
rs
in

bo
ld

ar
e
ex
cl
ud
ed

fr
om

th
e
st
ud
y
be
ca
us
e
of

lo
ng

tr
ai
ni
ng

tim
es

or
ex
ce
ed
in
g
m
em

or
y
co
ns
tr
ai
nt
s

Empir Software Eng (2016) 21:1533–1578 1555

combining five individual classifiers. We chose five as the number of individual classifiers to
use in SG at a consensus meeting, based on experiences of prediction accuracy and run-time
performance from pilot runs. Moreover, we exclude individual classifiers with run-times
longer than 24 hours in Experiment A, e.g., MultiLayerPerceptron and SimpleLogistic.

Based on the results from Experiment A, we select three ensembles for each dataset (cf.
Table 4). We refer to these as BEST, WORST, and SELECTED. We chose the first two
ensembles to test the hypothesis “combining the best individual classifiers should produce
a better result than if you choose the worst”. The BEST ensemble consists of the five indi-
vidual classifiers with the highest prediction accuracy from Experiment A. The WORST
ensemble contains the five individual classifiers with the lowest prediction accuracy from
Experiment B, while still performing better than the basic classifier ZeroR that we see as a
lower level baseline. The ZeroR classifier simply always predicts the class with the largest
number of bugs. No classifier with a lower classification accuracy than ZeroR is included
in any ensemble, thus the ZeroR acts as a lower level cut-off threshold for being included in
an ensemble.

The SELECTED ensemble is motivated by a discussion in Wolpert (1992), who posits
that diversity in the ensemble of classifiers improves prediction results. The general idea
is that if you add similar classifiers to a stacked generalizer, less new information is added
compared to adding a classifier based on a different classification approach. By having
level-0 generalizers of different types, they together will better “span the learning space”.
This is due to the fundamental theory behind stacked generalization, claiming that the errors
of the individual classifiers should average out. Thus, if we use several similar classifiers we
do not get the averaging out effect since then, in theory, the classifiers will have the same
type of errors and not cancel out. We explore this approach by using the ensemble selection
call SELECTED, where we combine the best individual classifiers from five different clas-
sification approaches (the packages in Table 4). The results of this experiment is presented
in Section 6.1.

Some individual classifiers are never part of a SG. This depends on either that the clas-
sifier did not pass the cut-off threshold of being better than the ZeroR classifier, this case
occurs for instance for the InputMappedClassifier (see Table 4). Alternatively the classifier
was neither bad enough to be in the WORST ensemble nor good enough to be in the BEST
or SELECTED, this is the case with for instance JRip.

In all of the ensembles we use SimpleLogistic regression as the level-1 classifier follow-
ing the general advice of Wolpert (1992) andWitten et al. (2011) of using a relatively simple
smooth linear model.

We choose to evaluate the individual classifiers on the whole dataset in favor of evalu-
ating them on a hold-out set, i.e., a set of bug reports that would later not be used in the
evaluation of the SG. This is done to maximize the amount of data in the evaluation of the
SG. It is important to note that this reuse of data only applies to the selection of which indi-
vidual classifiers to include in the ensemble. In the evaluation of the SG, all of the individual
classifiers are completely retrained on only the training set, and none of the data points in
the test set is part of the training set of the individual classifiers. This is also the approach
we would suggest for industry adoption, i.e., first evaluate the individual classifiers on the
current bug database, and then use them in a SG.

5.5.3 Experiment C: Learning Curves

Independent Variable: Amount of Training Data The goal of Experiment C is to study
RQ3: How consistent learning curves does SG display across projects? For each dataset,

1556 Empir Software Eng (2016) 21:1533–1578

Fig. 7 Overview of the time-sorted evaluation. Vertical bars show how we split the chronologically ordered
data set into training and test sets. This approach gives us many measurement points in time per test set
size. Observe that the time between the different sets can vary due to non-uniform bug report inflow but the
number of bug reports between each vertical bar is fixed

we evaluate the three ensembles from Experiment B using fixed size subsets of the five
datasets: 100, 200, 400, 800, 1600, 3200, 6400, 12800, and ALL bug reports. All subsets
are selected using random stratified sampling from the full dataset. As the datasets Telecom
1-3 contain fewer bug reports than 12800, the learning curves are limited accordingly. The
results of this experiment is presented in Section 6.2.

5.5.4 Experiment D: Sliding Time Window

Independent Variable: Time Locality of Training Data Experiment D examines RQ4,
which addresses how the time locality of the training set affects the prediction accuracy on
a given test set. Figure 7 shows an overview of the setup of Experiment D. The idea is to
use training sets of the same size increasingly further back in time to predict a given test set.
By splitting the chronologically ordered full data set into fixed size training and test sets
according to Fig. 7, we can generate a new dataset consisting of pairs (x, y). In this dataset,
x represents the time difference measured in number of days (delta time) between the start
of the training set and the start of the test set. The y variable represents the prediction
accuracy of using the training set x days back in time to predict the bug assignments in
the selected test set. We can then run a linear regression on the data set of delta time and
prediction accuracy samples and examine if there is a negative correlation between delta
time and prediction accuracy.

We break down RQ4 further into the following research hypothesis formulation: “Is train-
ing data further back in time worse at predicting bug report assignment than training data
closer in time”? We test this research hypothesis with the statistical method of simple linear
regression. Translated into a statistical hypothesis RQ4 is formulated as:

Let the difference in time between the submission date of the first bug report in a test
set and the submission date of the first bug report in the training set be the independent

Empir Software Eng (2016) 21:1533–1578 1557

variable x. Further, let the prediction accuracy on the test set be the dependent variable
y. Is the coefficient of the slope of a linear regression fit on x and y statistically
different from 0 and negative at the 5 % α level?

To create the training set and test sets, we sort the complete dataset in chronological
order on the bug report submission date. To select suitable sizes to split the training set and
test sets, we employ the following procedure. For the simple linear regression, we want to
create enough sample points to be able to run a linear regression with enough power to
detect a significant difference and still have as large training and test sets as possible to
reduce the variance in the generated samples. Green (1991) suggests the following formula
: N ≥ 50 + 8 m as a rule of thumb for calculating the needed number of samples at α level
of 5 % and β level of 20 %, where m is the number of independent variables. In our case we
have one independent variable (delta time) so the minimum number of samples in our case
is 58 = 50 + 8 ∗ 1. We use a combination of theoretical calculations for the lower and upper
bounds on the number of training samples given that we want an 80/20 ratio of training to
test data. We combine the theoretical approach with a program that calculates the number
of sample points generated by a given training and test set size, by simulating runs. This
combination together with Green’s formula let us explore the most suitable training and test
sets for the different systems.

We also know from Experiment C that the “elbow” where the prediction accu-
racy tends to level out is roughly around 1,000-2,000 samples, this together with the
calculations for the linear regression guided our decision for the final selection of
sample size.

We arrived at the following dataset sizes by exploring various combinations with the
simulation program, the theoretical calculations and the experience from Experiment C. For
the smallest of the systems, the maximum sizes of training and test sets that gives more than
58 samples amounts to 619 and 154 bug reports respectively. For the larger systems, we can
afford to have larger data sets. For comparison we prioritize to have the same sized sets for
all the other systems. When we calculate the set sizes for the smallest of the larger systems,
we arrived at 1,400 and 350 bug reports for the training and test set sizes, respectively. These
values are then chosen for all the other four systems. The results of this analysis is presented
in Section 6.3.

5.5.5 Experiment E: Cumulative Time Window

Independent Variable: Amount of Training Data Experiment E is also designed to
investigate RQ4, i.e., how the time locality of the training set affects the prediction accuracy.
Instead of varying the training data using a fixed size sliding window as in Experiment D,
we fix the starting point and vary the amount of the training data. The independent variable
is the cumulatively increasing amount of training data. This experimental setup mimics
realistic use of SG for automated bug assignment.

Figure 8 depicts an overview of Experiment E. We sort the dataset in chronological order
on the issue submission date. Based on the outcome from Experiment C, we split the dataset
into a corresponding number of equally sized chunks. We used each chunk as a test set,
and for each test set we vary the number of previous chunks used as training set. Thus, the
amount of training data was the independent variable. We refer to this evaluation approach
as cumulative time window. Our setup is similar to the “incremental learning” that Bhat-
tacharya et al. (2012) present in their work on bug assignment, but we conduct a more
thorough evaluation. We split the data into training and test sets in a more comprehensive

1558 Empir Software Eng (2016) 21:1533–1578

manner, and thus conduct several more experimental runs. The results of this experiment is
presented in Section 6.4.

6 Results and Analysis

6.1 Experiment A: Individual Classifiers and Experiment B: Ensemble Selection

Experiment A investigates whether SG outperforms individual classifiers. Table 5 shows
the individual classifier performance for the five evaluated systems. It also summarizes
the results of running SG with the three different configurations BEST, WORST, and
SELECTED, related to Experiment B. In Table 5 we can view the classifier “rules.ZeroR”
as a sort of lower baseline reference. The ZeroR classifier simply always predicts the class
with the highest number of bug reports.

The answer to RQ1 is that while the improvements in some projects are marginal, using
reasonable ensemble selection leads to a better prediction accuracy than using any of the
individual classifiers. On our systems, the improvement is 3 % better than the best of the
individual classifiers on two of the systems. The best improvement is 8 % on the Automa-
tion system and the smallest improvement is 1 % on system Telecom 1 and 4, which can
be considered negligible. This conclusion must be followed by a slight warning; mindless
ensemble selection together with bad luck can lead to worse result than some of the indi-
vidual classifiers. In none of our runs (including with the WORST ensemble) is the stacked
generalizer worse than all of the individual classifiers.

Experiment B addresses different ensemble selections in SG. From Table 5 we see that
in the cases of the BEST and SELECTED configurations the stacked generalizer in gen-
eral performs as well, or better, than the individual classifiers. In the case of Telecom 1

Fig. 8 Overview of the cumulative time-sorted evaluation. We use a fixed test set, but cumulatively increase
the training set for each run

Empir Software Eng (2016) 21:1533–1578 1559

Table 5 Individual classifier results (rounded to two digits) on the five systems use the full data set and
10-fold cross validation

Accuracy

Classifier Automation Telecom 1 Telecom 2 Telecom 3 Telecom 4

bayes.BayesNet 35 % (B,S) O-MEM O-MEM O-MEM O-MEM

bayes.NaiveBayes 15 % (W) 25 % (W) 18 % (W) 35 % 17 %

bayes.NaiveBayesMultinomial 22 % 34 % (W) 32 % 53 % (W) 26 % (W)

bayes.NaiveBayesMultinomialText 6 % 13 % 16 % 43 % 19 %

bayes.NaiveBayesMultinomialUpdateable 26 % 34 % 32 % (S) 61 % (W) 28 % (W)

bayes.NaiveBayesUpdateable 15 % 25 % 18 % 35 % 17 %

bayes.net.BIFReader 35 % O-MEM O-MEM O-MEM O-MEM

bayes.net.BayesNetGenerator 35 % 41 % (S) 31 % (W) 66 % (S,W) 37% (S)

bayes.net.EditableBayesNet 35 % O-MEM O-MEM O-MEM O-MEM

functions.SMO 42 % (B,S) 70 % (B,S) 54 %(B,S) 86 % (B,S) 78 % (B,S)

lazy.IBk 38 % (B) 58 % (S) 44 % (B) 77 % (B) 63 %

lazy.KStar 42 % (B,S) 50 % 46 % (B,S) 77 % (S) 60 % (S)

lazy.LWL 9 % (W) 21 % (W) O-MEM O-MEM O-MEM

misc.InputMappedClassifier 6 % 13 % 16 % 43 % 19 %

rules.DecisionTable 26 % 52 % 31 % (W) 65 % (W) 55 %

rules.JRip 23 % 51 % 36 % 73 % 55 %

rules.OneR 13 % (W) 43 % (W) 30 % (W) 71 % 50 % (W)

rules.PART 29 % (S) 61 % (B,S) 38 % (S) 76 % (S) 64 % (B,S)

rules.ZeroR 6 % 13 % 16 % 43 % 19 %

trees.DecisionStump 7 % (W) 21 % (W) 22 % (W) 44 % (W) 20 % (W)

trees.J48 30 % 62 % (B) 40 % (B) 78 % (B) 66 % (B)

trees.LMT O-MEM O-MEM O-MEM O-MEM O-MEM

trees.REPTree 29 % 62 % (B) 34 % 79 % (B) 67 % (B)

trees.RandomForest 39 % (B,S) 63 % (B,S) 49 % (B,S) 84 (B,S) % 67 % (S)

trees.RandomTree 27 % 52 % 32 % 69 % 49 % (W)

functions.Logistic O-MEM O-MEM O-MEM O-MEM O-MEM

functions.SimpleLogistic 40 % O-TIME 52 % O-TIME O-TIME

functions.MultilayerPerceptron 20 % (W) O-TIME O-TIME O-TIME O-TIME

SG BEST (B) 50 % 71 % 57 % 89 % 77 %

SG SELECTED (S) 50 % 71 % 57 % 89 % 79 %

SG WORST (W) 28 % 57 % 45 % 83 % 62 %

Out of memory is marked O-MEM and an execution that exceeds a time threshold is marked O-TIME

and 4, there is a negligible difference between the best individual classifier SMO and the
SELECTED and BEST SG. We also see that when we use the WORST configuration the
result of the stacked generalizer is worse than the best of the individual classifiers, but it
still performs better than some of the individual classifiers. When it comes to the individ-
ual classifiers we note that the SMO classifier performs best on all systems. The conclusion
is that the SG does not do worse than any of the individual classifiers but can sometimes
perform better.

1560 Empir Software Eng (2016) 21:1533–1578

Figure 9 shows the learning curves (further presented in relation to Experiment C) for the
five datasets using the three configurations BEST, WORST, and SELECTED. The figures
illustrate that the two ensembles BEST and SELECTED have very similar performance
across the five systems. Also, it is evident that the WORST ensemble levels out at a lower
prediction accuracy than the BEST and SELECTED ensembles as the number of training
examples grows and the rate of increase has stabilized.

Experiment B shows no significant difference in the prediction accuracy between BEST
and SELECTED. Thus, our results do not confirm that prediction accuracy is improved
by applying ensemble selections with a diverse set of individual classifiers. One possible
explanation for this result is that the variation among the individual classifiers in the BEST
ensemble already is enough to obtain a high prediction accuracy. There is clear evidence that
theWORST ensemble performs worse than BEST and SELECTED. As a consequence, sim-
ply using SG does not guarantee good results—the ensemble selection plays an important
role.

6.2 Experiment C: Learning Curves

In Experiment C, we study how consistent the learning curves for SG are across different
industrial projects. Figure 10 depicts the learning curves for the five systems. As presented
in Section 5.5.3, the BEST and SELECTED ensembles yield similar prediction accuracy,
i.e., the learning curves in Fig. 10a and c are hard to distinguish by the naked eye. Also,
while there are performance differences across the systems, the learning curves for all five
systems follow the same general pattern: the learning curves appear to follow a roughly
logarithmic form proportional to the size of the training set, but with different minimum and
maximum values.

An observation of practical value is that the learning curves tend to flatten out
within the range of 1,600 to 3,200 training examples for all five systems. We refer
to this breakpoint as where the graph has the maximum curvature, i.e., the point on
the graph where the tangent curve is the most sensitive to moving the point to nearby
points. For our study, it is sufficient to simply determine the breakpoint by look-
ing at Fig. 10, comparable to applying the “elbow method” to find a suitable number
of clusters in unsupervised learning (Tibshirani et al. 2001). Our results suggest that
at least 2,000 training examples should be used when training a classifier for bug
assignment.

We answer RQ3 as follows: the learning curves for the five systems have different min-
imum and maximum values, but display similar shape and all flatten out at roughly 2,000
training examples. There is a clear difference between projects.

6.3 Experiment D: Sliding Time Window

Experiment D targets how the time locality of the training data affects the prediction
accuracy (RQ4). Better understanding of this aspect helps deciding the required fre-
quency of retraining the classification model. Figure 11 show the prediction accuracy
of using SG with the BEST ensemble, following the experimental design described in
Section 5.5.4. The X axes denote the difference in time, measured in days, between the
start of the training set and the start of the test set. The figures also depict an exponential
best fit.

For all datasets, the prediction accuracy decreases as older training sets are used. The
effect is statistically significant for all datasets at a 5 % level. We observe the highest

Empir Software Eng (2016) 21:1533–1578 1561

0

25

50

75

100

0 5000 10000 15000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Type
BEST
SELECTED
WORST

Automation
(a)

0

25

50

75

100

0 2500 5000 7500 10000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Type
BEST
SELECTED
WORST

Telecom 1
(b)

0

25

50

75

100

0 2000 4000 6000 8000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Type
BEST
SELECTED
WORST

Telecom 2
(c)

0

25

50

75

100

0 1000 2000 3000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Type
BEST
SELECTED
WORST

Telecom 3
(d)

0

25

50

75

100

0 5000 10000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Type
BEST
SELECTED
WORST

Telecom 4
(e)

Fig. 9 Comparison of BEST (black, circle), SELECTED (red, triangle) and WORST (green, square)
classifier ensemble

effects on Telecom 1 and Telecom 4, where the prediction accuracy is halved after roughly
500 days. For Telecom 1 the prediction accuracy is 50 % using the most recent training
data, and it drops to about 25 % when the training data is 500 days old. The results for
Telecom 4 are analogous, with the precision accuracy dropping from about 40 % to 15
% in 500 days.

For three of the datasets the decrease in prediction accuracy is less clear. For Automation,
the prediction accuracy decreases from about 14 % to 7 % in 1,000 days, and Telecom 3, the
smallest dataset, from 55 % to 30 % in 1,000 days. For Telecom 2 the decrease in prediction
accuracy is even smaller, and thus unlikely to be of practical significance when deploying a
solution in industry.

1562 Empir Software Eng (2016) 21:1533–1578

0

25

50

75

100

0 5000 10000 15000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

System
Telecom 3
Telecom 4
Telecom 1
Telecom 2
Automation

BEST(a)

0

25

50

75

100

0 5000 10000 15000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

System
Telecom 3
Telecom 4
Telecom 1
Telecom 2
Automation

WORST(b)

0

25

50

75

100

0 5000 10000 15000
Dataset size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

System
Telecom 3
Telecom 4
Telecom 1
Telecom 2
Automation

SELECTED(c)

Fig. 10 Prediction accuracy for the different systems using the BEST (a) WORST (b) and SELECTED (c)
individual classifiers under Stacking

A partial answer to RQ4 is: more recent training data yields higher prediction accuracy
when using SG for bug assignment.

6.4 Experiment E: Cumulative Time Window

Experiment E addresses the same RQ as Experiment D, namely how the time locality of
the training data affects the prediction accuracy (RQ4). However, instead of evaluating the
effect using a fixed size sliding window of training examples, we use a cumulatively increas-
ing training set. As such, Experiment E also evaluates how many training examples SG
requires to perform accurate classifications. Experiment E shows the prediction accuracy
that SG would have achieved at different points in time if deployed in the five projects under
study.

Figure 12 plot the results from the cumulated time locality evaluation using SG with
BEST ensembles. The blue curve represents the prediction accuracy (as fitted by a local
regression spline) with the standard error for the mean of the prediction accuracy in the
shaded region. The maximum prediction accuracy (as fitted by the regression spline) is
indicated with a vertical line. The vertical line represents the cumulated ideal number of
training points for the respective datasets. Adding more bug reports further back in time
worsens the prediction accuracy. The number of samples (1589) and the prediction accuracy
(16.41 %) for the maximum prediction accuracy is indicated with a text label (x = 1589
Y = 16.41 for the Automation system). The number of evaluations run with the calculated
training set and test set sizes in each run is indicated in the upper right corner of the figure
with the text “Total no. Evals”.

Empir Software Eng (2016) 21:1533–1578 1563

0

20

40

60

0 500 1000 1500 2000 2500
Delta Time

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Automation(a)

0

20

40

60

400 800 1200 1600
Delta Time

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Telecom 1(b)

0

20

40

60

250 500 750 1000 1250
Delta Time

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Telecom 2(c)

0

20

40

60

400 800 1200 1600
Delta Time

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Telecom 3(d)

0

20

40

60

0 500 1000 1500
Delta Time

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Telecom 4(e)

Fig. 11 Prediction accuracy for the datasets Automation (a) and Telecom 1-4 (b-e) using the BEST ensemble
when the time locality of the training set is varied. Delta time is the difference in time, measured in days,
between the start of the training set and the start of the test set. For Automation and Telecom 1,2, and 4 the
training sets contain 1,400 examples, and the test set 350 examples. For Telecom 3, the training set contains
619 examples and the test set 154 examples

For all datasets in Fig. 12, except Telecom 3, the prediction accuracy increases when
more training data is cumulatively added until a point where they reach a “hump” where
the prediction accuracy reaches a maximum. This is followed by declining prediction accu-
racy as more (older) training data is cumulatively added. For Automation, Telecom 1, and
Telecom 4, we achieve the maximum prediction accuracy when using about 1,600 train-
ing examples. For Telecom 2 the maximum appears already at 1,332 training examples. For
Telecom 3 on the other hand, the curve is monotonically increasing, i.e., the prediction accu-
racy is consistently increasing as we add more training data. This is likely a special case for
this dataset where we have not yet reached the point in the project where old data starts to
introduce noise rather than helping the prediction.

1564 Empir Software Eng (2016) 21:1533–1578

x= 1589 y= 16.41

(Total no. Evals: 649)

0

25

50

75

100

0 5000 10000 15000
Trainingset Size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Automation

(a)

x= 1688 y= 47.47

(Total no. Evals: 326)

0

25

50

75

100

0 2500 5000 7500
Trainingset Size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Telecom 1

(b)

x= 1332 y= 20.96

(Total no. Evals: 266)

0

25

50

75

100

0 2000 4000 6000 8000
Trainingset Size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Telecom 2

(c)

x= 3516 y= 65.74
(Total no. Evals: 78)

0

25

50

75

100

1000 2000 3000
Trainingset Size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Telecom 3

(d)

x= 1613 y= 42.54

(Total no. Evals: 515)

0

25

50

75

100

0 5000 10000
Trainingset Size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Telecom 4

(e)

Fig. 12 Prediction accuracy using cumulatively (farther back in time) larger training sets. The blue curve
represents the prediction accuracy (fitted by a local regression spline) with the standard error for the mean in
the shaded region. The maximum prediction accuracy (as fitted by the regression spline) is indicated with a
vertical line. The number of samples (1589) and the accuracy (16.41 %) for the maximum prediction accuracy
is indicated with a text label (x = 1589 Y = 16.41 for the Automation system). The number of evaluations
done is indicated in the upper right corner of the figure (Total no. Evals)

Also related to RQ4 is our observation: there is a balancing effect between adding
more training examples and using older training examples. As a consequence, prediction
accuracy does not necessary improve when training sets gets larger.

Empir Software Eng (2016) 21:1533–1578 1565

7 Threats to Validity

We designed our experiment to minimize the threats to validity, but still a number of
decisions that might influence our results had to be made. We discuss the main validity
threats to our study with respect to construct validity, internal validity, external validity, and
conclusion validity (Wohlin et al. 2012).

7.1 Construct Validity

Construct validity involves whether our experiment measures the construct we study.
Our aim is to measure how well automated bug assignment performs. We measure this
using prediction accuracy, the basic measure for performance evaluations of classifica-
tion experiments. As an alternative measure of the classification performance, we could
have complemented the results with average F-measures to also illustrate type I and type II
errors. However, to keep the presentation and interpretation of results simple, we decided to
consistently restrict our results to contain only prediction accuracy.

The Weka framework does not allow evaluations with classes encountered in the test set
that do not exist in the training set. For Experiments A-C (all based on cross-validation)
Weka automatically harmonizes the two sets by ensuring the availability of all classes in
both sets. However, for the time-sorted evaluations performed in Experiment D and E, we
do not use the cross-validation infrastructure provided byWeka. Instead, we have to perform
the harmonization manually. To simplify the experimental design and be conservative in
our performance estimates in Experiment D and E, we always consider all teams present
in the full dataset as possible classification results, i.e., regardless of whether the teams are
present in the training and test sets of a specific run. This is a conservative design choice
since it causes many more possible alternative classes available for classification, making
it a harder problem. In practice, the team structure in an organization is dynamic. In the
projects under study, teams are added, renamed, merged, and removed over the years as
illustrated in Fig. 13. While the current team structure would be known at any given time in
a real project, we do not use any such information in our experimental runs. Thus, there is a
potential that the prediction accuracy of a deployed tool using SG could be higher.

In the projects we study, the teams are not entirely disjunct. Individual developers might
be members of several teams, teams might be sub-teams of other teams, and certain teams
are created for specific tasks during limited periods of time. Thus, as some teams overlap,
more than one team assignment could be correct for a bug report. Furthermore, the correct-
ness of a team assignment is not a binary decision in real life. Teams might be hierarchically
structured and there are dependencies between teams. An incorrect bug assignment might
thus be anything from totally wrong (e.g., assigning a bug report describing embedded mem-
ory management to a GUI team) to just as good as the team assignment stored in the BTS.
Again, our evaluation is conservative as we consider everything not assigned to the same
team as in the BTS as incorrect.

7.2 Internal Validity

Internal validity concern inferences regarding casual relationships. We aim to understand
how SG performs compared to individual classifiers, and how its prediction accuracy is
affected by different training configurations. Our experimental design addresses threats to
internal validity by controlling the independent variables in turn. Still, there are a number
of possibly confounding factors.

1566 Empir Software Eng (2016) 21:1533–1578

We conduct the same preprocessing for all classification runs. It is possible that some of
the classifiers studied perform better for our specific choice of preprocessing actions than
others. On the other hand, we conduct nothing but standard preprocessing (i.e., lower casing
and standard stop word removal), likely to be conducted in most settings.

We use default configurations of all individual classifiers studied. While most clas-
sifiers are highly configurable, we do not perform any tuning. Instead, we consistently
use the default configurations provided by Weka. The default configurations for some
classifiers might be favorable for team assignment and others might underperform. Fur-
thermore, we evaluated only one single level-1 classifier in SG, also using the default
configuration. However, Wolpert (1992) argues that a simple level-1 classifier should be
sufficient.

To facilitate future research, e.g., replications of our study and comparison to our results,
we have restricted the features used by our classifiers to attributes that most BTSs will con-
tain at submission time. Thus, we only consider general features that are set by the author
of the bug report, without any extensive root cause analysis. However, our selection of
features, based on our experience from industry, might have influenced the performance
of the individual classifiers. Although this is a threat to the validity of our results, we
argue that our choice is conservative; adding further informative features would poten-
tially increase the performance, but should not decrease it. During industrial deployment,
all features available in the specific BTS that could be of value should of course be used
to train the system. Ideally high quality features should be collected by the production
system and be automatically attached to the bug reports. We speculate that increasing the
level of automation on both the submitting and receiving end of bug management, i.e., both
for the author submitting bug reports to the BTS as well as the receiving analyst in the
development organization, could create synergistic benefits for ML-based solutions. As a

Fig. 13 This figure illustrates how teams are constantly added and removed during development. Team
dynamics and BTS structure changes will require dynamic re-training of the prediction system. A prediction
system must be adapted to keep these aspects in mind. These are all aspects external to pure ML techniques,
but important for industry deployment

Empir Software Eng (2016) 21:1533–1578 1567

consequence we strongly encourage research in the area of feature selection for automatic
bug assignment.

7.3 External Validity

External validity reflect the generalizability of our results. We study five large datasets
containing thousands of bug reports from proprietary development projects. All datasets
originate from development of different systems, including middle-ware, client-server solu-
tions, a compiler, and communication protocols. However, while the datasets all are large,
they originate from only two different companies. Furthermore, while the two companies
work in different domains, i.e., automation and telecommunication, both are mainly con-
cerned with development of embedded systems. To generalize to other domains such as
application development, replications using other datasets are required.

The fraction of bug reports originating from customers is relatively low in all five
datasets under study. In development contexts where end users submit more of the bug
reports, different natural language descriptions and information content might be used.
This might have an impact on the performance of SG for team assignment. However,
as opposed to most previous work, we focus on proprietary development projects using
closed BTSs.

We filtered the five datasets to contain only bug reports actually describing defects in
the production software. It is possible that a BTS is used for other types of issues, as is
the case in Company Automation, e.g., document changes, change requests, and changes
to internal test code. We have not studied how well SG generalizes for these more generic
types of issues. On the other hand, we assume that the most challenging team assignment
involves defects in the production software where the location in source code and the related
documentation are unknown.

Although our work focuses on large scale industrial settings, a relevant question is how
well the approach generalizes to the OSS development context. Ideally, we would like to
compare our results with similar OSS datasets. Unfortunately, we are not aware of any large
dataset from OSS that uses team assignment. This makes a direct comparison very difficult.
An alternative approach could be to use OSS datasets and created some type of after-the-
fact team assignments. Applying such an approach would, however, be very hard to do in a
fair manner.

7.4 Conclusion Validity

Conclusion validity is the degree to which conclusions we reach about relationships in
our data are reasonable. For experiment A, B, and C we use 10-fold cross validation as
conventional in machine learning evaluations. However, as argued by Rao et al. (2008),
evaluations should also be performed using a sequestered test set. We accomplish this by
performing experiment D and E on separate training and test sets. Moreover, we evaluate
the performance in several runs as described in Sections 5.5.4 and 5.5.5.

The results from 10-fold cross-validation (using stratified sampling) and the evaluations
conducted using defect reports submitted by submission date are different. Cross validation
yields higher prediction accuracy, in line with warnings from previous research (Rao et al.
2008; Kodovsky 2011). To confirm the better results when using cross validation, we vali-
dated the results using RapidMiner (Hofmann and Klinkenberg 2013) for the two datasets
Automation and Telecom 4. We trained a Naive Bayes classifier for Automation and an

1568 Empir Software Eng (2016) 21:1533–1578

SVM classifier for Telecom 4 and observed similar differences between evaluations using
10-fold cross validation and a sorted dataset.

8 Discussion

This section contains a discussion of the results from our experiments in the context of
our overall goal: to support bug assignment in large proprietary development projects using
state-of-the-art ML. Section 8.1 synthesizes the results related to our RQs and discusses
the outcome in relation to previous work. Finally, Section 8.2 reports important experiences
from running our experiments and advice on industrial adaptation.

8.1 Stacked Generalization in the Light of Previous Work

We conduct a large evaluation of using SG for bug assignment, extending our previous
work (Jonsson et al. 2012). Our results show that SG (i.e., combining several classifiers
in an ensemble learner) can yield a higher prediction accuracy than using individual gen-
eral purpose classifiers (RQ1, ExpA). The results are in line with findings in general ML
research (Kuncheva andWhitaker 2003). However, we show that simply relying on SG is not
enough to ensure good results; some care must be taken when doing the ensemble selection
(RQ2, ExpB). On the other hand, our results confirm the thesis by Wolpert (1992) that SG
should on average perform better than the individual classifiers included in the ensemble.

We present the first study on bug assignment containing 10,000 s of bug reports collected
from different proprietary development projects. Previous work has instead focused on bug
reports from OSS development projects, e.g., Eclipse and Firefox, as presented in Section 3.
A fundamental difference is that while bug assignment in OSS projects typically deal with
individual developers, we instead assign bug reports to development teams. As this results
in a more coarse assignment granularity, i.e., our output is a set of developers, one could
argue that we target a less challenging problem.

We achieve prediction accuracy between 50 % and 85 % for our five systems using
cross-validations, and between 15 % and 65 % for time-sorted evaluations. Thus, our work
on bug team assignment does not display higher prediction accuracy than previous work
on automated bug assignment to individuals, but is similar to what has been summarized
in Fig. 3. Consequently, we show that automated proprietary bug assignment, on a team
level, can correctly classify the same fraction of bug reports as what has been reported for
bug assignment to individual developers in OSS projects. Bug assignment to teams does not
appear to be easier than individual assignment, at least not when considering only the top
candidate team presented by the ML system.

Cross-validation consistently yielded higher prediction accuracy than conducting more
realistic evaluations on bug reports sorted by the submission date. The dangers of cross-
validation have been highlighted in ML evaluation before (Rao et al. 2008), and it is
a good practice to complement cross-validation with a sequestered test set. Our experi-
ments show that evaluations on bug assignment can not rely on cross-validation alone.
Several factors can cause the lower prediction accuracy for the time sorted evaluations.
First, cross-validation assumes that the bug reports are independent with no distribu-
tional differences between the training and test sets (Arlot and Celisse 2010). Bug reports
have a natural temporal ordering, and our results suggest that the dependence among
individual bug reports can not be neglected. Second, we used stratified sampling in the
cross-validation, but not in the time sorted evaluations. Stratification means that the team

Empir Software Eng (2016) 21:1533–1578 1569

distributions in the training sets and test sets are the same, which could improve the
results in cross-validation. Third, as we perform manual harmonization of the classes
in the time sorted evaluation (see Section 7), all teams are always possible classifica-
tions. In cross-validation, Weka performs the harmonization just for the teams involved
in the specific run, resulting in fewer available teams and possibly a higher prediction
accuracy.

8.2 Lessons Learned and Industrial Adoption

Two findings from our study will have practical impact on the deployment of our
approach in industrial practice. First, we studied how large the training set needs to be
for SG to reach its potential. The learning curves from 10-fold cross-validation show
that larger training set are consistently better, but the improvement rate decreases after
about 2,000 training examples. The point with the maximum curvature, similar to an
elbow point (Tibshirani et al. 2001) as used in cluster analysis, appears in the same
region for all five systems. As a result, we suggest, as a rule of thumb, that at least
2,000 training examples should be used when using SG for automated bug assignment
(RQ3, ExpC).

The second important finding of practical significance relates to how often an ML sys-
tem for bug assignment needs to be retrained. For all but one dataset, our results show a
clear decay of prediction accuracy as we use older training data. For two datasets the decay
appears exponential, and for two datasets the decay is linear. Our conclusion is that the time
locality of the training data is important to get a high prediction accuracy, i.e., SG for bug
assignment is likely to achieve a higher prediction accuracy if trained on recent bug reports
(RQ4, ExpD). Bhattacharya et al. (2012) recently made the same observation for automated
bug assignment using large datasets from the development of Eclipse and Mozilla projects.

Finding the right time to retrain SG appears to be a challenge, as we want to find the best
balance between using many training examples and restricting the training set to consist
of recent data. In Experiment E, our last experiment, we try several different cumulatively
increasing training sets at multiple points in time. This experimental setup mimics realis-
tic use of SG for bug assignment, trained on different amounts of previous bug reports. We
show that for four of our datasets, the positive effect of using larger training sets is nulli-
fied by the negative effect of adding old training examples. Only for one dataset it appears
meaningful to keep as much old data as possible.

When deployed in industrial practice, we recommend that the prediction accuracy of
automated bug assignment should be continuously monitored to identify when it starts to
deteriorate. For four of our datasets, cumulatively increasing the amount of training data is
beneficial at first (see Fig. 12), but then SG reaches a maximum prediction accuracy. For
all but one dataset, the prediction accuracy starts to decay even before reaching the 2,000
training examples recommended based on the results from Experiment C. Furthermore, we
stress that attention should be paid to alterations of the prediction accuracy when signif-
icant changes to either the development process or the actual software product are made.
Changes to the team structure and the BTS clearly indicate that SG should be retrained, but
also process changes, new tools in the organization, and changes to the product can have
an impact on the attributes used for automated bug assignment. In practice, the monitoring
of the prediction accuracy could be accomplished by measuring the amount of bug tossing
taking place after the automated bug assignment has taken place. To facilitate careful moni-
toring of the bug tossing we suggest that BTSs should store the full bug assignment history,
not only where the bug was finally solved. Unfortunately the full bug tossing history was

1570 Empir Software Eng (2016) 21:1533–1578

not available for all BTSs in our study, thus we were unable to calculate a detailed esti-
mate of the possible savings of our approach. Future work should introduce new bug tossing
measurements to enable estimation of possible time savings from deploying our approach.

While we can measure the prediction accuracy of SG for bug assignment, it is not clear
what this means for practical purposes. How accurate do the classifications have to be
before developers start recognizing its value? Regnell et al. (2008) describe quality, in our
case the prediction accuracy of automated bug assignment, as continuous and non-linear.
Figure 14 shows what this means for bug assignment. The perceived usefulness of SG is on
a sliding scale with specific breakpoints. The utility breakpoint represents when develop-
ers start considering automated bug assignment useful, any prediction accuracy below this
level is useless. The saturation breakpoint indicates where increased prediction accuracy has
no practical significance to developers. Figure 14 also displays the prediction accuracy of
human analysts between the breakpoints. We argue that automated bug assignment does not
have to reach the human accuracy to be perceived useful, as the automated process is much
faster than the manual process. Our early evaluations indicate that the prediction accuracy
of SG in Company Telecom is in line with the manual process (Jonsson et al. 2012). Even
though this study also used 10-fold cross-validation, which we have seen can give overly
optimistic estimates in this context; we believe that our prototype has passed the utility
breakpoint before we have started any context specific tuning of SG.

When we implement automated bug assignment in an industrial tool, we plan to present
a handful of candidate teams to the user for each bug report under investigation. While we
could automatically assign the bug to the first candidate, our first step is to provide decision
support to the CCB. Considering the automation levels defined by Parasuraman et al. (2000),
this reflects an increase in automation from level 0 to level 3: “narrowing the selection down
to a few”. By presenting a limited selection of teams, possibly together with a measure of
the confidence level from SG, an experienced developer can quickly choose the best target
for the bug assignment. Note that the experimental design we used in the evaluations in this
study are stricter as we only considered one single team assignment per bug report. Another
recommendation is to plan from the start to run the new ML-based system in parallel with

Fig. 14 Perceived benefit vs. prediction accuracy. The figure shows two breakpoints and the current
prediction accuracy of human analysts. Adapted from Regnell et al. (2008)

Empir Software Eng (2016) 21:1533–1578 1571

the old way of working, to evaluate if the prediction accuracy is good enough for a complete
roll over to a process supported by ML.

Furthermore, we must develop the tool to present the candidate teams to the user in
a suitable manner. Murphy-Hill and Murphy (2014) presents several factors that affects
how users perceive recommendations provided by software engineering tools. The two
most important factors for our tool are transparency and the related aspect assessability.
A developer must be able to see why our tool suggests assigning a bug report to a spe-
cific team, i.e., the rationale leading to the SG classification must be transparent. Also,
our tool should support developers in assessing the correctness of a suggested assignment.
We aim to achieve this by enabling interaction with the output, e.g., browsing previous bug
assignments, opening detailed bug information, and comparing bug reports.

9 Conclusions and Future Work

We conduct the first evaluation of automated bug assignment using large amounts of
bug reports, collected from proprietary software development projects. Using an ensem-
ble learner, Stacked Generalization (SG), we train an ML system on historical bug reports
from five different projects in two different, large companies. We show that SG consis-
tently outperforms individual classifiers with regard to prediction accuracy even though
the improvements are sometimes marginal (RQ1). Moreover, our results suggest that it is
worthwhile to strive for a diverse set of individual classifiers in the ensemble (RQ2), con-
sistent with recommendations in the general ML research field. Our results show that SG,
with feasible ensemble selection, can reach prediction accuracies from 50 % to 89 % for the
different systems, in line with the prediction accuracy of the current manual process. We
also briefly study the relative value of textual vs. non-textual features, and conclude that the
most promising results are obtained when combining both in SG. In future work we plan
to improve the textual features with more advanced text modeling techniques such as Topic
Modeling (LDA).

We study the SG learning curves for the five systems (RQ3), using 10-fold cross-
validation. The learning curves for all five datasets studied display similar behaviour,
thus we present an empirically based rule of thumb: when training SG for automated
bug assignment, aim for at least 2,000 bug reports in the training set. Using time-
sorted bug reports in the training and test sets we show that the prediction accuracy
decays as older training data is used (RQ4). Consequently, we show that the benefit of
adding more bug reports in the training set is nullified by the disadvantage of training
the system on less recent data. Our conclusion is that any ML system used for auto-
mated bug assignment should be continuously monitored to detect decreases in prediction
accuracy.

Our results confirm previous claims that relying only on K-fold cross-validation is not
enough to evaluate automated bug assignment. We achieve higher prediction accuracy when
performing 10-fold cross-validation with stratification than when analyzing bug reports
sorted by the submission date. The differences we observe are likely to be of practical sig-
nificance, thus it is important to report evaluations also using sorted data, i.e., mimicking
a realistic inflow of bug reports. Several authors have proposed modifications to cross-
validation to allow evaluations on dependent data, e.g., h-block cross-validation (Burman
et al. 1994). Future work could try this for bug assignment evaluation, which means reduc-
ing the training set by removing h observations preceding and following the observations in
the test set.

1572 Empir Software Eng (2016) 21:1533–1578

When deploying automated bug assignment in industry, we plan to present more than one
candidate development team to the user of the ML system. By presenting a ranked list of
teams, along with rationales of our suggestions, an experienced member of the CCB should
be able to use the tool as decision support to select the most appropriate team assignment.
Our current evaluation does not take this into account, as we only measure the correctness
of the very first candidate. Future work could extend this evaluation by evaluating lists of
candidates, opening up for measures from the information retrieval field, e.g., mean average
precision and normalized discounted cumulative gain. Finally, to properly evaluate howML
can support bug assignment in industry, the research community needs to conduct indus-
trial case studies in organizations using the approach. In particular, it is not clear how high
the prediction accuracy needs to be before organizations perceive the system to be “good
enough”.

Future work could be directed toward improving our approach to automated bug assign-
ment. A number of studies in the past show that tools specialized for bug assignment in a
particular project can outperform general purpose classifiers (Tamrawi et al. 2011; Xie et al.
2012; Xia et al. 2013). It would be possible for us to explore if any enhancements proposed
in previous work could improve the accuracy of SG, e.g., topic models, social network
analysis, or mining the commit history of source code repositories. Also, we could further
investigate if any particular characteristics of team assignment in proprietary projects could
be used to improve automated bug assignment, i.e., characteristics that do not apply to OSS
projects.

Another direction for future enhancements of our approach could explore how to adapt
bug assignment based on the developers’ current work load in the organization. The current
solution simply aims to assign a bug report to development teams that worked on simi-
lar bug reports in the past. Another option would to optimize the resolution times of bug
reports by assigning bugs to the team most likely to close them fast. For many bug reports,
more than one team is able to resolve the issue involved, especially in organizations with a
dedicated strategy for shared code ownership. Future work could explore the feature engi-
neering required for SG to cover this aspect. Yet another possible path for future work, made
possible by the large amount of industrial data we have collected, would be to conduct com-
parative studies of bug reports from OSS and proprietary projects, similar to what Robinson
and Francis (2010) reported for source code.

Acknowledgements This work was supported in part by the Industrial Excellence Center EASE –
Embedded Applications Software Engineering.9

References

Aberdour M (2007) Achieving quality in open-source software. IEEE Softw 24(1):58–64
Ahsan S, Ferzund J, Wotawa F (2009) Automatic software bug triage system (bts) based on latent semantic

indexing and support vector machine. In: Proceedings of the 4th international conference on software
engineering advances, pp 216–221

Alenezi M, Magel K, Banitaan S (2013) Efficient bug triaging using text mining. J Softw 8(9)
Alshammari R, Zincir-Heywood A (2009) Machine learning based encrypted traffic classification: Identify-

ing SSH and Skype. In: Proceedings of the symposium on computational intelligence for security and
defense applications, pp 1–8

9http://ease.cs.lth.se.

http://ease.cs.lth.se

Empir Software Eng (2016) 21:1533–1578 1573

Amamra A, Talhi C, Robert JM, Hamiche M (2012) Enhancing smartphone malware detection perfor-
mance by applying machine learning hybrid classifiers. In: Kim Th, Ramos C, Kim Hk, Kiumi A,
Mohammed S, Slezak D (eds) Computer applications for software engineering, disaster recovery, and
business continuity, no. 340 in communications in computer and information science. Springer, Berlin,
pp 131–137

Anvik J (2007) Assisting bug report triage through recommendation. Thesis, University of British Columbia
Anvik J, Murphy GC (2011) Reducing the effort of bug report triage: recommenders for development-

oriented decisions. Trans Softw Eng Methodol 20(3):10:1–10:35
Anvik J, Hiew L, Murphy GC (2006) Who should fix this bug? In: Proceedings of the 28th international

conference on software engineering, New York, NY, USA, ’06, pp 361–370
Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Statistics Surveys

4:40–79
Asklund U, Bendix L (2002) A study of configuration management in open source software projects. IEE

Proceedings - Software 149(1):40–46
Avazpour I, Pitakrat T, Grunske L, Grundy J (2014) Dimensions and metrics for evaluating recommenda-

tion systems. In: Robillard M, Maalej W, Walker R, Zimmermann T (eds) Recommendation systems in
software engineering. Springer, pp 245–273

Basili V, Selby R, Hutchens D (1986) Experimentation in software engineering. IEEE Trans Softw Eng SE
12(7):733–743. doi:10.1109/TSE.1986.6312975

Baysal O, Godfrey M, Cohen R (2009) A bug you like: A framework for automated assignment of bugs. In:
Proceedings of the 17th international conference on program comprehension, pp 297–298

Bettenburg N, Premraj R, Zimmermann T, Sunghun K (2008) Duplicate bug reports considered harmful...
really? In: Proceedings of the international conference on software maintenance, pp 337–345

Bezanson J, Karpinski S, Shah VB, Edelman A (2012) Julia: A fast dynamic language for technical
computing. arXiv:1209.5145

Bhattacharya P, Neamtiu I, Shelton CR (2012) Automated, highly-accurate, bug assignment using machine
learning and tossing graphs. J Syst Softw 85(10):2275–2292

Bifet A, Holmes G, Kirkby R, Pfahringer B, Massive online analysis (2010) J Mach Learn Res 11:1601–1604
Bishop CM (2006) Pattern recognition and machine learning. Springer, New York
Blei D, Ng A, Jordan M (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022. http://dl.acm.org/

citation.cfm?id=944919.944937
Borg M, Pfahl D (2011) Do better IR tools improve the accuracy of engineers’ traceability recovery? In:

Proceedings of the international workshop on machine learning technologies in software engineering,
pp 27–34

Borg M, Runeson P, Ardö A (2014) Recovering from a decade: A systematic mapping of
information retrieval approaches to software traceability. Empir Softw Eng 19(6):1565–1616.
doi:10.1007/s10664-013-9255-y

Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
Burman P, Chow E, Nolan D (1994) A cross-validatory method for dependent data. Biometrika 81(2):351–

358
Canfora G, Cerulo L (2006) Supporting change request assignment in open source development. In:

Proceedings of the symposium on applied computing, pp 1767–1772
Chen L, Wang X, Liu C (2011) An approach to improving bug assignment with bug tossing graphs and bug

similarities. J Softw 6(3)
Cubranic D, Murphy GC (2004) Automatic bug triage using text categorization. In: Proceedings of the 16th

international conference on software engineering & knowledge engineering, pp 92–97
Frank E, Hall M, Trigg L, Holmes G, Witten I (2004) Data mining in bioinformatics using Weka.

Bioinformatics 20(15):2479–2481
Freund Y, Schapire RE (1995) A desicion-theoretic generalization of on-line learning and an application to

boosting. In: Vitanyi P (ed) Computational learning theory, no. 904 in lecture notes in computer science.
Springer, Berlin, pp 23–37

Green SB (1991) How many subjects does it take to do a regression analysis. Multivar Behav Res 26(3):499–
510

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) TheWEKA data mining software:
an update. SIGKDD Explor Newsl 11(1):10–18

Helming J, Arndt H, Hodaie Z, Koegel M, Narayan N (2011) Automatic sssignment of work items. In:
Maciaszek LA, Loucopoulos P (eds) Proceedings of the international conference on evaluation of novel
approaches to software engineering. Springer, Berlin, pp 236–250

Hofmann M, Klinkenberg R (2013) Data mining use cases and business analytics applications. CRC Press,
Taylor & Francis Group, Boca Raton. ISBN: 1482205491, 9781482205497

http://dx.doi.org/10.1109/TSE.1986.6312975
http://arXiv.org/abs/1209.5145
http://dl.acm.org/citation.cfm?id=944919.944937
http://dl.acm.org/citation.cfm?id=944919.944937
http://dx.doi.org/10.1007/s10664-013-9255-y

1574 Empir Software Eng (2016) 21:1533–1578

Jeong G, Kim S, Zimmermann T (2009) Improving bug triage with bug tossing graphs. In: Pro-
ceedings of the 7th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on the foundations of software engineering, New York, NY, USA,
pp 111–120

Jonsson L, Broman D, Sandahl K, Eldh S (2012) Towards automated anomaly report assignment in large
complex systems using stacked generalization. In: Proceedings of the International conference on
software testing, verification, and validation, pp 437–446

Just S, Premraj R, Zimmermann T (2008) Towards the next generation of bug tracking systems. In: Proceed-
ings of the Symposium on visual languages and Human-centric computing, IEEE Computer Society,
pp 82–85

Kagdi H, Gethers M, Poshyvanyk D, Hammad M (2012) Assigning change requests to software developers.
J Softw: Evolution and Process 24(1):3–33

Kodovsky J (2011) On dangers of cross-validation in steganalysis. Tech. rep., Birmingham University
Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selec-

tion. In: Proceedings of the 14th International joint conference on artificial intelligence, vol 2,
pp 1137–1143

Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship with
the ensemble accuracy. Mach Learn 51(2):181–207

Li N, Li Z, Nie Y, Sun X, Li X (2011) Predicting software black-box defects using stacked gen-
eralization. In: Proceedings of the International conference on digital information management,
pp 294–299

Li Q, Wang Q, Yang Y, Li M (2008) Reducing biases in individual software effort estimations: a combining
approach. In: Proceedings of the 2nd international symposium on empirical software engineering and
measurement, pp 223–232. doi:10.1145/1414004.1414041

Lin Z, Shu F, Yang Y, Hu C, Wang Q (2009) An empirical study on bug assignment automation using
Chinese bug data. In: Proceedings of the 3rd international symposium on empirical software engineering
and measurement, pp 451–455

Linares-Vasquez M, Hossen K, Dang H, Kagdi H, Gethers M, Poshyvanyk D (2012) Triaging incoming
change requests: bug or commit history, or code authorship? In: Proceedings of the 28th international
conference on software maintenance, pp 451–460

Matter D, Kuhn A, Nierstrasz O (2009) Assigning bug reports using a vocabulary-based expertise model of
developers. In: 6th IEEE International working conference on mining software repositories, 2009. MSR
’09, pp 131–140. doi:10.1109/MSR.2009.5069491

McCallum A (2002) A machine learning for language toolkit. Tech. rep. http://mallet.cs.umass.edu
Mozilla (2013) Life cycle of a bug. http://www.bugzilla.org/docs/tip/en/html/lifecycle.html. Accessed 28-

October-2013
Murphy-Hill E, Murphy G (2014) Recommendation delivery: getting the user interface just right. In: Robil-

lard M, Maalej W, Walker R, Zimmermann T (eds) Recommendation systems in software engineering.
Springer, Berlin

Nagwani N, Verma S (2012) Predicting expert developers for newly reported bugs using frequent terms
similarities of bug attributes. In: Proceedings of the 9th international conference on ICT and knowledge
engineering, pp 113–117

Owen S, Anil R, Dunning T, Friedman E (2011) Mahout in action. Manning Publications, Shelter Island
Parasuraman R, Sheridan T, Wickens C (2000) A model for types and levels of human interaction with

automation. IEEE Trans Syst Man Cybern 30(3):286–297
Park J, Lee M, Kim J, Hwang S, Kim S (2011) A cost-aware triage algorithm for bug reporting systems. In:

Proceedings of the 25th AAAI conference on artificial intelligence
Paulson J, Succi G, Eberlein A (2004) An empirical study of open-source and closed-source software

products. IEEE Trans Softw Eng 30(4):246–256
Petersen K, Wohlin C (2009) Context in industrial software engineering research. In: Proceedings of the 3rd

international symposium on empirical software engineering and measurement, pp 401–404
Rao R, Fung G, Rosales R (2008) On the dangers of cross-validation. An experimental evaluation. In:

Proceedings of the SIAM international conference on data mining, pp 588–596
Regnell B, Berntsson Svensson R, Olsson T (2008) Supporting roadmapping of quality requirements. IEEE

Softw 25(2):42–47. doi:10.1109/MS.2008.48
Robillard M, Maalej W, Walker R, Zimmermann T (2014) Recommendation systems in software engineer-

ing. Springer, Berlin
Robinson B, Francis P (2010) Improving industrial adoption of software engineering research: A compari-

son of open and closed source software. In: Proceedings of the international symposium on empirical
software engineering and measurement, pp 21:1–21:10

http://dx.doi.org/10.1145/1414004.1414041
http://dx.doi.org/10.1109/MSR.2009.5069491
http://mallet.cs.umass.edu
http://www.bugzilla.org/docs/tip/en/html/lifecycle.html
http://dx.doi.org/10.1109/MS.2008.48

Empir Software Eng (2016) 21:1533–1578 1575

Robles G, Gonzalez-Barahona J (2006) Contributor turnover in Libre software projects. In: Damiani E,
Fitzgerald B, Scacchi W, Scotto M, Succi G (eds) Open source systems, no. 203 in International
federation for information processing. Springer, pp 273–286

Servant F, Jones J (2012) Automatic developer-to-fault assignment through fault localization. In: Proceed-
ings. of the 34th international conference on software engineering (ICSE), pp 36–46

Shokripour R, Kasirun Z, Zamani S, Anvik J (2012) Automatic bug assignment using information extraction
methods. In: Proceedings of the international conference on advanced computer science applications and
technologies, pp 144–149

Sill J, Takacs G, Mackey L, Lin D (2009) Feature-weighted linear stacking. arXiv:0911.0460
Tamrawi A, Nguyen T, Al-Kofahi J, Nguyen T (2011) Fuzzy set and cache-based approach for bug triag-

ing. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
foundations of software engineering, pp 365–375. doi:10.1145/2025113.2025163

Thomas S, Nagappan M, Blostein D, Hassan A (2013) The impact of classifier configuration and classifier
combination on bug localization. IEEE Trans. Softw. Eng. 39(10):1427–1443

Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic.
J R Stat Soc Ser B (Stat Methodol) 63(2):411–423

Wiklund K, Eldh S, Sundmark D, Lundqvist K (2013) Can we do useful industrial software engineering
research in the shadow of lean and agile? In: Proceedings of the 1st international workshop on conducting
empirical studies in industry, pp 67–68

Witten IH, Frank E, Hall MA (2011) Data mining. pub. Burlington, MA
Wohlin C, Runeson P, Host M, Ohlsson M, Regnell B, Wesslen A (2012) Experimentation in software

engineering: A practical guide. Springer, Berlin
Wolpert D (1992) Stacked generalization. Neural Netw. 5(2):241–259
Wu W, Zhang W, Yang Y, Wang Q (2011) Developer recommendation with k-nearest-neighbor search and

expertise ranking. In: Proceedings of the 18th Asia pacific software engineering conference, pp 389–396
Xia X, Lo D, Wang X, Zhou B (2013) Accurate developer recommendation for bug resolution. In:

Proceedings of the 20th working conference on reverse engineering, pp 72–81
Xie X, Zhang W, Yang Y, Wang Q (2012) Developer recommendation based on topic models for bug reso-

lution. In: Proceedings of the 8th international conference on predictive models in software engineering,
pp 19–28

Zaharia M, Chowdhury NMM, Franklin M, Shenker S, Stoica I (2010) Spark: cluster computing with work-
ing sets. Tech. rep., EECS department, University of California, University of California at Berkeley,
Berkeley, California

Zhao Y, Zhang Y (2008) Comparison of decision tree methods for finding active objects. Adv Space Res
41(12):1955–1959

Leif Jonsson received his MSc degree in Computer Science (1998) from Uppsala University; in the same
year he started working at Ericsson AB’s research division. In 2010 he started his PhD studies at Linköping
University. His research interests include applying machine learning techniques to large-scale software devel-
opment processes to automate traditionally hard to automate tasks. His current focus area is automatic fault
localization.

http://arxiv.org/abs/0911.0460
http://dx.doi.org/10.1145/2025113.2025163

1576 Empir Software Eng (2016) 21:1533–1578

Markus Borg received a MSc degree in Computer Science and Engineering (2007) and a PhD degree in
Software Engineering (2015) from Lund University, where he is a member of the Software Engineering
Research Group (SERG). His research interests are related to alleviating information overload in large-scale
software development, with a focus on increasing the level of automation in the inflow of issue reports.
Prior to his PhD studies, he worked three years as a development engineer at ABB in safety-critical software
engineering. He is a student member of the IEEE.

David Broman is Associate Professor at KTH Royal Institute of Technology, Sweden. He also has a part
time research position at the University of California, Berkeley, USA. David received his Ph.D. in Com-
puter Science in 2010 from Linköping University, Sweden. He has been an Assistant Professor at Linköping
University and a Visiting Scholar at the University of California, Berkeley. His research is focused on time-
aware systems design, in particular programming and modeling language theory, and real-time systems. He
has worked within the software security industry, co-founded the EOOLT workshop series, and is member of
IFIP WG 2.4 and the TAACCS steering committee.

Empir Software Eng (2016) 21:1533–1578 1577

Kristian Sandahl is professor of Software Engineering at the Department of Computer and Information
Science at Linköping University, Sweden. He is the leader of the Programming Environments Laboratory
and his major research interests are: Requirements Engineering, Software Processes, Model-Based Software
Development, and Empirical Research Methods. Professor Sandahl is a true enthusiast of transferring of
knowledge between industry and academia and has worked both in spin-off companies and at Ericsson. He
is an active member of IEEE and Swedish Association of Graduate Engineers.

Sigrid Eldh is a Senior Specialist and Researcher in Test & Debug Technology at Ericsson, Sweden with
over 30 years of experience from the software industry. She holds a part time position at Mälardalens Univer-
sity, Sweden, where she also received her Ph.D. in Computer Science. She received her Masters of Computer
Science from Uppsala University, Sweden. Her research focus is on test automation, test design and archi-
tecture using more automatic approaches for e.g. bug prevention and removal on large complex many-core
systems. This has lead research towards self-healing systems, including other self*properties. Sigrid Eldh
was a co-founder of test organizations such as ISTQB, SSTB and SAST.

1578 Empir Software Eng (2016) 21:1533–1578

Dr. Per Runeson is a professor of software engineering at Lund University, Sweden, head of the Department
of Computer Science, and the leader of its Software Engineering Research Group (SERG) and the Indus-
trial Excellence Center on Embedded Applications Software Engineering (EASE). His research interests
include empirical research on software development and management methods, in particular for verification
and validation. He is the principal author of “Case study research in software engineering”, has coauthored
“Experimentation in software engineering”, serves on the editorial board of Empirical Software Engineering
and Software Testing, Verification and Reliability, and is a member of several program committees.

	Automated bug assignment: Ensemble-based machine learning in large scale industrial contexts
	Abstract
	Introduction
	Machine Learning*4pt
	Supervised Machine Learning Techniques and Their Evaluation*1pt
	Classification
	Ensemble Techniques and Stacked Generalization

	Related Work on Automated Bug Assignment
	Automated Bug Assignment Using General Purpose Classifiers*-1pt
	Other Approaches to Automated Bug Assignment

	Case Descriptions
	Description of Company Automation
	Description of Company Telecom
	State-of-Practice Bug Assignment: A Manual Process
	State-of-the-Art: Automated Bug Assignment*-4pt

	Method
	Experiment Definition and Context
	Data Collection*2pt
	Company Automation Data Filtering
	Company Telecom Data Filtering

	ML Framework Selection
	Bug Report Feature Selection
	Experiment Design and Procedure
	Experiment A: Individual Classifiers
	Independent Variable: Choice Of Individual Classifier

	Experiment B: Ensemble Selection
	Independent Variable: Ensemble Selection

	Experiment C: Learning Curves
	Independent Variable: Amount of Training Data

	Experiment D: Sliding Time Window
	Independent Variable: Time Locality of Training Data

	Experiment E: Cumulative Time Window*2pt
	Independent Variable: Amount of Training Data

	Results and Analysis
	Experiment A: Individual Classifiers and Experiment B: Ensemble Selection
	Experiment C: Learning Curves
	Experiment D: Sliding Time Window
	Experiment E: Cumulative Time Window

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Discussion
	Stacked Generalization in the Light of Previous Work
	Lessons Learned and Industrial Adoption

	Conclusions and Future Work
	Acknowledgements
	References

