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Abstract Software code review, i.e., the practice of having other team members critique
changes to a software system, is a well-established best practice in both open source and
proprietary software domains. Prior work has shown that formal code inspections tend to
improve the quality of delivered software. However, the formal code inspection process
mandates strict review criteria (e.g., in-person meetings and reviewer checklists) to ensure a
base level of review quality, while the modern, lightweight code reviewing process does not.
Although recent work explores the modern code review process, little is known about the
relationship between modern code review practices and long-term software quality. Hence,
in this paper, we study the relationship between post-release defects (a popular proxy for
long-term software quality) and: (1) code review coverage, i.e., the proportion of changes
that have been code reviewed, (2) code review participation, i.e., the degree of reviewer
involvement in the code review process, and (3) code reviewer expertise, i.e., the level of
domain-specific expertise of the code reviewers. Through a case study of the Qt, VTK,
and ITK projects, we find that code review coverage, participation, and expertise share a
significant link with software quality. Hence, our results empirically confirm the intuition
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that poorly-reviewed code has a negative impact on software quality in large systems using
modern reviewing tools.

Keywords Code review · Software quality

1 Introduction

Software code reviews are a well-documented best practice for software projects. In his
seminal work, Fagan (1976) notes that formal design and code inspections with in-person
meetings reduced the number of errors that are detected during the testing phase in small
development teams. Rigby and Bird (2013) find that the modern code review processes that
are adopted through a variety of reviewing mediums (e.g., mailing lists or the Gerrit web
application1) tend to converge on a lightweight variant of the formal code inspections of
the past, where the focus has shifted from defect-hunting to collaborative problem-solving.
Nonetheless, Bacchelli and Bird (2013) find that one of the main motivations of modern
code review still is to improve the quality of a change to the software.

Prior work indicates that formal design and code inspections can be an effective means
of identifying defects so that they can be fixed early in the development cycle (Fagan 1976).
Tanaka et al. (1995) suggest that code inspections should be applied meticulously to each
code change. Kemerer and Paulk (2009) indicate that student submissions tend to improve
in quality when design and code inspections are introduced. However, there is little evidence
of the long-term impact that modern, lightweight code review processes (which lack the
rigid structure of code inspections) have on software quality in large systems.

In particular, to truly improve the quality of a set of proposed changes, reviewers must
carefully consider the potential implications of the changes and engage in a discussion with
the author. Under the formal code inspection model, time is allocated explicitly for the
preparation and execution of in-person meetings, where the reviewers and the author discuss
the proposed code changes (Fagan 1976). Furthermore, reviewers are encouraged to follow
a checklist to ensure that a base level of review quality is achieved. However, in the modern
reviewing process, such strict reviewing criteria are not mandated (Rigby and Storey 2011),
and hence, reviews may not foster a sufficient amount of discussion between author and
reviewers. Indeed, Microsoft developers complain that reviews often focus on minor logic
errors rather than discussing deeper design issues (Bacchelli and Bird 2013).

We hypothesize that a modern code review process that neglects to review a large propor-
tion of code changes, that suffers from low reviewer participation, or that does not involve
subject matter experts will likely have a negative impact on software quality. In other words:

If a large proportion of the code changes that are integrated during development are
either: (1) omitted from the code review process (low review coverage), (2) have lax
code review involvement (low review participation), or (3) do not include a subject
matter expert (low expertise), then defect-prone code will permeate through to the
released software product.

Tools that support the modern code reviewing process, such as Gerrit, explicitly link
changes to a software system recorded in a Version Control System (VCS) to their respec-
tive code review. In this paper, we leverage these links to calculate code review coverage,

1https://code.google.com/p/gerrit/

https://code.google.com/p/gerrit/
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participation, and expertise metrics, and add them to statistical regression models that are
built to explain the incidence of post-release defects (i.e., defects in official releases of a
software product), which is a popular proxy for software quality (Bird et al. 2011; Has-
san 2009; Kamei et al. 2013; Mockus and Weiss 2000; Nagappan and Ball 2007). Rather
than using these models for defect prediction, we analyze the impact that code review
metrics have on the models while controlling for a variety of metrics that are known
to be good explainers of software quality. Through a case study of four releases of the
large Qt, VTK, and ITK open source systems, we address the following three research
questions:

(RQ1) Is there a relationship between code review coverage and post-release defects?
We find that review coverage is negatively associated with the incidence of post-
release defects in three of the four studied releases. However, it only provides
a significant amount of explanatory power to two of the four studied releases,
suggesting that review coverage alone does not guarantee a low incidence rate of
post-release defects.

(RQ2) Is there a relationship between code review participation and post-release
defects?
We find that the incidence of post-release defects is also associated with devel-
oper participation in code review. Review discussion metrics play a statistically
significant role in the explanatory power of all of the studied systems.

(RQ3) Is there a relationship between code reviewer expertise and post-release
defects?
Our models indicate that components with many changes that do not involve a
subject matter expert in the authoring or reviewing process tend to be prone to
post-release defects.

This paper is an extended version of our earlier work (McIntosh et al. 2014). We extend
the prior work to:

– Use contemporary regression modelling techniques (Harrell 2002) (Section 3) that:

1. Relax the requirement of a linear relationship between post-release defect counts
and explanatory variables, which enables a more accurate fit of the data.

2. Filter away redundant variables, i.e., explanatory variables that may not be highly
correlated with other explanatory variables, but do not provide a signal that is
distinct with respect to the other explanatory variables.

3. Allow us to analyze the stability of our models.

– Study the impact of reviewer expertise on software quality (RQ3).
– Include two additional review participation metrics (RQ2) and one additional review

expertise metric (RQ3) that are not threshold-dependent, i.e., discussion speed (normal-
ized by churn), discussion length (normalized by churn), and voter expertise.

1.1 Paper Organization

The remainder of the paper is organized as follows.
Section 2 describes the Gerrit-driven code review process that is used by the studied

systems. Section 3 describes the design of our case study, while Section 4 presents the
results of our three research questions. Section 5 discloses the threats to the validity of our
study. Section 6 surveys related work. Finally, Section 7 draws conclusions.
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2 Gerrit Code Review

Gerrit is a modern code review tool that facilitates a traceable code review process for git-
based software projects (Bettenburg et al. 2014). It tightly integrates with test automation
and code integration tools. Authors upload patches, i.e., collections of proposed changes to a
software system, to a Gerrit server. The set of reviewers are either: (1) invited by the author,
(2) appointed automatically based on their expertise with the modified system components,
or (3) self-selected by broadcasting a review request to a mailing list. Figure 1 shows an
example code review in Gerrit that was uploaded on December 1st, 2012. Below, we use
this figure to illustrate the role that reviewers and verifiers play in a code review.

2.1 Reviewers

Reviewers are responsible for critiquing the changes proposed within the patch by leaving
comments for the author to address or discuss. The author can reply to comments or address
them by producing a new revision of the patch for the reviewers to consider.

Reviewers can also give the changes proposed by a patch revision a score, which indi-
cates: (1) agreement or disagreement with the proposed changes (positive or negative value),
and (2) their level of confidence (1 or 2). The second column of the bottom-most table in
Fig. 1 shows that the change has been reviewed and the reviewer is in agreement with it
(+). The text in the fourth column (“Looks good to me, approved”) is displayed when the
reviewer has a confidence level of two.

2.2 Verifiers

In addition to reviewers, verifiers are also invited to evaluate patches in the Gerrit system.
Verifiers execute tests to ensure that patches: (1) truly fix the defect or add the feature
that the authors claim to, and (2) do not cause regression of system functionality. Similar
to reviewers, verifiers can provide comments to describe verification issues that they have
encountered during testing. Furthermore, verifiers can also provide a score of 1 to indicate
successful verification, and -1 to indicate failure.

While team personnel can act as verifiers, so too can Continuous Integration (CI) tools
that automatically build and test patches. For example, CI build and testing jobs can be auto-
matically launched each time a new review request or patch revision is uploaded to Gerrit.

Fig. 1 An example Gerrit code review
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The reports generated by these CI jobs can be automatically appended as a verification
report to the code review discussion. The third column of the bottom-most table in Fig. 1
shows that the “Qt Sanity Bot” has successfully verified the change.

2.3 Automated Integration

Gerrit allows teams to codify code review and verification criteria that must be satisfied
before changes are integrated into upstream VCS repositories. For example, a team pol-
icy may specify that at least one reviewer and one verifier should provide positive scores
prior to integration. Once the criteria are satisfied, patches are automatically integrated into
upstream repositories. The “Merged” status shown in the upper-most table of Fig. 1 indicates
that the proposed changes have been integrated.

3 Case Study Design

In this section, we present our rationale for selecting our research questions, describe the
studied systems, and present our data extraction and analysis approaches.

3.1 Research Questions

Broadly speaking, the main goal of this paper is to study whether lax involvement that may
creep into the modern, lightweight code review process has a negative impact on software
quality. We focus on three aspects of modern code review practices that we believe may
have an impact on software quality (i.e., coverage, participation, and expertise). We leave
the exploration of other aspects of code review practices to future work.

In order to evaluate our conjecture about lax code review practices, we formulate the
following three research questions:

(RQ1) Is there a relationship between code review coverage and post-release defects?
Tanaka et al. (1995) suggest that a software team should meticulously review each
change to the source code to ensure that quality standards are met. In more recent
work, Kemerer and Paulk (2009) find that design and code inspections have a
measurable impact on the defect density of student submissions at the Software
Engineering Institute (SEI). While these findings suggest that there is a rela-
tionship between code review coverage and software quality, the scale of such
a relationship has remained largely unexplored in large software systems using
modern code reviewing tools.

(RQ2) Is there a relationship between code review participation and post-release
defects?
To truly have an impact on software quality, developers must invest in the code
reviewing process. In other words, if developers are simply approving code
changes without discussing them, the code review process likely provides little
value. Hence, we set out to study the relationship between developer participation
in code reviews and software quality.

(RQ3) Is there a relationship between code reviewer expertise and post-release
defects?
Changes produced by novice developers are more likely to introduce defects than
those produced by subject matter experts (Mockus and Weiss 2000). However, a
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Table 1 Overview of the studied systems. Qt, VTK, and ITK satisfy our criteria for analysis, while Android
and LibreOffice do not

Qt VTK ITK Android LibreOffice

Version 5.0 5.1 5.10 4.3 4.0.4 4.0

Tag name v5.0.0 v5.1.0 v5.10.0 v4.3.0 4.0.4 4.0.0

Size (LOC) 5,560,317 5,187,788 1,921,850 1,123,614 18,247,796 4,789,039

Components w/ defects 254 187 15 24 − −
Components total 1,339 1,337 170 218 − −
Defective rate 19 % 14 % 9 % 11 % − −
Commits w/ reviews 10,003 6,795 554 344 1,727 1,679

Commits total 10,163 7,106 1,431 352 80,398 11,988

Review rate 98 % 96 % 39 % 98 % 2 % 14 %

# Authors 435 422 55 41 − −
# Reviewers 358 348 45 37 − −

change produced by a novice can be improved by soliciting feedback from subject
matter experts during the code review process. Hence, we set out to study whether
changes that are developed by personnel who lack subject matter expertise have an
impact on software quality if they are not reviewed by a subject matter expert.

3.2 Studied Systems

In order to address our research questions, we perform a case study on large, successful,
and rapidly-evolving open source systems with globally distributed development teams. In
selecting the subject systems, we identified two important criteria that needed to be satisfied:

Criterion 1: Reviewing Policy – We want to study systems that have made a serious
investment in code reviewing. Hence, we only study systems where a large number of
the integrated patches have been reviewed.

Criterion 2: Traceability – The code review process for a subject system must be trace-
able, i.e., it should be reasonably straightforward to connect a large proportion of the
integrated patches to the associated code reviews. Without a traceable code review pro-
cess, review coverage and participation metrics cannot be calculated, and hence, we
cannot perform our analysis.

To satisfy the traceability criterion, we focus on software systems that use the Gerrit code
review tool. We began our study with five subject systems, however after preprocessing the
data, we found that only 2 % of Android and 14 % of LibreOffice changes could be linked
to reviews, so both systems had to be removed from our analysis (Criterion 1).

Table 1 shows that the Qt, VTK, and ITK systems satisfied our criteria for analysis. Qt is
a cross-platform application framework whose development is supported by the Digia cor-
poration, however welcomes contributions from the community-at-large.2 The Visualization
ToolKit (VTK) is used to generate 3D computer graphics and process images.3 The Insight

2http://qt.digia.com/
3http://vtk.org/

http://qt.digia.com/
http://vtk.org/
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Fig. 2 Overview of our data extraction approach

segmentation and registration ToolKit (ITK) provides a suite of tools for in-depth image
analysis.4

3.3 Data Extraction

In order to evaluate the impact that code review coverage, participation, and expertise
have on software quality, we extract code review data from the Gerrit review databases
of the studied systems, and link the review data to the integrated patches recorded in the
corresponding VCSs.

Figure 2 shows that our data extraction approach is broken down into three steps: (1)
extract review data from the Gerrit review database, (2) extract Gerrit change IDs from the
VCS commits, and (3) calculate version control metrics. We briefly describe each step of
our approach below.

3.3.1 Extract Reviews

Our analysis is based on the Qt code reviews dataset collected by Hamasaki et al. (2013).
The dataset describes each review, the involved personnel, and the details of the review
discussions. We expand the dataset to include the reviews from the VTK and ITK systems,
as well as those reviews that occurred during the more recent development cycle of Qt 5.1.
To do so, we use a modified version of the GerritMiner scripts provided by Mukadam et al.
(2013).

3.3.2 Extract Change ID

Each review in a Gerrit database is uniquely identified by an alpha-numeric hash code called
a change ID. When a review has satisfied project-specific criteria, it is automatically inte-
grated into the upstream VCS (cf. Section 2). For traceability purposes, the commit message
of the automatically integrated patch contains the change ID. We extract the change ID from
commit messages in order to automatically connect patches in the VCS with the associ-
ated code review process data. To facilitate future work, we have made the code and review
databases available online.5

4http://itk.org/
5http://sailhome.cs.queensu.ca/replication/reviewing quality ext/

http://itk.org/
http://sailhome.cs.queensu.ca/replication/reviewing_quality_ext/
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3.3.3 Calculate Version Control Metrics

Prior work has found that several types of metrics have a relationship with defect-proneness.
Since we aim to investigate the impact that code reviewing has on defect-proneness, we
control for the three most common families of metrics that are known to have a relationship
with defect-proneness (Shihab et al. 2011; Hassan 2009; Bird et al. 2011). Table 2 provides
a brief description and the motivating rationale for each of the studied baseline metrics.
Similar to prior work (Nagappan et al. 2006; Bird et al. 2011), we measure each metric at
the component (i.e., directory) level.

We focus our analysis on the development activity on the release branches of each
studied system, i.e., activity that: (1) occurred on the main development branch before the
release branch was cut, (2) occurred on the release branch itself, and (3) originated
on other branches, but has been merged into the release branch. Prior to a release, the
integration of changes on a release branch is more strictly controlled than a typical
development branch to ensure that only the appropriately-triaged changes will appear in the
upcoming release. Moreover, changes that land on a release branch after a release are also
strictly controlled to ensure that only high-priority fixes land in maintenance releases. In
other words, the changes that we study correspond to the development and maintenance of
official software releases.

To determine whether a change fixes a defect, we search the VCS commit messages for
co-occurrences of defect identifiers with keywords like “bug”, “fix”, “defect”, or “patch”. A
similar approach was used to determine defect-fixing and defect-inducing changes in other
work (Mockus and Votta 2000; Hassan 2008; Kim et al. 2008; Kamei et al. 2013). Similar to
prior work (Kamei et al. 2010), we define post-release defects as those with fixes recorded
in the six-month period after the release date.

Product metrics Product metrics measure the source code of a system at the time of a
release. It is common practice to preserve the released versions of the source code of a soft-
ware system in the VCS using tags. In order to calculate product metrics for the studied
releases, we first extract the released versions of the source code by “checking out” those
tags from the VCS.

We measure the size and complexity of each component (i.e., directory) as described
below. We measure the size of a component by aggregating the number of lines of code
in each of its files. We use McCabe’s cyclomatic complexity (McCabe 1976) (calculated
using Scitools Understand6) to measure the complexity of a file. To measure the complexity
of a component, we take the sum of the complexity of each file within it. Finally, since
complexity measures are often highly correlated with size, we divide the complexity of each
component by its size to reduce the influence of size on complexity measures. A similar
approach was used in prior work (Kamei et al. 2010).

Process metrics Process metrics measure the change activity that occurred during the devel-
opment of a new release. Process metrics must be calculated with respect to a time period
and a development branch. Again, similar to prior work (Kamei et al. 2010), we measure
process metrics using the six-month period prior to each release date on the release
branch.

6http://www.scitools.com/documents/metricsList.php?#Cyclomatic

http://www.scitools.com/documents/metricsList.php?#Cyclomatic
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Table 2 A taxonomy of the considered baseline component metrics

Metric Description Rationale

Product Size Number of lines Large components are more likely

of code. to be defect-prone (Koru et al. 2009).

Complexity The McCabe More complex components are

cyclomatic complexity. likely more defect-prone

(Menzies et al. 2002).

Process Prior defects Number of defects fixed Defects may linger in components

prior to release. that were recently defective

(Graves et al. 2000).

Churn Sum of added and removed Components that have undergone

lines of code. a lot of change are likely

defect-prone

(Nagappan and Ball 2005; 2007).

Change A measure of the Components where changes are

entropy distribution of changes spread among several files are

among files. likely defect-prone (Hassan 2009).

Human Total authors Number of Components with many unique

Factors unique authors. authors likely lack strong

ownership, which in turn may

lead to more defects

(Bird et al. 2011

Graves et al. 2000).

Minor authors Number of unique Developers who make few

authors who have changes to a component may

contributed less than 5 % lack the expertise required to

of the changes. perform the change in a

defect-free manner

(Bird et al. 2011). Hence,

components with many

minor contributors are likely

more defect-prone.

Major authors Number of unique Similarly, components with a

authors who have large number of major

contributed at least 5 % of contributors, i.e., those with

the changes. component-specific expertise,

are less likely to be defect-prone

(Bird et al. 2011).

Author The proportion of changes Components with a highly active

ownership contributed by the author component owner are less likely

who made the most to be defect-prone

changes. (Bird et al. 2011).
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We use prior defects, churn, and change entropy to measure the change process. We
count the number of defects fixed in a component prior to a release by using the same
pattern-based approach that we use to identify post-release defects. Churn measures the
total number of lines added to and removed from a component prior to release. As sug-
gested by Nagappan and Ball (2005), we divide the churn of each component by its size.
Change entropy measures how the complexity of a change process is distributed across files
(Hassan 2009). We measure the change entropy of each component individually, i.e., we
calculate how evenly spread out the changes to a component’s files before the release are for
each component in isolation. Similar to Hassan (2009), we use the Shannon (1948) entropy
normalized by the maximum entropy for a component c as described below:

H(c) =
−

n∑

k=1
(pk ∗ log2pk)

log2n
, (1)

where n is the number of files in component c, and pk is the proportion of the changes to
c that occur in file k. Such a normalized entropy allows one to compare the H(c) between
components of different sizes with different numbers of files.

Human factors Human factor metrics measure developer expertise and code ownership.
Similar to process metrics, human factor metrics must also be calculated with respect to a
time period. We again adopt the six-month period prior to each release date as the window
for metric calculation.

Table 2 shows that we adopt the suite of ownership metrics proposed by Bird et al.
(2011). Total authors is the number of authors that contribute to a component. Minor authors
is the number of authors that contribute fewer than 5 % of the commits to a component.
Major authors is the number of authors that contribute at least 5 % of the commits to a
component. Author ownership is the proportion of commits that the most active contributor
to a component has made.

3.4 Model Construction

We build regression models to explain the incidence of post-release defects detected in
the components of the studied systems. A regression model fits a curve of the form
y = β0 + β1x1 + β2x2 + · · · + βnxn to the data, where y is the dependent variable
and each xi is an explanatory variable. In our models, the dependent variable is the post-
release defect count and the explanatory variables are the set of metrics outlined in Tables 2
and 3.

We adopt the model construction and analysis approach of Harrell (2002). These tech-
niques relax linearity assumptions between explanatory and dependent variables, allowing
nonlinear relationships to be modelled more accurately, while being mindful of the poten-
tial for overfitting, i.e., constructing a model that is too specialized for the dataset on which
the model was trained that it would not apply to other datasets. We use the R implemen-
tation (R Core Team 2013) of the techniques described by Harrell (2002) provided by the
rms package (Harrell 2014).

Figure 3 provides an overview of the six steps in our model construction approach.
Figure 14 in Appendix A provides the R code for each of these steps. We describe each step
in the approach below.
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Table 3 A taxonomy of the considered code review metrics

Metric Description Rationale

Coverage (RQ1) Proportion of The proportion of Since code review will likely

reviewed changes that have been catch defects, components

changes reviewed in the past. where changes are most often

reviewed are less likely to

contain defects.

Proportion of The proportion of Despite the defect-inducing

reviewed churn that has been nature of code churn, code

churn reviewed in the past. review should have a

preventative impact on

defect-proneness. Hence,

we expect that the larger the

proportion of code churn

that has been reviewed, the

less defect prone a module will be.

Participation (RQ2) Number of The proportion of By submitting a review request,

self- changes to a component the original author already

approved that are only approved believes that the code is ready

changes for integration by the for integration. Hence, changes

original author. that are only approved by the

original author have essentially

not been reviewed.

Number of The proportion of changes Prior work has shown that when

hastily- that are approved for developers review more than

reviewed integration at a rate that is 200 lines of code per hour, they

changes faster than 200 lines per hour. are more likely to let lower

quality source code slip through

(Kemerer and Paulk 2009). Hence,

components with many changes

that are approved at a rate faster

than 200 lines per hour are more

likely to be defect-prone.

Number of The proportion of changes Components with many changes

changes to a component that are that are approved for integration

without not discussed. without critical discussion are

discussion likely to be defect-prone.

Typical The length of time between Components with shorter review

review the creation of a review windows may not be spending

window∗ request and its final enough time carefully analyzing

approval for integration, the implications of a change, and

normalized by the size of hence may be more

the change (churn). defect-prone.
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Table 3 (continued)

Metric Description Rationale

Typical The length of the review Components with many short

discussion discussion (i.e., # non-automated review discussions may not

length∗ comments), normalized by the be deriving value from the

size of the change (churn). review process, and hence may

be more defect-prone.

Expertise (RQ3) Number The proportion of changes to a Components with many

of changes component that are not authored changes that do not incorporate

that do not by nor reviewed by a subject a subject matter expert are

involve a matter expert, i.e., more likely to be defect-prone.

subject a major author.

matter

expert∗

Typical The percentage of prior Components with a high degree

voter changes to a component that each of voter expertise are likely

expertise∗ voter has either authored or voted on. less defect-prone.

*New metric that did not appear in the earlier version of this paper (McIntosh et al. 2014)

(MC-1) Estimate Budget for Degrees of Freedom

When constructing explanatory or predictive models, a critical concern is that of overfit-
ting. An overfit model will exaggerate or dismiss relationships between the dependent and
explanatory variables based on characteristics of the dataset from which it was built.

Overfitting may creep into models that use more degrees of freedom (e.g., explanatory
variables) than a dataset can support. Hence, it is pragmatic to calculate a budget of degrees
of freedom that a dataset can support before attempting to fit a model. As suggested by
Harrell et al. (1984, 1985), we budget n

15 degrees of freedom for our defect models, where
n is the number of rows (i.e., components) in the dataset.

Component 
data

Explanatory 
variables

Post-release
defect count

(MC-3)
Correlation 

analysis

(MC-4)
Redundancy 

analysis

(MC-1)
Estimate 

budget for 
degrees of 
freedom

(MC-2)
Normality 

adjustment

(MC-5)
Allocate 

degrees of 
freedom

(MC-6)
Fit 

regression 
model

(MA-1)
Assessment 

of model 
stability

(MA-2)
Estimate 
power of 

explanatory 
variables 

(MA-3)
Examine 

variables in 
relation to 
outcome

Fig. 3 Overview of our Model Construction (MC) and Model Analysis (MA) approach
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(MC-2) Normality Adjustment

We fit our regression models using the Ordinary Least Squares (OLS) technique using the
ols function provided by the rms package. OLS expects that the dependent variable is
normally distributed. Since software engineering data is often skewed, we analyze the dis-
tribution of post-release defect counts in each studied system prior to fitting our models. If
we find that the distribution is skewed, we apply a log transformation [ln(x + 1)] to lessen
the skew, and better fit the assumptions of the OLS technique.

(MC-3) Correlation Analysis

Prior to building our models, we check for explanatory variables that are highly correlated
with one another using Spearman rank correlation tests (ρ). We choose a rank correlation
instead of other types of correlation (e.g., Pearson) because rank correlation is resilient to
data that is not normally distributed.

We use a variable clustering analysis to construct a hierarchical overview of the cor-
relation among the explanatory variables (Sarle 1990). For sub-hierarchies of explanatory
variables with correlation |ρ| > 0.7, we select only one variable from the sub-hierarchy for
inclusion in our models.

(MC-4) Redundancy Analysis

Correlation analysis reduces collinearity among the explanatory variables, but it may not
detect all of the redundant variables, i.e., variables that do not have a unique signal from
the other explanatory variables. Redundant variables in an explanatory model will interfere
with each other, distorting the modelled relationship between the explanatory and depen-
dent variables. We, therefore, remove redundant variables prior to constructing our defect
models.

In order to detect redundant variables, we fit preliminary models that explain each
explanatory variable using the other explanatory variables. We use the R2 value of the pre-
liminary models to measure how well each explanatory variable is explained by the other
explanatory variables.

We use the implementation of this approach provided by the redun function in the
rms package. The function builds preliminary models for each explanatory variable. The
explanatory variable that is most well-explained by the other explanatory variables is itera-
tively dropped until either: (1) no preliminary model achieves an R2 above a cutoff threshold
(for this paper, we use the default threshold of 0.9), or (2) removing a variable would make a
previously dropped variable no longer explainable, i.e., its preliminary model will no longer
achieve an R2 exceeding the threshold.

(MC-5) Allocate Degrees of Freedom

After removing highly correlated and redundant variables, we must decide how to spend
our budgeted degrees of freedom most effectively. Specifically, we are most concerned with
identifying the explanatory variables that would benefit most from knots, i.e., changes in the
direction of the relationship between explanatory and dependent variables. Fig. 4 shows an
example of a non-monotonic relationship between an explanatory variable and the depen-
dent one. The plot on the left shows that a linear fit would under-represent many of the points
in the base and tails of the curve. Conversely, the plot on the right shows that by allocating
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Fig. 4 An example of a non-monotonic relationship that would benefit from knots. The plot on the left shows
that a linear fit would not fit the relationship well, whereas the plot on the right has been allocated two knots
(red ‘X’ shapes), and allows each region between the knots to have a different fit to improve the accuracy of
the overall fit

two knots (red ‘X’ shapes), and fitting curves through them, we can more appropriately
approximate the relationship.

Unfortunately, knots cannot be allocated without careful planning. Each knot costs an
additional degree of freedom because it introduces a new term in the model formula. For
example, Fig. 4 would require three model terms to define the shape of the curve: (1) one
to the left of the leftmost knot, (2) one between the two knots, and (3) one to the right
of the rightmost knot. We would therefore like to allocate knots to the explanatory vari-
ables with the most potential for sharing non-monotonic relationship with the dependent
variable.

To measure the potential for non-monotonicity in the relationship between dependent
and explanatory variables, we calculate the Spearman multiple ρ2 between the dependent
variable y and linear and quadratic forms of each explanatory variable (xi, x

2
i ). A large

Spearman multiple ρ2 score indicates that there is a strong nonlinear or non-monotonic
relationship between xi and y that would benefit from being allocated additional degrees of
freedom.

We use the spearman2 function in the rms package to calculate the Spearman multiple
ρ2 between the dependent and explanatory variables. If we decided that we must log trans-
form the dependent variable in the MC-2 step, we do so prior to measuring the Spearman
multiple ρ2. All of the explanatory variables that survive our correlation (MC-3) and redun-
dancy analyses (MC-4) are allocated at least one degree of freedom (a linear fit). Taking the
budgeted degrees of freedom into account, we allocate the degrees of freedom to explana-
tory variables according to their Spearman multiple ρ2 values, i.e., variables with larger ρ2

values are allocated more degrees of freedom than variables with smaller ρ2 values.

(MC-6) Fit Regression Model

Finally, after selecting appropriate explanatory variables, log transforming the dependent
variable (if necessary according to MC-2), and allocating budgeted degrees of freedom to
the explanatory variables that will yield the most benefit from them, we fit our regression
models to the data. We use restricted cubic splines to fit the budgeted number of knots to the
explanatory variables that we allocated additional degrees of freedom to. Cubic splines fit
cubic forms of an explanatory variable in order to join the different model terms. However,
in an unrestricted form, cubic splines tend to fit poorly in the tails, i.e., before the first knot
and after the last one, due to the curling nature of a cubic curve. Restricted cubic splines
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force the tails of the relationship to be linear, and tend to better fit nonlinear relationships
(Harrell 2002).

3.5 Model Analysis

After building regression models, we evaluate the goodness of fit using the Adjusted R2

(Hastie et al. 2009). Unlike the unadjusted R2, the adjusted R2 accounts for the bias of
introducing additional degrees of freedom by penalizing models for each degree of freedom
spent.

As shown in Fig. 3, we perform three model analysis steps in order to: (1) study the
stability of our models, (2) estimate the impact of each explanatory variable on model
performance, and (3) study the relationship between each explanatory variable while con-
trolling for the others. Figure 15 in Appendix A provides the R code for each of these steps.
We describe each model analysis step below.

(MA-1) Assessment of Model Stability

While the adjusted R2 of the model gives an impression of how well the model has fit the
dataset, it may overestimate the performance of the model if it is overfit. We take perfor-
mance overestimation into account by subtracting the bootstrap-calculated optimism (Efron
1986) from initial adjusted R2 estimates. The optimism of the adjusted R2 is calculated as
follows:

1. From the original dataset with n components, select a bootstrap sample, i.e., a new
sample of n components with replacement.

2. In the bootstrap sample, fit a model using the same allocation of degrees of freedom as
was used in the original dataset.

3. Apply the model built from the bootstrap sample on the bootstrap and original datasets,
calculating the adjusted R2 in each.

4. The optimism is the difference in the adjusted R2 of the bootstrap sample and the
original sample.

The above process is repeated 1,000 times and the average (mean) optimism is calculated.
Finally, we obtain the optimism-reduced adjusted R2 by subtracting the average optimism
from the original adjusted R2. The smaller the optimism values, the more stable that the
original model fit is.

Unlike k-fold cross-validation, the model fit that is validated using the above bootstrap-
derived technique is the one fit using the entire dataset. k-fold cross-validation splits the data
into k equal parts, using k −1 parts for fitting the model, setting aside 1 fold for testing. The
process is repeated k times, using a different part for testing each time. Notice, however,
that models are fit using k − 1 folds (i.e., a subset) of the dataset. Models fit using the full
dataset are not directly tested when using k-fold cross-validation.

(MA-2) Estimate Power of Explanatory Variables

Wewould like to estimate the impact that each explanatory variable has on our model perfor-
mance. In our prior work (McIntosh et al. 2014), we evaluated the impact of each explana-
tory variable using the χ2 maximum likelihood tests of a “drop one” approach (Chambers
and Hastie 1992). This test measures the impact of an explanatory variable on a model
by measuring the difference in the performance of models built using: (1) all explanatory
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variables (the full model), and (2) all explanatory variables except for the one under test
(the dropped model). A χ2 test is applied to the resulting values to detect whether each
explanatory variable improves model performance to a statistically significant degree.

However, in this paper, explanatory variables that have been allocated several degrees
of freedom are represented with several model terms instead of just one. To control for
the effect of multiple terms, we jointly test the set of explanatory variable model terms for
each variable using Wald χ2 maximum likelihood (a.k.a., “chunk”) tests. The larger the
Wald χ2 value, the larger the impact that a particular explanatory variable has on a model’s
performance. We report both the raw Wald χ2 value and its significance level according to
its p-value.

(MA-3) Examine Explanatory Variables in Relation to the Outcome

Finally, we would like to study the relationship that each modelled reviewing metric shares
with the post-release defect count. While the coefficients of the model terms in linear mod-
els can give a general impression of the impact that an explanatory variable has on the
outcome, each explanatory variable in our models may be represented by several model
terms. In order to account for the impact of all of the model terms associated with an
explanatory variable, we plot the change in the estimated number of post-release defects
against change in each reviewing metric while holding the other explanatory variables con-
stant at their median values using the Predict function in the rms package (Harrell 2014).
The plot will follow the relationship as it changes directions at knot locations (cf. MC-6).
Furthermore, the change in estimated value approximates the impact on software quality that
the accompanying change in the reviewing metric will have. The plots also show the 95 %
confidence intervals calculated based on the 1,000 previously executed bootstrap iterations
(cf. MA-1).

4 Case Study Results

In this section, we present the results of our case study with respect to our three research
questions. For each question, we discuss: (a) the metrics that we use to measure the
reviewing property, (b) our model construction procedure, and (c) the model analysis results.

(RQ1) Is there a Relationship Between Code Review Coverage and Post-Release Defects?

Intuitively, one would hope that higher rates of code review coverage will lead to fewer
incidences of post-release defects. To investigate this intuition, we use the code review
coverage metrics described in Table 3 in regression models with the baseline metrics of
Table 2.

(RQ1-a) Coverage metrics

Table 4 provides descriptive statistics of the studied review coverage metrics. The propor-
tion of reviewed changes is the proportion of changes committed to a component that are
associated with code reviews. Similarly, proportion of reviewed churn is the proportion of
the churn of a component that is associated with code reviews. For this research question,
we set both the proportion of reviewed changes and the proportion of reviewed churn to 1
for components that have not changed during the pre-release time period.



2162 Empir Software Eng (2016) 21:2146–2189

Table 4 Descriptive statistics of the studied review coverage metrics

Qt VTK ITK

5.0 5.1 5.10 4.3

Rev’d changes Minimum 0.86 0.00 0.00 0.00

1st Quartile. 1.00 1.00 0.00 1.00

Median 1.00 1.00 0.00 1.00

Mean 0.99 0.98 0.27 0.99

3rd Quartile 1.00 1.00 0.50 1.00

Maximum 1.00 1.00 1.00 1.00

Rev’d churn Minimum 0.50 0.00 0.00 0.00

1st Quartile. 1.00 1.00 0.00 1.00

Median 1.00 1.00 0.00 1.00

Mean 0.99 0.98 0.15 0.99

3rd Quartile 1.00 1.00 0.06 1.00

Maximum 1.00 1.00 1.00 1.00

(RQ1-b) Model construction

In this section, we describe the outcome of the model construction steps outlined in Fig. 3.

(MC-1) Estimate budget of degrees of freedom Table 5 shows that our data can support
between 11 ( 17015 in VTK) and 89 ( 1,33915 in Qt 5.0) degrees of freedom. We can therefore
apply knots more liberally to the explanatory variables in the larger Qt datasets than in the
smaller VTK and ITK ones.

(MC-2) Normality adjustment Analysis of the post-release defect counts of the studied sys-
tems reveals that the values are right-skewed in the larger Qt datasets. To counter the skew,
we log-transform the post-release defect counts in the Qt datasets. On the other hand, the
skew is not large enough to be of concern in the smaller VTK and ITK datasets, so we do
not apply a transformation to those projects.

(MC-3) Correlation analysis Figure 5 shows the hierarchically clustered Spearman ρ val-
ues in the Qt 5.0 dataset. The solid horizontal lines indicate the correlation value of the two
metrics that are connected by the vertical branches that descend from it. The gray dashed
line indicates our cutoff value (|ρ| = 0.7). Similar correlation values were observed in the
other studied systems. To conserve space, we provide online access to the figures for the
other studied systems.7

Analysis of the clustered variable correlations reveals that the proportion of reviewed
churn is too highly correlated with the proportion of reviewed changes to include both met-
rics. Similarly, the number of major authors is too highly correlated with the total number
of authors. We selected the proportion of reviewed changes and the total number of authors
for our models because they are the simpler of the metric pairs to compute. For the sake
of completeness, we analyzed models that use the proportion of reviewed churn instead

7http://sailhome.cs.queensu.ca/replication/reviewing quality ext/

http://sailhome.cs.queensu.ca/replication/reviewing_{q}uality_{e}xt/
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Table 5 Review coverage model statistics (RQ1)

Qt VTK ITK

5.0 5.1 5.10 4.3

Adjusted R2 0.64 0.67 0.39 0.44

Optimism-reduced adjusted R2 0.62 0.65 0.20 0.22

Wald χ2 2,360*** 2,715*** 118*** 177***

Budgeted Degrees of Freedom 89 89 11 14

Degrees of Freedom Spent 17 24 9 9

Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear

Size D.F. 4 3 4 3 1 – 1 –

χ2 85*** 57*** 78*** 73*** 4* 15***

Complexity D.F. 2 1 2 1 1 – 1 –

χ2 7* 5* 7* 7* 1◦ < 1◦

Prior defects D.F. 2 1 2 1 2 1 3 2

χ2 48*** 32*** 81*** 13*** 106*** 84*** 51*** 26***

Churn D.F. 1 – 1 – 1 – 1 –

χ2 < 1◦ < 1◦ < 1◦ < 1◦

Change entropy D.F. 2 1 4 3 1 – †

χ2 11** 6* 34*** 30*** < 1◦

Total authors D.F. 3 2 † 1 – †

χ2 64*** 13*** 52***

Minor authors D.F. ‡ 4 3 ‡ 1 –

χ2 55*** 40*** 25***

Major authors D.F. † † † †

χ2

Author ownership D.F. 2 1 3 2 1 – 1 –

χ2 4◦ 2◦ 4◦ 4◦ 3◦ < 1◦

Reviewed changes D.F. 1 – 4 3 1 – 1 –

χ2 1◦ 84*** 83*** 12*** < 1◦

Reviewed churn D.F. † † † †

χ2

Discarded during:
†Variable clustering analysis (|ρ| ≥ 0.7)
†Redundant variable analysis (R2 ≥ 0.9)

Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:
◦p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001

–Nonlinear degrees of freedom not allocated

of the proportion of reviewed changes, as well as models that use the number of major
authors instead of the total number of authors, and found that neither change of metric had
a discernible impact on model performance.

(MC-4) Redundancy analysis Table 5 shows that the number of minor authors is a redun-
dant variable in the Qt 5.0 and VTK datasets. The number of minor authors is well-explained
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Fig. 5 Hierarchical clustering of variables according to Spearman’s |ρ| in Qt 5.0 (RQ1)

by the other metrics (R2
Qt5.0 = 0.99, R2

VTK = 0.98). Since this metric is not likely to add
additional explanatory power, we exclude it from these models.

(MC-5) Allocate degrees of freedom Figure 6 shows the Spearman multiple ρ2 of the post-
release defect count with each explanatory variable in Qt 5.0. Variables that show larger
Spearman multiple ρ2 values have more potential for sharing a non-monotonic relationship
with the post-release defect count, and hence, would benefit most from additional degrees
of freedom. To conserve space, we only show the Spearman multiple ρ2 figure for the Qt
5.0 system, and provide the figures for the other studied systems online.8

By observing the rough clustering of variables according to the Spearman multiple ρ2

values, we split the explanatory variables of Fig. 6 into three groups. The first group contains
the number of prior defects, the total number of authors, and the component size, and has the
largest potential for non-monotonicity. A second group contains the change entropy, author
ownership, and complexity metrics, which also have some potential for non-monotonicity.
The last group contains the churn and the proportion of reviewed changes.

We allocate a maximum of five knots to one explanatory variable to avoid overfitting its
relationship with the post-release defect count (Harrell 2002). Since we have a large budget
of degrees of freedom for the Qt 5.0 dataset, we allocate five knots to the variables in the
first group, three to the variables in the second group, and no knots to the variables in the
last group (i.e., fit a linear relationship). A similar process was used to allocate the degrees
of freedom in the other Qt release.

In the studied VTK and ITK releases, we need allocate degrees of freedom more strin-
gently in order to avoid exceeding the budget. Thus, we only provide additional degrees of
freedom to the explanatory variable with the largest Spearman multiple ρ2 – the number of
prior bugs.

8http://sailhome.cs.queensu.ca/replication/reviewing quality ext/

http://sailhome.cs.queensu.ca/replication/reviewing_{q}uality_{e}xt/
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Prior defects
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N  df
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Spearman ρ2 Response : Post − release defect count

Adjusted ρ2

Fig. 6 Dotplot of the Spearman multiple ρ2 of each explanatory variable and the post-release defect count
in Qt 5.0. Larger values indicate a more potential for non-monotonic relationship (RQ1)

(RQ1-c) Model Analysis

In this section, we describe the outcome of our model analysis outlined in Fig. 3.

(MA-1) Assessment of model stability Table 5 shows that our defect models achieve an
adjusted R2 between 0.39 (VTK) and 0.67 (Qt 5.1). However, since these values are cal-
culated using the same data that the models were fit with, they are inherently optimistic
(Efron 1986). Hence, we use the bootstrap technique with 1,000 iterations to calculate the
optimism-reduced adjusted R2.

Our results show that the fit of the Qt models is very stable, only having an adjusted
R2 optimism of 0.02. On the other hand, our VTK and ITK models are less stable, with
adjusted R2 optimism values of 0.19 and 0.22 respectively. While the difference in optimism
is noteworthy, it does not invalidate our VTK and ITK models. The difference is partially
due to the difference in sample size. Qt is composed of roughly six to eight times more
components than the VTK and ITK systems. Nonetheless, the optimism values suggest that
the internal validity of findings of the VTK and ITK systems should be scrutinized more
carefully.

(MA-2) Estimate power of explanatory variables Table 5 shows how much power each
explanatory variable contributes to the fit of our model. For each studied release, the results
are shown in two columns:

1. The Overall column that shows the contribution of all of the degrees of freedom that
have been allocated to an explanatory variable.

2. The Nonlinear column that shows the contribution of only the nonlinear degrees of
freedom that have been allocated to an explanatory variable. If no nonlinear degrees of
freedom have been allocated to an explanatory variable, a dash (-) symbol is shown in
the nonlinear column.

Table 5 shows that of the 15 explanatory variables that were allocated nonlinear degrees
of freedom in our models, only 2 did not contribute a significant amount of explanatory
power – the author ownership explanatory variable in the Qt 5.0 and 5.1 releases. How-
ever, the author ownership was entirely insignificant in Qt releases, indicating that even the
linear fit of the author ownership variable did not provide significant explanatory power.
The nonlinear style of modelling that we have applied to our datasets is providing signifi-
cant amounts of explanatory power, leading to more accurately fitting models than our prior
work (McIntosh et al. 2014).
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Table 5 also shows that the proportion of reviewed changes has a statistically significant
impact on the defect models of Qt 5.1 and VTK 5.10. Even in Qt 5.0, where the proportion
of reviewed changes does not have a statistically significant impact, we find a weak negative
Spearman correlation between the post-release defect count and the proportion of reviewed
changes (ρ = −0.10, p < 0.001). Reviewed churn does not play a role in the model, since
it was discarded before building the model.

(MA-3) Examine explanatory variables in relation to the post-release defect count Figure 7
shows the estimated post-release defect counts for Qt 5.1 and VTK of a component with a
varying proportion of reviewed changes, while controlling for the other explanatory vari-
ables (i.e., holding them at their median values). We omit Qt 5.0 and ITK from Fig. 7
because the proportion of reviewed changes did not have a statistically significant impact
on our models.

As expected, Fig. 7b shows that there is a decreasing trend of defect-proneness for VTK
as the proportion of reviewed changes increases. Although this finding agrees with intuition,
it should not be taken at face value, since Table 5 shows that our VTK model is not as stable
as our Qt ones. Figure 7a provides support for our VTK finding, showing a steep decline in
defect-proneness for increases in the proportion of reviewed changes from 0.9 to 1.0 in Qt
5.1 components.

On the other hand, our results suggest that other code review properties may provide
additional explanatory power. While we found evidence suggesting that there is a decreas-
ing trend in defect-proneness as the proportion of reviewed changes approaches 1.0 in Qt
5.1, Fig. 7 also indicates that there is an increasing trend in defect-proneness as Qt 5.1
components increase the proportion of reviewed changes from 0 to 0.9. This range of val-
ues is accompanied by a broadening of the confidence interval, suggesting that there is less
data supporting this area of the curve. We find that indeed, of the 1,337 investigated Qt
5.1 components, only 41 (3 %) of them have a proportion of reviewed changes below 0.9.
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Fig. 7 The estimated count of post-release defects in a typical component for various proportions of
reviewed changes. The blue line indicates the values of our model fit on the original data, while the grey area
shows the 95 % confidence interval based on models fit to 1,000 bootstrap samples
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Nonetheless, the increasing trend in defect-proneness is suggestive of a more complex rela-
tionship between reviewing quality and defect-proneness than the proportion of reviewed
changes alone can capture.

In addition, while large proportions of reviewed changes are associated with components
of higher software quality in two of the four studied releases, the metric does not provide
a statistically significant amount of explanatory power in the other two studied releases. To
gain a richer perspective about the relationship between code review coverage and software
quality, we manually inspect the ten Qt 5.0 components with the most post-release defects.

We find that the Qt 5.0 components with many post-release defects indeed tend to
have lower proportions of reviewed changes. This is especially true for the collection of
nine components that make up the QtSerialPort subsystem, where the proportion of
reviewed changes does not exceed 0.1. Initial development of the QtSerialPort sub-
system began during Qt 4.x, prior to the introduction of Gerrit to the Qt development
process. Many foundational features of the subsystem were introduced in an incubation area
of the Qt development tree, where reviewing policies are more lax. Hence, much of the
QtSerialPort code was likely not code reviewed, which may have lead to the inflation
in post-release defect counts.

Yet, there are components with a proportion of reviewed changes of 1 that still have
post-release defects. Although only 7 % of the VTK components with post-release defects
(1/15) have a proportion of reviewed changes of 1, 87 % (222/254), 70 % (131/187), and
83 % (20/24) of Qt 5.0, Qt 5.1, and ITK components respectively have a proportion of
reviewed changes of 1. We further investigate with one-tailed Mann-Whitney U tests (α =
0.05) comparing the incidence of post-release defects in components with a proportion of
reviewed changes of 1 to those components with proportions of reviewed change below
1. Test results indicate that Qt 5.1 is the only studied release where the incidence of post-
release defects in components with proportions of reviewed changes of 1 is significantly
less than the incidence of post-release defects in components with proportions lower than
1 (p < 2.2 × 10−16). In the other systems, the difference is not significant (p > 0.05),
suggesting that there is more to the relationship between code review and software quality
than coverage alone can explain.

(RQ2) Is there a Relationship Between Code Review Participation and Post-Release
Defects?

As discussed in RQ1, even components with a proportion of reviewed changes of 1 (i.e.,
100 % code review coverage) can still be defect-prone. We suggest that a lack of partic-
ipation in the code review process could be contributing to this. In fact, in thriving open
source projects, such as the Linux kernel, insufficient discussion is one of the most fre-
quently cited reasons for the rejection of a patch.9 In recent work, Jiang et al. (2013) found

9https://www.kernel.org/doc/Documentation/SubmittingPatches

https://www.kernel.org/doc/Documentation/SubmittingPatches
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that the amount of reviewing discussion is an important indicator of whether a patch will be
accepted for integration into the Linux kernel. To investigate whether code review participa-
tion has a measurable impact on software quality, we add the participation metrics described
in Table 3 to our defect models.

Since we have observed that review coverage has an impact on post-release defect rates
(RQ1), we need to control for the proportion of reviewed changes when addressing RQ2.
We do so by only analyzing those components with a proportion of reviewed changes of
1. Unlike RQ1, our RQ2 analysis excludes those components that have not changed, since

review participation cannot have an impact on them. Although 90 %
(
1,201
1,339

)
of the Qt 5.0,

88 %
(
1,175
1,337

)
of the Qt 5.1, and 57 %

(
125
218

)
of the ITK components survived the filtering

process, only 5 %
(

8
170

)
of the VTK components survive. Since the VTK dataset is no

longer large enough for statistical analysis, we omit it from this analysis.

(RQ2-a) Participation Metrics

We describe the five metrics that we have devised to measure code review participation
below. Table 6 provides descriptive statistics of the five studied review participation metrics.
The number of self-approved changes counts the changes that have only been approved for
integration by the original author of the change.

An appropriate amount of time should be allocated in order to sufficiently critique a
proposed change. Best practices suggest that code should be not be reviewed at a rate faster
than 200 lines per hour (Kemerer and Paulk 2009). Therefore, if the time window between
the creation of a review request and its approval for integration is shorter than this, the

Table 6 Descriptive statistics of the studied review participation metrics

Qt ITK Qt ITK

5.0 5.1 4.3 5.0 5.1 4.3

Self- Minimum 0.00 0.00 0.00 Hastily- 0.00 0.00 0.00

approval 1st Quartile. 0.00 1.00 0.00 reviewed 2.00 0.00 1.00

Median 0.00 1.00 1.00 3.00 0.00 1.00

Mean 1.65 0.93 1.10 3.88 0.43 1.32

3rd Quartile 1.00 1.00 2.00 4.00 1.00 2.00

Maximum 82.00 27.00 9.00 79.00 10.00 4.00

No Minimum 0.00 0.00 0.00 Review 0.00 0.08 0.00

discussion 1st Quartile. 0.00 0.00 1.00 window 0.60 33.74 9.79

Median 1.00 0.00 2.00 4.66 80.95 103.67

Mean 1.56 0.34 1.71 69.13 484.52 781.72

3rd Quartile 2.00 0.00 2.00 35.54 147.31 270.08

Maximum 104.00 8.00 12.00 4,596.47 88,439.00 25,588.19

Discussion Minimum 0.00 1.8 × 10−5 0.00

length 1st Quartile. 9.9 × 10−5 9.9 × 10−5 2.3 × 10−3

Median 5.3 × 10−4 5.3 × 10−4 8.9 × 10−3

Mean 1.4 × 10−2 1.4 × 10−2 2.9 × 10−2

3rd Quartile 3.1 × 10−3 3.1 × 10−3 1.7 × 10−2

Maximum 0.26 1.00 0.50
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review is likely suboptimal. The number of hastily-reviewed changes counts the changes
that have been reviewed at a rate faster than 200 lines per hour. Since our definition of
hastily-reviewed changes assumes that reviewers begin reviewing a change as soon as it is
assigned to them, our metric represents a lower bound of the actual proportion. We discuss
the further implications of this definition in Section 5.

Reviews without accompanying discussion have not received critical analysis from other
members of the development team, and hence may be prone to defects that a more thorough
critique could have prevented. The operational definition that we use for a review without
discussion is a patch that has been approved for integration, yet does not have any attached
comments from other team members. Since our intent is to measure team discussion, we
ignore comments generated by automated verifiers (e.g., CI systems) and stock comments
generated by voting on a patch, since they do not create a team dialogue. The number
of changes without discussion counts the number of changes that have been approved for
integration without discussion.

While the above metrics count the number of patches that lack sufficient participation,
they rely on threshold values. For example, the number of changes without discussion will
only flag changes that have zero comments as problematic, while a change with only one
comment may not be much different. Hence, we introduce two component metrics that
measure: (1) the typical length of the reviewing window, and (2) the typical length of a
discussion. We first measure the reviewing window and the length of the discussion in each
change to a component, and normalize them by the amount of churn in each change. To
arrive at a single value for each component, we then take the median value across all patches
of that component. We use the median rather than the mean because the median is more
robust to outlier values.

(RQ2-b) Model Construction

In this section, we describe the outcome of the model construction steps outlined in Fig. 3.

(MC-1) Estimate budget of degrees of freedom Since we have reduced the number of com-
ponents in our datasets, we need to recalculate our degrees of freedom budgets. Table 7
shows that the Qt datasets still support 78 ( 1,17515 in Qt 5.1) to 80 ( 1,20115 in Qt 5.0) degrees
of freedom – many more degrees than our set of explanatory variables can consume. On the
other hand, the ITK dataset can only support 8 ( 12515 ) degrees of freedom. Hence, we need
to stringently allocate degrees of freedom in the ITK dataset.

(MC-2) Normality adjustment Again, we find that there is right-skew in the post-release
defect counts of the Qt datasets, but not in the ITK one. Hence, we only apply the log
transformation to the post-release defect counts in the Qt datasets.

(MC-3)Correlationanalysis Figure 8 shows that, similar toRQ1, thenumberofmajor authors
and the total number of authors are too highly correlated to use in the same model. We also
find that author ownership is highly correlated with both the number of major authors and
the total number of authors. We still select the total number of authors to represent the group.

We also find that the typical review window and the typical discussion length are too
highly correlated to include in the same model. We select the typical discussion length to
represent the pair, since it is a more conclusive metric, i.e., the review window does not
measure the actual time that reviewers spent on the code review, while the discussion length
does measure how actively a change was discussed.
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Table 7 Review participation model statistics (RQ2)

Qt ITK

5.0 5.1 4.3

Adjusted R2 0.69 0.46 0.58

Optimism-reduced adjusted R2 0.68 0.40 0.43

Wald χ2 2,400 1,017 179

Budgeted Degrees of Freedom 80 78 8

Degrees of Freedom Spent 19 18 11

Overall Nonlinear Overall Nonlinear Overall Nonlinear

Size D.F. 4 3 2 1 1 –

χ2 85*** 64*** 29*** 19*** 30***

Complexity D.F. 1 – 1 – 1 –

χ2 1◦ < 1◦ < 1◦

Prior defects D.F. ‡ 2 1 1 –

χ2 11** < 1◦ 8**

Churn D.F. 1 – 1 – 1 –

χ2 1◦ < 1◦ < 1◦

Change entropy D.F. 2 1 2 1 1 –

χ2 7* 6* 6◦ 5* < 1◦

Total authors D.F. 3 2 2 1 1 –

χ2 152*** 5◦ 52*** 15*** 7**

Minor authors D.F. ‡ 1 – 1 –

χ2 1◦ 2◦

Major authors D.F. † † †

χ2

Author ownership D.F. † † †

χ2

Self-approval D.F. 2 1 1 – 1 –

χ2 3◦ 3◦ 2◦ 1◦

Hastily-reviewed D.F. † 2 1 1 –

χ2 45*** 23*** 5*

No discussion D.F. 2 1 2 1 1 –

χ2 6* 3◦ 5◦ 1◦ 30***

Typical review window D.F. † † †

χ2

Typical discussion length D.F. 4 3 2 1 1 –

χ2 20*** 15** 37*** 25*** 3◦

Discarded during:
†Variable clustering analysis (|ρ| ≥ 0.7)
‡Redundant variable analysis (R2 ≥ 0.9)

Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:
◦p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001

–Nonlinear degrees of freedom not allocated
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Fig. 8 Hierarchical clustering of variables according to Spearman’s |ρ| in Qt 5.0 (RQ2)

In Qt 5.0, we find that the number of hastily-reviewed changes is highly correlated with
the number of changes without discussion. Again, we select the number of changes without
discussion to represent the pair because it is the more conclusive of the metrics.

(MC-4) Redundancy analysis Redundancy analysis indicates that the number of minor
authors and the number of prior defects in Qt 5.0 components can be accurately estimated
using the other explanatory variables (R2

minor = 0.99, R2
prior = 0.91). Thus, we do not

include them in our Qt 5.0 defect model.

(MC-5) Allocate degrees of freedom Once again, we divide our explanatory variables into
three groups according to their propensity for non-monotonicity. For example, we use
Fig. 9 to first group the total number of authors, component size, number of self-approved
changes, and typical discussion length together. We include the change entropy and number
of changes without discussion in the second group. The final group is made up of component
complexity and churn. Since the Qt 5.0 dataset can support plenty of degrees of freedom,
we allocate five knots to the members of the first group, three to the members of the second
group, and no knots to the members of the third group. On the other hand, since the budget
is more restrictive, we only use linear fits for the explanatory variables in the ITK dataset.

Total authors

Size

Self−approval

Typical discussion length

Change entropy

No discussion

Complexity

Churn

N  df

1201 2

1201 2

1201 2

1201 2

1201 2

1201 2

1201 2

1201 2

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Spearman ρ2    Response : Post − release defect count

Adjusted ρ2

Fig. 9 Dotplot of the Spearman multiple ρ2 of each explanatory variable and the post-release defect count
in Qt 5.0. Larger values indicate a more potential for non-monotonic relationship (RQ2)
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(RQ2-c) Model Analysis

In this section, we describe the outcome of our model analysis outlined in Fig. 3.

(MA-1) Assessment of model stability Table 7 shows that our code review participation
models achieve adjusted R2 values ranging from 0.46 (Qt 5.1) to 0.69 (Qt 5.0). Note that
because these models are built using a subset of the system components, they should not be
compared directly to the coverage models of RQ1.

Similar to RQ1, we find that our Qt models are more stable than the ITK one. Opti-
mism only reduces the adjusted R2 of Qt models by 0.01-0.06, while optimism reduces the
adjusted R2 in the ITK model by 0.15. Although we suspect that sample size is playing a
major role, we still suggest that the ITK results be scrutinized more carefully.

Furthermore, we needed to fit our ITK model with more degrees of freedom than the
budget suggests, which may lead to overfitting (Harrell 2002). While the optimism of our
ITK model is relatively large, the optimism-reduced adjusted R2 is 0.43, suggesting that the
model still provides a meaningful and robust amount of explanatory power.

(MA-2) Estimate power of explanatory variables Table 7 shows that many of the variables
to which we allocated nonlinear degrees of freedom to provide significant boosts to the
explanatory power of the model. For example, much of the explanatory power provided by
the component size variable is provided by the nonlinear degrees of freedom in Qt 5.0 and
5.1. On the other hand, Table 7 shows that the nonlinear degrees of freedom that we allocate
for prior defects in Qt 5.1 are not contributing a significant amount of explanatory power.
Indeed, the total authors variable contributes a large amount of explanatory power in our Qt
5.0 model, but the majority of that power is provided by the linear degree of freedom. Since
the adjusted R2 of our Qt models is only 0.01-0.06 points larger than the optimism-reduced
adjusted R2, our models are likely not overfit, and hence, we are not concerned with the
potentially misspent degrees of freedom on these metrics. Yet, it is important to note that
allocating additional degrees of freedom will not always improve the fit of a model.

Table 7 also shows that the discussion-related explanatory variables (i.e., the number of
changes without discussion and the typical discussion length) survive our model construc-
tion steps in all three of the studied releases. Furthermore, they each have a statistically
significant impact on two of the three studied releases.

While the number of self-approved changes also survives our model construction steps,
it does not have a significant impact on any of the defect models. This suggests that while
self-approval is generally a negative quality for code reviews, it has less of an impact on
software quality than discussion-related metrics do. This may in part be due to the fact that
approval rights in Gerrit are only given to senior Qt team members. These team members
will likely be more careful with self-approved patches than novice developers would be. We
more thoroughly investigate the impact of expertise in RQ3.

The number of hastily-reviewed changes has a significant impact on the defect models
where it survives the correlation analysis. Only in Qt 5.0 was the number of hastily-reviewed
changes too highly correlated with the number of changes without discussion to be added
to the model. The number of hastily-reviewed changes has an especially large impact on the
Qt 5.1 model, where the development team is larger (see Table 1), and would likely benefit
from longer review discussions to coordinate and discuss the implications of code changes.

(MA-3)Examine explanatory variables in relation to the post-release defect count Figure 10
shows the explanatory variables that had a statistically significant impact on our participation



Empir Software Eng (2016) 21:2146–2189 2173

# changes without discussion

P
os

t−
re

le
as

e 
de

fe
ct

 c
ou

nt

0.0

0.1

0.2

0.3

0 5 10 15

(a) No discussion (Qt 5.0)

# changes without discussion

P
os

t−
re

le
as

e 
de

fe
ct

 c
ou

nt

0

2

4

6

8

0 2 4 6 8 10 12

(b) No discussion (ITK 4.3)

Typical discussion length (normalized by churn)

P
os

t−
re

le
as

e 
de

fe
ct

 c
ou

nt

−0.1

0.0

0.1

0.2

0.3

0.00 0.05 0.10 0.15

(c) Typical discussion length (Qt 5.0)

Typical discussion length (normalized by churn)

P
os

t−
re

le
as

e 
de

fe
ct

 c
ou

nt

0.0

0.1

0.2

0.3

0.4

0.00 0.05 0.10 0.15 0.20 0.25

(d) Typical discussion length (Qt 5.1)

# hastily−approved changes

P
os

t−
re

le
as

e 
de

fe
ct

 c
ou

nt

0

2

4

6

0 2 4 6 8 10

(e) Hastily-reviewed (Qt 5.1)

# hastily−approved changes

P
os

t−
re

le
as

e 
de

fe
ct

 c
ou

nt

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3 4

(f) Hastily-reviewed (ITK 4.3)

Fig. 10 The estimated count of post-release defects in a component for varying participation metrics. The
blue line indicates the values of our model fit on the original data, while the grey area shows the 95 %
confidence interval based on models fit to 1,000 bootstrap samples

models in relation to the estimated post-release defect count. Figures 10a and b show that as
the number of reviews without discussion increases, the estimated number of post-release
defects tends to grow. Manual analysis of the Qt components reveals that the ones that
provide backwards compatibility for Qt 4 APIs (e.g., qt4support) have many changes
that are approved for integration without discussion, and also many post-release defects.
Perhaps this is due to a shift in team focus towards newer functionality. However, our results
suggest that changes to these components should also be reviewed actively.

On the other hand, Figs. 10c and d show that components that are discussed more per
line of churn do not share a consistent relationship with the post-release defect count. In
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both studied Qt releases, there is a sharp initial increase in defect-proneness as typical
discussion length increases. Furthermore, Fig. 10d shows that defect-proneness slowly
increases as discussion lengths continue to increase in Qt 5.1. This suggests that defect-
proneness increases as components are more actively discussed. Conversely, Fig. 10c shows
that defect-proneness slowly decreases as discussion lengths increase in Qt 5.0. Since after
the initial increase, there is only a slight slope with a broad confidence interval in both the
Qt 5.0 and 5.1 curves, this suggests that changes in typical discussion length do not have a
large impact on our post-release defect counts.

Finally, Figs. 10e and f show that there is again disagreement in the direction of the
relationship between the number of hastily-reviewed changes and the post-release defect
count. Figure 10e shows that, as intuition would suggest, the post-release defect count
in Qt 5.1 increases as the number of hastily-reviewed changes increases. This suggests
that there is benefit associated with spending more time on a code review. On the other
hand, Fig. 10f shows a decreasing slope for ITK, suggesting that more hastily-reviewed
changes are accompanied by fewer post-release defects. We suspect that this discrepancy
is likely due to an interaction between the changes without discussion and the number of
hastily-reviewed changes in ITK. We find that the Spearman correlation between the two
explanatory variables is 0.53, suggesting that while there is not enough correlation to remove
one of the pair prior to fitting our ITK model, the variables are quite similar. Furthermore,
there is a positive Spearman correlation between the number of hastily-reviewed changes in
a component and the post-release defect count in ITK (ρ = 0.2), indicating that the general
trend of the relationship is increasing.

In addition, we find that in half of the ITK components, all of the changes that were
flagged as hastily-reviewed were also flagged as having no discussion. Conversely, in half
of the Qt 5.0 and 75 % of the Qt 5.1 components, there is no overlap between those changes
flagged as hastily-reviewed and those flagged as having no discussion. Hence, the decreas-
ing trend that we observe in Fig. 10f for ITK is likely to compensate for the relationship
between the hastily-reviewed changes and those with no discussion.

(RQ3) Is there a relationship between code reviewer expertise and post-release defects?

In addition to reviewer participation, reviewer (or author) expertise will likely impact soft-
ware quality. For example, subject matter experts will likely make fewer mistakes that lead
to defects than novices will (Mockus and Weiss 2000). Furthermore, we hypothesize that
involving a subject matter expert in the code review process will also improve the quality
of a code change, and thus, reduce the likelihood of future defects. On the other hand, a
change that lacks involvement from a subject matter expert may have a higher risk of intro-
ducing defects. To investigate this hypothesis, we add the code review expertise metrics to
our defect models.

We again control for the impact that code review coverage has on software quality by
filtering away those components with a proportion of reviewed changes below 1 (cf. RQ2).
We further control for the impact that code review participation has on software quality by
including the participation metrics in our expertise models.
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(RQ3-a) Expertise metrics

Table 8 provides descriptive statistics of the two studied review expertise metrics. The num-
ber of changes that do not involve a subject matter expert counts the changes to a component
that have not been authored nor approved for integration by a subject matter expert. In this
study, we identify subject matter experts using the major author definition of Bird et al.
(2011). This means that any author who is involved with more than 5 % of the contributions
to a component is considered to be an expert of that component.

We also measure the typical reviewer expertise by calculating the number of prior
changes to a component that each reviewer who approves a change has authored or approved
for integration. Similar to our typical discussion length and typical review window metrics
of RQ2, we take the median of the reviewer expertise values across all of the changes made
to a component.

(RQ3-b) Model construction

In this section, we describe the outcome of the model construction steps outlined in Fig. 3.
Since the dataset is the same as the one used in RQ2, we omit the discussion of MC-1 and
MC-2 because they are the same.

(MC-3) Correlation analysis Figure 11 shows that, in addition to the high correlations
among explanatory variables that we observed in RQ2, we find that the number of minor
authors is too highly correlated with the number of changes lacking subject matter exper-
tise to include in the Qt 5.0 model. Hence, we drop the number of minor authors in order
to investigate the impact that our expertise metric has on defect-proneness. Furthermore,
when we attempt to fit models using the number of minor authors instead of the number
of changes lacking subject matter expertise, we find that the number of minor authors is a
redundant variable, and hence, does not survive to be fit in our models.

Table 8 Descriptive statistics of the studied review expertise metrics

Qt ITK

5.0 5.1 4.3

Lacking expertise Minimum 0.00 0.00 0.00

1st Quartile 0.00 2.00 0.00

Median 0.00 3.00 1.00

Mean 3.55 6.11 1.59

3rd Quartile 0.00 5.00 2.00

Maximum 343.00 139.00 14.00

Review expertise Minimum 0.26 0.26 0.00

1st Quartile 0.73 0.72 0.32

Median 0.91 0.91 0.33

Mean 0.86 0.86 0.41

3rd Quartile 0.98 0.99 0.50

Maximum 1.00 1.00 1.00
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Fig. 11 Hierarchical clustering of variables according to Spearman’s |ρ| in Qt 5.0 (RQ3)
(MC-4) Redundancy analysis Similar to RQ2, we find that the number of prior defects and
the total number of authors can be well-explained using the other explanatory variables in
the Qt 5.0 dataset (R2

total = 0.94, R2
prior = 0.91), and are thus excluded from our model fit.

(MC-5) Allocate degrees of freedom Again, we produce three groups of explanatory vari-
ables using the Spearman multiple ρ2 plots like the one for Qt 5.0 shown in Fig. 12. We
allocate five degrees of freedom to the number of changes lacking subject matter expertise
and component size. Three degrees of freedom are allocated to the number of self-approved
changes, typical discussion length, typical reviewer expertise, change entropy, and the num-
ber of changes without discussion. Only one degree of freedom is provided for component
complexity and churn. We use a similar allocation process for the Qt 5.1 release. Due to the
restrictive budget, we only allocate one degree of freedom for each explanatory variable in
ITK.

Lacking subject matter expertise
Size

Self−approval
Typical discussion length

Typical reviewer expertise
Change entropy

No discussion
Complexity

Churn

N  df

1201 2
1201 2
1201 2
1201 2
1201 2
1201 2
1201 2
1201 2
1201 2

0.05 0.15 0.25 0.35

Spearman ρ2    Response : Post − release defect count

Adjusted ρ2

Fig. 12 Dotplot of the Spearman multiple ρ2 of each explanatory variable and the post-release defect count
in Qt 5.0. Larger values indicate a more potential for non-monotonic relationship (RQ3)
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(RQ3-c) Model Analysis

In this section, we describe the outcome of our model analysis outlined in Fig. 3.

(MA-1) Assessment of model stability Table 9 shows that we achieve an adjusted R2 of
between 0.47 (Qt 5.1) and 0.69 (Qt 5.0). While we find that our Qt models are once again
more stable than the ITK one, it is not surprising due to the difference in sample sizes and
that we needed to spend more degrees of freedom than our budget suggests. Nonetheless, the
optimism-reduced adjusted R2 for ITK is 0.4, indicating that our ITK model still provides a
reasonably robust fit.

Since these models were built using the same dataset as RQ2, they can be compared.
We find that our expertise models of Table 9 do not outperform the participation mod-
els of Table 7 in terms of adjusted R2. In fact, the adjusted R2 of our expertise model in
ITK is lower than that of its discussion model. This indicates that the expertise variables
have not improved the unadjusted R2 by enough to offset the penalty for adding additional
explanatory variables.

(MA-2) Estimate power of explanatory variables Table 9 shows that our two expertise
explanatory variables survive our model construction preprocessing to be included in the
fit of all of our models. This suggests that expertise captures a dimension of the datasets
that is distinct. Moreover, Table 9 also shows that the number of changes lacking subject
matter expertise has a significant impact on the defect models of both studied Qt releases.
This suggests that subject matter expertise is an important dimension to consider in defect
models of large systems.

On the other hand, we find that neither expertise metric has a statistically significant
impact on the ITK defect model. The difference in behaviour between Qt and ITK is likely
due to the difference in team and system size. Table 1 shows that the Qt system is composed
of 1,337-1,339 components, with code contributions from 422-435 developers. Conversely,
the ITK system only has 218 components, with contributions from 41 developers.

(MA-3)Examine explanatory variables in relation to the post-release defect count Figure 13
shows that as the number of changes lacking subject matter expertise increases, so too does
the estimated post-release defect count. Figure 13a shows an increasing trend throughout
the spectrum of observed numbers of changes lacking subject matter expertise, albeit a
slowing trend after a count of 8. Interestingly, Fig. 13b indicates that in Qt 5.1, there is a
counter-intuitive drop in defect-proneness as the number of changes lacking subject matter
expertise increases from 0 to 1. Indeed, we find that 25 of the 200 components (13 %),
that have no changes lacking subject matter expertise, have at least one post-release defect,
while 0 of the 87 components with one change lacking subject matter expertise have any
post-release defects. There are likely confounding factors that we have not controlled for
that would explain why these components that do not lack subject matter expertise are still
defect-prone. Nonetheless, the drop in Fig. 13b has only a small net impact of -0.09 on the
estimated count of post-release defects.
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Table 9 Review expertise model statistics (RQ3)

Qt ITK

5.0 5.1 4.3

Adjusted R2 0.69 0.47 0.55

Optimism-reduced adjusted R2 0.67 0.40 0.40

Wald χ2 1,463 1,078 165

Budgeted Degrees of Freedom 80 78 8

Degrees of Freedom Spent 22 23 12

Overall Nonlinear Overall Nonlinear Overall Nonlinear

Size D.F. 4 3 2 1 1 -

χ2 110*** 76*** 10** 5* 23***

Complexity D.F. 1 - 1 - 1 -

χ2 1◦ < 1◦ < 1◦

Prior defects D.F. ‡ 2 1 1 -

χ2 9* < 1◦ 2◦

Churn D.F. 1 - 1 - 1 -

χ2 < 1◦ 1◦ < 1◦

Change entropy D.F. 2 1 2 1 1 -

χ2 8* 7** 6* 6* 1◦

Total authors D.F. ‡ 2 1 ‡

χ2 30*** 15***

Minor authors D.F. † 1 - 1 -

χ2 2◦ < 1◦

Major authors D.F. † † †

χ2

Author ownership D.F. † † †

χ2

Self-approval D.F. 2 1 1 - 1 -

χ2 22*** 1◦ < 1◦ 1◦

Hastily-reviewed D.F. † 2 1 1 -

χ2 48*** 23*** 6*

No discussion D.F. 2 1 2 1 1 -

χ2 6◦ 4* 3◦ 1◦ 23***

Typical review window D.F. † † †

χ2

Typical discussion length D.F. 4 3 2 1 1 -

χ2 26*** 24*** 32*** 21*** 2◦

Lacking subject matter expertise D.F. 2 1 4 3 1 -

χ2 80*** 70*** 34*** 22*** < 1◦
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Table 9 (continued)

Qt ITK

5.0 5.1 4.3

Typical reviewer expertise D.F. 4 3 1 - 1 -

χ2 12* 11* < 1◦ 2◦

Discarded during:
†Variable clustering analysis (|ρ| ≥ 0.7)
‡ Redundant variable analysis (R2 ≥ 0.9)

Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:
◦p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001

–Nonlinear degrees of freedom not allocated

5 Threats to Validity

In this section, we discuss the threats to the validity of our case study.

5.1 External Validity

We focus our study on three open source systems, due to the low number of systems that
satisfied our eligibility criteria for analysis. The proportion of commits that underwent
code review through Gerrit presented a major challenge. Nonetheless, additional replication
studies are needed.

5.2 Construct Validity

Our models assume that each post-release defect is of the same weight, while in reality it
may be that some post-release defects are more severe than others. Although modern Issue
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Fig. 13 The estimated count of post-release defects in a component for varying expertise metrics. The blue
line indicates the values of our model fit on the original data, while the grey area shows the 95 % confidence
interval based on models fit to 1,000 bootstrap samples
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Tracking Systems (ITS) provide a field for practitioners to denote the priority and severity
of a defect, recent work suggests that these fields are rarely accurate. For example, Herraiz
et al. (2008) argue that the severity levels offered by the Eclipse bug reporting tool do not
agree with clusters of defects that form based on the time taken to deliver a fix. Indeed,
Mockus et al. (2002) find that the recorded priority in Apache and Mozilla projects was
not related to the time taken to resolve an issue, largely because the reporters who file the
defects had far less experience than the core developers who fix them. Nonetheless, each
defect that we consider as a quality-impacting post-release defect was at least severe enough
to warrant a fix that was integrated into the strictly controlled release branches of the
studied systems.

Furthermore, our models are incomplete, i.e., we have not measured all potential dimen-
sions that impact defect proneness. Other metrics that we may have overlooked may better
explain defect proneness than code review activity does. However, we feel that our base-
line metrics are strong, having been derived from the defect prediction literature (Koru et al.
2009; Menzies et al. 2002; Graves et al. 2000; Nagappan and Ball 2005; 2007; Hassan
2009; Bird et al. 2011).

5.3 Internal Validity

We assume that a code review has been rushed if the elapsed time between the time that a
patch has been uploaded and the time that it has been approved is shorter than the amount
of time that should have been spent if the reviewer was digesting 200 lines of code per hour.
However, there are likely cases where reviewers do not start reviewing the change immedi-
ately, but rush their review on a later date. Unfortunately, since reviewers do not record the
time that they actually spent reviewing a patch, we must rely on heuristics to recover this
information. On the other hand, our heuristic is highly conservative, i.e., reviews that are
flagged as rushed are certainly rushed. Furthermore, setting the reviewing speed threshold
to 100 lines per hour had little impact on the observations derived from our models.

Since there is an inherent delay between the code review (and integration) of a change
and its appearance in a release, confounding factors could influence our results. However,
our conclusions are intuitive, i.e., lax reviewing practices could allow defects to permeate
through to the release.

6 Discussion & Related Work

In this section, we discuss the broader implications of our findings and survey the related
work with respect to code review and software quality dimensions.

6.1 Discussion

Our results of Section 4 indicate that:

RQ1) Since review coverage metrics are only significant contributors to two of the four
studied releases, there appears to be more to the relationship between code review
practices and post-release defects than coverage alone can explain.
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(RQ2) Participation is a consistent contributor to our software quality models. For all
of the studied systems, metrics that capture the length of discussion and the
speed at which the review was performed offer statistically significant amounts of
explanatory power to our models.

(RQ3) Expertise provides statistically significant explanatory power to our models of the
large Qt system. However, participation metrics tend to have a larger impact on
our models than expertise metrics do.

Thus, we conclude that optimizing integration practices for coverage, i.e., enforcing a
policy that ensures that a review has taken place for any new code change, may not be
sufficient to ensure that high quality code is shipped. Instead, software quality concerns
may be best addressed by monitoring code review participation when deciding whether
or not to integrate a code change into a codebase, making sure to involve subject matter
experts.

Furthermore, our results relating to the relative impact of review participation and exper-
tise are echoed in the recent work of Rigby et al. (2014), who (like Porter et al. (1998)) build
statistical models to study review efficiency, i.e., the amount of time that a review was open
for discussion, and review effectiveness, i.e., the number of defects detected during a review.
Rigby et al. find that an increase in review participation has a larger impact on review effec-
tiveness and efficiency than a similar increase in experience or expertise does. This is in line
with our results for defect proneness.

6.2 Code Reviews

Prior work has qualitatively analyzed the modern code review process used by large soft-
ware systems. Rigby et al. (2008) find that the Apache project adopted a broadcast-based
style of code review, where frequent reviews of small and independent changes were in jux-
taposition to the formal code inspection style prescribed by prior research, yet were still able
to deliver a high level of software quality. In more recent work, Rigby and Storey (2011) find
that open source developers that adopt the broadcast-based code review style actively avoid
discussions in reviews about opinionated and trivial patch characteristics. In our work, we
find that active participation in the code review process tends to reduce post-release counts
and improve software quality.

The identification of defects is not the sole motivation for modern code review. For
example, Rigby and Storey (2011) show that non-technical issues are a frequent motiva-
tion for the patch rejection in several open source systems. Indeed, Baysal et al. (2013) find
that review positivity, i.e., the proportion of accepted patches, is also influenced by non-
technical factors. Furthermore, a recent qualitative study at Microsoft indicates that sharing
knowledge among team members is also considered a very important motivation of modern
code review (Bacchelli and Bird 2013). Inspired by these studies, we empirically analyze
the relationship between developer investment in the code review process and software
quality.

Recent work has also shown that roughly 75 % of the issues that are found (Mäntylä
and Lassenius 2009) and fixed (Beller et al. 2014) during modern code reviews do not alter
system behaviour. Rather than pointing out pertinent issues that may lead to defects, this
large proportion of identified issues during code review aims to improve the maintainability
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of the code, with the intent of making future changes easier. Complementing their work,
we find that components that are reviewed with active reviewer involvement tend to be less
defect-prone, suggesting that these components are indeed more maintainable.

Kemerer and Paulk (2009) show that the introduction of design and code review to stu-
dent projects at the SEI leads to code that is of higher quality. By studying student projects,
Kemerer and Paulk are able to control for several confounding factors like team dynam-
ics. Rather than control for team dynamics, our study aims to complement prior work by
examining the impact of participation in the code review process of three large open source
systems.

6.3 Software Quality

There are many empirical studies that propose software metrics to predict software quality.
For example, Hassan (2009) proposes complexity metrics (e.g., the change entropy used
in our paper) that are based on the code change process instead of on the code. He shows
that the entropy of the code change process is a good indicator of defect-prone source code
files. Rahman and Devanbu (2013) built defect prediction models to compare the impact
of product and process metrics. They show that product metrics are generally less useful
than process metrics for defect prediction. Through a case study of Eclipse, Kamei et al.
(2010) also find that process metrics tend to outperform product metrics when software
quality assurance effort is considered. In this paper, our focus is on explaining the impact
that modern code review practices have on software quality, rather than predicting it. Hence,
we build models to study whether metrics that measure code review coverage, participation,
and expertise add unique information that helps to explain incidence rates of post-release
defects.

Recent work studies the relationship between source code ownership and software qual-
ity. Bird et al. (2011) find that ownership measures have a strong relationship with both
pre- and post-release defect-proneness. Matsumoto et al. (2010) show that their proposed
ownership measures (e.g., the number of developers and the code churn generated by each
developer) are also good indicators of defect-prone source code files. Rahman and Devanbu
(2011) find that lines of code that are changed to address a defect are more strongly asso-
ciated with single developer contributions, suggesting that code review is a crucial part
of software quality assurance. We find that the code ownership metrics that we adopt in
the baseline analysis of the studied systems are very powerful, contributing a statistically
significant amount of explanatory power to each of the defect models that we built.

7 Conclusions

Although code reviewing is a broadly endorsed best practice for software development,
little work has empirically evaluated the impact that properties of the modern code review
process have on software quality in large software systems. With the recent emergence of
modern code reviewing tools like Gerrit, high quality data is now becoming available to
enable such empirical studies.

The lightweight nature of modern code review processes relaxes the strict criteria of
the formal code inspections that were mandated to ensure that a basic level of review
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participation was achieved (e.g., in-person meetings and reviewer checklists). In this paper,
we quantitatively investigate three large software systems using modern code review tools
(i.e., Gerrit). We build and analyze regression models that explain the incidence of post-
release defects in the components of these systems. Specifically, we evaluate the conjecture
that:

If a large proportion of the code changes that are integrated during development are
either: (1) omitted from the code review process (low review coverage), (2) have lax
code review involvement (low review participation), or (3) do not include a subject
matter expert (low expertise), then defect-prone code will permeate through to the
released software product.

The results of our case study indicate that:

– Code review coverage metrics only contribute a significant amount of explanatory
power to two of the four defect models when we control for several metrics that are
known to be good explainers of software quality. This suggests that while code review
coverage is an important quality to attain, other properties of the code reviewing process
are likely at play.

– Discussion-related code review participation metrics contribute significant amounts
of explanatory power to the defect models of each of the studied releases. Met-
rics related to review participation should be considered when making integration
decisions.

– Expertise-related metrics that include data from the code review process also provide
significant amounts of explanatory power to defect models of the larger Qt releases.
Teams should aim to ensure that if a subject matter expert is not available to fix a
component, they should be involved in the code reviewing process.

We believe that our findings provide strong empirical evidence to support the design of
modern code integration policies that take code review coverage, participation, and expertise
into consideration. Our models suggest that such policies will lead to higher quality, less
defect-prone software.
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Appendix A: Example Scripts

In this appendix, we include Figs. 14 and 15, which show how our model construction and
analysis steps were implemented.
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Fig. 14 Example R script showing our model construction approach
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Fig. 15 Example R script showing our model analysis approach
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