
Empir Software Eng (2016) 21:2546–2600
DOI 10.1007/s10664-015-9399-z

A comparative study of many-objective evolutionary
algorithms for the discovery of software architectures

Aurora Ramı́rez1 · José Raúl Romero1 ·
Sebastián Ventura1

Published online: 28 September 2015
© Springer Science+Business Media New York 2015

Abstract During the design of complex systems, software architects have to deal with a
tangle of abstract artefacts, measures and ideas to discover the most fitting underlying archi-
tecture. A common way to structure such complex systems is in terms of their interacting
software components, whose composition and connections need to be properly adjusted.
Along with the expected functionality, non-functional requirements are key at this stage to
guide the many design alternatives to be evaluated by software architects. The appearance
of Search Based Software Engineering (SBSE) brings an approach that supports the soft-
ware engineer along the design process. Evolutionary algorithms can be applied to deal with
the abstract and highly combinatorial optimisation problem of architecture discovery from a
multiple objective perspective. The definition and resolution of many-objective optimisation
problems is currently becoming an emerging challenge in SBSE, where the application of
sophisticated techniques within the evolutionary computation field needs to be considered.
In this paper, diverse non-functional requirements are selected to guide the evolutionary
search, leading to the definition of several optimisation problems with up to 9 metrics con-
cerning the architectural maintainability. An empirical study of the behaviour of 8 multi-
and many-objective evolutionary algorithms is presented, where the quality and type of the
returned solutions are analysed and discussed from the perspective of both the evolutionary

Communicated by: Marouane Kessentini and Guenther Ruhe

� José Raúl Romero
jrromero@uco.es

Aurora Ramı́rez
aramirez@uco.es

Sebastián Ventura
sventura@uco.es

1 Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba,
14071, Spain

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10664-015-9399-z-x&domain=pdf
mailto:jrromero@uco.es
mailto:aramirez@uco.es
mailto:sventura@uco.es

Empir Software Eng (2016) 21:2546–2600 2547

performance and those aspects of interest to the expert. Results show how some many-
objective evolutionary algorithms provide useful mechanisms to effectively explore design
alternatives on highly dimensional objective spaces.

Keywords Software architecture discovery · Search based software engineering ·
Many-objective evolutionary algorithms · Multi-objective evolutionary algorithms

1 Introduction

Software architects face some of the most difficult decisions in the earliest stages of project
execution, since they must guarantee that their designs satisfy multiple quality criteria. At
this point, only a few concrete items of information are known about the final system, even
though its structure already has to be determined (Bosch and Molin 1999). In this scenario,
the discovery of software architectures constitutes an abstract and complex task, where
software engineers have to identify high-level architectural artefacts, like components and
interfaces, from a prior analysis model. As a result, an architectural specification is obtained
comprising the underlying system structure, which will serve throughout the software devel-
opment to add later functionality, to get suitable designs or to ensure proper maintenance
(Ducasse and Pollet 2009).

Along the design phase, software architects have to deal with multiple design alterna-
tives that need to be factually evaluated in order to find those solutions that best meet
the system requirements. However, characteristics like modularity and reusability clearly
hamper the decision making process because of the lack of quantifiable measures that
really would represent the quality of the resulting software designs. Therefore, efforts
have been directed towards the definition of specific metrics at the architectural level
(Narasimhan and Hendradjaya 2007; Sant’Anna et al. 2007) like those already existing and
commonly accepted for more concrete artefacts (Bansiya and Davis 2002). Nevertheless,
selecting the most suitable subset of metrics is a complex task usually accomplished by
experts only guided by their own experience. Since many different design criteria have to
be simultaneously balanced, they may affect the manner in which architectural constraints
are considered to meet the software architects expectations.

The automatic evaluation of design alternatives constitutes an interesting application
field for Evolutionary Computation (EC) according to the rationale used by Search Based
Software Engineering (SBSE) (Harman et al. 2012), where traditional Software Engineer-
ing (SE) activities, usually performed by humans, are formulated as search problems to
be solved using metaheuristics. In the last years, EC has been successfully applied to the
resolution of combinatorial problems in Software Engineering like requirements selection
(Durillo et al. 2011) or resource allocation in project scheduling (Luna et al. 2014). In this
sense, other SE tasks have demanded the attention of more sophisticated EC approaches in
order to provide a higher performance in terms of the quality of the solutions and the sat-
isfaction of the engineer’s expectations when more than one or two objectives should be
considered (Yao 2013).

In this context, a trade-off between different objectives is required, resulting in a set
of equivalent solutions among which the expert will decide. Well-known multi-objective
evolutionary algorithms (MOEAs) (Zhou et al. 2011), like SPEA2 (Strength Pareto Evolu-
tionary Algorithm 2) and NSGA-II (Nondominated Sorting Genetic Algorithm II), usually
arise as the first option when SE practitioners want to adopt a multi-objective approach

2548 Empir Software Eng (2016) 21:2546–2600

(Sayyad and Ammar 2013). Less often, comparative studies of different MOEAs are pre-
sented with the aim of providing a further analysis of the abilities of each proposal. These
studies are really useful to gain empirical evidence of the adequacy of a specific algorithm
to a given problem domain (Luna et al. 2014; Zhang et al. 2013).

These studies have traditionally considered optimisation problems with 2 or 3 predefined
objectives, though there exist many SE tasks whose nature clearly demands the defini-
tion of a large number of objectives. Therefore, many-objective evolutionary algorithms
appear to be an interesting approach for dealing with this kind of situation (Purshouse
and Fleming 2007; von Lücken et al. 2014). The current interest within the EC com-
munity in tackling highly dimensional objective spaces creates an opportunity to benefit
from novel and powerful algorithms to support software design. Traditionally, many-
objective approaches have been tested on benchmarks considering a continuous search
space (Bader and Zitzler 2011; Yang et al. 2013; Zhang and Li 2007). For this specific
kind of problems, many-objective evolutionary algorithms have shown to clearly outper-
form MOEAs in terms of the standard performance metrics defined within the field of
multi-objective optimisation (Coello Coello et al. 2007; Zitzler et al. 2004). Only a few
authors have more deeply studied the performance of many-objective approaches in real-
world environments like those appearing in SE and, consequently, SBSE practitioners seem
to be less familiar with this kind of algorithms. In this sense, the works presented in
Kalboussi et al. (2013), Mkaouer et al. (2014), and Sayyad et al. (2013) are the first pro-
posals that are actually focused on the application of a specific many-objective evolutionary
algorithm in testing, refactoring and software product lines design activities, respectively.

The greater the number of factors required to reach architectural decisions is, the more
dependent the performance, in terms of quality and feasibility, of the obtained architectural
solution becomes on the selection of the most appropriate optimisation approach. Therefore,
even though many-objective approaches have proven capable of providing improvements in
other related fields of application, the intrinsic characteristics of each algorithm make it nec-
essary to thoroughly study them with the aim of identifying those aspects having a greater
influence on the satisfactory resolution of a given design problem. In this context, an empir-
ical analysis allows offering a more in-depth comprehensive overview of the behaviour of
different types of algorithms when dealing with a different number and sort of objectives.

In Ramı́rez et al. (2014), we presented an initial discussion on the performance of 5
multi- and many-objective evolutionary algorithms. This research, performed on a set of
6 different design metrics using 6 representative case studies, highlighted the suitability
of this new branch of algorithms in terms of their evolutionary performance and ability to
support the decision making process as the number of objectives increased. Nevertheless, we
consider it necessary to broaden and deepen in different ways this previous analysis in order
to get more valuable findings on the performance of different families of many-objectives
algorithms applied to the automatic discovery of software architectures. Firstly, the number
of problem instances has been increased to 10 real-world system specifications. Secondly,
the study focuses on the maintainability of software systems, considering up to 9 metrics
to represent the optimisation objectives. These design metrics quantify diverse related non-
functional properties of an architectural specification. The experimental framework, which
includes a detailed discussion on the existing dependencies between objectives, provides a
complete study of the most suitable characteristics of the different families of algorithms to
deal with the evolutionary discovery of software architectures. Amongst these families, 8
different algorithms have been chosen to carry out this empirical research. Due to the very
wide range of algorithms within the multi-objective optimisation field, such an analysis has

Empir Software Eng (2016) 21:2546–2600 2549

served to articulate the distinctive features of the families of algorithms that best fit into the
problem domain under study.

The rest of the paper is structured as follows. Section 2 presents some background,
focused on multi- and many-objective optimisation and SBSE. Section 3 introduces the
conceptual framework related to software architecture design and the search problem being
addressed. The evolutionary model is explained in Section 4, including the definition of
the evaluation objectives. The experimental framework is described in Section 5. Section 6
presents the obtained outcomes, whereas a discussion from the perspective of the decision
making process is given in Section 7. The threats to the validity are explained in Section 8.
Finally, some concluding remarks are pointed out in Section 9.

2 Background

The key concepts of multi- and many-objective optimisation are introduced in this section,
as well as the evolutionary algorithms used for this comparative study. Additionally, the
prior application of these multiple objective approaches in the SBSE field is reviewed.

2.1 Multi- and Many-objective Evolutionary Optimisation

Solving a multi-objective optimisation problem (MOP) consists in looking for solu-
tions characterised by a set of decision variables that can find the most optimal trade-
off among a set of objective functions, which are usually in conflict with each other
(Coello Coello et al. 2007). One initial approximation to address a MOP is to turn it into
a single-objective problem by formulating a new objective function that calculates the
weighted sum of all the objectives. Similarly, other approaches have proposed its resolution
by keeping only one objective and considering the rest of them as constraints. Even though
they are just simple proposals, they have handicaps like the weight selection or requiring
the reformulation of the problem (Deb 2001).

Therefore, any search algorithm specifically devoted to address MOPs will deal with
objectives independently, so it can return a set of optimal solutions. Each solution is
determined by a different trade-off between all the objectives, in which the improvement
achieved by one could imply the loss of others. This idea is formally stated by the Pareto
dominance definition (Coello Coello et al. 2007) as follows: a solution a is said to dominate
another solution b if a has equal or better objective values for all the objectives and a better
value for at least one objective than b. If that condition cannot be satisfied by either a or b,
then both solutions are referred as non-dominated, meaning that they are incomparable or
equivalent. The set of non-dominated solutions constitutes the Pareto set (PS), whereas the
mapping of these solutions to the objective space is called Pareto front (PF). Finding a fitting
approximation to the PF is a twofold task (Deb 2001). On the one hand, a multi-objective
approach is requested to find non-dominated solutions that are close to the front, which is
known as the convergence to the true PF. On the other hand, the resulting PF should be prop-
erly distributed within the objective space, making a good spread of non-dominant solutions
important. Having both ideas in mind, the search algorithm should be able to provide an inte-
resting set of high-quality solutions for the decision maker to choose among.

Evolutionary algorithms (EAs) are a metaheuristic technique inspired on the princi-
ples of natural evolution that deals with a set of solutions to solve optimisation problems
(Boussaı̈d et al. 2013). Each solution is characterised by its genotype, i.e. the structure used
to encode the decision variables that need to be managed during the problem resolution.

2550 Empir Software Eng (2016) 21:2546–2600

In contrast, the phenotype symbolises the real-world representation of its genotype. The
algorithm begins with the random creation of a set of candidate solutions, known as popu-
lation. Each solution, also called individual, is then evaluated considering how well it can
solve the optimisation problem according to its fitness function. The rest of the evolution
is performed by an iterative process in such a way that individuals in the population are
modified in each iteration, also called generation, using genetic operators until the stop-
ping condition, e.g. a maximum number of generations, is reached. With this purpose, some
individuals are selected to act as parents, from which new solutions are generated accord-
ing to the specific EC paradigm. The most commonly used genetic operators are crossover
and mutation. The former is applied to create offspring tending to be similar to their par-
ents, whereas the latter is performed to introduce diversity among offspring. New solutions
have to be evaluated and compared against one another in order to decide whether they
should be part of the next population of individuals. Finally, the best individual found
in terms of its fitness function is returned. Notice that several paradigms have emerged
from the general concept of Evolutionary Computation, such as genetic algorithms (GAs),
evolution strategy (ES), evolutionary programming (EP) and genetic programming (GP)
(Boussaı̈d et al. 2013). On the one hand, GA and GP apply both crossover and mutation. In
the latter, individuals represent executable programs encoded using a tree structure instead
of a fixed-length genotype as proposed by GAs. On the other hand, ES and EP do not usu-
ally implement any crossover operator, EP being characterised by the use of domain-specific
encodings.

Evolutionary computation has traditionally been a way to efficiently solve com-
plex search problems having a unique fitness function. Nevertheless, they can be also
adapted to cover a multidimensional objective space. In fact, the application of EAs for
the resolution of multi-objective problems, i.e. multi-objective evolutionary algorithms
(Coello Coello et al. 2007), has been widely studied for the resolution of real-world appli-
cations. They work well in objective spaces with 2 or 3 objectives, in both combinatorial
and continuous optimisation problems. MOEAs perform in general the same iterative pro-
cess than EAs. However, a specific terminology is often used Zitzler et al. (2004), and they
require some additional steps to be executed, as shown in Algorithm 1. Observe that MOEAs
provide a mating selection method to pick individuals to act as parents. After the gener-
ation of offspring through a domain-specific variation mechanism, i.e. genetic operators,
environmental selection is performed to select the individuals that will survive in the next
generation. The former can determine an overall fitness value, which is independent from

Empir Software Eng (2016) 21:2546–2600 2551

the objective values and represents a quality criterion to classify individuals, usually promot-
ing the selection of non-dominated solutions. The latter applies some diversity preservation
techniques in order to choose between equivalent solutions. In addition, an external popu-
lation, called archive, can be maintained throughout the evolution containing the best found
solutions. Finally, the Pareto set is returned by extracting non-dominated solutionsl from
either the population or the archive. Two well-known examples of MOEAs adopting this
latter structure are SPEA2 (Zitzler et al. 2001) and NSGA-II (Deb et al. 2002).

In the last decades, important efforts have been devoted to deal with the increasing
complexity of MOPs, especially with those having a large number of objectives, known
as many-objective optimisation problems. Although the actual difference between multi-
and many-objective problems has not been clearly stated in the literature (Purshouse and
Fleming 2007), some works initially considered that having more than 2 objectives can
be considered as a many-objective problem (Adra and Fleming 2011). Nevertheless, most
authors agree today with the idea that many-objective problems require the presence of
at least 4 objectives (Deb and Jain 2014; von Lücken et al. 2014; Zhou et al. 2011).
In this paper, this latter criterion is followed in order to distinguish among optimisation
problems. Even so, notice that algorithms originally conceived as multi-objective have
served to address many-objective problems, whereas other authors use the term multi-
objective to refer to the algorithm, and the term many-objective to the optimisation problem.
Here, algorithms will be categorised as prescribed by their respective authors. There are
studies which conclude that proposals like SPEA2 and NSGA-II tend to decrease their
performance as the number of objectives increases, at least when solving continuous opti-
misation benchmarks (Khare et al. 2003; Praditwong and Yao 2007). In highly dimensional
objective spaces, the Pareto dominance loses the efficiency required to guide the search,
since a great number of population members become non-dominated solutions. For this
reason, many-objective optimisation problems require new techniques to deal with such
complexity (Schutze et al. 2011; von Lücken et al. 2014).

Recently, different strategies have been applied in order to improve the performance
of EAs for solving many-objective problems, including the adaptation of some already
existing algorithms (Adra and Fleming 2011; Wang et al. 2014) or the design of new frame-
works (Hadka and Reed 2013). Some of the proposed features are related to the modification
of the dominance principle (He et al. 2014) or the inclusion of specific diversity preservation
techniques (Wang et al. 2014), among others. Thus, they are usually classified in families
in accordance with the selected technique (Wagner et al. 2007).

2.2 Selected Algorithms

Eight evolutionary algorithms have been selected for this comparative study. Two multi-
objective evolutionary algorithms, SPEA2 and NSGA-II, are included as baseline algo-
rithms, their original implementation being maintained. Additionally, other representative
proposals, especially well-suited to deal with many-objective problems, were chosen from
the different families of algorithms in accordance to the literature (von Lücken et al. 2014;
Wagner et al. 2007). Notice that for this selection, algorithms could not consider any previ-
ous assumption about domain-specific elements like the encoding or the genetic operators,
since both characteristics need to be configured according to the problem domain under study.

SPEA2 (Zitzler et al. 2001) assigns a fitness value based on a strength rate and a density
estimator strategy. The former counts the number of dominated and non-dominated solu-
tions considering each individual, whereas the latter uses a clustering approach to select

2552 Empir Software Eng (2016) 21:2546–2600

more diverse individuals. Both values are combined and used in the mating selection. Non-
dominated solutions are stored in a fixed-size archive using a truncation method if it is
required, while the new population will be set using all the offspring.

NSGA-II (Deb et al. 2002) involves a sorting method in order to rank the solutions in
fronts considering the dominance between them. Both this ranking and a crowding dis-
tance are used in the mating selection. During the environmental selection, individuals
are progressively kept by fronts, the crowding distance being used to decide which individ-
uals are selected when a front cannot be stored entirely. This algorithm does not define an
external archive, so the non-dominated solutions are extracted from the final population.

MOEA/D (Multiobjective Evolutionary Algorithm based on Decomposition)
(Zhang and Li 2007) proposes a decomposition approach where the multi-objective
problem is divided into several scalar problems to be simultaneously optimised, looking
for a better diversity among solutions. More specifically, MOEA/D associates each sub-
problem to one individual in the population by means of a weighted vector. Individuals
are randomly chosen in the mating selection, whereas the neighbourhood information is
determined on the weighted vectors during the environmental selection in order to match
each offspring to the subproblem that it can best solve. The Tchebycheff approach is
applied to evaluate individuals over their specific problem, computing its distance to a
reference point. This algorithm uses an archive to keep all the non-dominated solutions
found throughout the evolution process. Originally proposed to solve MOPs, MOEA/D
is frequently used in many-objective problems, as well as to try out new proposals
(Deb and Jain 2014; von Lücken et al. 2014; Yang et al. 2013).

A common technique to avoid the poor selection pressure of the Pareto dominance cri-
terion is to divide the objective space into hypercubes or grids. Then, a relaxed dominance
relation, usually referred as the ε-dominance, is defined over the resulting landscape. Thus,
solution a ε-dominates solution b if a belongs to better or equal hypercubes for all the
objectives and to a better hypercube for at least one objective than b. This idea is explored
in ε-MOEA (Deb et al. 2003), a steady-state algorithm which establishes a fixed length of
the hypercubes for every objective, named εi . In each iteration, one parent from the cur-
rent population and another one from an archive of solutions are selected to generate one
or more offspring. These new solutions will survive depending on the hypercubes to which
they belong and those already filled with the solutions previously saved in the external
population. Similarly to MOEA/D, ε-MOEA was originally conceived to deal with 2 or 3
objectives, although it has turned into a reference algorithm due to its notable performance
to address many-objective optimisation problems (Wagner et al. 2007; Yang et al. 2013).

GrEA (Grid-based Evolutionary Algorithm) (Yang et al. 2013) is a many-objective
evolutionary algorithm based on the notion of landscape partition, though grids are here
dynamically created considering the objective values in the current population. Initially,
GrEA calculates some properties of the individuals based on the grids. Such information is
used by the mating selection in order to obtain the most promising reproducible solutions.
Inspired by NSGA-II, GrEA also ranks the population by fronts during the environmental
selection, but it uses its own specific distance and diversity metrics to discard equivalent
solutions. GrEA does not define an external archive, the returned solutions being extracted
from the final population.

Indicator-based methods propose the use of indicators to guide the evolution process.
The selected indicator can represent the preferences of the decision maker, so the evolu-
tion is heavily oriented towards a region of interest. Some popular indicator of the quality
of a Pareto set approximation, e.g. the hypervolume, can be considered. This kind of algo-

Empir Software Eng (2016) 21:2546–2600 2553

rithms has become an interesting alternative to address many-objective optimisation, since
they transform the original problem into a task consisting in optimising the quality indica-
tor (von Lücken et al. 2014). One representative approach here is IBEA (Indicator-based
Evolutionary Algorithm) (Zitzler and Künzli 2004), which defines a general evolutionary
algorithm where any binary indicator could be used as a fitness function. The selected mea-
sure is a key factor, since the fitness function is heavily involved in both the mating and
the environmental selection procedures. For instance, the authors proposed the application
of the ε-indicator, representing the minimum distance by which a set of solutions should
be translated in each dimension such that another set of solutions is weakly-dominated. It
requires a less complex operation than hypervolume, which could be prohibitive in terms
of computational effort when a large number of objectives is set. During the mating selec-
tion, binary tournaments are performed to generate the set of parents. For each tournament,
two randomly selected individuals are compared with each other according to their fitness
values, so the best individual is returned as parent. The worst individuals are discarded
during the environmental selection.

Another relevant proposal is HypE (Hypervolume Estimation Algorithm)
(Bader and Zitzler 2011), which allows the optimisation of many-objective problems
replacing the exact value of the hypervolume with an estimated value based on Monte Carlo
simulations. This value represents the portion of the hypervolume to be actually attributed
to each solution and used to determine the winner of each binary tournament in the mating
selection process. Environmental selection is based on the minimum loss of hypervolume,
discarding those solutions that contribute the least to the overall hypervolume as a way to
promote convergence to the most promising solutions in terms of this indicator. Neither
IBEA nor HyPE makes use of an archive of non-dominated solutions.

Finally, NSGA-III (Deb and Jain 2014) is a many-objective evolutionary algorithm which
looks for the improvement of the performance of its predecessor, NSGA-II, when dealing
with highly dimensional objective spaces. It is classified as a reference-point-based method,
being characterised by the promotion of those individuals that are close to a set of refer-
ence points supplied by the user or uniformly generated by the algorithm. In NSGA-III,
the crowding distance of NSGA-II is replaced by a new method, where each individual is
associated to the closest reference point. In this way, diversity is preserved attending to the
survival of, at least, one representative solution for each reference point. Apart from belong-
ing to a different family of many-objective approaches, NSGA-III has shown promising
results when coping with complex real-world combinatorial SBSE problems like software
refactoring (Mkaouer et al. 2014).

2.3 Multiple Objective Approaches in SBSE

Multi-objective optimisation algorithms have been widely applied in SBSE (Yao 2013),
since they have demonstrated their ability to reach a trade-off between objectives, as is often
the case in Software Engineering. Focusing on search-based software design (Räihä 2010),
i.e. the field within SBSE that proposes the application of metaheuristics to the design
and improvement of different software artefacts, some classical MOEAs have already been
used. Object-oriented analysis using SPEA2 (Bowman et al. 2010), software module clus-
tering executing the Two-Archive algorithm (Praditwong et al. 2011), or the application of
NSGA-II to code refactoring (Ouni et al. 2013) represent some examples of software design
activities that have been solved from a multi-objective perspective.

Within the field of search-based software design, software architecture optimisa-
tion (Aleti et al. 2013) encompasses those works devoted to automatically specifying,

2554 Empir Software Eng (2016) 21:2546–2600

re-designing, discovering or deploying software architectures. Recently, these tasks have
also being addressed with multi-objective evolutionary approaches. Grunske (2006) pre-
sented a first analysis of the applicability of a multi-objective strategy facing several specific
non-functional requirements to the software architecture refactoring problem. In this case,
no implementation was proposed.

The generation of a set of alternative architectural specifications by means of a spe-
cific multi-objective genetic algorithm is proposed in Räihä et al. (2011). Here, a structural
model, specified as a class diagram representing a low level architecture, is derived from its
corresponding behavioural specification, modelled in terms of sequence diagrams, which
are extracted from the software requirement specification and drawn as use cases. Simul-
taneously, 4 design metrics related to modifiability and efficiency are optimised in the
process. NSGA-II is the algorithm chosen to perform the architectural deployment in
Koziolek et al. (2013), looking for a trade-off between availability, performance and cost.
Here, the optimisation problem consists of the optimal allocation of components into
servers, including the server configuration and component selection.

Although NSGA-II stands out as the preferred algorithm in all the SBSE fields, some
comparative studies have recently appeared to empirically decide the most appropriate
MOEA for a given design problem. With reference to software architecture deployment,
Li et al. (2011) compares SPEA2, NSGA-II and SMS-EMOEA (S Metric Selection Evo-
lutionary Multiobjective Optimisation Algorithm) to obtain the best allocation of software
components in terms of CPU utilization, cost and latency. Further, there are some recently
proposed studies related to other problem domains. For example, in Zhang et al. (2013) the
performance of several variants of NSGA-II were analysed for the priorisation of require-
ments, considering up to 5 objectives. In Assunção et al. (2014), the authors propose a
comparison between SPEA2, NSGA-II and PAES (Pareto Archived Evolution Strategy) to
deal with 2 and 4 objectives in the context of software testing. Only del Sagrado et al. (2015),
Durillo et al. (2011), and Luna et al. (2014) seem to consider a greater variety of meta-
heuristics, even though they are actually applied to bi-objective problems, like the selection
of requirements or the project scheduling problem.

Classical MOEAs still are the most used algorithms in SBSE for multi-objective prob-
lems, though some of these problems really seem to require more than 2 or 3 objectives
to be optimised (Sayyad and Ammar 2013). Many-objective approaches have received less
attention and their applicability has been only explored in a few proposals, mainly focusing
on one specific algorithm for a very certain task. In Sayyad et al. (2013) IBEA was cho-
sen to optimise 5 design characteristics of product lines. Kalboussi et al. (2013) presented
a preference-based evolutionary method to deal with 7 objectives of a testing problem,
whereas Mkaouer et al. (2014) has recently proposed an interesting solution to the software
refactoring, using NSGA-III to simultaneously optimise 15 objectives.

3 Software Architecture Discovery

3.1 Conceptual Framework

The ISO Std. 42010 (ISO 2011b) defines the architecture of a software system as “the
fundamental concepts or properties of a system in its environment embodied in its ele-
ments, relationships, and in the principles of its design and evolution”. A software architect
is in charge of conceiving a system that meets the expected functional requirements, as
well as the non-functional requirements like performance or maintainability, at a high

Empir Software Eng (2016) 21:2546–2600 2555

level of abstraction. A commonly used approach for developing the software architecture
specification is to follow a component-based design, which advocates for the construc-
tion of independent, interrelated software artefacts, mostly conceived in favour of reuse.
In a component-based architecture, a component represents a block of highly cohesive
functionality, whose interactions are specified by means of provided and required inter-
faces (Szyperski 2002). Connectors are links between provided and required interfaces,
so they tie a component that supplies some services to another component demanding
them.

The tasks related to the architectural design deal with aspects like the understanding,
reuse, construction, evolution, analysis and management of the software system (Garlan
2000). From the beginning, an architectural specification is not only required to provide an
abstract description of the system, but also to check its consistency and conformance to qual-
ity attributes. Nevertheless, the techniques currently used to evaluate software architectures
are mostly based on the expert’s opinion (Dobrica and Niemela 2002). Actually, the defini-
tion of design metrics at the architectural level is still a great challenge, where the ISO Std.
25000 (ISO 2011a) can play an important role as it can serve as a framework to provide a
precise guidance on how an architectural model should be assessed.

Ideally, the architecture specification of the system should be maintained throughout
the entire development process, evolving as the software does. Frequently, uncontrolled
changes in the requirements or the inclusion of a new functionality are directly reflected in
the most concrete artefacts, like source code, leading to out-of-date, incoherent, and use-
less software documentation. As a result, understanding the original architecture becomes
a complicated task (Ducasse and Pollet 2009). Although diverse methods have been pro-
posed to recover the architectural specification, most of them start with the source code,
meaning that the recovery process can only be conducted once the system implementation is
completed. If code is not available, the discovery of the original architecture could only be
done manually in accordance to the analysis models. As this process strongly relies on the
expertise of software engineers, providing semi-automatic approaches could serve to assist
them, especially in exploring different design alternatives in terms of the expected quality
attributes.

cl
as

se
s

re
la
tio

ns
hi
ps

Fig. 1 General outline of the XMI file

2556 Empir Software Eng (2016) 21:2546–2600

3.2 The Search Problem

In Ramı́rez et al. (2015), the discovery of software architectures is presented as a search
problem, where an analysis model represented in form of a class diagram (OMG 2010) saved
in XMI format provides the input information in terms of classes and their relationships
(see Fig. 1). In this case, the search problem is solved by a single-objective evolutionary
algorithm, which is able to generate one single candidate solution representing a high-level
architectural specification in terms of components, interfaces and connectors, and depicted
by a component diagram. The discovery process is guided by the following rules:

– A component is represented by a cohesive group of classes. The search algorithm
should be able to discover the groups of classes that best integrate the different func-
tionalities of the interacting system. Relationships between components are mapped
into interacting interfaces. Two constraints should be satisfied in this regard: any class
should belong to only one component, and the resulting architectural specification
should not contain any empty element.

– Once the classes are divided up among components, directed relationships between
pairs of classes, each belonging to a different component, would represent a candi-
date interface. The types of the relationships are those defined by UML 2: associations,
dependencies, aggregations, compositions and generalisations. Here, two exceptional
cases could cause the interface not to be created: either the navigability of the
relationship is unspecified, or the relationship represents a data abstraction mod-
elled by a generalisation. Two additional constraints should be also considered: any
component should define at least one interface, and mutually dependent compo-
nents, i.e. a pair of components each one providing services to the other, should
not be created.

– A connector is a link between a pair of required-provided interfaces belonging to
different components.

4 Optimisation Approach for the Discovery Process

According to Aleti et al. (2013), the proposed approach can be classified as an architecture
optimisation method, where a search-based algorithm is applied on a number of architec-
tural artefacts in order to get the best trade-off between certain quality attributes. More
specifically, our evolutionary model falls into the category of multi-objective approaches
(dimensionality category), making use of a high-level technique, i.e. metaheuristics, to find
approximate solutions (optimisation strategy). Similarly to other methods, constraint han-
dling techniques are applied, and UML 2 is used as a notation for the architectural specifica-
tion. What distinguishes our approach from other existing architecture optimisation methods
are those aspects related to the problem domain, i.e. quality attributes and decision variables
(degrees of freedom). The discovery of software architectures was recently proposed as a
search problem in Ramı́rez et al. (2015), being addressed from a single-objective perspective.

The architectural specification is not constructed from scratch during the search-based
discovery process. Instead of being derived from requirements, the identification of the
system functional blocks and their abstract specification are carried out from an earlier
analysis model. A similar approach is the decomposition process proposed by Lutz (2001),
where an evolutionary algorithm is used to find the best distribution of classes into mod-
ules. This proposal is founded on clustering, so the system structure is viewed as a graph

Empir Software Eng (2016) 21:2546–2600 2557

and, besides, valuable analysis information, such as the presence of abstract artefacts or
the existence of different types of relationships among the classes, is omitted during the
search. Nonetheless, the proposed procedure is not intended to precisely simulate what the
engineer would do to build the architecture, e.g. defining interacting interfaces. Similarly,
software modularisation (Praditwong et al. 2011) deals with the organisation of code into
packages and modules, working at a lower level of abstraction. Although the three opti-
misation approaches share the idea of searching the optimal organisation of some kind
of software artefacts in other units of construction, each problem defines its own objec-
tives and constraints, leading to several differences among them regarding their respective
fitness landscapes.

The elements that constitute the evolutionary algorithm addressing the discovery pro-
cess are introduced next. Firstly, the encoding and the initialisation are explained. Secondly,
the objective functions and the genetic operator, composed by five different mutation
procedures, are presented. Crossover is not applied because the evolutionary model pre-
sented here adopts the evolutionary programming paradigm.

4.1 Encoding and Initialisation

The individuals of the population represent design solutions in the form of a component-
based software architecture. A simple genotype/phenotype mapping constitutes an essential
element in favour of interpretability. Additionally, since no prior assumption of the archi-
tectural structure to be returned is made, a flexible encoding is also required in order to
be able to manage architectural solutions having different number of components. There-

Architecture

Components Connectors

Component1 Component2 Connector1

Classes
Provided
interfaces

Required
interfaces

Component3 Connector2

Classes
Provided
interfaces

Required
interfaces

Classes
Provided
interfaces

Required
interfaces

A B C_req_DC A_prov_E E F E_req_A G H D_prov_CD

Provided
interface

Required
interface

Provided
interface

Required
interface

E_req_A A_prov_E C_req_D D_prov_C

A_prov_E

E_req_A

D_prov_C

C_req_D

A

Fig. 2 The component diagram in (a) is mapped into the tree structure depicted in (b)

2558 Empir Software Eng (2016) 21:2546–2600

fore, a tree structure is used to encode each architectural model, allowing a comprehensible
decomposition of the involved software artefacts as established in the problem statement.
As depicted in Fig. 2, shaded nodes stand for mandatory elements, whereas the rest of nodes
vary from one individual to another, i.e. components and connectors and their internal com-
position, vary from one individual to another. Additional data about the input class diagram,
such as the original relationships between classes and its abstractness are kept by the algo-
rithm. Since this information does not vary from one individual to another, it is not explicitly
represented in the genotype.

The initialisation process randomly generates component-based architectures for a given
input analysis model. For each solution, a random number of components is chosen between
a minimum and a maximum value that is configurable by the software architect. All the
classes within the input class diagram are arbitrarily distributed among components. As a
constraint none of these components can be empty. Interfaces and connectors are also set
considering the existing relationships between classes belonging to different components.
The obtained individuals do not need to strictly satisfy all the constraints related to the
interaction between components, since they are not checked at this point in order to promote
a quicker and more flexible initialisation step. Unfeasible individuals should be turned into
feasible ones or be discarded as the evolution elapses, right after the application of the
mutation operator and the selection mechanisms.

4.2 Evaluation Objectives

Nine software quality metrics are mapped into their respective objective functions, which
serve to guide the evolutionary process. These metrics quantify diverse non-functional
requirements related to the maintainability of the software system, which stands out as one
of most important quality criteria for component-based software architectures. The software
product quality model specified by the ISO Std. 25000 (ISO 2011a) defines maintainability
as “the degree to which the software product can be modified”, where modifications “may
include corrections, improvements or adaptation of the software to changes in the environ-
ment, and in requirements and functional specifications”. This standard document defines
the sub-characteristics into which the maintainability can be decomposed to effectively mea-
sure a number of related design aspects. The specific maintainability terms applicable to the
nature of the addressed problem are the following:

– Modularity, which is defined as “the degree to which a system is composed of dis-
crete components such that a change to one component has minimal impact on other
components”.

– Reusability, which establishes “the degree to which an asset can be used in more than
one software system or in building other assets”.

– Analysability, which determines “the degree to which the parts of the software to be
modified can be identified”.

All these terms need to be translated into quantifiable metrics that will then be selec-
tively combined to be simultaneously optimised by the evolutionary algorithm. On the basis
of the ISO Std. 25000, a review of the literature was conducted to select those quality met-
rics that best suited an architectural specification and could be directly computed over the
architectural solutions. These metrics are explained next.

Intra-modular Coupling Density (icd) This metric was proposed by Gupta et al. (2012)
and establishes a trade-off between cohesion and coupling, as shown in (1). icd is defined

Empir Software Eng (2016) 21:2546–2600 2559

as the ratio between internal and external relations in the components. ciini represents the
number of interactions between classes inside the component i, whereas ciout

i is the number
of external relations, i.e. the number of candidate interfaces. Here, the ratio between ciini
and ciout

i is weighted by the fraction of classes taking part in these relationships. Finally,
icd is calculated for the overall architecture as the average of all the icdi values, all these
terms varying in [0,1].

icdi = #classestotal − #classesi

#classestotal

· ciini

ciini + ciout
i

icd = 1

n
·

n∑

i=1

icdi (1)

External Relations Penalty (erp) This metric is inspired by the Interface Violations met-
ric (Krogmann 2010). erp computes the number of existing relationships between classes
belonging to each possible pair of different components, i and j , that could not be defined
as candidates interfaces (see (2)). More precisely, these relationships are those associations
(as), aggregations (ag) and compositions (co) that do not explicitly specify their navigabil-
ity, as well as generalisations (ge). A weighted sum (wx) is calculated to emphasise those
relations that strongly harm the overall quality of the architectural solution at the software
engineer’s discretion.

erp =
n∑

i=1

n∑

j=i+1

(was · nasij + wag · nagij
+ wco · ncoij

+ wge · ngeij
) (2)

Instability (ins) The instability metric is intended to create highly independent compo-
nents, leading to more separated functionality blocks. Although the concept of instability
was originally defined by Martin (1994) to evaluate the stability of object-oriented designs,
it can be also considered at the architectural level. In this way, the overall instability of the
architecture is obtained as the average value of the instability of each single component
(insi) (see (3)). In order to calculate this metric, the terms aci and eci need to be first com-
puted. aci represents the afferent coupling of component i, i.e. the number of components
that require its services, whereas eci stands for the efferent coupling, i.e. the number of
external components that provide their services to component i (Sant’Anna et al. 2007).

insi = eci

eci + aci

ins = 1

n
·

n∑

i=1

insi (3)

Encapsulation (enc) This metric is inspired by the Data Access Metric proposed by
Bansiya and Davis (2002), which serves to evaluate the encapsulation of one class within an
object-oriented design. With the aim of adapting this concept to the architectural level, the
encapsulation of each component i, enci , is computed as the ratio of its hidden classes, i.e.
those that do not participate in any interaction with classes belonging to other components
in the architecture, and the total number of contained classes. The overall encapsulation is
calculated as the mean of the enci values (see (4)).

enci = #innerclasses

#totalclasses

enc = 1

n
·

n∑

i=1

enci (4)

Critical Size (cs) This metric, presented in Narasimhan and Hendradjaya (2007), intends
to minimise the number of large components. To this end, cs counts the number of critical

2560 Empir Software Eng (2016) 21:2546–2600

components with respect to their size (ccsize), this value being returned by the size() func-
tion and calculated as the percentage of classes comprised by the component in relation to
the entire model. A threshold value is required to determine if the corresponding component
would be critical or not (see (5)).

cci
size =

{
1 if size(i) > threshold
0 otherwise

cs =
n∑

i=1

cci
size (5)

Critical Link (cl) Similarly to cs, cl considers the number of critical components, cclink ,
with respect to the number of their interactions within the architecture (Narasimhan and
Hendradjaya 2007). As can be seen in (6), the links refer to the number of provided
interfaces and a threshold should be established.

cci
link =

{
1 if #provided interf acesi > threshold
0 otherwise

cl =
n∑

i=1

cci
link (6)

Groups/Components Ratio (gcr) The gcr metric, presented in (7), has been
adapted from the Component Packing Density (cpd) metric, defined by Narasimhan and
Hendradjaya (2007). cpd determines the ratio between the number of constituents, i.e. those
elements that compose the components, and the total number of components in the archi-
tecture. Here, the constituents are the groups of connected classes (#cgroups) inside each
component.

gcr = #cgroups

#components
(7)

Abstractness (abs) This measure (Krogmann 2010) is defined as the ratio of abstract
classes inside a component, absi (see (8)). A global value of the abstractness distribution
for a given architectural solution, abs, can be obtained by computing the mean value of
abstractness for each component.

absi = #abstract classesi

#classesi
abs = 1

n
·

n∑

i=1

absi (8)

Component Balance (cb) Reducing the presence of critical components is an important
factor in software design, though it could lead to an excessive number of tiny compo-
nents hampering the comprehension of the resulting system structure. cb is proposed in
Bouwers et al. (2011) to quantify the balance among components, taking into considera-
tion their respective sizes. It is based on two terms, the system breakdown (sb) and the
component size uniformity (csu), as shown in (9), where csu is defined as the Gini Coef-
ficient, i.e. a statistical measure of dispersion. The volume(c) function counts the number
of classes per component c, C being the set of components in the architecture. csu varies
in the range [0,1], the unity being its optimum value, meaning that all the components have
the same size. sb represents a linear function in the range [0,1], which benefits the prox-
imity to a number of components, μ, and penalises those architectures having just one or
too many components (ω). Since the problem definition determines the minimum and max-
imum number of components to be comprised by the candidate architectures, ω should be
set to this maximum value, and the theoretical minimum threshold, 1, should be replaced

Empir Software Eng (2016) 21:2546–2600 2561

Table 1 Main characteristics of objective functions

Metric Min/Max Quality attribute Range of values Design goals

icd max modularity [0, 1] Small components with high cohesion

erp min modularity [0, ∗] Large components with low coupling

ins min modularity [0, 1] Components with few interactions

enc max modularity [0, 1] Components with hidden classes

cs min modularity [0, n] Small or medium-sized components

cl min modularity [0, n] Components with few provided interfaces

gcr min reusability [1, ∗] Connected classes within each component

abs max reusability [0, 1] Components with abstract classes

cb max analisability [0, 1] Equal-sized components

by the minimum number of components. Similarly, the μ value will be equal to the average
value between these maximum and minimum values.

sb(n) =

⎧
⎪⎨

⎪⎩

n−1
μ−1 if n < μ

1 − n−μ
ω−μ

if μ < n < ω

0 if n ≥ ω

csu(C) = 1 − Gini({volume(c) : c ∈ C})
cb(S) = sb(|C|) · csu(C) (9)

Table 1 summarises the main characteristics of the 9 objective functions, including
whether they are to be minimised (min) or maximised (max), and a brief description of
the design goals being promoted. Each metric is related to maintainability characteristics
defined above, and the range of possible values is also provided. The symbol ∗ is used to
represent that the upper bound of erp and gcr is dependent on the features of the problem
instance, whilst n indicates the number of components within the architecture.

Table 2 shows the list of design goals being promoted (↑) or demoted (↓) by each metric.
The symbol − represents that the corresponding metric has no influence on that goal. As
can be seen, most of the trade-offs between metrics are related to the size of components
and the way in which components would preferably interact with each other. For example,
those metrics that look for decreasing the number of interactions between components, in
terms of both interfaces and external relationships, i.e. coupling, tend to demote the internal
component cohesion due to an excessive encapsulation of functionalities.

4.3 Mutation Operator

The execution of a crossover operator could produce a significant amount of unfeasible
solutions, requiring the implementation of repair methods to satisfy those constraints that
had been already checked during the initialisation process. It would be a time-consuming
procedure, without which unfeasible individuals could be generated even late in the search,
making the convergence to the feasible region of the search space considerably more diffi-
cult. Only a domain-specific mutation operator serves to explore the different architectural
solutions throughout the evolutionary search (Ramı́rez et al. 2015). A weighted roulette
is used to select one of the five proposed mutation procedures. More specifically, these
procedures simulate those architectural transformations that could be applied to a given
individual, i.e. the parent, to generate an offspring.

2562 Empir Software Eng (2016) 21:2546–2600

– Add a component. A new component is added to the architecture. Creating such a new
component requires extracting some classes from other components. More specifically,
if a component would contain several unconnected groups of related classes, some of
them could be randomly selected to create the new component. Hence, the ultimate aim
of this procedure is to improve the distribution of functionalities among components.

– Remove a component. This procedure implies that one component in the current archi-
tecture will be discarded. In this case, its inner artefacts are arbitrarily distributed among
the remaining components. A component having a great number of dependencies with
others is a preferable candidate to be removed.

– Merge two components. This procedure involves the construction of a new compo-
nent by taking two existing components from the current architecture. Since the aim of
this procedure is to attempt to concentrate functionalities, the first selected component
would be one with a large number of external dependencies. Then, a second component
is selected at random.

– Split a component. This procedure is designed with the aim of avoiding excessively
large components. One component is randomly selected and split into two components,
forcing an interaction between both of them to remain in the form of a new interface.
More precisely, an internal relationship is chosen at random to act as the candidate
interface. Next, each inner class is assigned to one component or another depending on
how it relates to the interface ending, i.e. classes providing and requiring the service
are separated.

– Move a class. This procedure executes the simple movement of one class from one
component to another. Notice that this procedure does not apply any change in the
structure of the solution, so the transformation is done completely at random.

The roulette is dynamically built for each parent, only considering those applicable pro-
cedures in each particular case. Thus, if the initial individual is a feasible solution, the
mutation procedure will always return a solution without duplicate classes or empty com-
ponents. The minimum and maximum number of components within the architecture is
also preserved. For example, the split a component operation cannot be executed on an
individual representing an architecture that already contains the maximum number of com-
ponents. The weights of the roulette can be configured by the software architect. Finally,
notice that the existing constraints related to interactions between components have to be
considered here. For example, if the obtained individual represents an unfeasible solution,
the parent is mutated again until a feasible solution is reached or a maximum number of

Table 2 Design goals and trade-offs between metrics

Design goal icd erp ins enc cs cl gcr abs cb

Small components ↑ ↓ ↑ ↓ − − ↓ − ↓
Large components ↓ ↑ ↓ ↑ ↓ − ↑ − ↓
High cohesion between classes ↑ ↓ − ↓ − − ↓ − −
Low coupling between components − ↑ − − − − − − −
Few interfaces per component ↓ − ↑ ↑ − ↑ − − −
High encapsulation − − ↑ ↑ − − ↑ − −
Distribution of abstract classes − − − − − − − ↑ −

Empir Software Eng (2016) 21:2546–2600 2563

Fig. 3 Example of the mutation operator

attempts is exceeded. In the latter situation, the unfeasible mutant individual could be con-
sidered as a valid offspring depending on a probabilistic criterion. In this sense, a dynamic
threshold is set at the first generation, and will be decreased along the evolution. If a ran-
domly generated number exceeds the current threshold, the unfeasible individual is added
to the offspring pool. On the contrary, the original parent takes his position in the set
of descendants.

As a way to illustrate how the mutation operator works, Fig. 3 shows the result of apply-
ing the remove component procedure over the solution presented Fig. 2. As can be observed,
the second component (Component2) within the original individual has been removed, and
its classes randomly reallocated. In this example, class E is moved to Component1, whilst
class F is reallocated to Component3. As a result, since classes A and E are now part
of the same component, the existing interaction between them becomes internal. No more
interfaces are created to link classes E and F , since the navigability of their composition is
unspecified.

5 Experimental Framework

All the algorithms and the experimental framework have been coded in Java. Additionally,
some public Java libraries have been used to facilitate the implementation. SDMetrics Open
Core1 provides support for parsing XMI files, allowing the extraction of information from
the analysis models created with the MagicDraw tool.2 Preprocessing tasks and internal data
structures have been implemented using the Datapro4j library.3 The evolutionary algorithms
have been written using JCLEC (Ventura et al. 2008). Experiments were run on a HPC
cluster of 8 compute nodes with Rocks cluster 6.1 x64 Linux distribution, where each node
comprises two Intel Xeon E5645 CPUs with 6 cores at 2.4 GHz and 24 GB DDR memory.

In this section, the comparison methodology is presented, including the performance
measures used to evaluate the evolutionary algorithms. The parametrisation and set-up, as
well as the problem instances used, are also introduced next.

1http://www.sdmetrics.com/OpenCore.html
2http://www.nomagic.com/
3http://www.uco.es/grupos/kdis/datapro4j

http://www.sdmetrics.com/OpenCore.html
http://www.nomagic.com/
http://www.uco.es/grupos/kdis/datapro4j

2564 Empir Software Eng (2016) 21:2546–2600

5.1 Methodology

To assess the validity of the experiments, every algorithm has been executed 30 times with
different random seeds. The 9 proposed design metrics have been combined in groups of
2, 4, 6, 8 and 9 objectives, which make a total of 256 combinations. After executing all
these combinations, it is possible to analyse how the selection of a particular subset of
metrics, including its cardinality, can affect both the evolutionary performance and the type
of obtained architectural solutions.

Regarding the comparison study from an evolutionary perspective, two quality indica-
tors, hypervolume (HV) and spacing (S) have been considered (Coello Coello et al. 2007).
HV calculates the hyper-area covered by the Pareto set, whereas S measures the spread
of the front. It should be noted that HV requires an objective space in the range [0,1], so
the normalisation approach proposed in Luna et al. (2014) is applied after executing the
algorithms. More specifically, a reference Pareto front (RPF) is built up considering all the
solutions found after executing the 8 algorithms for each problem instance. Then, the objec-
tive values are normalised taking as reference the worst value and the best value achieved
by any solution within the RPF.

Statistical tests (Arcuri and Briand 2011; Derrac et al. 2011) have served to compare the
performance of the algorithms under study. The Friedman test, a non-parametric test that
allows comparing multiple algorithms over different problem instances, is executed first. At
a specific level of significance, 1 − α, this test establishes the null hypothesis, H0, denoting
that all the algorithms perform equally well. If H0 is rejected, i.e. significant differences
are detected, a post-hoc procedure has to be carried out in order to properly determine
those statistical differences between the considered algorithms. Here, the Holm test is per-
formed when H0 cannot be accepted, a control algorithm being compared to the rest of
algorithms. Additionally, the Cliff’s Delta test has been executed to assess the magnitude
of the improvements using an effect size measurement (Arcuri and Briand 2011). This test
performs pairwise comparisons to determine whether such an improvement should be consid-
ered negligible, small, medium or large on the basis of specific thresholds (Romano et al.
2006).

Some other measures have been compiled as well in order to precisely state the dis-
cussion of results beyond the evolutionary performance. Hence, aspects like the execution
time, the size of the Pareto set, or the set of non-dominated solutions are also scrutinised
to properly analyse the behaviour of each algorithm concerning the software architect’s
expectations.

5.2 Parameter Set-up

Before entering into the details of the value assignment to specific parameters of each algo-
rithm, there are some related aspects to be addressed respecting constraint handling and
mating selection. On the one hand, notice that constraint handling techniques need to be
applied in different ways. A first scenario refers to the way invalid solutions are evaluated.
In the case of the algorithms SPEA2, MOEA/D, GrEA, IBEA and HypE, the worst possible
fitness value is assigned to every unfeasible individual. A constrained version of NSGA-II
was already presented in the original work by Deb et al. (2002), in which feasible solutions
were promoted according to a specific comparison method. The same approach has been
adopted for ε-MOEA, since this algorithm does not declare any fitness function. These two
mechanisms guarantee that unfeasible individuals will not prevail over feasible individuals
in any selection process.

Empir Software Eng (2016) 21:2546–2600 2565

Table 3 Parameter set-up

Common parameters

Population size (2, 4, 6, 8, 9 objectives) 100, 120, 126, 330, 495

Max. evaluations (2, 4, 6, 8, 9 objectives) 10,000, 15,000, 20,000, 66,000, 99,000

Min-max. components 2–8

Mutator weights wadd = 0.2, wremove = 0.3, wmerge = 0.2,

wsplit = 0.1, wmove = 0.2

erp weights was = 2, wag = 3, wco = 3, wge = 5

cs threshold 0.3

cl threshold 8

SPEA2 parameters

Parents selector Binary tournament

External population size 50

k-th neighbour 12

MOEA/D parameters

Neighbourhood size (τ) 8

Max. replacements (Nr) 2

H (2, 4, 6, 8, 9 objectives) 99, 7, 4, 4, 4

ε-MOEA parameters

ε values εicd = 0.05, εerp = 5.00, εins = 0.05, εenc = 0.05

εcs = 1.00, εcl = 1.00, εgcr = 0.10, εabs = 0.05,

εcb = 0.05

GrEA parameters

Number of divisions (div) 12

IBEA parameters

Scaling factor (k) 0.05

HypE parameters

Number of sampling points (M) 10,000

On the other hand, regarding the mating selection phase in the case of MOEA/D, it
usually takes two individuals from the neighbourhood of each member of the population
to act as parents and generates a unique descendant. However, given that only one mutator
operator is executed, just one neighbour is selected to generate the offspring.

The specific configuration parameters of the selected algorithms have been set up accord-
ing to their respective authors, whilst the domain-specific configuration is identical in all
cases. If required, some preliminary experiments have been performed to properly adapt
their parameters to the specific needs of the problem domain, e.g. the hypercube lengths in
ε-MOEA. The final parameter set-up is shown in Table 3. Notice that different values are
set for the population size and the maximum number of evaluations to deal with the grow-
ing complexity of the optimisation problem when increasing the number of objectives from
2 to 4, 6, 8 and 9. Regarding the population size, it should be noted that MOEA/D requires
a uniformly distributed set of weighted vectors, whose size is controlled by the number of
objectives and the parameter H . Therefore, the number of weighted vectors obtained for

2566 Empir Software Eng (2016) 21:2546–2600

Table 4 Problem instances and their characteristics

Problem #Classes
#Relationships

#Interfaces
As De Ag Co Ge

Aqualush 58 69 6 0 0 20 74

Borg 167 44 109 36 38 90 300

Datapro4j 59 3 4 3 2 49 12

ICal4j 190 36 4 3 11 161 70

Java2HTML 53 20 66 15 0 15 170

JSapar 46 7 33 21 9 19 80

JXLS 96 60 10 10 9 45 136

Logisim 253 113 19 46 25 137 248

Marvin 32 5 11 22 5 8 28

NekoHTML 47 6 17 15 18 17 46

each number of combined objectives has determined the population size for the rest of algo-
rithms. For the remaining parameters, they are related to the problem domain, including the
minimum and maximum number of components to be considered for the architecture, the
parameters required to calculate the objective functions (see Section 4.2) and the weight
values related to the mutation procedures (see Section 4.3).

5.3 Problem Instances

The experimental study has been carried out over 10 diverse problem instances, each one
representing a system design with different complexity in terms of both the number of
classes and the interoperability among them. Table 4 provides the complete list of their
respective characteristics. The number and types of relationships are enumerated in the
column #Relationships, where the different types are broken down in turn as prescribed
by UML 2: associations (As), dependencies (De), aggregations (Ag), compositions (Co)
and generalisations (Ge). The last column (#Interfaces) indicates the number of candi-
date interfaces, i.e. the number those relationships whose navigability has been explicitly
specified.

Most of these instances have been taken from actual real-world software systems work-
ing on diverse application domains. Only Aqualush4 is a benchmark used for educational
purposes. Some of the software specifications can be accessed from the Java Open Source
Code Project5, whereas Datapro4j, iCal4j6 and Logisim7 are available at their respective
websites.

4http://www.ifi.uzh.ch/rerg/research/aqualush.html
5http://www.java-source.net/
6http://www.sourceforge.net/projects/ical4j/
7http://www.sourceforge.net/projects/logisim/

http://www.ifi.uzh.ch/rerg/research/aqualush.html
http://www.java-source.net/
http://www.sourceforge.net/projects/ical4j/
http://www.sourceforge.net/projects/logisim/

Empir Software Eng (2016) 21:2546–2600 2567

6 Analysis of Results

In this section, we analyse the results from the perspective of the evolutionary performance.
More specifically, we focus on the scalability of the selected algorithms regarding the two
quality indicators mentioned in Section 5.1, hypervolume and spacing.

6.1 Analysis of 2- to 4-objective Problems

Table 5 shows the overall ranking obtained by the Friedman test for each selected algorithm
in terms of hypervolume. A value represents the arithmetic mean of the ranking positions
determined considering all the possible combinations for the given number of objectives.
Notice that the lowest values are the best. Their corresponding standard deviation is shown
accordingly. Similarly, Table 6 shows the summary of the results for the spacing indicator.
Complementary information about the results is reported in the Appendix.

Regarding the HV for 2-objective problems, NSGA-II, ε-MOEA and HypE achieve the
best ranking positions, obtaining significant differences with the rest of algorithms. On the
contrary, SPEA2 and MOEA/D show a better behaviour in terms of the spacing indicator.
IBEA and NSGA-III achieve good spacing values only for certain combinations of objec-
tives, which is reflected in a higher standard deviation. Notice that simultaneously having
good scores in terms of both hypervolume and spacing becomes a great challenge. Even
though a multi-objective evolutionary algorithm tries to find a compromise between the
convergence towards a set of non-dominated solutions and the spread of the resulting front,
its specific characteristics could encourage the promotion of one criterion at the expense of
the other. Specific many-objective approaches do not exhibit any superiority yet, obtaining
the best ranking positions for only a few problems.

As for the combinations of metrics, it can be noted that their respective optimisation
problems may imply several differences in the performance of the algorithms. Since the
software architect could be interested in different aspects of the same quality criteria, e.g.
several design metrics are related to modularity, the selection of the specific metrics is also
an important decision with respect to the expected architectural solutions. For those prob-
lems where erp, gcr , cs or cl are jointly optimised, all the algorithms have achieved similar
values in terms of both quality indicators. For example, the selection of erp and cl ends
in a tie between SPEA2, NSGA-II, MOEA/D and ε-MOEA. Moreover, there are no sta-
tistical differences when comparing these algorithms to GrEA and HypE, because all the
algorithms obtain either a unique solution or an equivalent Pareto set. In the former case,

Table 5 Mean and standard deviation of Friedman rankings for hypervolume

Algorithm 2 objectives 4 objectives 6 objectives 8 objectives 9 objectives

SPEA2 4.35 ± 0.78 4.66 ± 0.86 5.64 ± 0.29 6.33 ± 0.28 6.70 ± 0.00

NSGA-II 2.02 ± 0.59 1.39 ± 0.40 1.92 ± 0.54 2.66 ± 0.46 2.90 ± 0.00

MOEA/D 3.90 ± 0.81 4.41 ± 0.68 3.75 ± 0.47 3.48 ± 0.43 3.30 ± 0.00

ε-MOEA 3.88 ± 1.12 2.78 ± 1.15 1.51 ± 0.55 1.08 ± 0.09 1.00 ± 0.00

GrEA 4.86 ± 0.79 5.30 ± 0.75 5.80 ± 0.41 5.83 ± 0.11 5.50 ± 0.00

IBEA 7.21 ± 0.31 7.64 ± 0.15 7.76 ± 0.06 7.79 ± 0.05 7.90 ± 0.00

HypE 3.04 ± 0.58 3.20 ± 0.75 3.20 ± 0.55 2.82 ± 0.31 2.80 ± 0.00

NSGA-III 6.75 ± 0.49 6.62 ± 0.21 6.49 ± 0.16 6.01 ± 0.29 5.90 ± 0.00

2568 Empir Software Eng (2016) 21:2546–2600

Table 6 Mean and standard deviation of Friedman rankings for spacing

Algorithm 2 objectives 4 objectives 6 objectives 8 objectives 9 objectives

SPEA2 3.65 ± 1.25 2.09 ± 1.08 1.10 ± 0.17 1.37 ± 0.37 1.70 ± 0.00

NSGA-II 4.00 ± 0.82 4.59 ± 0.91 2.77 ± 0.85 1.97 ± 0.34 1.80 ± 0.00

MOEA/D 3.23 ± 1.10 3.16 ± 0.79 5.21 ± 0.50 5.69 ± 0.23 5.30 ± 0.00

ε-MOEA 5.58 ± 1.04 3.02 ± 1.49 3.41 ± 0.69 4.06 ± 0.37 4.60 ± 0.00

GrEA 5.37 ± 0.52 6.78 ± 0.45 7.29 ± 0.17 7.28 ± 0.14 6.60 ± 0.00

IBEA 5.73 ± 1.51 7.43 ± 0.42 7.60 ± 0.04 7.63 ± 0.07 7.80 ± 0.00

HypE 4.09 ± 0.72 4.91 ± 0.95 5.11 ± 0.82 4.88 ± 0.57 5.00 ± 0.00

NSGA-III 4.35 ± 1.45 4.02 ± 1.09 3.53 ± 0.51 3.13 ± 0.16 3.20 ± 0.00

every approach finds an optimal solution, since the objectives are not strongly opposed. In
the latter case, all the algorithms have some trouble in avoiding local optima. In constrast,
the combination of erp and cl metrics with icd, abs, cb or enc implies the formulation of
a more complex optimisation problem, where the dominance between solutions is harder
to achieve. Therefore, the resulting Pareto set will be comprised of more diverse solutions,
where both objectives are satisfied in different ways.

As the number of objectives increases up to four, differences between them become
more evident. It is worth noticing that SPEA2 and NSGA-II are still the best algorithms
regarding spacing and hypervolume, respectively, though their rankings for the other indi-
cator have increased. As can be seen in Tables 5 and 6, ε-MOEA and NSGA-III have
improved their overall rankings for both indicators, whereas the rest of algorithms do not
experience great changes or their performance even decreases, as in the case of IBEA
and GrEA.

MOEA/D and ε-MOEA obtain the best ranking for some specific combinations of objec-
tives. For example, MOEA/D has shown good spacing values when cs, cl or ins are
considered. Similarly, ε-MOEA seems to optimise certain objectives, e.g. icd, ins, abs or
cb, more accurately than NSGA-II in terms of HV . These 4 objectives promote the func-
tional distribution among components. On the contrary, if metrics like erp, gcr , enc and
cl are selected to define the search problem, the number of components within the archi-
tectural solution tends to be minimised as a way to reduce their interactions. In general,
ε-MOEA provides a better performance than NSGA-II when the optimisation problem is
more complex from a design perspective, as the latter tends to promote the discovery of an
excessively monolithic architecture.

Table 7 compiles the outcomes obtained by the different algorithms in terms of their
performance when a low number of objecives is considered to address the problem under
study.

6.2 Analysis of 6- to 9-objective Problems

When algorithms optimising 6 or more objectives are compared, the Friedman test returns
significant differences for a large number of combinations, many of them including at least
one objective that promotes a design goal that tends to be demoted by the rest of objectives.
Some initial tendencies observed for 4-objective optimisation problems are now clearly
brought out. To illustrate this point, Fig. 4 depicts the percentage of combinations for which
each algorithm reaches the best ranking for hypervolume and spacing, respectively. As can

Empir Software Eng (2016) 21:2546–2600 2569

Table 7 Summary of the evolutionary performance for 2- and 4-objective problems

Algorithm Main findings

SPEA2
• Ability to maintain a wide-spread Pareto front due to the use of density information

• Some difficulties to obtain competitive values for the hypervolume

NSGA-II

• Good scalability with respect to hypervolume

• Variable behaviour in terms of spacing, especially when increasing to 4 objectives

• The nondominated sorting approach has a strong influence on the evolution

MOEA/D
• Spacing values reflect effective exploration of multiple search directions using weight vectors

• Low ranking positions for both 2- and 4-objective problems in terms of HV

ε-MOEA

• Variable behaviour in terms of HV when optimising combinations of 2 metrics

• Better HV than other many-objective approaches like HypE or NSGA-III for 4 objectives

• ε-dominance contributes to enhance the diversity of the Pareto front

GrEA
• Poor performance regardless of the number and combination of metrics

• Similar to NSGA-II regarding S, since the sorting approach strongly promotes convergence

IBEA

• Ability to reach reasonably good spacing values for specific 2-objective combinations

• Poor performance when dealing with 4 objectives.

• ε-indicator is a non-discriminatory criterion to guide the search towards promising solutions

HypE

• Lower HV values than expected regardless of the number of objectives

• Good trade-off between HV and S for 2 objectives

• Excessive promotion of solutions contributing to HV at certain steps of the evolution

• Some regions of interest can remain unexplored by the optimisation process

NSGA-III
• Better performance than NSGA-II only in terms of S due to the use of reference points

• Overemphasis on promoting diversity leads to a low performance in HV ranking values

be noted, as the number of objectives increases, ε-MOEA emerges as the best algorithm
for HV , outperforming NSGA-II, and SPEA2 is the best alternative in terms of spacing,
especially when dealing with more than 6 objectives.

As can be seen from Tables 5 and 6, SPEA2, NSGA-II, GrEA and IBEA report worse
HV ranking values than those obtained for 2 and 4 objectives. On the contrary, MOEA/D,
ε-MOEA, HypE and NSGA-III have experienced an improvement regarding this indi-
cator, though ε-MOEA and HypE obtain competitive values when dealing with 8 and
9 objectives.

Additionally, the Cliff’s Delta test assesses that the pairwise comparisons between the
algorithms are statistically significant in most objective combinations 8. For the 9-objective
problem, a total of 56 test executions per quality indicator were required. In this case, dif-
ferences in the magnitude of the corresponding indicator have been catalogued as large in
49 and 48 out of the total number of executions made for HV and S, respectively. On the
one hand, the effect size obtained when comparing ε-MOEA in terms of HV against any
other algorithm is always greater than 0.7. On the other hand, regarding SPEA2, the test

8Tables 10 (HV) and 11 (S) in Appendix show the results obtained by the Cliffs Delta test for the 9-objective
combination. The full results in raw format for all the combinations are available at http://www.uco.es/grupos/
kdis/sbse/RRV15

http://www.uco.es/grupos/kdis/sbse/RRV15
http://www.uco.es/grupos/kdis/sbse/RRV15

2570 Empir Software Eng (2016) 21:2546–2600

Number of objectives

0

20

40

60

80

100

%
 fi

rs
t r

an
ki

ng
 p

os
iti

on

SPEA2
NSGA-II

MOEA/D GrEA
IBEA

HypE
NSGA-III

2 4 6 8 9

Number of objectives

0

20

40

60

80

100

%
fir

st
 r

an
ki

ng
 p

os
iti

on

SPEA2
NSGA-II

MOEA/D GrEA
IBEA

HypE
NSGA-III

2 4 6 8 9

Fig. 4 Percentage of first ranking positions in the Friedman test for hypervolume and spacing

reports an effect size greater than 0.6 for all its comparisons regarding S, except when facing
NSGA-II.

Concerning the performance of all the algorithms with more than 4 objectives, the num-
ber of objectives has a deeper impact than the set of selected metrics. As can be observed
from the experimental results, the ranking values obtained by each algorithm are very simi-
lar regardless of the metric subset being optimised. A progressively decrease of the standard
deviation is observed in Tables 4 and 5, whereas the number of different algorithms achiev-
ing the top ranking position is lower for 4 or 6 objectives than for 2 (see Fig. 4), even when
a larger number of objective combinations was generated. Notice that the specific subset
of metrics, as well as the need for a different number of objectives, relies on the software
architect’s judgement. A detailed analysis on the influence of these aspects is provided in
Section 7.2.

Some additional remarks can be pointed out with respect to the joint optimisation of 9
objectives. For instance, Fig. 5 shows an example of the Pareto front obtained by each algo-
rithm for a representative problem instance, Aqualush. Notice that the objective space is
normalised and all the objectives must be maximised. For the sake of readability, a maxi-
mum number of 50 solutions is depicted. The solutions have been randomly selected from
the set of all the solutions generated in different executions. Those solutions reaching the
global minimum and maximum value of each objective are also included in order to identify
the worst and best values obtained.

If we look at how lines are distributed, it can be seen that some algorithms tend to focus
their search on specific values of particular objectives, while others can reach a wider range
of trade-offs among them. More specifically, SPEA2 is unable to reach a proper trade-off
among all the metrics, icd, abs and cb usually being optimised worse than erp, gcr , enc and
cl. On the contrary, NSGA-II shows great ability to simultaneously deal with all the objec-
tives. In this case, a wide spectrum of solutions is returned, some of them being are able
to reach the best values for several objectives. Regarding MOEA/D, most of the obtained

Empir Software Eng (2016) 21:2546–2600 2571

Fig. 5 An example of the Pareto front obtained for the Aqualush problem instance

solutions lie on intermediate ranges, gcr , cs and cl being frequently promoted to the detri-
ment of icd and abs. This algorithm is able to obtain great diversity of solutions in terms
of erp, enc and cb. Focusing on ε-MOEA, it can reach competitive values for all the objec-
tives. Its ability to provide several alternatives for icd, enc and cb is noteworthy, whereas
good values are frequently reached for gcr and cl. GrEA and HypE behave similarly. Both
algorithms experience difficulties to optimise abs and cb, getting only low or medium
values. Besides, some solutions tend to concentrate on certain values of the design metrics,
generating very similar solutions. HypE converges disproportionally towards erp, gcr and
cl. Solutions returned by IBEA show very poor values for all the objectives. Even cb and cs

are usually neutralised in benefit of other metrics, causing the returned solutions to be com-
prised by components completely unbalanced in size. Finally, NSGA-III has had problems
to reach high values of icd and abs, although it is able to provide a wide range of values for
erp, gcr , cs and enc.

2572 Empir Software Eng (2016) 21:2546–2600

Table 8 Summary of the evolutionary performance for 6-, 8- and 9-objective problems

Algorithm Main findings

SPEA2
• Valuable diversity preservation when a larger number of objectives is optimised

• Unable to converge to the PF as well as other approaches can

NSGA-II

• Behaviour changes when dealing with 8 and 9 objectives

• Overtaken by ε-MOEA in terms of HV , but shows an improvement in S

• Crowding distance may have a deeper impact on individual survival than the sorting method

MOEA/D
• Exploration of an excessive number of directions without favouring any of them

• Not all the subproblems are useful to solve the global problem in a discontinuous space

ε-MOEA
• Best algorithm with respect to HV , but the observed S variability still remains

• The many-objective approach with the best trade-off between both quality indicators

GrEA
• Low ranking values for both quality indicators

• No evidence of improvement as the number of objectives increases

IBEA
• Low ranking values for both quality indicators, like GrEA

• Outperformed by all other algorithms

HypE
• Intermediate ranking values for both quality indicators

• Equivalent to the corresponding control algorithms for specific combinations

NSGA-III
• Only outperformed by SPEA2 and NSGA-II in terms of S

• Ranking positions are still low with respect to HV

Table 8 shows the most relevant aspects related to the behaviour of the different
algorithms when dealing with highly dimensional objective spaces.

7 Discussion of Results

Due to the particular nature of the problem, further discussion of the outcomes is still
required, not only from the evolutionary perspective, but also in terms of its applicability
in tool support and the software architect expectations. Therefore, there are other additional
aspects from the experimentation to be observed that can provide relevant information about
both the architectural specification and the decision support process. With this aim, the
number of non-dominated solutions, the execution time or the dependencies among met-
rics have been studied. These factors directly affect the number of solutions given to the
software architect or the sort of returned architectural solutions.

7.1 On Applicability in Tool Support

Having a wide variety of alternative solutions to choose from is not an ideal scenario
for the software architect, even more so if only a few of them could serve to meet his
expectations in terms of diversity. In such a case, the number of solutions could be use-
less to the expert, who would be unable to handle them all during the decision process.
This matter is likely to require some further external post-processing to select the most
representative solutions. Figure 6 shows the distribution of returned solutions per num-
ber of objectives. More precisely, the Y axis represents the mean number of solutions

Empir Software Eng (2016) 21:2546–2600 2573

Fig. 6 Distribution of the number of non-dominated solutions composing the Pareto set

found by each algorithm, i.e. the number of non-dominated solutions composing the Pareto
set, considering all the possible combinations of design metrics over all the problem
instances. As can be seen, the number of objectives has a clear impact on the number of
solutions returned. It can be noted that SPEA2 establishes a fixed size for the external
population, whereas MOEA/D and ε-MOEA do not constrain the size of their archive of
solutions. Since NSGA-II, GrEA, IBEA, HypE and NSGA-III do not have any external
population, the maximum number of solutions is given by the corresponding population
size (see Table 3).

If 2 or 4 objectives are considered, SPEA2 and NSGA-II usually obtain a number of
solutions close to the maximum allowed. These algorithms also present some variability in
the size of the Pareto set. NSGA-II even shows some difficulties to control such a variabil-
ity. Having to optimise 6 or more objectives, SPEA2 is unable to fill its external archive
with only non-dominated solutions, facing difficulties to find interesting architectures. Find-
ing a more representative set of solutions than the one provided by SPEA2 could benefit
the decision making process. NSGA-II always reaches the maximum limit allowed with
difficulties to reject equivalent solutions along the search process. MOEA/D provides an
excessive number of final solutions for any design problem. Besides, preserving the variety
of these solutions is not guaranteed since the maximum number of solutions associated to
each search direction is not restricted. The same behaviour could be expected for ε-MOEA,
but the use of the ε-dominance criteria to manage the addition of solutions into the archive
clearly serves to implicitly limit its size.

Depending on the combination of objectives, GrEA, IBEA, HypE and NSGA-III can gen-
erate as many solutions as the prefixed maximum. As the number of objectives increases,
IBEA and GrEA return a lower number of solutions. In contrast, HypE and NSGA-III tend
to get closer to their respective maximum limit. In this sense, many-objective approaches
provide a better control than NSGA-II and MOEA/D. Nevertheless, only SPEA2 permits
setting up the estimated number of solutions that should be returned after the search process.

2574 Empir Software Eng (2016) 21:2546–2600

Fig. 7 Average execution time of the evolutionary algorithms

Hence, it is a useful mechanism for the expert, who might be interested in strictly deter-
mining the number of solutions that he really wants to check. Notice that GrEA, SPEA2,
IBEA and ε-MOEA might finish the search without generating any architectural solutions
that fulfil the constraints (see Fig. 6). These algorithms have some difficulties in dealing
with invalid solutions when optimising the most complex problem instances and certain
combinations of objectives. Setting a larger number of iterations would be a first attempt to
address this situation. The ability to handle constraints is a relevant factor with respect to its
generic applicability to the decision support process.

Another important factor that may affect the usability of search-based approaches is the
execution time. Figure 7 shows the scalability of the average execution time of each algo-
rithm in relation to the number of objectives. It can be observed that dealing with many
design metrics influences SPEA2, GrEA, ε-MOEA and HypE. The density estimator based
on clustering proposed by SPEA2, the computation of distance metrics in GrEA, and the
hypervolume estimation required by HypE are operations that clearly affect the performance
of these algorithms. Besides, SPEA2, GrEA and ε-MOEA present some difficulties when
removing invalid solutions because they have to execute a large number of attempts dur-
ing the mutation phase, especially when dealing with the most complex problem instances.
Since this kind of instances tends to comprise more interconnected classes, identifying
independent components becomes a harder work. In this sense, software engineers should
consider if getting high quality solutions could make up for the amount of time spent on
the process. On the one hand, ε-MOEA seems to be a better choice than HypE or NSGA-II
if the architect is mostly interested in high quality solutions. On the other hand, NSGA-II
might provide good enough solutions for most of the objective combinations, its execu-
tion time being steady and suitable. It is worth mentioning that the computational cost of
NSGA-III has proven to be quite similar to NSGA-II, concluding that its execution time has
not been significantly influenced by the adjustments proposed to deal with many-objective
optimisation.

Empir Software Eng (2016) 21:2546–2600 2575

7.2 On the Influence of Metrics

Analysing whether two metrics, i.e. objectives, are highly competitive is an important fac-
tor to properly face the multi-objective optimisation, since it might determine much of the
complexity of problem to be solved. Regarding the problem under study, this could lead
to situations in which architects might presume beforehand that some specific metrics are
closely related, mostly because they apparently arrange the architectural design in a similar
way.

Table 9 presents the range of objective values of the final solutions considering all the
bi-objective problems. The symbol � indicates that the metric values should be maximised,
whereas � stands for minimisation. A unique reference PF has been constructed per problem
instance, which is composed of all the solutions that are still not dominated by any other
found after 30 executions of all the algorithms for a given problem instance. Then, the
minimum and maximum bounds have been calculated in order to determine the extent of
each metric range. A value xi,j represents the range of values achieved by final solutions
when a measure j is optimised jointly with the measure i. For example, looking at the joint
optimisation of icd and erp (x2,1), it can be observed that icd varies in the range [0.0, 0.7]
when combined with erp, whereas the range of values obtained would vary from 0.4 to 0.8
if optimised together with the metric ins (x3,1). Consequently, ins is less opposite to icd

than erp, since higher values of icd can be achieved even when ins is highly optimised.
Notice that combinations like icd − erp, cb − gcr or enc − abs have a wide range

of values for both measures. Therefore, when a solution reaches a near-optimal value for
one measure, the obtained value for the other measure is very poor. In contrast, there are
other combinations in which one measure has been highly optimised regardless of the other
measure being considered, such as when cl is chosen. The type of problem instance and the
possibility of creating architectural solutions with different number of components allow
not exceeding the configured critical link threshold. In such a case, a search process should
be capable of finding solutions that reach good values for both objectives at the same time,
making the MOP resolution slightly simpler. This would also explain why some algorithms
are tied (see Section 6.1).

The choice of design metrics also guides the search for certain types of architectural spec-
ifications. For example, a complex scenario is developed regarding the modularity criteria,
where a trade-off between coupling and cohesion would be expected. In this sense, metrics
like icd or ins imply searching for solutions comprising of more components as a way to

Table 9 Range of absolute objective values for non-dominated solutions considering all the combinations
of 2 measures

icd� erp� ins� enc� cs� cl� gcr� abs� cb�

icd� − [0.0,178.0] [0.1,0.6] [0.9,1.0] [0.0,0.2] [0.0,0.0] [1.0,1.4] [0.1,0.9] [0.3,1.0]

erp� [0.0,0.7] − [0.1,0.5] [0.5,1.0] [0.0,0.3] [0.0,0.0] [1.0,1.7] [0.1,0.9] [0.1,1.0]

ins� [0.4,0.8] [0.0,84.0] − [0.7,1.0] [0.0,0.1] [0.0,0.0] [1.0,8.3] [0.3,0.9] [0.1,1.0]

enc� [0.5,0.7] [0.0,161.0] [0.1,0.5] − [0.0,1.0] [0.0,0.0] [1.0,4.0] [0.1,0.9] [0.0,1.0]

cs� [0.3,0.8] [0.0,258.0] [0.1,0.2] [0.6,1.0] − [0.0,0.0] [1.0,7.4] [0.5,0.9] [0.1,1.0]

cl� [0.6,0.8] [0.0,0.0] [0.1,0.2] [0.9,1.0] [0.0,0.1] − [1.0,1.2] [0.8,0.9] [0.6,1.0]

gcr� [0.3,0.7] [0.0,6.0] [0.1,0.6] [0.5,1.0] [0.0,0.2] [0.0,0.0] − [0.3,0.9] [0.0,1.0]

abs� [0.0,0.7] [0.0,34.0] [0.1,0.7] [0.2,1.0] [0.0,0.2] [0.0,0.0] [1.0,3.70] − [0.1,1.0]

cb� [0.2,0.7] [0.0,560.0] [0.1,0.5] [0.4,1.0] [0.0,0.2] [0.0,1.0] [1.0,22.0] [0.1,0.9] −

2576 Empir Software Eng (2016) 21:2546–2600

improve their cohesion. If the analysability is considered, then the architectures obtained
would be composed of smaller components, each providing a well defined set of services.
On the contrary, erp or enc look for a low coupling, so the solution structure is characterised
by the creation of architectures with only two or three large components. Here, minimising
the interactions among software artefacts would benefit the overall security and perfor-
mance of the resulting system, although an excessive encapsulation of functionalities could
harm its reusability and analysability, as observed when abs or cb were considered. Metrics
like cs or cb counteract this effect and propitiate the generation of solutions comprised of a
larger number of components.

The trade-off among these design criteria becomes a great challenge when 8 or 9 objec-
tives have to be simultaneously optimised. In this case, low and medium values have been
obtained for icd, especially if SPEA2, GrEA, IBEA and NSGA-III are executed. Similarly,
cb and abs are difficult to optimise. IBEA can only provide solutions comprising com-
ponents with unbalanced sizes even when cs is considered. Focusing on abs, it is worth
mentioning that only NSGA-II, ε-MOEA and HypE reach values good enough for all the
problem instances. The cs measure is usually cancelled out due to the presence of others
like erp, gcr or enc. In this sense, the optimisation of these metrics seems to be harder,
which makes the evolutionary process oriented towards them. As a result, these architectural
solutions sometimes contain at least one large component. It should be noted that including
erp, gcr and abs within the set of objectives leads to more variable outcomes over the dif-
ferent problem instances. In fact, these metrics are based on specific analysis information
extracted from the original design, such as the number of abstract classes or the number and
types of interrelationships. Finally, similar results are obtained for ins and enc in all the
problem instances, meaning that these metrics are less conflicting.

To illustrate how the combination of metrics can influence the quality of the architec-
tural description from the architectural perspective, the solutions returned by NSGA-II for
the Datapro4j problem instance are scrutinised and discussed. Figure 8a depicts the original
system architecture, which is comprised of 4 components (A1, . . . , A4) whose functionali-
ties will be referred here from F1 to F4. Notice that, according to the problem statement,
the functionality of a component is represented as a group of highly interconnected classes,
whose relationships are originally specified in the input class diagram. If cs and cb are con-
sidered together, one of the most interesting solutions returned by the algorithm is formed by
5 components (B1, . . . , B5) with similar sizes (see Fig. 8b). The evaluation mechanism clas-
sifies all the components as noncritical in terms of their sizes, and both objectives are highly
optimised. However, the set of classes inside each component does not represent a com-
prehensive functionality, but a combination of unrelated classes. The reason for this is that
the optimisation process is directed towards the optimal size balance without considering

Fig. 8 Returned solutions by NSGA-II for Datapro4j problem instance

Empir Software Eng (2016) 21:2546–2600 2577

whether the classes allocated in the same component are related. As a result, functionali-
ties are distributed among different components, decreasing their cohesion and increasing
the overall coupling. On the contrary, when icd and erp are the considered metrics, the
algorithm found one solution with 3 components very similar to the original proposal (see
Fig. 8c). Only the third component, C3, comprised the classes related to F2 and F3, being
catalogued as critical according to the cs metric. Finally, the joint optimisation of the 4 met-
rics leads to the discovery of solutions very close or even equal to the original architecture.
Considering icd and erp as objective functions has served to properly identify the different
functionalities, while cs and cb have encouraged the creation of two medium-sized compo-
nents, one that contains the classes associated with F2 and another specifying F3. It should
be noted that other problem instances could require different metrics, or even a greater
number of objectives, in order to discover the most appropriate system architecture to the
engineer. Nevertheless, in the cases in which the software architect is not confident enough
with the intended architecture, considering the execution of different combinations of met-
rics could be appropriate. In short, the selection of metrics made by the architect is a key
factor to determine the structure of the returned architectural solutions, whereas the achieved
level of optimisation for the selected objectives is more related to the used algorithm.

7.3 On the Selection of the Evolutionary Algorithm

The selection of the evolutionary approach is not a trivial task for the user, not least if he
needs to be aware of the impact that the diverse characteristics of each algorithm may have
on searching for the expected architectonical solutions. SPEA2 shows a low performance
in its search for high quality solutions, even though its diversity preservation technique has
shown to be a very effective mechanism to provide a great variety of architectural solutions.
On the other hand, NSGA-II provides a valuable scalability with respect to all the considered
optimisation problems. Besides, regarding the diversity of solutions, this algorithm behaves
more variably. Nevertheless, its scalable execution time and the absence of parameters are
appealing features to select this algorithm as a generic choice.

The decomposition approach proposed by MOEA/D is an interesting characteristic
to promote the diversity of solutions, but it works better with fewer than 6 objectives.
Besides, the exploration of many search directions could lead to an excessive number
of returned solutions, their diversity not always being guaranteed. These circumstances,
along with the observed difficulties in generating high quality solutions, imply that the
expert faces a complex task when looking for the final solution among all the alterna-
tives given by the algorithm. Similarly, NSGA-III looks for the diversity of solutions,
performing better than MOEA/D in highly dimensional objective spaces. In addition, this
many-objective approach is capable of keeping most of the beneficial characteristics of its
predecessor.

Concerning the rest of algorithms and considering the different families, it can be noted
that GrEA is overtaken by ε-MOEA, whereas HypE shows a better behaviour than IBEA.
One observed weakness of GrEA is that it suffers from an excessive convergence and also
has some difficulty in removing invalid solutions during the search process. As a result,
this algorithm seems to be unable to discover any competitive software architecture for the
most complex systems. Something similar happens when ε-MOEA is executed over certain
combinations of measures. Then, the algorithm could be more sensible to the selection of
the ε values, whose configuration might be a laborious task for the expert. Nevertheless,
ε-MOEA provides the best trade-off between convergence and diversity of solutions for a
large number of metrics.

2578 Empir Software Eng (2016) 21:2546–2600

In general, IBEA is unable to reach a reasonable trade-off between the set of metrics,
whose cardinality has an impact on its behaviour respecting the diversity of solutions. On
the contrary, HypE, whose performance improves as the number of objectives increases, is
able to find non-dominated solutions for the totality of the considered problems, showing
an appropriate explorative capability. The only drawback of HypE, which is also observed
in ε-MOEA, is its highly computational cost, especially if more than 6 metrics participate
in the optimisation problem.

A better knowledge about the specific behaviour of each algorithm can determine its
applicability to a particular design scenario. Even so, some general guidelines for the selec-
tion of the evolutionary approach are inferred from this study. In case the architect is
requested to consider a specific set of metrics, the results in Section 6 would allow him to
identify the best algorithm for that specific combination. Additionally, if a general choice is
preferred, NSGA-II and ε-MOEA have demonstrated to have the best performance in gen-
eral terms, so the final decision should be made considering other additional factors like the
total number of metrics to be optimised or time requirements.

8 Threats to Validity

In order to precisely designate the design concepts and terms that lay the foundation for the
proposed approach, the ISO Std. 25000 has been followed as a reference to correctly define
the non-functional requirements that guide the search process. Additionally, the OMG stan-
dard UML 2 has served to provide a rigorous notation for the specification of the underlying
design models at all the abstraction levels, as well as to ensure the semantic validity of qual-
ity metrics. Using a standard proposal like UML 2 brings the optimisation approach closer
to the everyday realm of the software architect.

Internal validity refers to those aspects of the experimentation that cannot ensure the
causality between the hypothesis and the obtained results. In SBSE, these aspects are related
to the algorithm’s set-up and its parametrisation. The use of default parameter values could
produce bias on the results, since the original algorithms were usually tested over real opti-
misation problems, even though the nature of our problem is quite different. Here, the
guidelines provided by their corresponding authors have been followed to configure the
algorithms. Nevertheless, some preliminary experiments were performed to check their suit-
ability. If required, some modifications to the original proposal implementations were made
to adapt them to our specific combinatorial problem, e.g. the required constraint handling
techniques were included in all the algorithms. These changes can affect the performance
of the algorithms, but they are necessary to deal with the defined search problem and would
affect all the algorithms in a similar way. The experimentation has been designed to avoid
any bias due to the intrinsic randomness of the evolutionary approaches. So, every algo-
rithm has been executed 30 times. Additionally, a hardware platform specifically dedicated
to experimentation purposes has served to assure that all the algorithms have been executed
under the same conditions, meaning that their execution time is also comparable. Addi-
tionally, well-known quality indicators like hypervolume and spacing have been used to
evaluate the evolutionary performance of the algorithms. Non-parametric statistical tests at
a significance level of 95 % were executed to draw precise conclusions in the light of the
comparative results of the algorithms under study.

External validity is related with the generalisation of the experimental results. On the
one hand, a set of real-world software systems has been considered as problem instances,
covering different sizes and complexities. In this paper, the evolutionary search has been
performed without any prior knowledge about the original design. It is worth mentioning
that any additional analysis information would help to obtain more accurate outcomes from

Empir Software Eng (2016) 21:2546–2600 2579

the discovery process. On the other hand, the application of this work to other industrial
domains might imply adapting the proposed approach to their specific requirements. The
selected design metrics are closely related to maintainability, which is clearly an important
characteristic in the design of component-based software architectures. Nevertheless, notice
that addressing different design tasks based on other architectural models (e.g. service-
oriented architectures, grid-based platforms, etc.) would probably require the evaluation of
specific quality criteria.

9 Concluding Remarks

This paper presents a comparative study on the performance of different multi- and many-
objective evolutionary algorithms for software architecture discovery, an abstract problem
that demands diverse decisions to be made according to a number of requirements. The
proposed experimental framework explores the ability of these algorithms to simultaneously
deal with different metrics related to maintainability at the architectural level, and put forth
some ideas about how they should selected and combined by the software architect. Existing
dependencies among metrics have shown to be an important factor that could subsequently
impact on both the complexity of the optimisation problem to be solved and the type of
the architectural solutions returned by the search process. On the one hand, metrics like
icd, ins, erp or gcr are more related to the allocation of classes within components on the
basis of their relationships. On the other hand, aspects like avoiding critical components or
balancing their sizes might be considered as secondary goals, since they are not capable of
identifying the system functionalities.

The results obtained have shown that many-objective evolutionary algorithms provide an
interesting alternative to deal with such a complex combinatorial problem. On the one hand,
NSGA-II is the only multi-objective approach that achieves competitive results for some
objective combinations with respect to many-objective approaches like ε-MOEA and HypE.
Nevertheless, these algorithms provide a greater performance in terms of the expected trade-
off between convergence and diversity when highly dimensional objective spaces need to be
considered, as it is often the case of software design optimisation. On the other hand, the set
of metrics selected to guide the search becomes a less influential factor on the performance
of the algorithms as the number of objectives increases.

An in-depth analysis of the strengths of each algorithm has been presented and exten-
sively discussed. The number of returned solutions or the execution time required to perform
the search constitute complementary and valuable aspects to be considered in order to take
a justified decision about the selection of a specific algorithm. Additionally, the guidelines
provided in this study are essential to take a step further in the automatic recommenda-
tion of the evolutionary approach that best fits into a particular architectural problem. As a
future work, hyper-heuristic approaches based on the information extracted from this analy-
sis will serve as a basis for the development of decision support tools for software engineers.
Finally, many-objective evolutionary optimisation is an open field of research, which makes
it interesting to continue exploring some emerging approaches (He et al. 2014; Wang et al.
2014).

Acknowledgments Work supported by the Spanish Ministry of Science and Technology, project TIN2011-
22408, the Spanish Ministry of Economy and Competitiveness, project TIN2014-55252-P, and FEDER
funds. This research was also supported by the Spanish Ministry of Education under the FPU program
(FPU13/01466).

2580 Empir Software Eng (2016) 21:2546–2600

Table 10 Results of the Cliff’s Delta test for hypervolume (n=negligible, s=small, m=medium, l=large)
(α = 0.05)

Algorithm SPEA2 NSGA-II MOEA/D ε-MOEA GrEA IBEA HypE NSGA-III

SPEA2 − −1.00 (l) −1.00 (l) −1.00 (l) −0.60 (l) 0.90 (l) −1.00 (l) −0.54 (l)

NSGA-II 0.90 (l) − 0.14 (n) −0.88 (l) 0.84 (l) 0.90 (l) −0.06 (n) 0.90 (l)

MOEA/D 0.90 (l) −0.14 (n) − −0.88 (l) 0.78 (l) 0.90 (l) −0.20 (s) 0.90 (l)

ε-MOEA 0.90 (l) 0.88 (l) 0.88 (l) − 0.90 (l) 0.90 (l) 0.88 (l) 0.90 (l)

GrEA 0.60 (l) −0.90 (l) −0.84 (l) −1.00 (l) − 0.60 (l) −0.96 (l) 0.60 (s)

IBEA −1.00 (l) −1.00 (l) −1.00 (l) −1.00 (l) −0.60 (l) − −1.00 (l) −1.00 (l)

HypE 0.90 (l) 0.06 (n) −0.20 (s) −0.88 (l) 0.88 (l) 0.90 (l) − 0.90 (l)

NSGA-III 0.54 (l) −1.00 (l) −1.00 (l) −1.00 (l) −0.60 (l) 0.900 (l) −1.00 (l) −

Appendix

Tables 10 and 11 present the results of the Cliff’s Delta test for hypervolume (HV) and
spacing (S), respectively. The value of a cell, xi,j , represents the effect size and its inter-
pretation when comparing the algorithm i against the algorithm j for the 9-objective
optimisation problem in terms of the specific quality indicator. Table 12 shows the results
of the Friedman and the Holm tests for all possible combinations of 2 objectives. Tables 13,
14, 15, 16 report the results for the 4-objective problems, whereas the 6-objective prob-
lems are shown from Table 17, 18, 19. In addition, Table 19 contains the results obtained
from 8-objective and 9-objective problems. For each of them, the best rankings for the
two quality indicators, HV and S, are shown in bold typeface, and their cells are shaded
in gray colour when significant differences exist. The critical value, according to the F-
Distribution with 6 and 54 degrees of freedom, i.e. the p-value, is 2.2720. Since the
Holm test is performed if H0 is rejected, Tables 12–19 show these ranking values in italic
typeface when the corresponding algorithm lies below its critical threshold, i.e. its per-
formance according to the column-specific indicator is worse than that provided by the
best algorithm.

Table 11 Results of the Cliff’s Delta test for spacing (n=negligible, s=small, m=medium, l=large) (α =
0.05)

Algorithm SPEA2 NSGA-II MOEA/D ε-MOEA GrEA IBEA HypE NSGA-III

SPEA2 − 0.32 (s) 0.89 (l) 0.87 (l) 0.87 (l) 0.90 (l) 0.85 (l) 0.68 (l)

NSGA-II −0.32 (s) − 0.90 (l) 0.90 (l) 0.88 (l) 0.90 (l) 0.87 (l) 0.88 (l)

MOEA/D −0.98 (l) −1.00 (l) − −0.36 (m) 0.64 (l) 0.90 (l) −0.10 (n) −0.88 (l)

ε-MOEA −0.96 (l) −1.00 (l) 0.35 (m) − 0.78 (l) 0.90 (l) 0.26 (s) −0.82 (l)

GrEA −0.94 (l) −0.96 (l) −0.64 (l) −0.78 (l) − 0.58 (l) −0.76 (l) −0.82 (l)

IBEA −1.00 (l) −1.00 (l) −1.00 (l) −1.00 (l) −0.58 (l) − −1.00 (l) −1.00 (l)

HypE −0.92 (l) −0.94 (l) 0.10 (n) −0.26 (s) 0.75 (l) 0.90 (l) − −0.64 (l)

NSGA-III −0.68 (l) −0.96 (l) 0.79 (l) 0.82 (l) 0.81 (l) 0.90 (l) 0.64 (l) −

Empir Software Eng (2016) 21:2546–2600 2581

Ta
bl

e
12

A
ve

ra
ge

ra
nk

in
gs

fo
r

2-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
te

st
(α

=
0.

05
)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
er
p

2.
80

3.
20

1.
30

4.
40

5.
35

2.
20

3.
35

3.
80

4.
70

5.
80

7.
75

7.
50

4.
10

4.
90

6.
65

4.
20

ic
d-
gc
r

4.
00

2.
00

1.
60

4.
20

5.
20

2.
80

3.
50

6.
10

3.
80

5.
80

7.
60

7.
10

3.
60

3.
50

6.
70

4.
50

ic
d-
cs

5.
10

3.
65

2.
45

2.
60

3.
85

2.
50

4.
70

7.
20

3.
85

5.
05

7.
10

5.
30

2.
05

4.
00

6.
90

5.
70

ic
d-
cl

5.
45

5.
20

2.
30

5.
20

3.
90

4.
60

2.
50

5.
20

3.
90

5.
20

7.
05

2.
60

3.
35

5.
20

7.
55

2.
80

ic
d-
in
s

5.
15

3.
10

2.
90

3.
70

4.
95

3.
00

1.
90

6.
90

4.
25

5.
00

6.
60

3.
10

2.
50

4.
20

7.
75

7.
00

ic
d-
en
c

5.
60

2.
40

1.
70

4.
30

3.
80

1.
90

2.
80

7.
25

4.
20

5.
55

7.
20

7.
10

3.
30

3.
30

7.
40

4.
20

ic
d-
ab
s

2.
70

3.
20

1.
10

5.
20

4.
80

2.
30

5.
30

3.
95

4.
70

6.
30

7.
25

7.
55

2.
80

4.
60

7.
35

2.
90

ic
d-
cb

3.
90

1.
70

2.
30

3.
80

4.
70

1.
80

5.
80

7.
30

3.
50

5.
90

7.
10

4.
10

1.
60

4.
20

7.
10

7.
20

er
p-
gc
r

3.
75

5.
20

2.
75

5.
80

4.
05

4.
60

2.
90

5.
90

5.
30

5.
30

7.
30

2.
30

3.
25

5.
40

6.
70

1.
50

er
p-
cs

4.
00

2.
80

1.
70

4.
15

4.
40

3.
60

4.
20

6.
75

6.
25

5.
45

7.
40

5.
55

2.
25

4.
20

5.
80

3.
50

er
p-
cl

3.
20

4.
80

3.
20

4.
80

3.
20

4.
80

3.
20

4.
80

5.
60

4.
80

7.
55

4.
35

3.
20

4.
80

6.
85

2.
85

er
p-
in
s

3.
70

2.
20

2.
25

4.
45

4.
45

3.
85

2.
85

5.
65

5.
10

4.
85

7.
65

5.
90

3.
25

4.
25

6.
75

4.
85

er
p-
en
c

3.
60

2.
50

1.
35

3.
50

3.
80

2.
60

3.
80

6.
20

6.
20

6.
10

7.
35

6.
15

3.
60

4.
75

6.
30

4.
20

er
p-
ab
s

3.
60

4.
90

1.
60

3.
30

4.
40

4.
25

3.
15

4.
80

5.
90

4.
60

7.
60

6.
00

3.
25

3.
65

6.
50

4.
50

er
p-
cb

4.
20

2.
70

1.
50

3.
90

4.
60

2.
20

4.
40

4.
20

3.
85

5.
55

7.
45

7.
35

3.
20

4.
20

6.
80

5.
90

gc
r-
cs

4.
20

2.
95

1.
80

4.
25

3.
95

3.
35

3.
85

6.
05

6.
20

5.
25

6.
80

4.
85

2.
45

3.
65

6.
75

5.
65

gc
r-
cl

3.
70

4.
90

3.
20

4.
90

3.
20

4.
90

3.
20

4.
90

5.
50

4.
90

7.
15

3.
80

3.
20

4.
90

6.
85

2.
80

gc
r-
in
s

4.
70

1.
90

2.
40

4.
20

4.
80

3.
70

2.
80

5.
75

4.
20

5.
85

7.
70

6.
55

2.
80

4.
35

6.
60

3.
70

gc
r-
en
c

4.
60

3.
60

1.
30

3.
90

3.
95

3.
80

3.
95

4.
40

5.
70

6.
50

7.
00

6.
40

3.
50

3.
20

6.
00

4.
20

gc
r-
ab
s

4.
95

5.
00

2.
20

3.
00

4.
70

3.
50

2.
95

5.
20

4.
40

4.
85

7.
40

6.
00

3.
00

4.
45

6.
40

4.
00

gc
r-
cb

4.
70

2.
60

2.
25

4.
10

3.
35

3.
70

3.
90

3.
40

4.
05

5.
35

7.
25

7.
05

3.
20

2.
70

7.
30

7.
10

cs
-c
l

3.
50

4.
85

2.
55

4.
85

3.
15

4.
15

4.
70

4.
85

5.
05

4.
85

7.
05

4.
40

3.
45

4.
85

6.
55

3.
20

cs
-i
ns

4.
45

3.
90

1.
65

4.
40

3.
60

4.
05

5.
75

6.
00

5.
95

5.
70

6.
65

5.
90

2.
05

3.
50

5.
90

2.
55

2582 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
12

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

cs
-e
nc

4.
80

3.
30

1.
70

3.
60

3.
60

2.
05

5.
10

6.
75

5.
35

5.
10

6.
95

6.
50

2.
80

4.
00

5.
70

4.
70

cs
-a
bs

4.
35

5.
10

1.
80

3.
10

4.
10

1.
70

5.
25

7.
25

4.
30

4.
75

7.
40

6.
90

2.
00

3.
10

6.
80

4.
10

cs
-c
b

5.
05

5.
30

2.
05

3.
15

2.
80

3.
25

5.
50

5.
30

4.
55

5.
30

6.
70

5.
30

2.
85

3.
45

6.
50

4.
95

cl
-i
ns

3.
55

4.
75

2.
60

5.
25

2.
55

4.
80

5.
10

5.
25

5.
15

4.
85

7.
40

2.
65

2.
60

4.
70

7.
05

3.
75

cl
-e
nc

6.
05

5.
05

2.
55

5.
05

2.
40

5.
05

5.
55

5.
05

4.
70

5.
05

6.
35

4.
25

2.
60

5.
05

5.
80

1.
45

cl
-a
bs

5.
25

5.
15

1.
70

4.
15

4.
65

5.
15

2.
70

5.
15

3.
85

4.
45

7.
35

5.
15

3.
40

4.
35

7.
10

2.
45

cl
-c
b

4.
75

5.
80

2.
60

2.
75

3.
40

2.
35

3.
45

5.
80

4.
70

5.
15

7.
10

5.
80

3.
30

3.
90

6.
70

4.
45

in
s-
en
c

4.
50

2.
50

2.
45

2.
70

3.
75

2.
50

3.
20

6.
25

5.
20

5.
95

7.
15

6.
70

2.
70

3.
30

7.
05

6.
10

in
s-
ab
s

4.
80

2.
80

2.
70

3.
40

5.
20

1.
40

1.
30

5.
75

4.
20

5.
30

7.
00

7.
35

3.
40

4.
00

7.
40

6.
00

in
s-
cb

3.
40

2.
20

1.
75

3.
40

3.
75

2.
30

3.
70

5.
35

6.
10

6.
30

7.
35

7.
45

3.
10

3.
30

6.
85

5.
70

en
c-
ab
s

4.
45

1.
90

1.
10

3.
10

2.
30

3.
70

4.
80

5.
85

5.
10

5.
30

7.
20

7.
35

4.
20

3.
80

6.
85

5.
00

en
c-
cb

5.
30

5.
20

1.
40

2.
80

2.
80

1.
40

4.
90

6.
85

4.
35

5.
10

7.
20

6.
60

3.
60

2.
40

6.
45

5.
65

ab
s-
cb

4.
80

3.
00

1.
10

4.
70

2.
90

2.
40

3.
60

3.
80

5.
25

6.
30

7.
40

7.
45

3.
80

5.
10

7.
15

3.
25

cl
-c
b

4.
75

5.
80

2.
60

2.
75

3.
40

2.
35

3.
45

5.
80

4.
70

5.
15

7.
10

5.
80

3.
30

3.
90

6.
70

4.
45

in
s-
en
c

4.
50

2.
50

2.
45

2.
70

3.
75

2.
50

3.
20

6.
25

5.
20

5.
95

7.
15

6.
70

2.
70

3.
30

7.
05

6.
10

in
s-
ab
s

4.
80

2.
80

2.
70

3.
40

5.
20

1.
40

1.
30

5.
75

4.
20

5.
30

7.
00

7.
35

3.
40

4.
00

7.
40

6.
00

in
s-
cb

3.
40

2.
20

1.
75

3.
40

3.
75

2.
30

3.
70

5.
35

6.
10

6.
30

7.
35

7.
45

3.
10

3.
30

6.
85

5.
70

en
c-
ab
s

4.
45

1.
90

1.
10

3.
10

2.
30

3.
70

4.
80

5.
85

5.
10

5.
30

7.
20

7.
35

4.
20

3.
80

6.
85

5.
00

en
c-
cb

5.
30

5.
20

1.
40

2.
80

2.
80

1.
40

4.
90

6.
85

4.
35

5.
10

7.
20

6.
60

3.
60

2.
40

6.
45

5.
65

ab
s-
cb

4.
80

3.
00

1.
10

4.
70

2.
90

2.
40

3.
60

3.
80

5.
25

6.
30

7.
40

7.
45

3.
80

5.
10

7.
15

3.
25

Empir Software Eng (2016) 21:2546–2600 2583

Ta
bl

e
13

A
ve

ra
ge

ra
nk

in
gs

fo
r

4-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
Te

st
(α

=
0.

05
)

(c
on

t’
d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
er
p-
gc
r-
cs

2.
10

3.
00

1.
00

6.
00

4.
20

3.
40

4.
00

2.
40

5.
75

6.
30

7.
75

7.
40

4.
60

5.
00

6.
60

2.
50

ic
d-
er
p-
gc
r-
cl

2.
40

2.
90

1.
40

5.
60

4.
80

3.
20

3.
50

3.
10

5.
75

6.
70

7.
65

7.
30

3.
90

4.
70

6.
60

2.
50

ic
d-
er
p-
gc
r-
in
s

2.
90

2.
10

1.
30

5.
80

4.
50

2.
70

2.
00

2.
40

6.
20

6.
90

7.
60

7.
30

4.
90

4.
70

6.
60

4.
10

ic
d-
er
p-
gc
r-
en
c

3.
20

2.
90

1.
10

5.
80

4.
10

2.
80

2.
30

1.
50

6.
40

7.
10

7.
60

7.
50

4.
70

4.
60

6.
60

3.
80

ic
d-
er
p-
gc
r-
ab
s

3.
70

1.
30

1.
10

5.
20

4.
10

3.
00

1.
90

2.
70

6.
70

7.
20

7.
60

7.
60

4.
30

4.
20

6.
60

4.
80

ic
d-
er
p-
gc
r-
cb

4.
40

1.
90

1.
10

5.
20

4.
80

3.
00

1.
90

1.
90

5.
10

6.
80

7.
80

7.
60

4.
30

5.
00

6.
60

4.
60

ic
d-
er
p-
cs
-c
l

2.
40

2.
70

1.
20

5.
70

4.
20

2.
50

5.
30

4.
65

5.
50

6.
45

7.
70

7.
20

3.
10

3.
80

6.
60

3.
00

ic
d-
er
p-
cs
-i
ns

3.
60

2.
20

1.
00

5.
10

5.
10

2.
50

2.
80

1.
90

5.
00

7.
20

7.
70

7.
60

4.
20

5.
20

6.
60

4.
30

ic
d-
er
p-
cs
-e
nc

5.
40

1.
40

1.
00

4.
70

2.
70

4.
30

4.
40

2.
15

5.
10

6.
85

7.
70

7.
50

3.
10

5.
30

6.
60

3.
80

ic
d-
er
p-
cs
-a
bs

5.
60

1.
00

1.
10

3.
60

4.
10

3.
80

1.
90

2.
20

5.
70

7.
20

7.
50

7.
50

3.
40

5.
60

6.
70

5.
10

ic
d-
er
p-
cs
-c
b

5.
30

1.
20

1.
60

5.
00

4.
90

3.
30

1.
90

2.
10

4.
45

6.
70

7.
75

7.
60

3.
40

6.
10

6.
70

4.
00

ic
d-
er
p-
cl
-i
ns

3.
35

2.
60

1.
50

5.
60

5.
10

3.
50

2.
45

1.
80

5.
20

6.
10

7.
75

7.
80

4.
00

4.
00

6.
65

4.
60

ic
d-
er
p-
cl
-e
nc

3.
50

2.
60

1.
00

6.
10

4.
30

3.
10

3.
00

2.
30

6.
35

7.
10

7.
65

7.
40

3.
60

4.
80

6.
60

2.
60

ic
d-
er
p-
cl
-a
bs

4.
00

1.
30

1.
00

5.
30

4.
60

3.
70

2.
00

1.
80

6.
45

7.
40

7.
75

7.
60

3.
60

4.
20

6.
60

4.
70

ic
d-
er
p-
cl
-c
b

5.
20

1.
70

1.
30

5.
20

4.
90

2.
90

2.
20

2.
00

5.
15

6.
80

7.
70

7.
70

2.
80

5.
20

6.
75

4.
50

ic
d-
er
p-
in
s-
en
c

3.
90

2.
00

1.
20

5.
10

4.
30

3.
60

1.
90

1.
30

6.
05

7.
05

7.
65

7.
65

4.
40

5.
20

6.
60

4.
10

ic
d-
er
p-
in
s-
ab
s

4.
20

1.
00

1.
50

3.
30

4.
70

3.
70

1.
50

2.
50

6.
25

6.
95

7.
65

7.
65

3.
60

5.
50

6.
60

5.
40

ic
d-
er
p-
in
s-
cb

5.
00

1.
20

1.
60

4.
30

5.
10

3.
60

1.
60

1.
80

4.
90

6.
75

7.
75

7.
75

3.
40

5.
90

6.
65

4.
70

ic
d-
er
p-
en
c-
ab
s

4.
40

1.
10

1.
40

4.
00

3.
70

3.
40

1.
60

3.
00

6.
60

7.
15

7.
80

7.
65

3.
90

4.
60

6.
60

5.
10

ic
d-
er
p-
en
c-
cb

5.
60

1.
00

1.
30

3.
80

4.
40

4.
00

1.
70

2.
00

5.
30

7.
20

7.
80

7.
60

3.
30

5.
60

6.
60

4.
80

ic
d-
er
p-
ab
s-
cb

5.
70

1.
00

1.
60

2.
80

4.
60

4.
10

1.
40

2.
50

5.
40

7.
30

7.
80

7.
60

3.
00

5.
60

6.
50

5.
10

ic
d-
gc
r-
cs
-c
l

3.
50

3.
10

1.
40

4.
50

5.
00

2.
30

4.
90

6.
00

3.
75

6.
00

7.
65

7.
40

3.
00

4.
00

6.
80

2.
70

2584 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
13

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
gc
r-
cs
-i
ns

3.
90

2.
10

1.
40

4.
60

5.
20

3.
20

3.
40

1.
60

4.
40

7.
10

7.
70

7.
60

3.
40

5.
60

6.
60

4.
20

ic
d-
gc
r-
cs
-e
nc

5.
00

1.
50

1.
30

4.
80

3.
90

3.
90

4.
50

1.
60

4.
55

7.
20

7.
75

7.
60

2.
40

5.
30

6.
60

4.
10

ic
d-
gc
r-
cs
-a
bs

5.
60

1.
10

1.
00

3.
90

4.
50

3.
10

2.
00

2.
10

5.
35

7.
20

7.
75

7.
60

3.
20

6.
10

6.
60

4.
90

ic
d-
gc
r-
cs
-c
b

5.
40

1.
20

2.
20

4.
90

4.
80

3.
60

2.
70

2.
50

4.
05

6.
35

7.
65

7.
65

2.
30

4.
50

6.
90

5.
30

ic
d-
gc
r-
cl
-i
ns

4.
20

2.
10

1.
70

5.
40

5.
10

2.
80

2.
60

1.
90

4.
00

6.
60

7.
60

7.
60

4.
10

4.
90

6.
70

4.
70

ic
d-
gc
r-
cl
-e
nc

4.
50

2.
30

1.
10

6.
20

4.
30

3.
80

2.
80

1.
80

5.
10

7.
30

7.
60

7.
40

4.
00

4.
40

6.
60

2.
80

ic
d-
gc
r-
cl
-a
bs

4.
10

1.
50

1.
00

5.
60

5.
00

3.
20

2.
00

2.
40

6.
45

7.
30

7.
65

7.
60

3.
20

3.
40

6.
60

5.
00

ic
d-
gc
r-
cl
-c
b

4.
70

1.
90

1.
40

5.
00

5.
40

3.
00

2.
50

1.
50

4.
00

6.
80

7.
55

7.
60

3.
40

4.
50

7.
05

5.
70

ic
d-
gc
r-
in
s-
en
c

5.
00

1.
30

1.
20

5.
00

4.
60

3.
80

2.
00

1.
80

5.
20

7.
30

7.
60

7.
40

3.
80

5.
20

6.
60

4.
20

ic
d-
gc
r-
in
s-
ab
s

4.
50

1.
10

1.
60

3.
50

5.
30

3.
40

1.
40

2.
50

5.
90

7.
40

7.
60

7.
60

3.
10

5.
60

6.
60

4.
90

Empir Software Eng (2016) 21:2546–2600 2585

Ta
bl

e
14

A
ve

ra
ge

ra
nk

in
gs

fo
r

4-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
Te

st
(α

=
0.

05
)

(c
on

t’
d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
gc
r-
in
s-
cb

4.
80

1.
20

1.
50

4.
60

5.
40

3.
50

2.
20

2.
00

4.
65

6.
90

7.
75

7.
60

3.
00

5.
80

6.
70

4.
40

ic
d-
gc
r-
en
c-
ab
s

5.
00

1.
00

1.
60

4.
10

3.
80

3.
50

1.
40

3.
30

6.
65

7.
20

7.
65

7.
60

3.
30

4.
10

6.
60

5.
20

ic
d-
gc
r-
en
c-
cb

5.
60

1.
20

1.
20

4.
90

4.
60

3.
30

2.
70

1.
90

4.
90

7.
10

7.
80

7.
60

2.
60

5.
40

6.
60

4.
60

ic
d-
gc
r-
ab
s-
cb

5.
60

1.
10

1.
60

3.
30

4.
50

3.
50

1.
40

2.
30

5.
40

7.
30

7.
80

7.
60

3.
10

5.
60

6.
60

5.
30

ic
d-
cs
-c
l-
in
s

5.
00

3.
50

2.
30

4.
60

5.
20

1.
40

2.
70

6.
40

3.
60

6.
15

7.
60

7.
25

2.
60

4.
10

7.
00

2.
60

ic
d-
cs
-c
l-
en
c

5.
2

1.
80

1.
80

4.
40

4.
00

1.
90

4.
50

6.
95

3.
80

6.
50

7.
40

7.
05

2.
40

4.
00

6.
90

3.
40

ic
d-
cs
-c
l-
ab
s

4.
40

3.
00

1.
00

5.
90

5.
60

3.
10

3.
60

1.
50

4.
90

7.
30

7.
55

7.
20

2.
00

5.
40

6.
95

2.
60

ic
d-
cs
-c
l-
cb

4.
80

2.
90

2.
00

4.
60

5.
40

1.
50

2.
70

5.
70

3.
90

6.
50

7.
60

7.
10

2.
60

4.
10

7.
00

3.
60

ic
d-
cs
-i
ns
-e
nc

5.
50

1.
70

2.
20

5.
20

4.
50

3.
10

3.
20

2.
10

4.
45

7.
10

7.
45

7.
60

1.
90

4.
80

6.
80

4.
40

ic
d-
cs
-i
ns
-a
bs

5.
00

1.
60

1.
60

4.
70

5.
20

4.
20

1.
50

2.
10

5.
25

6.
75

7.
50

7.
45

2.
90

6.
70

7.
05

2.
50

ic
d-
cs
-i
ns
-c
b

4.
10

3.
10

2.
60

5.
30

5.
20

2.
30

4.
75

4.
20

4.
05

6.
90

7.
45

6.
70

1.
20

4.
60

6.
65

2.
90

ic
d-
cs
-e
nc
-a
bs

5.
60

1.
00

1.
30

3.
60

4.
10

4.
30

2.
40

2.
00

5.
90

7.
10

7.
70

7.
40

2.
30

6.
50

6.
70

4.
10

ic
d-
cs
-e
nc
-c
b

5.
20

1.
70

2.
40

5.
40

4.
90

3.
10

2.
80

2.
10

4.
35

7.
15

7.
75

7.
65

1.
90

4.
50

6.
70

4.
40

ic
d-
cs
-a
bs
-c
b

5.
60

1.
40

1.
10

4.
50

4.
50

4.
50

2.
20

2.
30

5.
35

6.
85

7.
50

7.
75

2.
70

6.
40

7.
05

2.
30

ic
d-
cl
-i
ns
-e
nc

5.
50

1.
90

2.
00

5.
50

4.
50

2.
40

2.
50

3.
30

3.
95

7.
20

7.
60

7.
70

3.
20

4.
60

6.
75

3.
40

ic
d-
cl
-i
ns
-a
bs

4.
30

2.
20

1.
60

6.
00

5.
40

3.
50

1.
40

1.
90

5.
30

7.
40

7.
65

7.
60

3.
50

4.
50

6.
85

2.
90

ic
d-
cl
-i
ns
-c
b

4.
40

3.
20

2.
70

5.
40

5.
60

1.
70

2.
20

2.
00

3.
75

6.
75

7.
65

7.
45

2.
80

4.
70

6.
90

4.
80

ic
d-
cl
-e
nc
-a
bs

4.
50

1.
70

1.
30

5.
80

4.
20

3.
60

1.
70

2.
20

6.
40

7.
40

7.
55

7.
50

3.
40

4.
40

6.
95

3.
40

ic
d-
cl
-e
nc
-c
b

4.
90

2.
70

2.
00

5.
80

5.
10

2.
20

2.
60

2.
10

4.
40

6.
95

7.
75

7.
65

2.
60

5.
00

6.
65

3.
60

ic
d-
cl
-a
bs
-c
b

5.
40

1.
60

1.
30

4.
90

4.
70

3.
80

2.
10

2.
00

5.
30

7.
25

7.
40

7.
65

2.
60

5.
60

7.
20

3.
20

ic
d-
in
s-
en
c-
ab
s

5.
10

1.
20

1.
80

3.
90

4.
60

3.
50

1.
20

2.
40

5.
85

7.
15

7.
70

7.
65

3.
00

6.
20

6.
75

4.
00

ic
d-
in
s-
en
c-
cb

5.
40

1.
70

2.
50

5.
00

4.
80

2.
90

2.
20

1.
60

4.
85

7.
30

7.
75

7.
60

1.
90

4.
80

6.
60

5.
10

2586 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
14

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
in
s-
ab
s-
cb

5.
60

1.
10

2.
00

3.
70

4.
60

4.
10

1.
20

2.
20

5.
35

6.
70

7.
45

7.
70

2.
80

6.
60

7.
00

3.
90

ic
d-
en
c-
ab
s-
cb

5.
60

1.
20

2.
30

3.
60

4.
40

3.
80

1.
60

2.
10

5.
55

7.
10

7.
70

7.
40

2.
10

6.
30

6.
75

4.
50

er
p-
gc
r-
cs
-c
l

3.
15

4.
35

1.
70

4.
35

4.
60

2.
75

4.
55

7.
20

5.
05

5.
25

7.
65

5.
15

2.
80

4.
25

6.
50

2.
70

er
p-
gc
r-
cs
-i
ns

4.
25

2.
40

1.
45

5.
30

4.
85

3.
60

3.
50

4.
10

5.
65

6.
40

7.
55

6.
50

2.
45

4.
40

6.
30

3.
30

er
p-
gc
r-
cs
-e
nc

4.
10

2.
00

1.
00

5.
50

3.
90

3.
60

4.
80

4.
10

6.
30

6.
80

7.
30

7.
00

2.
50

4.
10

6.
10

2.
90

er
p-
gc
r-
cs
-a
bs

3.
50

2.
10

1.
00

5.
00

4.
20

2.
20

3.
50

5.
30

5.
95

6.
30

7.
65

7.
20

3.
70

3.
10

6.
50

4.
80

er
p-
gc
r-
cs
-c
b

3.
70

2.
30

1.
20

5.
10

4.
60

2.
10

2.
80

4.
00

4.
60

6.
60

7.
80

7.
50

4.
70

5.
60

6.
60

2.
80

er
p-
gc
r-
cl
-i
ns

4.
15

4.
40

2.
25

4.
75

3.
20

1.
70

2.
75

4.
85

5.
60

6.
25

7.
60

6.
20

3.
85

4.
25

6.
60

3.
60

er
p-
gc
r-
cl
-e
nc

5.
35

6.
55

1.
10

4.
80

3.
30

1.
80

5.
65

5.
50

5.
25

5.
95

7.
10

5.
80

2.
25

3.
80

6.
00

1.
80

er
p-
gc
r-
cl
-a
bs

4.
10

4.
75

1.
35

2.
70

4.
00

2.
80

3.
05

5.
80

6.
05

5.
70

7.
55

6.
20

3.
40

3.
55

6.
50

4.
50

er
p-
gc
r-
cl
-c
b

3.
40

3.
00

1.
10

4.
90

5.
30

2.
90

3.
50

2.
70

5.
60

6.
80

7.
80

7.
40

2.
70

5.
40

6.
60

2.
90

Empir Software Eng (2016) 21:2546–2600 2587

Ta
bl

e
15

A
ve

ra
ge

ra
nk

in
gs

fo
r

4-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
Te

st
(α

=
0.

05
)

(c
on

t’
d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

er
p-
gc
r-
in
s-
en
c

3.
50

2.
40

1.
20

5.
90

4.
00

3.
80

2.
00

2.
70

6.
60

6.
30

7.
60

7.
50

4.
50

3.
90

6.
60

3.
50

er
p-
gc
r-
in
s-
ab
s

3.
40

1.
90

1.
90

4.
90

4.
40

2.
20

1.
30

4.
50

6.
30

5.
70

7.
60

7.
60

4.
50

2.
80

6.
60

6.
40

er
p-
gc
r-
in
s-
cb

4.
20

1.
60

1.
10

5.
20

4.
20

3.
10

2.
30

2.
40

5.
70

6.
45

7.
80

7.
65

4.
10

6.
10

6.
60

3.
50

er
p-
gc
r-
en
c-
ab
s

4.
50

3.
00

1.
00

4.
60

2.
90

3.
00

3.
70

3.
50

6.
30

6.
60

7.
40

7.
00

3.
80

4.
00

6.
40

4.
30

er
p-
gc
r-
en
c-
cb

4.
10

1.
20

1.
00

5.
30

4.
00

3.
60

2.
40

1.
90

6.
60

6.
70

7.
80

7.
60

3.
50

5.
90

6.
60

3.
80

er
p-
gc
r-
ab
s-
cb

4.
60

1.
10

1.
10

4.
40

4.
70

3.
20

2.
10

2.
50

5.
80

7.
20

7.
80

7.
60

3.
30

5.
10

6.
60

4.
90

er
p-
cs
-c
l-
in
s

2.
85

3.
40

1.
55

5.
10

4.
10

1.
60

4.
25

6.
00

5.
50

5.
85

7.
60

6.
85

3.
55

4.
20

6.
60

3.
00

er
p-
cs
-c
l-
en
c

5.
35

6.
55

1.
10

4.
80

3.
30

1.
80

5.
65

5.
50

5.
25

5.
95

7.
10

5.
80

2.
25

3.
80

6.
00

1.
80

er
p-
cs
-c
l-
ab
s

3.
40

2.
10

1.
00

4.
60

4.
50

2.
10

4.
90

5.
15

5.
35

6.
15

7.
55

7.
30

2.
80

3.
50

6.
50

5.
10

er
p-
cs
-c
l-
cb

4.
70

2.
60

1.
50

5.
10

4.
70

1.
60

3.
80

4.
30

3.
90

6.
80

7.
80

7.
70

3.
00

5.
10

6.
60

2.
80

er
p-
cs
-i
ns
-e
nc

4.
95

1.
60

1.
10

4.
70

4.
75

3.
90

3.
15

2.
00

5.
85

6.
90

7.
30

7.
60

2.
60

5.
40

6.
30

3.
90

er
p-
cs
-i
ns
-a
bs

4.
80

1.
50

1.
10

4.
30

4.
40

2.
50

2.
10

3.
30

5.
20

7.
10

7.
60

7.
60

4.
20

4.
00

6.
60

5.
70

er
p-
cs
-i
ns
-c
b

5.
50

1.
70

1.
40

5.
10

4.
60

3.
20

2.
00

2.
20

4.
70

6.
70

7.
80

7.
70

3.
40

6.
50

6.
60

2.
90

er
p-
cs
-e
nc
-a
bs

5.
40

1.
00

1.
00

3.
00

2.
60

3.
90

4.
00

3.
70

5.
90

6.
40

7.
60

7.
40

3.
00

5.
80

6.
50

4.
80

er
p-
cs
-e
nc
-c
b

5.
40

1.
30

1.
00

3.
90

4.
00

4.
00

3.
60

2.
60

4.
60

7.
10

7.
80

7.
60

3.
10

6.
30

6.
50

3.
20

er
p-
cs
-a
bs
-c
b

5.
30

1.
30

1.
10

3.
10

4.
50

3.
50

2.
50

2.
30

5.
50

7.
15

7.
80

7.
65

2.
70

6.
10

6.
60

4.
90

er
p-
cl
-i
ns
-e
nc

3.
60

2.
80

1.
10

6.
00

3.
60

3.
30

2.
50

1.
20

6.
35

7.
15

7.
65

7.
55

4.
60

4.
00

6.
60

4.
00

er
p-
cl
-i
ns
-a
bs

3.
70

2.
20

2.
00

4.
10

4.
40

2.
40

1.
50

4.
20

5.
65

6.
90

7.
60

7.
60

4.
50

2.
20

6.
65

6.
40

er
p-
cl
-i
ns
-c
b

4.
90

1.
60

1.
30

5.
20

4.
90

3.
10

2.
20

1.
70

5.
50

6.
60

7.
70

7.
80

2.
80

5.
00

6.
70

5.
00

er
p-
cl
-e
nc
-a
bs

4.
60

3.
20

1.
00

4.
40

2.
80

2.
90

4.
75

4.
00

5.
95

6.
50

7.
60

7.
10

2.
90

3.
60

6.
40

4.
30

er
p-
cl
-e
nc
-c
b

5.
10

1.
10

1.
00

5.
10

4.
20

3.
20

2.
90

2.
40

5.
95

7.
00

7.
75

7.
60

2.
50

4.
70

6.
60

4.
90

er
p-
cl
-a
bs
-c
b

4.
90

1.
20

1.
10

4.
50

4.
80

2.
80

2.
60

2.
40

5.
90

6.
95

7.
80

7.
65

2.
30

4.
80

6.
60

5.
70

er
p-
in
s-
en
c-
ab
s

4.
60

1.
30

1.
50

3.
20

3.
80

3.
40

1.
50

3.
00

6.
35

7.
10

7.
75

7.
60

3.
90

5.
40

6.
60

5.
00

2588 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
15

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

er
p-
in
s-
en
c-
cb

5.
60

1.
10

1.
50

3.
60

4.
40

4.
30

1.
50

2.
10

5.
10

7.
10

7.
80

7.
60

3.
50

5.
70

6.
60

4.
50

er
p-
in
s-
ab
s-
cb

5.
60

1.
00

1.
60

4.
40

3.
70

1.
50

2.
60

5.
30

7.
30

7.
80

7.
60

3.
20

5.
70

6.
60

4.
80

er
p-
en
c-
ab
s-
cb

5.
30

1.
00

1.
50

2.
80

4.
10

4.
40

2.
40

2.
90

5.
90

6.
70

7.
75

7.
60

2.
40

5.
20

6.
65

5.
40

gc
r-
cs
-c
l-
in
s

2.
75

2.
90

1.
65

5.
55

4.
75

1.
70

4.
70

5.
85

4.
45

5.
95

7.
75

7.
25

3.
35

4.
20

6.
60

2.
60

gc
r-
cs
-c
l-
en
c

4.
95

4.
60

1.
00

4.
60

2.
90

2.
60

6.
85

6.
90

4.
90

6.
00

7.
00

6.
30

2.
70

3.
40

5.
70

1.
60

gc
r-
cs
-c
l-
ab
s

4.
30

3.
25

1.
15

4.
40

5.
10

1.
30

4.
00

5.
90

4.
85

6.
65

7.
65

7.
10

2.
35

3.
10

6.
60

4.
30

gc
r-
cs
-c
l-
cb

4.
90

2.
10

1.
50

5.
00

5.
00

2.
50

3.
50

3.
50

4.
15

5.
95

7.
60

7.
65

2.
50

4.
70

6.
85

4.
60

gc
r-
cs
-i
ns
-e
nc

5.
20

1.
70

1.
00

4.
50

4.
80

4.
70

3.
70

1.
40

4.
85

6.
80

7.
55

7.
60

2.
60

5.
90

6.
30

3.
40

gc
r-
cs
-i
ns
-a
bs

4.
70

1.
30

1.
30

4.
50

5.
20

2.
40

2.
30

3.
00

5.
05

6.
90

7.
75

7.
60

3.
10

4.
50

6.
60

5.
80

gc
r-
cs
-i
ns
-c
b

5.
40

1.
70

1.
20

5.
00

4.
60

4.
30

2.
40

2.
10

4.
60

6.
70

7.
80

7.
80

3.
40

6.
20

6.
60

2.
20

gc
r-
cs
-c
l-
in
s

2.
75

2.
90

1.
65

5.
55

4.
75

1.
70

4.
70

5.
85

4.
45

5.
95

7.
75

7.
25

3.
35

4.
20

6.
60

2.
60

gc
r-
cs
-c
l-
en
c

4.
95

4.
60

1.
00

4.
60

2.
90

2.
60

6.
85

6.
90

4.
90

6.
00

7.
00

6.
30

2.
70

3.
40

5.
70

1.
60

gc
r-
cs
-c
l-
ab
s

4.
30

3.
25

1.
15

4.
40

5.
10

1.
30

4.
00

5.
90

4.
85

6.
65

7.
65

7.
10

2.
35

3.
10

6.
60

4.
30

gc
r-
cs
-c
l-
cb

4.
90

2.
10

1.
50

5.
00

5.
00

2.
50

3.
50

3.
50

4.
15

5.
95

7.
60

7.
65

2.
50

4.
70

6.
85

4.
60

gc
r-
cs
-i
ns
-e
nc

5.
20

1.
70

1.
00

4.
50

4.
80

4.
70

3.
70

1.
40

4.
85

6.
80

7.
55

7.
60

2.
60

5.
90

6.
30

3.
40

gc
r-
cs
-i
ns
-a
bs

4.
70

1.
30

1.
30

4.
50

5.
20

2.
40

2.
30

3.
00

5.
05

6.
90

7.
75

7.
60

3.
10

4.
50

6.
60

5.
80

gc
r-
cs
-i
ns
-c
b

5.
40

1.
70

1.
20

5.
00

4.
60

4.
30

2.
40

2.
10

4.
60

6.
70

7.
80

7.
80

3.
40

6.
20

6.
60

2.
20

3.
30

Empir Software Eng (2016) 21:2546–2600 2589

Ta
bl

e
16

A
ve

ra
ge

ra
nk

in
gs

fo
r

4-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
te

st
(α

=
0.

05
)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

gc
r-
cs
-e
nc
-a
bs

5.
75

3.
05

1.
00

2.
40

2.
80

4.
00

3.
65

3.
35

5.
80

7.
00

7.
50

7.
30

3.
10

5.
20

6.
40

3.
70

gc
r-
cs
-e
nc
-c
b

5.
50

1.
50

1.
20

4.
10

4.
40

4.
00

3.
90

3.
85

4.
25

6.
85

7.
75

7.
50

2.
60

4.
90

6.
40

3.
30

gc
r-
cs
-a
bs
-c
b

5.
20

1.
30

1.
00

2.
90

4.
00

3.
90

2.
60

2.
20

5.
40

7.
30

7.
70

7.
60

3.
30

5.
90

6.
80

4.
90

gc
r-
cl
-i
ns
-e
nc

4.
50

2.
20

1.
00

6.
20

3.
10

4.
00

2.
40

1.
60

6.
00

6.
70

7.
60

7.
60

4.
80

4.
70

6.
60

3.
00

gc
r-
cl
-i
ns
-a
bs

4.
30

2.
40

2.
00

4.
20

4.
80

2.
60

1.
20

3.
00

5.
75

6.
85

7.
65

7.
65

3.
70

3.
10

6.
60

6.
20

gc
r-
cl
-i
ns
-c
b

4.
30

2.
40

1.
50

5.
70

5.
10

4.
00

2.
70

1.
30

4.
60

6.
90

7.
80

7.
80

3.
40

5.
20

6.
60

2.
70

gc
r-
cl
-e
nc
-a
bs

5.
60

3.
50

1.
00

4.
90

2.
70

3.
80

4.
10

2.
90

6.
10

6.
20

7.
20

7.
20

3.
10

3.
10

6.
20

4.
40

gc
r-
cl
-e
nc
-c
b

5.
10

2.
40

1.
10

5.
00

4.
60

3.
40

3.
20

4.
10

4.
30

6.
90

7.
80

7.
60

3.
30

3.
80

6.
60

2.
80

gc
r-
cl
-a
bs
-c
b

4.
60

1.
70

1.
00

4.
00

5.
20

2.
60

3.
00

2.
60

5.
55

7.
00

7.
75

7.
50

2.
20

5.
00

6.
70

5.
60

gc
r-
in
s-
en
c-
ab
s

5.
20

1.
10

1.
70

2.
90

3.
70

3.
70

1.
30

2.
80

6.
40

7.
20

7.
60

7.
60

3.
50

6.
10

6.
60

4.
60

gc
r-
in
s-
en
c-
cb

5.
80

1.
10

1.
20

3.
90

4.
60

4.
10

2.
20

2.
10

4.
80

7.
10

7.
80

7.
60

3.
20

6.
30

6.
40

3.
80

gc
r-
in
s-
ab
s-
cb

5.
60

1.
10

1.
30

3.
30

4.
40

3.
50

1.
80

2.
40

5.
40

7.
70

6.
95

7.
70

3.
00

6.
00

6.
80

5.
10

gc
r-
en
c-
ab
s-
cb

5.
50

1.
75

1.
10

2.
50

3.
90

4.
20

3.
25

3.
25

5.
60

7.
20

7.
75

7.
40

2.
40

5.
50

6.
50

4.
20

cs
-c
l-
in
s-
en
c

5.
20

1.
80

1.
70

5.
30

4.
10

2.
90

3.
00

3.
05

4.
30

6.
40

7.
60

7.
45

3.
50

4.
60

6.
60

4.
50

cs
-c
l-
in
s-
ab
s

3.
40

3.
90

1.
40

4.
80

5.
60

1.
30

3.
50

5.
25

4.
80

5.
85

7.
70

7.
60

2.
80

4.
50

6.
80

2.
80

cs
-c
l-
in
s-
cb

3.
20

2.
20

1.
70

4.
50

4.
90

2.
60

1.
50

3.
30

5.
60

7.
00

7.
60

7.
60

4.
60

3.
80

6.
90

5.
00

cs
-c
l-
en
c-
ab
s

5.
60

5.
00

1.
00

3.
60

2.
60

2.
50

4.
60

5.
95

5.
00

5.
95

7.
30

6.
90

3.
90

4.
30

6.
00

1.
80

cs
-c
l-
en
c-
cb

4.
50

4.
65

1.
50

4.
40

4.
70

1.
80

4.
00

7.
15

4.
30

5.
75

7.
60

7.
15

3.
20

2.
90

6.
20

2.
20

cs
-c
l-
ab
s-
cb

5.
00

3.
40

1.
00

4.
30

4.
40

2.
40

3.
85

4.
30

5.
25

6.
60

7.
60

7.
70

2.
10

5.
30

6.
80

2.
00

cs
-i
ns
-e
nc
-a
bs

5.
60

1.
30

1.
70

3.
10

4.
00

4.
30

1.
60

1.
90

6.
00

6.
75

7.
70

7.
75

2.
80

6.
50

6.
60

4.
40

cs
-i
ns
-e
nc
-c
b

5.
60

1.
90

1.
50

5.
10

4.
20

3.
50

2.
30

1.
40

4.
70

6.
80

7.
80

7.
80

3.
30

5.
60

6.
60

3.
90

cs
-i
ns
-a
bs
-c
b

5.
50

1.
60

1.
20

4.
50

4.
60

4.
40

1.
90

2.
70

5.
45

7.
00

7.
75

7.
80

2.
90

6.
20

6.
70

1.
80

2590 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
16

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

cs
-e
nc
-a
bs
-c
b

5.
50

1.
50

1.
00

2.
20

3.
40

3.
70

4.
50

5.
05

5.
25

6.
50

7.
75

7.
55

2.
10

6.
10

6.
50

3.
40

cl
-i
ns
-e
nc
-a
bs

3.
80

1.
70

1.
60

4.
90

3.
40

3.
40

1.
40

1.
50

6.
20

7.
45

7.
75

6.
85

5.
20

5.
20

6.
65

5.
00

cl
-i
ns
-e
nc
-c
b

4.
40

2.
20

1.
40

4.
80

5.
10

3.
30

1.
80

1.
20

5.
00

6.
85

7.
65

7.
75

3.
90

4.
20

6.
75

5.
70

cl
-i
ns
-a
bs
-c
b

5.
50

1.
90

1.
10

4.
70

4.
60

3.
20

2.
30

1.
30

5.
30

7.
00

7.
65

7.
80

2.
70

5.
60

2.
70

4.
50

cl
-e
nc
-a
bs
-c
b

5.
20

1.
70

1.
00

3.
00

3.
40

2.
90

4.
00

5.
85

5.
10

6.
75

7.
65

7.
30

3.
20

4.
60

6.
45

3.
90

in
s-
en
c-
ab
s-
cb

5.
60

1.
20

1.
80

3.
10

4.
40

4.
20

1.
40

2.
00

5.
60

6.
45

7.
80

7.
75

2.
80

6.
40

6.
60

4.
90

Empir Software Eng (2016) 21:2546–2600 2591

Ta
bl

e
17

A
ve

ra
ge

ra
nk

in
gs

fo
r

6-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
Te

st
(α

=
0.

05
)

(c
on

t’
d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
er
p-
gc
r-
cs
-c
l-
in
s

4.
50

1.
70

1.
00

5.
00

4.
20

3.
50

2.
10

2.
50

6.
15

7.
30

7.
75

7.
60

3.
70

5.
40

6.
60

3.
00

ic
d-
er
p-
gc
r-
cs
-c
l-
en
c

5.
60

1.
30

1.
00

4.
90

3.
60

4.
70

3.
30

2.
20

5.
85

7.
30

7.
75

7.
50

2.
30

5.
10

6.
60

3.
00

ic
d-
er
p-
gc
r-
cs
-c
l-
ab
s

5.
60

1.
00

1.
60

3.
20

3.
60

5.
10

1.
40

3.
10

6.
00

7.
40

7.
80

7.
60

3.
40

4.
60

6.
60

4.
00

ic
d-
er
p-
gc
r-
cs
-c
l-
cb

5.
50

1.
10

1.
40

4.
50

4.
60

4.
40

1.
70

2.
40

5.
40

7.
40

7.
80

7.
60

3.
00

5.
70

6.
60

2.
90

ic
d-
er
p-
gc
r-
cs
-i
ns
-e
nc

5.
50

1.
10

1.
80

3.
00

3.
60

5.
30

1.
50

3.
10

5.
50

7.
10

7.
70

7.
60

3.
80

5.
00

6.
60

3.
80

ic
d-
er
p-
gc
r-
cs
-i
ns
-a
bs

5.
60

1.
00

2.
10

2.
20

3.
50

5.
00

1.
10

3.
30

5.
90

7.
20

7.
80

7.
60

3.
40

6.
10

6.
60

3.
60

ic
d-
er
p-
gc
r-
cs
-i
ns
-c
b

5.
80

1.
10

1.
70

3.
10

3.
70

5.
00

1.
40

3.
20

5.
25

7.
10

7.
75

7.
50

3.
90

6.
00

6.
50

3.
00

ic
d-
er
p-
gc
r-
cs
-e
nc
-a
bs

5.
60

1.
00

2.
80

2.
30

3.
20

5.
10

1.
00

3.
80

6.
10

7.
40

7.
70

7.
60

3.
00

5.
10

6.
60

3.
70

ic
d-
er
p-
gc
r-
cs
-e
nc
-c
b

5.
90

1.
00

1.
70

2.
80

3.
80

5.
20

1.
70

3.
20

5.
40

7.
20

7.
80

7.
60

3.
40

5.
30

6.
30

3.
70

ic
d-
er
p-
gc
r-
cs
-a
bs
-c
b

6.
10

1.
00

2.
10

2.
00

4.
10

5.
20

1.
30

3.
40

5.
70

7.
10

7.
80

7.
60

2.
80

5.
90

6.
10

3.
80

ic
d-
er
p-
gc
r-
cl
-i
ns
-e
nc

4.
20

1.
70

1.
30

5.
10

3.
90

4.
40

1.
70

2.
80

6.
60

7.
40

7.
60

7.
60

4.
10

4.
20

6.
60

2.
80

ic
d-
er
p-
gc
r-
cl
-i
ns
-a
bs

4.
80

1.
00

1.
70

3.
30

3.
80

5.
00

1.
30

4.
30

6.
70

7.
40

7.
60

7.
60

3.
50

3.
20

6.
60

4.
20

ic
d-
er
p-
gc
r-
cl
-i
ns
-c
b

5.
50

1.
10

1.
60

4.
00

4.
10

4.
90

1.
50

3.
10

5.
80

7.
40

7.
80

7.
60

3.
10

5.
40

6.
60

2.
50

ic
d-
er
p-
gc
r-
cl
-e
nc
-a
bs

5.
40

1.
00

2.
00

3.
30

3.
40

4.
70

1.
10

4.
90

6.
40

7.
40

7.
60

7.
60

3.
50

3.
30

6.
60

3.
80

ic
d-
er
p-
gc
r-
cl
-e
nc
-c
b

5.
60

1.
00

1.
50

4.
20

4.
00

4.
80

1.
60

3.
10

5.
80

7.
30

7.
80

7.
60

3.
10

5.
30

6.
60

2.
70

ic
d-
er
p-
gc
r-
cl
-a
bs
-c
b

5.
90

1.
00

1.
70

2.
40

4.
20

5.
20

1.
30

3.
50

5.
75

7.
40

7.
75

7.
60

3.
00

5.
10

6.
40

3.
80

ic
d-
er
p-
gc
r-
in
s-
en
c-
ab
s

5.
50

1.
00

2.
60

2.
20

3.
00

4.
00

1.
00

4.
80

6.
25

7.
30

7.
65

7.
60

3.
40

5.
30

6.
60

3.
80

ic
d-
er
p-
gc
r-
in
s-
en
c-
cb

5.
90

1.
10

1.
90

2.
50

3.
80

5.
10

1.
30

4.
10

5.
70

7.
10

7.
80

7.
60

3.
30

5.
00

6.
30

3.
50

ic
d-
er
p-
gc
r-
in
s-
ab
s-
cb

5.
80

1.
40

2.
40

2.
00

3.
80

4.
80

1.
10

3.
60

5.
80

7.
20

7.
80

7.
60

2.
90

5.
70

6.
40

3.
70

ic
d-
er
p-
gc
r-
en
c-
ab
s-
cb

6.
00

1.
00

2.
50

2.
00

4.
00

5.
00

1.
10

4.
20

6.
00

7.
20

7.
80

7.
60

2.
40

5.
50

6.
20

3.
50

ic
d-
er
p-
cs
-c
l-
in
s-
en
c

5.
60

1.
00

1.
50

3.
70

3.
90

5.
70

1.
70

2.
20

5.
20

7.
40

7.
70

7.
60

3.
80

4.
70

6.
60

3.
70

ic
d-
er
p-
cs
-c
l-
in
s-
ab
s

5.
60

1.
00

2.
10

2.
30

3.
70

5.
60

1.
10

2.
90

6.
05

7.
40

7.
65

7.
60

3.
20

4.
60

6.
60

4.
60

2592 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
17

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
er
p-
cs
-c
l-
in
s-
cb

5.
60

1.
10

1.
70

3.
20

4.
60

5.
10

1.
70

3.
00

4.
90

7.
40

7.
80

7.
60

3.
20

5.
20

6.
50

3.
40

ic
d-
er
p-
cs
-c
l-
en
c-
ab
s

5.
60

1.
00

2.
00

2.
40

3.
00

6.
00

1.
20

3.
90

6.
10

7.
40

7.
70

7.
60

3.
80

3.
70

6.
60

4.
00

ic
d-
er
p-
cs
-c
l-
en
c-
cb

5.
80

1.
00

1.
50

3.
60

4.
40

5.
40

1.
60

2.
70

5.
10

7.
40

7.
80

7.
60

3.
40

5.
30

6.
40

3.
00

ic
d-
er
p-
cs
-c
l-
ab
s-
cb

5.
90

1.
00

1.
80

2.
20

4.
20

5.
40

1.
40

3.
20

5.
80

7.
40

7.
80

7.
60

2.
80

5.
20

6.
30

4.
00

ic
d-
er
p-
cs
-i
ns
-e
nc
-a
bs

5.
60

1.
00

3.
40

2.
00

2.
90

5.
10

1.
00

3.
80

6.
10

7.
40

7.
70

7.
60

2.
70

5.
70

6.
60

3.
40

ic
d-
er
p-
cs
-i
ns
-e
nc
-c
b

5.
90

1.
00

2.
00

2.
40

4.
30

5.
00

1.
30

3.
20

5.
20

7.
00

7.
80

7.
60

3.
20

6.
30

6.
30

3.
50

ic
d-
er
p-
cs
-i
ns
-a
bs
-c
b

6.
10

1.
00

2.
70

2.
10

4.
10

4.
90

1.
10

3.
40

5.
90

7.
10

7.
80

7.
60

2.
20

6.
30

6.
10

3.
60

ic
d-
er
p-
cs
-e
nc
-a
bs
-c
b

6.
20

1.
00

2.
60

2.
00

4.
00

5.
20

1.
20

3.
90

6.
00

7.
10

7.
80

7.
60

2.
20

5.
90

6.
00

3.
30

Empir Software Eng (2016) 21:2546–2600 2593

Ta
bl

e
18

A
ve

ra
ge

ra
nk

in
gs

fo
r

6-
ob

je
ct

iv
e

pr
ob

le
m

s
ob

ta
in

ed
fr

om
th

e
Fr

ie
dm

an
Te

st
(α

=
0.

05
)

(c
on

t’
d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
er
p-
cl
-i
ns
-e
nc
-a
bs

5.
50

1.
00

2.
00

2.
50

3.
30

5.
50

1.
10

4.
30

6.
15

7.
40

7.
75

7.
60

3.
60

3.
20

6.
60

4.
50

ic
d-
er
p-
cl
-i
ns
-e
nc
-c
b

5.
60

1.
00

1.
60

2.
50

4.
30

5.
40

1.
40

2.
90

5.
20

7.
40

7.
80

7.
60

3.
50

5.
20

6.
60

4.
00

ic
d-
er
p-
cl
-i
ns
-a
bs
-c
b

5.
60

1.
00

2.
00

2.
00

4.
00

5.
80

1.
00

3.
50

6.
00

7.
40

7.
80

7.
60

3.
00

4.
40

6.
60

4.
30

ic
d-
er
p-
cl
-e
nc
-a
bs
-c
b

5.
80

1.
10

1.
90

1.
90

3.
60

5.
80

1.
10

4.
40

6.
00

7.
40

7.
80

7.
60

3.
40

4.
00

6.
40

3.
80

ic
d-
er
p-
in
s-
en
c-
ab
s-
cb

6.
00

1.
00

2.
90

2.
00

3.
80

4.
90

1.
00

4.
10

6.
00

7.
20

7.
80

7.
60

2.
30

6.
10

6.
20

3.
10

ic
d-
gc
r-
cs
-c
l-
in
s-
en
c

5.
60

1.
40

1.
10

3.
60

4.
10

5.
10

2.
40

2.
30

4.
95

7.
40

7.
75

7.
60

3.
50

5.
00

6.
60

3.
60

ic
d-
gc
r-
cs
-c
l-
in
s-
ab
s

5.
60

1.
10

1.
80

2.
60

4.
20

5.
20

1.
20

3.
30

5.
65

7.
40

7.
75

7.
60

3.
20

4.
70

6.
60

4.
10

ic
d-
gc
r-
cs
-c
l-
in
s-
cb

5.
60

1.
00

1.
60

3.
50

4.
60

5.
10

1.
80

2.
80

5.
00

7.
30

7.
80

7.
70

3.
00

5.
30

6.
60

3.
30

ic
d-
gc
r-
cs
-c
l-
en
c-
ab
s

5.
60

1.
00

2.
10

2.
40

3.
30

5.
70

1.
00

4.
20

6.
10

7.
40

7.
70

7.
60

3.
60

3.
90

6.
60

3.
80

ic
d-
gc
r-
cs
-c
l-
en
c-
cb

5.
60

1.
00

1.
20

4.
20

4.
40

5.
00

2.
20

2.
30

4.
80

7.
30

7.
80

7.
60

3.
40

5.
00

6.
60

3.
60

ic
d-
gc
r-
cs
-c
l-
ab
s-
cb

5.
60

1.
00

1.
70

2.
50

4.
30

5.
40

1.
60

3.
40

5.
70

7.
40

7.
80

7.
60

2.
70

4.
80

6.
60

3.
90

ic
d-
gc
r-
cs
-i
ns
-e
nc
-a
bs

5.
60

1.
00

3.
20

2.
00

3.
40

4.
90

1.
00

3.
60

6.
10

7.
30

7.
70

7.
50

2.
40

6.
20

6.
60

3.
50

ic
d-
gc
r-
cs
-i
ns
-e
nc
-c
b

5.
60

1.
00

2.
30

2.
60

4.
40

4.
90

2.
10

2.
70

5.
10

6.
90

7.
80

7.
60

2.
10

6.
10

6.
60

4.
20

ic
d-
gc
r-
cs
-i
ns
-a
bs
-c
b

5.
70

1.
00

2.
60

2.
30

4.
10

4.
90

1.
10

3.
30

5.
90

7.
10

7.
80

7.
60

2.
30

6.
30

6.
50

3.
50

ic
d-
gc
r-
cs
-e
nc
-a
bs
-c
b

5.
80

1.
20

2.
50

1.
80

4.
00

4.
90

1.
80

3.
60

6.
00

7.
10

7.
80

7.
60

1.
70

6.
30

6.
40

3.
50

ic
d-
gc
r-
cl
-i
ns
-e
nc
-a
bs

5.
60

1.
10

2.
00

2.
20

3.
40

5.
20

1.
10

4.
90

6.
15

7.
40

7.
65

7.
60

3.
50

3.
20

6.
60

4.
40

ic
d-
gc
r-
cl
-i
ns
-e
nc
-c
b

5.
60

1.
00

1.
50

3.
20

4.
20

5.
40

1.
60

3.
00

5.
00

7.
40

7.
80

7.
60

3.
70

5.
00

6.
60

3.
40

ic
d-
gc
r-
cl
-i
ns
-a
bs
-c
b

5.
60

1.
00

1.
80

2.
20

4.
10

5.
60

1.
20

3.
30

5.
80

7.
40

7.
80

7.
60

3.
10

4.
60

6.
60

4.
30

ic
d-
gc
r-
cl
-e
nc
-a
bs
-c
b

5.
70

1.
00

1.
60

2.
20

3.
70

5.
70

1.
40

4.
40

6.
00

7.
40

7.
80

7.
60

3.
30

4.
00

6.
50

3.
70

ic
d-
gc
r-
in
s-
en
c-
ab
s-
cb

5.
70

1.
00

3.
10

2.
00

3.
90

4.
70

1.
40

3.
80

6.
00

7.
00

7.
80

7.
60

1.
60

6.
40

6.
50

3.
50

ic
d-
cs
-c
l-
in
s-
en
c-
ab
s

5.
60

1.
10

2.
00

2.
70

3.
60

5.
90

1.
00

3.
20

6.
05

7.
40

7.
75

7.
60

3.
40

4.
20

6.
60

3.
90

ic
d-
cs
-c
l-
in
s-
en
c-
cb

5.
60

1.
80

2.
20

4.
30

4.
60

3.
90

1.
90

1.
20

4.
80

7.
40

7.
80

7.
60

2.
50

5.
70

6.
60

4.
10

ic
d-
cs
-c
l-
in
s-
ab
s-
cb

5.
60

1.
20

2.
30

2.
60

4.
20

5.
50

1.
10

3.
20

5.
55

7.
30

7.
75

7.
70

2.
80

5.
50

6.
70

3.
00

2594 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
18

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

ic
d-
cs
-c
l-
en
c-
ab
s-
cb

5.
60

1.
00

1.
90

2.
70

4.
00

5.
60

1.
30

2.
60

5.
90

7.
40

7.
80

7.
60

2.
90

5.
00

6.
60

4.
10

ic
d-
cs
-i
ns
-e
nc
-a
bs
-c
b

5.
60

1.
00

3.
10

2.
00

4.
00

4.
70

1.
30

3.
20

5.
90

6.
90

7.
80

7.
40

1.
70

6.
70

6.
60

4.
10

ic
d-
cl
-i
ns
-e
nc
-a
bs
-c
b

5.
60

1.
40

2.
00

1.
80

3.
90

5.
90

1.
00

3.
40

5.
80

7.
40

7.
75

7.
60

3.
30

4.
60

6.
65

3.
90

er
p-
gc
r-
cs
-c
l-
in
s-
en
c

5.
50

1.
30

1.
10

4.
50

3.
20

5.
50

2.
20

2.
60

6.
15

7.
30

7.
65

7.
60

3.
60

4.
90

6.
60

2.
30

er
p-
gc
r-
cs
-c
l-
in
s-
ab
s

5.
50

1.
00

1.
30

4.
80

3.
70

3.
80

1.
90

3.
60

6.
00

7.
30

7.
80

7.
60

3.
20

3.
90

6.
60

4.
00

er
p-
gc
r-
cs
-c
l-
in
s-
cb

5.
50

1.
60

1.
60

4.
00

4.
20

5.
10

1.
70

2.
80

5.
80

7.
35

7.
80

7.
65

2.
80

5.
50

6.
60

2.
00

er
p-
gc
r-
cs
-c
l-
en
c-
ab
s

5.
30

1.
00

1.
00

3.
30

2.
60

5.
90

3.
60

3.
70

6.
25

7.
10

7.
55

7.
50

3.
20

4.
20

6.
50

3.
30

er
p-
gc
r-
cs
-c
l-
en
c-
cb

5.
60

1.
30

1.
00

2.
40

3.
80

5.
10

3.
00

3.
40

5.
80

7.
40

7.
80

7.
60

2.
50

5.
00

6.
50

2.
40

Empir Software Eng (2016) 21:2546–2600 2595

Ta
bl

e
19

A
ve

ra
ge

ra
nk

in
gs

fo
r

6-
,8

-
an

d
9-

ob
je

ct
iv

e
pr

ob
le

m
s

ob
ta

in
ed

fr
om

th
e

Fr
ie

dm
an

Te
st

(α
=

0.
05

)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

er
p-
gc
r-
cs
-c
l-
ab
s-
cb

5.
50

1.
30

1.
30

2.
70

4.
10

5.
10

2.
80

2.
20

5.
50

7.
40

7.
80

7.
60

2.
40

5.
50

6.
60

4.
20

er
p-
gc
r-
cs
-i
ns
-e
nc
-a
bs

5.
70

1.
00

2.
60

2.
10

2.
80

5.
10

1.
00

3.
70

6.
05

7.
40

7.
65

7.
60

3.
70

5.
60

6.
50

3.
50

er
p-
gc
r-
cs
-i
ns
-e
nc
-c
b

6.
10

1.
10

1.
90

2.
80

3.
30

5.
10

1.
50

3.
40

5.
50

7.
20

7.
80

7.
60

3.
80

5.
80

6.
10

3.
00

er
p-
gc
r-
cs
-i
ns
-a
bs
-c
b

5.
80

1.
00

2.
00

2.
30

3.
50

5.
10

1.
40

3.
20

5.
60

7.
30

7.
80

7.
60

3.
50

5.
80

6.
40

3.
70

er
p-
gc
r-
cs
-e
nc
-a
bs
-c
b

5.
70

1.
10

1.
50

2.
20

3.
00

5.
20

2.
70

3.
20

5.
90

7.
10

7.
80

7.
60

2.
90

5.
90

6.
50

3.
70

er
p-
gc
r-
cl
-i
ns
-e
nc
-a
bs

5.
10

1.
00

2.
00

3.
30

3.
20

5.
10

1.
00

5.
10

6.
70

6.
30

7.
60

7.
60

3.
80

4.
00

6.
60

3.
60

er
p-
gc
r-
cl
-i
ns
-e
nc
-c
b

5.
70

1.
10

1.
60

3.
60

3.
80

5.
40

1.
50

3.
20

5.
80

7.
40

7.
80

7.
60

3.
30

5.
30

6.
50

2.
40

er
p-
gc
r-
cl
-i
ns
-a
bs
-c
b

5.
70

1.
10

1.
60

2.
60

4.
10

5.
50

1.
60

3.
30

5.
90

7.
30

7.
80

7.
60

2.
80

5.
40

6.
50

3.
20

er
p-
gc
r-
cl
-e
nc
-a
bs
-c
b

5.
50

1.
00

1.
30

2.
30

3.
50

5.
90

2.
20

3.
60

6.
10

7.
40

7.
80

7.
60

3.
00

4.
80

6.
60

3.
40

er
p-
gc
r-
in
s-
en
c-
ab
s-
cb

6.
10

1.
10

2.
30

1.
90

3.
60

5.
30

1.
10

4.
00

6.
00

7.
30

7.
80

7.
60

3.
00

5.
50

6.
10

3.
30

er
p-
cs
-c
l-
in
s-
en
c-
ab
s

5.
60

1.
00

2.
20

2.
30

2.
90

6.
00

1.
00

4.
40

6.
15

7.
40

7.
65

7.
60

3.
90

3.
90

6.
60

3.
40

er
p-
cs
-c
l-
in
s-
en
c-
cb

5.
90

1.
10

1.
60

3.
10

4.
10

5.
50

1.
40

3.
00

5.
20

7.
35

7.
80

7.
65

3.
70

5.
40

6.
30

2.
90

er
p-
cs
-c
l-
in
s-
ab
s-
cb

5.
70

1.
10

1.
80

2.
40

4.
10

5.
50

1.
70

3.
20

5.
80

7.
40

7.
80

7.
60

2.
60

5.
00

6.
50

3.
80

er
p-
cs
-c
l-
en
c-
ab
s-
cb

5.
60

1.
10

1.
30

2.
00

3.
00

5.
90

2.
50

3.
70

6.
00

7.
40

7.
80

7.
60

3.
20

4.
90

6.
60

3.
40

er
p-
cs
-i
ns
-e
nc
-a
bs
-c
b

6.
20

1.
00

2.
80

2.
00

3.
30

5.
10

1.
10

3.
90

6.
00

7.
10

7.
80

7.
60

2.
80

6.
20

6.
00

3.
10

er
p-
cl
-i
ns
-e
nc
-a
bs
-c
b

5.
70

1.
10

2.
10

1.
90

3.
10

6.
00

1.
00

4.
30

6.
00

7.
40

7.
80

7.
60

3.
80

4.
30

6.
50

3.
40

gc
r-
cs
-c
l-
in
s-
en
c-
ab
s

5.
60

1.
00

2.
10

2.
30

2.
80

5.
80

1.
10

4.
30

6.
15

7.
40

7.
65

7.
60

4.
00

3.
80

6.
60

3.
80

gc
r-
cs
-c
l-
in
s-
en
c-
cb

5.
80

1.
10

1.
60

3.
20

3.
90

5.
70

1.
60

2.
70

5.
10

7.
30

7.
80

7.
60

3.
80

5.
30

6.
40

3.
10

gc
r-
cs
-c
l-
in
s-
ab
s-
cb

5.
90

1.
00

2.
60

2.
00

3.
60

4.
90

1.
20

3.
80

6.
00

7.
20

7.
80

7.
60

2.
60

6.
20

6.
30

3.
30

gc
r-
cs
-c
l-
en
c-
ab
s-
cb

5.
70

1.
10

1.
30

2.
30

3.
20

5.
80

2.
40

3.
20

6.
00

7.
40

7.
80

7.
60

3.
10

4.
60

6.
50

4.
00

gc
r-
cs
-i
ns
-e
nc
-a
bs
-c
b

5.
90

1.
00

2.
60

2.
00

3.
60

4.
90

1.
20

3.
80

6.
00

7.
20

7.
80

7.
60

2.
60

6.
20

6.
30

3.
30

gc
r-
cl
-i
ns
-e
nc
-a
bs
-c
b

5.
70

1.
00

1.
80

2.
00

3.
30

6.
00

1.
20

4.
30

6.
00

7.
40

7.
80

7.
60

3.
70

4.
30

6.
50

3.
40

2596 Empir Software Eng (2016) 21:2546–2600

Ta
bl

e
19

(c
on

tin
ue

d)

O
bj

ec
tiv

es
SP

E
A

2
N

SG
A

-I
I

M
O

E
A

/D
ε
-M

O
E

A
G

rE
A

IB
E

A
H

yp
E

N
SG

A
-I

II

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

H
V

S
H

V
S

cs
-c
l-
in
s-
en
c-
ab
s-
cb

5.
70

1.
30

2.
10

2.
40

3.
50

5.
60

1.
20

3.
10

5.
80

7.
40

7.
80

7.
60

3.
40

5.
30

6.
50

3.
30

ic
d-
er
p-
gc
r-
cs
-c
l-
in
s-
en
c-
ab
s

5.
80

1.
00

3.
20

2.
20

2.
80

5.
80

1.
00

4.
90

5.
80

7.
30

7.
80

7.
70

3.
00

3.
90

6.
60

3.
20

ic
d-
er
p-
gc
r-
cs
-c
s-
in
s-
en
c-
cb

6.
00

1.
00

1.
90

2.
80

4.
20

5.
60

1.
30

3.
50

5.
65

7.
40

7.
75

7.
60

2.
90

5.
20

6.
30

2.
90

ic
d-
er
p-
gc
r-
cs
-c
l-
in
s-
ab
s-
cb

6.
30

1.
30

2.
40

1.
90

3.
80

5.
70

1.
10

3.
80

5.
75

7.
10

7.
85

7.
70

2.
70

5.
20

6.
10

3.
30

ic
d-
er
p-
gc
r-
cs
-c
l-
en
c-
ab
s-
cb

6.
50

1.
80

2.
20

1.
80

3.
90

5.
70

1.
10

3.
90

5.
95

7.
40

7.
75

7.
60

2.
80

4.
80

5.
80

3.
00

ic
d-
er
p-
gc
r-
cs
-i
ns
-e
nc
-a
bs
-c
b

6.
60

2.
00

3.
40

1.
60

3.
50

5.
10

1.
10

3.
80

5.
90

7.
00

7.
70

7.
50

2.
00

6.
10

5.
80

2.
90

ic
d-
er
p-
gc
r-
cl
-i
ns
-e
nc
-a
bs
-c
b

6.
20

1.
00

2.
40

2.
00

3.
60

5.
70

1.
00

4.
30

5.
75

7.
30

7.
85

7.
70

3.
00

4.
80

6.
20

3.
20

ic
d-
er
p-
cs
-c
l-
in
s-
en
c-
ab
s-
cb

6.
60

1.
10

2.
80

1.
90

3.
20

6.
00

1.
00

4.
20

5.
95

7.
40

7.
75

7.
60

3.
00

4.
60

5.
70

3.
20

ic
d-
gc
r-
cs
-c
l-
in
s-
en
c-
ab
s-
cb

6.
30

1.
30

2.
60

1.
90

3.
40

5.
80

1.
10

4.
10

6.
00

7.
40

7.
80

7.
60

2.
90

4.
50

5.
90

3.
40

er
p-
gc
r-
cs
-c
l-
in
s-
en
c-
ab
s-
cb

6.
70

1.
80

3.
00

1.
60

2.
90

5.
80

1.
00

4.
00

5.
75

7.
20

7.
85

7.
70

3.
10

4.
80

5.
70

3.
10

ic
d-
er
p-
gc
r-
cs
-c
l-
in
s-
en
c-
ab
s-
cb

6.
70

1.
70

2.
90

1.
80

3.
30

5.
30

1.
00

4.
60

5.
50

6.
60

7.
90

7.
80

2.
80

5.
00

5.
90

3.
20

Empir Software Eng (2016) 21:2546–2600 2597

References

Adra S, Fleming P (2011) Diversity management in evolutionary many-objective optimization. IEEE Trans
Evol Comput 15(2):183–195

Aleti A, Buhnova B, Grunske L, Koziolek A, Meedeniya I (2013) Software architecture optimization
methods: a systematic literature review. IEEE Trans Softw Eng 39(5):658–683

Arcuri A, Briand L (2011) A practical guide for using statistical tests to assess randomized algorithms
in software engineering. In: Proceedings of the 33rd international conference on software engineering
(ICSE’11), pp 1–10. IEEE

Assunção WKG, Colanzi TE, Vergilio SR, Pozo A (2014) A multi-objective optimization approach for the
integration and test order problem. Inf Sci 267:119–139

Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol
Comput 19(1):45–76

Bansiya J, Davis CG (2002) A hierarchical model for object-oriented design quality assessment. IEEE Trans
Softw Eng 28(1):4–17

Bosch J, Molin P (1999) Software architecture design: evaluation and transformation. In: Proceedings of
IEEE conference and workshop on engineering of computer-based systems (ECBS’99), pp 4–10

Boussaı̈d I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117
Bouwers E, Correia J, van Deursen A, Visser J (2011) Quantifying the analyzability of software architectures.

In: Proceedings of the 9th working IEEE/IFIP conference on software architecture (WICSA’11), pp 83–
92

Bowman M, Briand LC, Labiche Y (2010) Solving the class responsibility assignment problem
in object-oriented analysis with multi-objective genetic algorithms. IEEE Trans Softw Eng 36
(6):817–837

Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-
objective problems, 2nd edn. Springer

Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York
Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based

nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans Evol Comput
18(4):577–601

Deb K, Mohan M, Mishra S (2003) Towards a quick computation of well-spread pareto-optimal solutions.
In: Evolutionary multi-criterion optimization of LNCS, vol 2632. Springer, pp 222–236

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE Trans Evol Comput 6(2):182–197

del Sagrado J, del Águila IM, Orellana FJ (2015) Multi-objective ant colony optimization for requirements
selection. Empir Softw Eng 20(3):577–610

Derrac J, Garcı́a S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput
1(1):3–18

Dobrica L, Niemela E (2002) A survey on software architecture analysis methods. IEEE Trans Softw Eng
28(7):638–653

Ducasse S, Pollet D (2009) Software architecture reconstruction: a process-oriented taxonomy. IEEE Trans
Softw Eng 35(4):573–591

Durillo JJ, Zhang Y, Alba E, Harman M, Nebro AJ (2011) A study of the bi-objective next release problem.
Empir Softw Eng 16(1):29–60

Garlan D (2000) Software architecture: a roadmap. In: Proceedings of the 22th international conference of
software engineering (ICSE’00), pp 91–101

Grunske L (2006) Identifying ”Good” architectural design alternatives with multi-objective optimization
strategies. In: Proceedings of the 28th international conference on software engineering (ICSE’06),
pp 849–852

Gupta P, Verma S, Mehlawat M (2012) Optimization model of COTS selection based on cohesion and cou-
pling for modular software systems under multiple applications environment. In: Computational science
and its applications (ICCSA) of LNCS, vol 7335. Springer, pp 87–102

Hadka D, Reed P (2013) Borg: an auto-adaptive many-objective evolutionary computing framework. Evol
Comput 21(2):231–259

Harman M, Mansouri SA, Zhang Y (2012) Search-based software engineering: trends, techniques and
applications. ACM Comput Surv 45(1):11:1–61

He Z, Yen G, Zhang J (2014) Fuzzy-based Pareto optimality for many-objective evolutionary algorithms.
IEEE Trans Evol Comput 18(2):269–285

2598 Empir Software Eng (2016) 21:2546–2600

ISO (2011a) ISO/IEC 25010:2011(E). Software product Quality Requirements and Evaluation (SQuaRE) -
System and software quality models. ISO

ISO (2011b) ISO/IEC/IEEE FDIS 42010/D9. Systems and software engineering - Architecture description
Kalboussi S, Bechikh S, Kessentini M, Ben Said L (2013) Preference-based many-objective evolutionary

testing generates harder test cases for autonomous agents. In: Proceedings of 5th symposium on search
based software engineering (SSBSE’13), pp 245–250

Khare V, Yao X, Deb K (2003) Performance scaling of multi-objective evolutionary algorithms. In: Evo-
lutionary multi-criterion optimization of lecture notes in computer science, vol 2632. Springer, Berlin,
pp 376–390

Koziolek A, Ardagna D, Mirandola R (2013) Hybrid multi-attribute QoS optimization in component based
software systems. J Syst Softw 86(10):2542–2558

Krogmann K (2010) Reconstruction of software component architectures and behaviour models using static
and dynamic analysis. KIT Scientific Publishing

Li R, Etemaadi R, Emmerich MTM, Chaudron MRV (2011) An evolutionary multiobjective optimization
approach to component-based software architecture design. In: Proceedings of the IEEE congress on
evolutionary computation (CEC’11), pp 432–439

Luna F, González-Álvarez DL, Chicano F, Vega-Rodrı́guez MA (2014) The software project schedul-
ing problem: A scalability analysis of multi-objective metaheuristics. Appl Soft Comput 15:
136–148

Lutz R (2001) Evolving good hierarchical decompositions of complex systems. J Syst Archit 47(7):613–634
Martin R (1994) OO design quality metrics - An analysis of dependencies. In: Object-Oriented programming

systems, languages and applications (OOPSLA), pp 1–8
Mkaouer MW, Kessentini M, Bechikh S, Deb K, Ó Cinnéide M (2014) High dimensional search-based

software engineering: finding tradeoffs among 15 objectives for automating software refactoring
using NSGA-III. In: Proceedings of the 16th annual genetic and evolutionary computation conference
(GECCO’14), pp 1263–1270

Narasimhan VL, Hendradjaya B (2007) Some theoretical considerations for a suite of metrics for the
integration of software components. Inf Sci 177(3):844–864

OMG (2010) Unified modeling language 2.4 superstructure specification. OMG. formal/2010-11-14, http://
www.omg.org/spec/UML/2.4/

Ouni A, Kessentini M, Sahraoui H, Hamdi MS (2013) The use of development history in software refac-
toring using a multi-objective evolutionary algorithm. In: Proceedings of the 15th annual genetic and
evolutionary computation conference (GECCO’13), pp 1461–1468

Praditwong K, Harman M, Yao X (2011) Software module clustering as a multi-objective search problem.
IEEE Trans Softw Eng 37(2):264–282

Praditwong K, Yao X (2007) How well do multi-objective evolutionary algorithms scale to large problems.
In: Proceedings of the IEEE congress on evolutionary computation (CEC’07), pp 3959–3966

Purshouse R, Fleming P (2007) On the evolutionary optimization of many conflicting objectives. IEEE Trans
Evol Comput 11(6):770–784

Räihä O (2010) A survey on search-based software design. Comput Sci Rev 4(4):203–249
Räihä O, Koskimies K, Makinen E (2011) Generating software architecture spectrum with multi-objective

genetic algorithms. In: Proceedings of the 3th world congress on nature and biologically inspired
computing (NaBIC’11), pp 29–36

Ramı́rez A, Romero JR, Ventura S (2014) On the performance of multiple objective evolutionary algo-
rithms for software architecture discovery. In: Proceedings of the 16th annual genetic and evolutionary
computation conference (GECCO’14), pp 1287–1294

Ramı́rez A, Romero JR, Ventura S (2015) An approach for the evolutionary discovery of software
architectures. Inf Sci 305:234–255

Romano J, Kromrey JD, Coraggio J, Showronek J (2006) Appropriate statistics for ordinal level data: should
we really be using t-test and cohen’s d for evaluating group differences on the nsse and other surveys?
In: Annual meeting of the Florida association of institutional research

Sant’Anna C, Figueiredo E, Garcia A, Lucena CJ (2007) On the modularity of software architectures:
a concern-driven measurement framework. In: Software architecture of LNCS, vol 4758. Springer,
pp 207–224

Sayyad A, Ammar H (2013) Pareto-optimal search-based software engineering (POSBSE): a literature
survey. In: 2nd inter. workshop on realizing artificial intelligence synergies in software engineering
(RAISE), pp 21–27

Sayyad AS, Menzies T, Ammar H (2013) On the value of user preferences in search-based software engi-
neering: a case study in software product lines. In: Proceedings of the 35th international conference on
software engineering (ICSE’13), pp 492–501

http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/

Empir Software Eng (2016) 21:2546–2600 2599

Schutze O, Lara A, Coello Coello CA (2011) On the influence of the number of objectives on the hardness
of a multiobjective optimization problem. IEEE Trans Evol Comput 15(4):444–455

Szyperski C (2002) Component software: beyond object-oriented programming, 2nd edn. Addison-Wesley,
Boston

Ventura S, Romero C, Zafra A, Delgado JA, Hervás C (2008) JCLEC: a Java framework for evolutionary
computation. Soft Comput 12(4):381–392

von Lücken C, Barán B, Brizuela C (2014) A survey on multi-objective evolutionary algorithms for many-
objective problems. Comput Optim Appl 58(3):707–756

Wagner T, Beume N, Naujoks B (2007) Pareto-, aggregation-, and indicator-based methods in many-objective
optimization. In: Evolutionary multi-criterion optimization of LNCS, vol 4403. Springer, pp 742–756

Wang H, Jiao L, Yao X (2014) An improved two-archive algorithm for many-objective optimization. IEEE
Trans Evol Comput. To appear

Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many-objective optimization.
IEEE Trans Evol Comput 17(5):721–736

Yao X (2013) Some recent work on multi-objective approaches to search-based software engineering. In:
Proceedings of the 5th symposium on search based software engineering (SSBSE), pp 4–15

Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE
Trans Evol Comput 11(6):712–731

Zhang Y, Harman M, Lim SL (2013) Empirical evaluation of search based requirements interaction
management. Inf Softw Technol 55(1):126–152

Zhou A, Qu B-Y, Li H, Zhao S-Z, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms:
a survey of the state of the art. Swarm Evol Comput 1(1):32–49

Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Parallel problem solving
from nature - PPSN VIII of LNCS, vol 3242. Springer, pp 832–842

Zitzler E, Laumanns M, Bleuler S (2004) A tutorial on evolutionary multiobjective optimization. In: Meta-
heuristics for multiobjective optimisation of lecture notes in economics and mathematical systems,
vol 535. Springer, Berlin, pp 3–37

Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm.
In: Proceedings of the conference on evolutionary methods for design, optimisation and control with
applications to industrial problems, pp 95–100

Aurora Ramı́rez was born in Córdoba, Spain, in 1989. She received a M.Sc. degree in Computer Science
from the University of Córdoba, Spain, in 2012. Since 2012, she has been with the Knowledge Discovery
and Intelligent Systems Research Laboratory of the University of Córdoba, where she is currently working
towards obtaining a Ph.D., and performing research tasks. Her research interests include the application of
evolutionary computation on search-based software engineering and data mining.

2600 Empir Software Eng (2016) 21:2546–2600

José Raúl Romero received his Ph.D. in Computer Science from the University of Málaga, Spain, in 2007.
He has worked as an IT consultant for important business consulting and technology companies for several
years. He is currently an Associate Professor at the Department of Computer Science of the University of
Córdoba, Spain. His current research interests include the industrial use of intelligent systems, search-based
software engineering, the use of bio-inspired algorithms for data mining, and model-driven software devel-
opment and its applications. He has published more than 80 papers in journals and scientific conferences. Dr.
Romero is a member of the ACM, and the Spanish Technical Normalization Committee AEN/CTN 71/SC7
of AENOR. He can also be reached at http://www.jrromero.net.

Sebastián Ventura is currently an Associate Professor in the Department of Computer Science and Numeri-
cal Analysis at the University of Cordoba, where he heads the Knowledge Discovery and Intelligent Systems
Research Laboratory. He received his B.Sc. and Ph.D. degrees in Sciences from the University of Cordoba,
Spain, in 1989 and 1996, respectively. He has published more than 150 papers in journals and scientific con-
ferences, and he has edited three books and several special issues in international journals. He has also been
engaged in 12 research projects (being the coordinator of four of them) supported by the Spanish and Andalu-
sian governments and the European Union. His main research interests are in the fields of machine learning,
data mining, computational intelligence and their applications. Dr. Ventura is a senior member of the IEEE
Computer, the IEEE Computational Intelligence and the IEEE Systems, Man and Cybernetics Societies, as
well as the Association of Computing Machinery (ACM).

http://www.jrromero.net

	A comparative study of many-objective evolutionary algorithms for the discovery of software architectures
	Abstract
	Introduction
	Background
	Multi- and Many-objective Evolutionary Optimisation
	Selected Algorithms
	Multiple Objective Approaches in SBSE

	Software Architecture Discovery
	Conceptual Framework
	The Search Problem

	Optimisation Approach for the Discovery Process
	Encoding and Initialisation
	Evaluation Objectives
	Intra-modular Coupling Density (icd)
	External Relations Penalty (erp)
	Instability (ins)
	Encapsulation (enc)
	Critical Size (cs)
	Critical Link (cl)
	Groups/Components Ratio (gcr)
	Abstractness (abs)
	Component Balance (cb)

	Mutation Operator

	Experimental Framework
	Methodology
	Parameter Set-up
	Problem Instances

	Analysis of Results
	Analysis of 2- to 4-objective Problems
	Analysis of 6- to 9-objective Problems

	Discussion of Results
	On Applicability in Tool Support
	On the Influence of Metrics
	On the Selection of the Evolutionary Algorithm

	Threats to Validity
	Concluding Remarks
	Acknowledgments
	Appendix A
	References

