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Abstract When interacting with source control management system, developers often com-
mit unrelated or loosely related code changes in a single transaction. When analyzing
version histories, such tangled changes will make all changes to all modules appear related,
possibly compromising the resulting analyses through noise and bias. In an investigation
of five open-source JAVA projects, we found between 7 % and 20 % of all bug fixes to
consist of multiple tangled changes. Using a multi-predictor approach to untangle changes,
we show that on average at least 16.6 % of all source files are incorrectly associated with
bug reports. These incorrect bug file associations seem to not significantly impact mod-
els classifying source files to have at least one bug or no bugs. But our experiments show
that untangling tangled code changes can result in more accurate regression bug prediction
models when compared to models trained and tested on tangled bug datasets—in our exper-
iments, the statistically significant accuracy improvements lies between 5 % and 200 %. We
recommend better change organization to limit the impact of tangled changes.
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1 Introduction

A large fraction of recent work in empirical software engineering is based on mining version
archives—analyzing which changes were applied to a repository, by whom, when, why, and
where. Such mined information can be used to predict related changes (Zimmermann et al.
2004), to predict future defects (Zimmermann et al. 2007; Menzies et al. 2010; Herzig et al.
2013), to analyze who should be assigned a particular task (Anvik et al. 2006; Bhattacharya
2011), to gain insights about specific projects (Li et al. 2011), or to measure the impact of
organizational structure on software quality (Nagappan et al. 2008).

Most of these studies depend on the accuracy of the mined information—accuracy that
is threatened by noise. Such noise can come from missing associations between change and
bug databases (Bird et al. 2009; Bachmann et al. 2010; Nguyen et al. 2010). One significant
source of noise, however, are tangled changes.

What is a tangled change? Assume a developer is assigned multiple tasks TA, TB ,
and TC , all with a separate purpose: TA is a bug fix, TB is a feature request, and TC

is a refactoring or code cleanup. Once all tasks are completed, the developer commits
her changes to the source control management system (SCM) to share her changes with
other developers and to start product integration. When committing her changes, she may
be disciplined and group her changes into three individual commits, each containing the
changes pertaining to each task and coming with an individual description. This sep-
aration is complicated, though; for instance, the tasks may require changes in similar
locations or overlap with other changes. Therefore, it is more likely that she will commit
all changes tangled in a single transaction, with a message such as “Fixed bug #334 in
foo.c and bar.c; new feature #776 in bar.c; qux.c refactored; general typo fixes”.
Although the commit message suggests that there are multiple tasks addressed at once,
the individual changes are merged together and cannot be tracked back to their original
task.

Such tangled changes do not cause serious trouble in development. However, they intro-
duce noise in any analysis of the corresponding version archive, thereby compromising the
accuracy of the analysis. As the tangled change fixed a bug, all files touched by it are con-
sidered as being defective in the past, even though the tangled tasks B and C are not related
to any defect. Likewise, all files will be marked as being changed together, which may now
induce a recommender to suggest changes to qux.c whenever foo.c is changed. Com-
mit messages such as “general typo fixes” point to additional minor changes all over the
code—locations that will now be related with each other as well as the tasks TA, TB , and TC .

The problem of tangled changes is not a theoretical one. In this paper, we present an
empirical study on five open-source JAVA projects to answer these questions. We manually
classified more than 7,000 change sets as being tangled or atomic. The result of this man-
ual classification shows that tangled change sets occur frequently, with up to 15 % of all
bug fixing change sets applied to the subject projects being tangled. Using an automated,
multi-predictor untangling algorithm and comparing classic bug count datasets with bug
count datasets derived after untangling tangled code changes, we show that between 6 %
and 15 % of all fixes address multiple concerns at once—they are tangled and therefore
introduce noise into any analysis of the respective change history. Considering only bug
fixes, the ratio of tangled code changes lies between 7 % and 20 %. On average, at least
16.5 % of all source files are incorrectly associated with bug reports when ignoring the exis-
tence of tangled change sets. In terms of impact, this means that between 6 % and 50 %
(harmonic mean: 17.4 %) of files originally marked as most defect prone do not belong to



Empir Software Eng (2016) 21:303–336 305

this category.1 Further, our experiments indicate that classification models predicting source
files with at least one bug are not significantly impacted by tangled changes while regres-
sion models predicting the bug likelihood of source files are significantly impacted. In our
experiments, regression models trained and tested on untangled bug datasets show a statis-
tically significant precision improvement between 5 % and 200 % (median improvement at
16.4 %).

In this paper, we present an approach to untangle changes splitting tangled change sets
into smaller change set partitions, whereby each partition contains a subset of change
operations that are related to each other, but not related to the change operations in other
partitions. The algorithm is based on static code analysis only and is fully automatic,
allowing archive miners to untangle tangled change sets and to use the created change parti-
tions instead of the original tangled change set. Our experiments on five open-source JAVA
projects show that neither data dependencies, nor distance measures, nor change couplings,
nor distances in call graphs serve as a one-size-fits-all solution. By combining these mea-
sures, however, we obtain an effective approach that untangles multiple combined changes
with a mean precision of 58 %–80 %.

2 Background

A number of researchers have classified code changes, studied the relations between code
changes and noise and bias in version archive datasets. This paper is an extended version of
a previous study published in the Proceedings of the 10th Working Conference on Mining
Software Repositories (Herzig and Zeller 2013).

2.1 Classifying Code Changes

The work presented in this paper is closely related to many research approaches that analyze
and classify code changes or development activities. In this section, we want to discuss only
the closely related studies.

Untangling changes can be seen as a code change classification problem. The untangling
algorithm classifies code changes as related or unrelated. Prior work on code classification
mainly focused on classifying code changes based on their quality (Kim et al. 2008) or on
their purpose (Hindle et al. 2008, 2009). Kim et al. (2008) developed a change classification
technique classify changes as “buggy” or “clean” with a precision of 75 % and a recall of
65 % (on average). Despite their good classification results, their approach cannot be used
to untangle code changes. Comparison of current and past code changes does not help to
determine a possible semantic difference and it would require a bias free software history.
In addition, it would only work for maintenance of existing features, not with newly added
features. Hindle et al. (2008, 2009) analyzed large change sets that touch a large number
of files to automatically classify the maintenance category of the individual changes. Their
results indicate that large change sets frequently contain architectural modifications and are
thus important for the software’s structure. In most cases, large commits were more likely to
be perfective than corrective. Mockus and Votta (2000) compared bug fixes against feature

1These findings confirm results of earlier research presented by Kawrykow and Robillard (2011), Kawrykow
(2011).
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implementing code changes and showed that bug fixes tend to be smaller than other changes.
Herzig (2012) used change genealogies (a directed graph structure modeling dependencies
between code changes) to classify code changes. He showed that bug fixing code changes
modify fewer methods and changes mostly older code while feature implementations are
based on newer code fragments. Similar findings were reported by Alam et al. (2009).

Stoerzer et al. (2006) used a change classification technique to automatically detect code
changes contributing to test failures. Later, this work was extended by Wloka et al. (2009)
to identify committable code changes that can be applied to the version archive without
causing existing tests to fail. Both approaches aim to detect change dependencies within
one revision but require test cases mapped to change operations in order to classify or
separate code changes. This will rule out the majority of change operations not covered
by any test case or for which no test case is assigned. Even for changes covered by test
cases, both approaches could be helpful to support untangling purposes; however, these
approaches on their own are not designed to untangle tangled code changes. The fact that a
partial code change does not cause any test failure has no implication on whether this par-
tial code change is part of a bigger code change or whether it is a complete atomic set of
changes.

Williams and Carver (2010) present in their systematic review many different
approaches on how to distinguish and characterize software changes. However, none
of these approaches is capable of automatically identifying and separating combined
source code changes based on their different characterization or based on semantic
difference.

2.2 Refactorings

Changes that combine refactorings with code changes applying semantic differences to a
program can be considered a sub-category of tangled changes. Thus, stripping refactorings
from code changes can be considered a special case of the untangling problem. Murphy-Hill
et al. (2009), Murphy-Hill and Black (2008) analyzed development activities to prove, or
disprove, several common assumptions about how programmers refactor. Their results show
that developers frequently do not explicitly state refactoring activities, which increases the
bias potential discussed in this paper, even further. Later, Kawrykow and Robillard inves-
tigated over 24,000 open-source change sets and found “that up to 15.5 % of a system’s
method updates were due solely to non-essential differences” (Kawrykow and Robillard
2011). We compare and discuss results presented by Kawrykow and Robillard (2011) in
more detail in Section 6.

2.3 Change Dependencies

The problem that version archives do not capture enough information about code changes
to fully describe them is not new. Robbes et al. (2007) showed that the evolutionary
information in version archives may be incomplete and of low quality. Version archives
treat software projects as a simple set of source files and sets of operations on these
files. However, these operations have different purposes and are certainly not indepen-
dent from each other, a fact not captured by version archives. As a partial solution,
Robbes et al. (2007) proposed a novel approach that automatically records all seman-
tic changes performed on a system. An untangling algorithm would clearly benefit from
such extra information that could be used to add context information for individual change
operations.
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2.4 Untangling Changes

To the best of our knowledge there exists only one other study that evaluated an untangling
algorithm similar to the algorithm presented in this paper. In his master thesis, Kawrykow
(2011) presented and evaluated a multi-heuristic untangling algorithm developed in parallel
to the approach presented in this paper. Kawrykow based his untangling algorithm on state-
ment level and ensures to return real patches that can be applied. In contrast, the approach
presented in this paper was developed in order to show the impact of tangled changes. The
untangling precision of Kawrykow’s change operation lies slightly below the precision val-
ues reported in this paper. We compare and discuss results presented by Kawrykow and
Robillard (2011) in more detail in Section 6.

2.5 Noise and Bias in Version Archive Datasets

In recent years, the discussion about noise and bias in mining datasets and their effect on
mining models increased. Lately, Kawrykow and Robillard (2011) showed that bias caused
by non-essential changes severely impacts mining models based on such data sets. Con-
sidering the combination of non-essential changes and essential changes as an untangling
problem, their results are a strong indication that unrelated code changes applied together
will have similar effects.

Dallmeier (2010) analyzed bug fix change sets of two open source projects minimizing
bug fixes to a set of changes sufficient to make regression tests pass. On average only 50 %
of the changed statements were responsible to fix the bug suggesting that these bug fixes
were tangled–the remaining 50 % of the applied code changes applied changes that were
not necessary to fix the program semantics.

The effects of bias caused by unbalanced data sets on defect prediction models were
investigated by various studies (Bird et al. 2009; Bachmann et al. 2010; Nguyen et al. 2010).
Bird et al. conclude that “bias is a critical problem that threatens both the effectiveness
of processes that rely on biased datasets to build prediction models and the generalization
of hypotheses tested on biased data” (Bird et al. 2009). Kim et al. (2011) showed in an
empirical study that the defect prediction performance decreases significantly when the data
set contains 20–35 % of both false positives and false negatives noises. The authors also
present an approach that allows automatic detection and elimination of noise instances.

Lately, Herzig et al. (2013) manually classified more than 7,000 bug reports and showed
that a significant number of bug reports do not contain bug descriptions but rather feature or
improvement requests. This leads to noise when mapping these false bug reports to source
files. The authors showed that on average 39 % of files marked as defective actually never
had a bug–were associated solely with false bug reports. This misclassification introduces
bias into heuristics automatically classifying code changes based on their associations with
issue reports.

3 Research Questions

In the introduction, we briefly discussed the potential impact of tangled change sets when
building defect prediction models. Counting the number of applied bug fixes per source file
over a set of change sets that contain at least one tangled change set combining a bug fix
with some other change (e.g. a feature implementation) over multiple source files may result
in a wrong bug count. For tangled change set, it remains unclear, which source file changed
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due to the bug fix and which one was changed in order to add the new feature. Not being
able to tell which file was changed in order to fix the bug, means to either count one bug for
all changed files or to choose (using some heuristic or random) a subset of files that will be
associated with the bug fix. Both strategies may end up with a false positive and thus might
introduce noise.

The research questions tackled by this paper are designed to determine whether tangled
changes impact bug count and bug prediction models. Bug prediction models such as the
BugCache algorithm (Kim et al. 2007) or classification models identifying the most defect
prone code areas in a product (Zimmermann et al. 2007) use the number of bugs associated
to code areas, such as source files, to support quality assurance processes. In general, there
are two kind of recommender: those that use the absolute number of bugs associated with
the code entity (regression models) and those that use a threshold value of bugs to mark
code areas as defect prone (classification models). In case that tangled changes impact such
statistical learners significantly, we should considered tangled code changes harmful. To
achieve our goal, we have to complete four basic steps, each dedicated to research questions
of lower granularity.

3.1 RQ1: How Popular are Tangled Changes?

First, we check whether tangled changes appear to be a theoretical problem or a practical one
and if tangled changes do exist. Is the fraction of tangled changes large enough to threaten
bug count models? If only one percent of all applied code changes appear to be tangled, it
is unlikely that these tangled changes can impact aggregating bug count models. Further,
we investigate how many individual tasks (blob size) make up common tangled changes.
The more tasks get committed together, the higher the potential number of modified files
and thus the higher the potential impact on bug count models ignoring tangled changes. The
higher the blob size the more difficult it might be to untangle these changes.

3.2 RQ2: Can we Untangle Tangled Changes?

Knowing that there exist tangled changes and that they might impact quality related models
is raising awareness but is no solution. There are two main strategies to deal with the issue
of tangled change sets.

Removing tangled changes and ignoring these data points in any further analysis. But
this solution makes two major assumptions. First, one must be able to detect tangled
change sets automatically; second, the fraction of tangled change sets must be small
enough such that deleting these data points does not cause the overall data set to be
compromised.

Untangling tangled changes into separate change partitions that can be individually ana-
lyzed. This strategy not only assumes that we can automatically detect but also untangle
tangled changes sets. But it makes no assumptions about the fraction of tangled changes
and thus should be the preferred option.–

3.3 RQ3: How do Tangled Changes Impact Bug Count Models?

Although, we would like to answer this research question before RQ2—if tangled changes
have no impact we do not need to untangle them—we can only measure the impact of
tangled changes once we are able to compare corresponding models against each other.
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Thus, we require two datasets; one dataset containing bug counts for code artifacts collected
without considering the issue of tangled changes, and one dataset with tangled changes
being removed. Removing tangled changes requires us to untangle them.

3.4 RQ4 How do Tangled Changes Impact Bug Prediction Models?

Even if tangled code changes impact bug count models (RQ3) it is still questionable whether
bug prediction models will be impacted as well. Changes to bug counts might be distributed
in such a way that bug prediction models might not show any significant accuracy differ-
ence. Such a scenario would imply that tangled changes are distributed equally or only
affect bug counts of already bug prone files. Such a result would also mean that we could
ignore tangled changes when building bug prediction models. Similar to RQ3 we compare
two groups of bug prediction models. One group trained and tested on tangled bug data.
The other group trained and tested on untangled bug data. In fact, we reuse the bug data
sets used to answer RQ3 and combine the bug counts with network metrics (Zimmermann
and Nagappan 2008). We use network metrics as independent variables to train classifica-
tion and regression models to predict both, tangled and untangled bug counts. Comparing
the accuracy results of both prediction model groups allows us to reason about the impact
of tangled changes on defect prediction models.

4 Experimental Setup

To answer our four research questions, we conduct four experiments described in this
section.

4.1 Measuring Bias Caused by Tangled Changes (RQ1)

We conducted an exploratory study on five open-source projects to measure how many
tangled change sets exist in real world development SCMs. Overall, we manually classi-
fied more than 7,000 individual change sets and checked whether they address multiple
(tangled) issue reports. More precisely, we classified only those change sets for which
the corresponding commit message references at least one issue report (e.g. bug report,
feature request, etc.) that had been marked as resolved. If the commit message clearly indi-
cated that the applied changes tackle more than one issue report we classified the change
set as tangled. This can either be commit messages that contain more than one issue
report reference (e.g. “Fix JRUBY-1080 and JRUBY-1247 on trunk.”) or a commit mes-
sage indicating extra work committed along the issue fix (e.g.“Fixes issue #591[. . . ]. Also
contains some formatting and cleanup.”)—mostly cleanups and refactorings. Separate ref-
erences to multiple issue reports marked as duplicate to each were considered as single
reference. For example, if bug Bi is marked as a duplicate of bug Bk and both are men-
tioned in the commit message, we increase the bug count of corresponding source files by
one.

To measure the amount of tangled changes, we conducted a two-phase manual
inspection of issue fixing change sets. The limitation to issue fixing change sets
was necessary in order to understand the reason and to learn the purpose of the
applied code changes. Without having a document describing the applied changes, it
is very hard to judge whether a code change is tangled or not, at least for a project
outsider.
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1. We pre-selected change sets that could be linked to exactly one fixed and resolved bug
report (similar to Zimmermann et al. 2007). Change sets linked to multiple bug reports,
not marked as duplicates, are considered tangled.

2. Each change set from Step 1 was manually inspected and classified as atomic or tan-
gled. During manual inspection, we considered the commit message and the actual
applied code changes. In many cases, the commit message already indicated a tangled
change set. Only if we had no doubt the change set targeted more than one issue or that
additional changes (e.g. clean-ups) were applied we classified the change set as tan-
gled. Similar, only if we had no doubt that the change set is atomic, we classified it as
atomic. Any change set that we could not strictly mark as atomic or tangled were not
classified and remained undecided. All undecided change sets are excluded from the
presented results.

4.2 Untangling Changes (RQ2)

To answer RQ2, we developed a prototype of a heuristic-based untangling algorithm that
expects an arbitrary change set as input and returns a set of change set partitions—a subset
of changes applied by the original, tangled change set. The union of all returned change set
partitions equals the original tangled change set.

In general, determining whether two code changes are unrelated is undecidable, as the
halting problem prevents prediction whether a given change has an effect on a given prob-
lem.2 Consequently, every untangling algorithm will have to rely on heuristics to present
an approximation of how to separate two or more code changes. The aim of the presented
algorithm is not to solve the untangling problem completely, but aims to verify whether
untangling code changes is feasible and to evaluate the accuracy of such an algorithm. With
a reasonable good accuracy, we may use the untangling algorithm to reduce the amount of
bias significantly. The untangling algorithm itself is described in Section 5.

In Subsection 6.1 we show that a significant proportion of change sets must be considered
as tangled. To evaluate any untangling algorithm we cannot rely on existing data. We cannot
determine whether a produced change set partition is correct or not since there is no existing
oracle for such an analysis. Additionally, we are not able to quantify the difference of the
created partitioning from an expected result.

To determine a reliable set of atomic change sets—change sets containing only those
code changes required to resolve exactly one issue—we use the manual classified atomic
change sets derived from the experiments of RQ1 (Subsection 4.1) to generate artificial
tangled change sets for which we already know the correct partitioning. As an alternative,
we could manually untangle real tangled change sets to gain knowledge about the correct
partitioning of real world tangled change sets. But manually untangling tangled change sets
requires detailed project and source code knowledge and a detailed understanding of the
intention behind all change operations applied within a change set. As project outsiders we
know too little project details to perform a manual untangling and all wrongly partitioned
tangled change sets added to the set of ground truth would bias our evaluation set.

In principal, combining atomic change sets into artificially tangled change sets is
straightforward. Nevertheless, we have to be careful which atomic change sets to tangle.

2Since it is undecidable whether a program will ever terminate under arbitrary conditions, we are, in general,
also unable to decide whether two code changes may influence each other during a possible infinite program
run.
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Combining them randomly is easy but would not simulate real tangled change sets. In gen-
eral, developers act on purpose. Thus, we assume that in most cases, developers do not
combine arbitrary changes, but changes that are close to each other (e.g. fixing two bugs in
the same file or improving a loop while fixing a bug). To simulate such relations to some
extent, we combined change sets using the following three tangling strategies:

Change close packages (pack) Using this strategy we combine only change sets that con-
tain at least two change operations touching source files that are not more than two
sub-packages apart. As an example, assume we have a set of three change sets changing
three classes identified using the full qualified name: CS1 = {com.my.f oo.intern.F1},
CS2 = {com.my.f oo.extern.F2}, and CS3 = {com.your.f oo.intern.F3}. Each class
is identified by its fully qualified name. In the example, the strategy would combine CS1
with CS2 but not CS1 nor CS2 with CS3.

Frequently changed before (coupl.) This strategy computes and uses change-coupling
rules (Zimmermann et al. 2004). Two code changes are only tangled if in history at least
two code artifacts changed by different change sets showed to be frequently changed
together.
For example, let CSi and CSj be a pair of atomic change sets and let CSi be applied

before CSj . CSi changed file Fs while CSj changed file Ft . First, we compute all
change coupling rules using the approach of Zimmermann et al. (2004) and call this set
S . The computed change coupling rules indicate how frequently Fs and Ft were changed
together before CSi was applied. We combine CSi and CSj only if S contains a file cou-
pling rule showing that Fs and Ft had been changed in at least three change sets applied
before CSi . Further, we require that in at least 70 % of change sets applied before CSi

that changes either Fs or Ft the corresponding other file were changed as well.
Consecutive changes (consec.) We combine consecutive change sets applied by the same

author (not necessarily consecutive in the SCM). Consecutive change sets are change set
that would have ended up in a tangled change set if the developer forgot to commit the
previous change set before starting a new developer maintenance task.

For technical reasons, we limited all strategies to combine only atomic change sets that lie
no more than 14 days apart. The untangling algorithm (described in Section 5) must be pro-
vided with a code base that must be compilable. Longer time periods between atomic change
sets imply higher probability that merging change sets will lead to uncompilable code. Note,
that we did not restrict change sets to be tangled on any other aspect. In particular, we also
tangled atomic changes with overlapping sets of changed source files. These tangled code
changes might be harder to untangle and might modify a shared state rather than individual
variables. However, we did not apply any restriction on how to tangle changes over sets of
files. In particular, the tangling strategies of combining files in code packages (pack) as well
as consecutive changes by the same author (consec) create tangled changes with overlapping
file sets.

Artificially tangled change sets may not necessarily represent all kinds of natural occur-
ring tangled changes. However, the strategies to combine consecutive changes and changes
modifying code entities in close proximity to each other simulate engineers that tend to
produce less change sets and compile consecutive work items into single change sets.
Verifying whether artificially tangled code changes represent naturally occurring tangled
code changes would require to solve the untangling problem first and requires detailed
knowledge about the code changes themselves.



312 Empir Software Eng (2016) 21:303–336

To evaluate the accuracy of our untangling algorithm, we generate all possible artificially
tangled change sets using all three tangling strategies described above (this may include
duplicate tangled change sets). Since we know the origin of each change operation, we can
compare the expected partitioning with the partitioning produced by the untangling algo-
rithm (see Fig. 1). We measure the difference between original and produced partitioning as
the number of change operations that were put into a “wrong” partition. For a set of tangled
change sets B, we define precision as

precision = # correctly assigned change operations

total # change operations ∈ B
As an example for precision, consider Fig. 1. In the tangled change set, we have 9 change

operations overall. Out of these, two are misclassified (the black one in the middle partition,
and the gray one in the lower partition); the other seven change operations are assigned to the
correct partition. Consequently, the precision is 7/9 = 77.7 %, implying that 2/9 = 22.2 %
of all changes need to be re-categorized in order to obtain the ground truth partitioning.

For each set of tangled change set, there exist multiple precision values. The precision
depends on which change set partition is compared against which original atomic change
set. Taking the example shown in Fig. 1, we would intuitively compare the created parti-
tions with the ground truth set in the same order as shown in Fig. 1. However, we could also
compare to created partition containing the two white pieces with the one containing the
three black pieces from ground truth and vice versa. Both comparison yield different preci-
sion values. All together there exist 3! = 6 different ways to compare created partitions with
ground truth partitions. Precision values reported in this paper correspond to the partition
association with the highest sum of Jaccard indices (Jaccard 1901). The higher the Jaccard
index the higher the similarity of the created partitions when compared the the ground truth
partition set. Thus, by maximizing the sum of Jaccard indices over a set of association per-
mutations relating partitions with atomic change sets we chose the association permutation
with the highest similarity of associated pairs. Short, we report the best precision value over
all existing association permutations.

The number of individual tasks compiled into a tangled change set, called blob size, may
vary. To check the untangling performance we generate artificial change sets of blob sizes

Ground Truth Sets Created  PartitionsUntangling Algorithm

Comparison

Fig. 1 Artificially tangled change sets are generated using manually classified atomic change sets to com-
pare created partitions and desired output. In the example, two change operations are put into a wrong
partition, and hence the success rate is 7

9 = 77.7 %
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two, three, and four (tangled change sets with a bob size larger than four are rare, see Section
6.1).

4.3 Measuring the Impact of Tangled Changes on Bug Count Models (RQ3)

To show the impact of tangled change sets on bug count models, we compare two differ-
ent bug count datasets: the original sets against untangled sets produced in the experiments
to answer RQ2 (Section 4.2). For the original reference dataset, we associate all referenced
bug reports to all source files changed by a change set, disregarding whether we marked it
tangled or not. For the untangled bug count set, we used our untangling algorithm to untan-
gle manually classified tangled change sets. If the tangled change set references bug reports
only, we assigned one bug report to each partition—since we only count the number of bugs,
it is not important which report gets assigned to which partition. For change sets referenc-
ing not only bug reports we used an automatic change purpose classification model based
on the findings of Mockus and Votta (2000) and Hindle et al. (2008, 2009) indicating that
bug fixing change sets apply less change operations when compared to feature implement-
ing change sets. Thus, we classify those partitions applying the fewest change operations as
bug fixes. Only those files that were changed in the bug fixing partitions were assigned with
one of the bug reports. In this study, we are only interested in a files bug count (the num-
ber of bug reports a file is associated to) rather than the actual association between files and
the exact bug report–referring to bug #1234 rather than #1235 makes no difference. Thus,
it suffices to assign any bug report to the file ignoring the unsolved problem of which bug
report would be the one fixed by the code change. In general, this is remains an open prob-
lem, which is out of scope of this study. Both bug count sets contain all source files, also
those that were not changed in tangled change sets, and are sorted in descending order using
the distinct number of bug reports associated with the file (see Fig. 2).

The most defect-prone file is the top element in each bug count set. Both sets contain
the same elements but in potentially different order. Although the rank correlation between
those two ordered sets can tell us how big the influence of the tangled changes is when
it comes to the actual ordering, it does not provide any insight about the most important
changes. Typically, one is only interested in investing the top x % of defect prone entities
and not their particular order. Hence, one wants to determine changes in the set of top x files.
Thus, we compare the cutoff-difference of the top x% of both file sets, which allows us
to reason about the impact of tangled change sets on models using bug counts to identify
the most defect-prone entities. Since both cutoffs are equally large (the number of source
files does not change, only their ranks), we can define the cutoff difference as the
size of the symmetric difference between the most frequently fixed files—once determined
using the original dataset and once using the untangled dataset—normalized by the number
of files in the top x% (see Fig. 2). The result is a number between zero and one where zero

Fig. 2 Computing the cutoff difference
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indicates that both cutoffs are identical and where a value of one implies two cutoffs
with an empty intersection. A low cutoff difference is desirable.

4.4 Measuring the Impact of Tangled Changes on Bug Prediction Models (RQ4)

Similar to the previous experiment, we use again two competing groups of models: bug
prediction models trained and tested on original, tangled bug data and models trained
and tested on untangled bug data (see RQ3, Section 4.3). For this set of experiments, we
used code dependency network metrics (Zimmermann and Nagappan 2008) as indepen-
dent variables. These metrics express the information flow between code entities modeled
by code dependency graphs. Zimmermann and Nagappan (2008) and others (Tosun et al.
2009; Premraj and Herzig 2011; Bird et al. 2009) showed that network code metrics have
strong bug prediction capabilities. However, the choice of metrics is secondary as the
focus of this work is to measure the impact of tangled code changes on prediction models
rather than constructing the best prediction mode possible. The list of used network met-
rics including a brief description is shown in Table 1. The set of network metrics used in
this work slightly differs from the original metric set used by Zimmermann and Nagappan
(2008). We computed the used network metrics using the R statistical software (R Devel-
opment Core Team 2010) and the igraph (Csardi and Nepusz 2006) package. Using igraph,
we could not re-implement two of the 25 original network metrics: ReachEffciency and
Eigenvector.

To measure the impact of tangled code changes on defect prediction models, we com-
pare models trained and tested on tangled bug data against models trained and tested on
untangled data. Further, we build two different kinds of models: classification models and
regression models. Classification models simply decide whether a source file will have at
least one bug or whether the source files will have no bugs. In contrast, regression mod-
els return a discrete number expressing the conditional expectation of bugs to be associated
with the source file.

For both, regression and classification models, we perform a stratified repeated holdout
setup to train and test models based on network metrics—the ratio of bug fixing change sets
in the original data set is preserved in both training and testing data sets. This makes training
and testing sets more representative by reducing sampling errors. Next, we split the train-
ing and testing sets into subsets. Each subset contains the complete set of all source files
and all metrics. The difference between both subsets lies in the values of bug counts—the
dependent variable. While one subset contains the original bug counts, noised by tangled
changes, the other subset contains bug counts that reflect bug associations after untangling.
Separating tangled and untangled dependent variables for already created training and test-
ing sets ensures that we create pairs of prediction models using the exact same training and
testing instances but using different dependent variables. We repeatedly sample the original
data sets 100 times in order to generate 100 independent training (2/3 of original dataset)
and testing (1/3 of original dataset) sets. For each cross-fold we then train the models using
six different machine learners (see Table 2).

4.4.1 Prediction Accuracy for Classification Models

We measure the prediction accuracy for classification models using precision, recall, and F-
measure for each cross-fold. To compare prediction performances for tangled and untangled
models, we then compare the median precision, recall, and F-measure values, as well as the
variance of these accuracy measures (different machine learners and different models for
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Table 1 List of code dependency network metrics

Metric name Description

Ego-network metrics (computed each for incoming, outgoing, and undirected dependencies; descriptions

adapted from Z&N):

Size # nodes connected to the ego network

Ties # directed ties corresponds to the number of edges

Pairs # ordered pairs is the maximal number of directed ties

Density % of possible ties that are actually present

WeakComp # weak components in neighborhood

nWeakComp # weak components normalized by size

TwoStepReach % nodes that are two steps away

Brokerage # pairs not directly connected. The higher this number, the more paths go through ego

nBrokerage Brokerage normalized by the number of pairs

EgoBetween % shortest paths between neighbors through ego

nEgoBetween EgoBetween normalized by the size of the ego network

Structural metrics (descriptions adapted from Z&N):

EffSize # entities that are connected to an entity minus the average number of ties

between these entities

Efficiency Normalizes the effective size of a network to the total size of the network

Constraint Measures how strongly an entity is constrained by its neighbors

Hierarchy Measures how the constraint measure is distributed across neighbors. When most

of the constraint comes from a single neighbor, the value for hierarchy is higher

Centrality metrics (computed each for incoming, outgoing, and undirected dependencies;

descriptions adapted from Z&N):

Degree # dependencies for an entity

nDegree # dependencies normalized by number of entities

Closeness Total length of the shortest paths from an entity (or to an entity) to all other entities

Reachability # entities that can be reached from a entity (or which can reach an entity)

alpha.centrality
†

Generalization of eigenvector centrality (Bonacich 1987)

Information Harmonic mean of the length of paths ending in entity

Betweenness Measure for a entity in how many shortest paths between other entities it occurs

nBetweenness Betweenness normalized by the number of entities

†Metrics not used by Z&N

individual cross-folds can vary; comparing the variances allows reasoning about the stability
of the received models).

4.4.2 Prediction Accuracy for Regression Models

Predicted values of regression models should not be considered as absolute values but
treated as indication how high the chances are that the corresponding source file is or will
be associated with bugs. The higher the predicted regression value is, the higher the chances
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Table 2 List of models used for classification experiments

Model
∗

Description

k-nearest neighbor (knn) This model finds k training instances closest in Euclidean

distance to the given test instance and predicts the class that

is the majority amongst these training instances.

Logistic regression This is a generalized linear model using a logic function and

(multinom) hence suited for binomial regression, i.e. where the outcome

class is dichotomous.

Recursive partitioning A variant of decision trees, this model can be represented as

(rpart) a binomial tree and popularly used for classification tasks.

Support vector machines This model classifies data by determining a separator that

(svmRadial) distinguishes the data with the largest margin. We used the

radial kernel for our experiments.

Tree Bagging (treebag) Another variant of decision trees, this model uses bootstrap-

ping to stabilize the decision trees.

Random forest An ensemble of decision tree classifiers. Random forests

(randomForest) grow multiple decision trees each “voting” for the class on

an instance to be classified.

∗For a fuller understanding of these models, we advise the reader to refer to specialized machine learning
texts such as by Witten and Frank (2002)

it being buggy. Thus, comparing observed and predicted values makes little sense. Instead,
we can re-use the concept of cutoff difference from Section 4.3 (RQ3).

We rank observed and predicted values in decreasing order and report the overlap of
both sets top x %—disregarding the order within these sets. We report the relative size
of the overlap as the models precision value regression precision (Fig. 3). As for
the classification models, we report the median precision values for each machine learner
and study subjects as well as a box plot showing the diversity of precision values across
cross-folds.

4.5 Study Subjects

All experiments are conducted on five open-source JAVA projects (see Table 3). We aimed to
select projects that were under active development and were developed by teams for which
at least 48 months of active history were available. We also aimed to have datasets that

Fig. 3 Computing the regression precision
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Table 3 Details of projects used during experiments

ArgoUML GWT
†

Jaxen JRuby Xstream

Lines of code 164,851 266,115 20,997 101,799 22,021

History months 150 54 114 105 90

# Developers 50 120 20 67 12

# Change Sets 16,481 5,326 1,353 11,134 1,756

†GOOGLE WEBTOOL KIT

contained a manageable number of applied bug fixes for the manual inspection phase. For
all projects, we analyzed more than 50 months of active development history. Each project
counts more than 10 active developers. The number of committed change sets ranges from
1,300 (JAXEN) to 16,000 (ARGOUML), and the number of bug fixing change sets ranges
from 105 (JAXEN) to nearly 3,000 (ARGOUML and JRUBY).

5 The Untangling Algorithm

The untangling algorithm proposed in this paper expects an arbitrary change set as input
and returns a set of change set partitions—a subset of changes applied by the original,
tangled change set. Each partition contains code changes that are related closer to changes
in the same partition than to changes contained in other partitions. Ideally, all necessary
code changes to resolve one issue (e.g. a bug fix) will be in one partition and the partition
only consists of changes for this issue. The union of all partitions equals the original change
set. Instead of mapping issues or developer tasks to all changed code artifacts of a change
set, one would assign individual issues and developer tasks to those code artifacts that were
changed by code changes contained in the corresponding change set partition.

To identify related code changes we use the same model as Herzig et al. (2013) split
each change set into a set of individual change operations that added or deleted method
calls or method definitions. Thus, each change set corresponds to a set of change operations
classified as adding or deleting a method definition or a method call .
Using an example change set that applied the code change shown in Fig. 4 we derive a set
containing two change operations. One deleting b.bar(5) and one adding A.foo(5f).
Note that there exists no change operation changing the constructor definition public C()
since the method signature keeps unchanged. All change operations are bound to those files
and line numbers in which the the definition or call was added or deleted. In our example, the

Fig. 4 Example change set printed as unified diff containing two change operations: one deleting the
method call b.bar(5) and one adding the method call A.foo(5f)
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and change operations are bound to line 6. Rename and move change operations are
treated as deletions and additions. Using this terminology, our untangling algorithm expects
a set of change operations and produces a set of sets of change operations (see Fig. 5).

For each pair of applied change operations, the algorithm has to decide whether both
change operations belong to the same partition (are related) or should be assigned to separate
partitions (are not related). To determine whether two change operations are related or not,
we have to determine the relation distance between two code changes such that the distance
between two related change operations is significant lower than the distance between two
unrelated change operations. The relation between change operations may be influence by
multiple facts. Considering data dependencies between two code changes, it seems reason-
able that two change operations changing statements reading/writing the same local variable
are very likely to belong together. But vice versa, two code changes not reading/writing the
same local variable may very well belong together because both change operations affect
consecutive lines. As a consequence, our untangling algorithm should be based on a feature
vector spanning multiple aspects describing the distances between individual change opera-
tions and should combine these distance measures to separate related from unrelated change
operations.

5.1 Confidence Voters

To combine various dependency and relation aspects between change operations, the untan-
gling framework itself does not decide which change operation are likely to be related but
asks a set of so called confidence voters (CONFVOTERS) (see Fig. 5). Each CONFVOTER

expects a pair of change operations and returns a confidence value between zero and one.

Untangling Algorithm

Distance MeasuresData DependenciesChange CouplingsCall-Graph

Tangled Change Set Change Set Partition

A

B

Fig. 5 The untangling algorithm partitions change sets using multiple, configurable aspect extracted from
source code. Gray boxes represent sets of change operations necessary to resolve one issue
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A confidence value of one represents a change operation dependency aspect that strongly
suggests to put both change operations into the same partition. Conversely, a return value of
zero indicates that the change operations are unrelated according to this voter.

CONFVOTERS can handle multiple relation dependency aspects within the untangling
framework. Each CONFVOTER represents exactly one dependency aspect. Below we
describe the set of CONFVOTERS used throughout our experiments.

FileDistance Above we discussed that change operations are bound to single
lines. This CONFVOTER returns the number of lines between the
two change-operation-lines divided by the line length of the source
code file both change operations were applied. If both change oper-
ations were applied to different files this CONFVOTER will not be
considered.

PackageDistance If both change operations were applied to different code files, this
CONFVOTER will return the number of different package name seg-
ments comparing the package names of the changed files. This
CONFVOTER will not be considered otherwise.3

CallGraph Using a static call graph derived after applying the complete change
set we identify the change operations and measure the call distance
between two call graph nodes. The call graph distance between two
change operations is defined as the sum of all edge weights of
the shortest path between both modified methods. The edge weight
between m1 and m2 is defined as one divided by the number of
method calls between m1 and m2. This voter returns the actual dis-
tance value as described. The lower the value, the more likely the two
code entities belong together and will have changed together.

ChangeCouplings The confidence value returned by this CONFVOTER is based on the
concept of change couplings as described by Zimmermann et al.
(2004). The CONFVOTER computes frequently occurring sets of
code artifacts that were changed within the same change set. The
more frequent two files changed together, the more likely it is
that both files are required to be changed together. The confidence
value returned by this CONFVOTER indicates the probability that the
change pattern will occur whenever one of the patterns components
change.

DataDependency Returns a value of one if both changes read or write the same vari-
able(s); returns zero otherwise. This relates to any JAVA variable
(local, class, or static) and is derived using a static, intra-procedural
analysis.

We will discuss in Subsection 5.2 how to combine the confidence values of different
CONFVOTERS.

3This CONFVOTERS is slightly penalized by the artificial blob generation strategy pack creating blobs by
combining changes to files based on directory distance (see Subsection 4.2). However, we favored a more
realistic distribution of changes over total fairness across all CONFVOTERS.
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5.2 Using Multilevel Graph Partitioning

Our untangling algorithm has to iterate over pairs of change operations and needs to deter-
mine the likelihood that these two change operations are related and thus should belong
to the same change set partition. Although we do not partition graphs, we reuse the basic
concepts of a general multilevel graph-partitioning algorithm proposed by Karypis and
Kumar (1995a, b, 1998). We use a triangle partition matrix to represent existing untangling
partitions and the confidence values indicating how confident we are that two correspond-
ing partitions belong together. We will start with the finest granular partitioning and merge
those partitions with the highest merge confidence value. After each partition merge we
delete two partitions and add one new partition representing the partition union of the
two deleted partition. Thus, in each partition merge iteration, we reduce the dimension of
our triangle partition matrix by one. We also ensure that we always combine those par-
titions that are most likely related to each other. The algorithm performs the following
steps:

1. Build anm×m triangle partition matrixM containing one row and one column for each
change set partition. Start with the finest granular partitioning of the original change
set—one partition for each change operation.

2. For each matrix cell [Pi, Pj ] with i < j ≤ m of M, we compute a con-
fidence value indicating the likelihood that the partitions Pi and Pj are related
and should be unified (see Subsection 5.1 for details on how to compute these
confidence values). The confidence value for matrix cell [Pi, Pj ] equals the
confidence value for the partition pair (Pj , Pi). Figure 6 shows this step in
detail.

3. Determine the pair (Ps, Pt ) of partitions with the highest confidence value and
with s �= t . We then delete the two rows and two columns corresponding to Ps

and Pt and add one column and one row for the new partition Pm+1, which con-
tains the union of Ps and Pt . Thus, we combine those partitions most likely being
related.

4. Compute confidence values between Pm+1 and all remaining partitions withinM. For
the presented results, we took the maximum of all confidence values between change
operations stemming from different partitions:

Conf (Px, Py) = Max{Conf (ci, cj ) | ci ∈ Px ∧ cj ∈ Py}.
The intention to use the maximum is that two partitions can be related but having very
few properties in common.

Without determining a stopping criterion, this algorithm would run until only one parti-
tion is left. Our algorithm can handle two different stopping strategies: if a fixed number of
partitions is reached (e.g. knowing the partitions from parsing the commit message) or if no

for each pair of
change operations values to single score

aggregated value 

Distance Matrix

Fig. 6 The procedure to build the initial triangle matrix used within the modified multilevel graph
partitioning algorithm
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cell withinM exceeds a specified threshold. In this paper, the algorithm is used to untangle
manually classified tangled change sets, only. For each of these change sets we know the
number of desired partitions. Thus, for all experiments we stopped the untangling algorithm
once the desired number of partitions was created.

So far, the untangling algorithm represents a partitioning framework used to merge
change operations. This part is general and makes no assumptions about code or any other
aspect that estimates the relation between individual operations. It is important to notice
that the partitions do not overlap and that change operations must belong to exactly one
partition.

5.3 Remarks on Untangling Result

The output of the untangling algorithm is a change set partitioning. As discusses above,
each created partition contains code changes that are related closer to changes in the
same partition than to changes contained in other partitions. However, the algorithm does
not suggest the purpose of an individual partition. Thus, it is not possible to determine
which partition contains those code changes more likely to apply a bug fix or serving
any other purpose. Deciding which partition applies a bug fix is based on heuristics.
Findings of Mockus and Votta (2000) and Hindle et al. (2008, 2009) indicate that bug
fixing change sets apply less change operations when compared to feature implement-
ing change sets (see Subsection 4.3). Further, the untangling algorithm does not allow
to judge which bug fix was applied in which partition. However, this knowledge is not
required. The bug prediction models investigated in this study only count the number
of distinct bug reports associated with a source file rather than considering the individ-
ual association pair Thus, the exact mapping between source files and bug reports is
decisive.

6 Results

In this section, we present the results of our four experimental setups as presented in Section
4 and briefly discuss the results of this study with similar results provided by Kawrykow
and Robillard (2011), Kawrykow (2011).

6.1 Tangled Changes (RQ1)

The results of the manual classification process are shown in Table 4. In total, we manually
classified more than 7,000 change sets. Row one of the table contains the total number of
change sets that could be associated with any issue report (not only bug reports). Rows
two and three are dedicated to the total number of change sets that could be associated to
any issue report and had been manually classified as tangled or atomic, respectively. The
numbers show that for the vast majority of change sets we were unable to decide whether
the applied change set should be considered atomic or tangled. Thus, the presented bias
results in this paper must be seen as lower bound. If only one of the undecided change sets
is actually tangled, the bias figures would only be increased. The last three rows in the table
contain the same information as the upper three rows but dedicated to bug fixing change
sets.

The numbers presented in Table 4 provide evidence that the problem of tan-
gled change sets is not a theoretical one. Between 6 % and 12 % (harmonic mean:
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Table 4 Proportion of tangled and atomic fix change sets. For those change sets not being classified as
tangled nor as atomic, we could not decide whether the change set is tangled or atomic

ArgoUML GWT
†

Jaxen JRuby Xstream

Number of issue fixes

Total 2,944 809 160 2,977 312

Tangled 170 (5.8 %) 68 (8.4 %) 13 (8.1 %) 276 (9.3 %) 37 (11.9 %)

Atomic 125 (4.3 %) 22 (2.7 %) 32 (20.0 %) 200 (6.7 %) 40 (12.8 %)

Number of bug fixes

Total 343 316 31 2,209 148

Tangled 68 (19.8 %) 47 (14.9 %) 5 (16.1 %) 156 (7.1 %) 22 (14.9 %)

Atomic 116 (33.8 %) 27 (8.5 %) 26 (83.9 %) 64 (1.9 %) 18 (12.2 %)

†GOOGLE WEBTOOL KIT

8.2 %) of all change sets containing references to issue reports are tangled and
therefore introduce noise and bias into any analysis of the respective change his-
tory. The fraction of tangled, bug fixing change sets is even higher: between 7 %
and 20 % of all bug fixing change sets are tangled (harmonic mean: 11.9 %). This
result is consistent with previous reports on non-essential changes by Kawrykow
and Robillard (2011), Kawrykow (2011). In their study on 10 open-source projects,
the authors reported that 8.4 % of inspected code changes seem to be tangled, also
showing a maximal portion of tangled changes around 20 % for the Spring project.

ArgoUML GWT Jaxen

JRuby Xstream Combined
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Fig. 7 Tangled change sets discovered during manual inspection having a specific blob size
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Figure 7 shows the blob size of classified tangled change sets. The fast majority (73 %)
of manually inspected, tangled change sets have a blob size two. Change sets of blob size
four or above are rare. 89 % of all tangled change sets showed a blob size below four.

The reasons for tangled code changes are manifold and not very well documented. From
manual inspection and discussions with software engineers, there seem to be two main rea-
sons for tangled code changes. Primarily, the separation of individual development activities
into separate change sets is not always possible or practical. Many bug fixes include code
improvements or depend on other bug fixes, without tackling the same underlying issue.
Fixing a defect by rewriting an entire method or function may by nature leave to a fixed
bug report and a resolved improvement request. In such a case, separating both changes is
simply not possible. In other cases, such as fixing a bug while working on the same code
area, it is not practical for the engineer to separate both code changes, especially since the
engineer has no benefit from doing so. Which leads to the second main reason for tangled
code changes: the lack of benefit for the engineer and the laziness of humans. Being under
pressure to deliver productive code and to fix code defects, software development engineers
tend to work as effective as possible, especially if reward systems do not acknowledge or
rewards good practices. Usually, engineers are paid and rewarded for shipping new features
or fixing severe issues. Sticking to engineering principles or following software develop-
ment processes is usually not strictly enforced nor rewarded. Thus, the engineer has no
benefit to follow these processes. For the engineer, the fact that the source control manage-
ment system may be populated with tangled code changes has no effect on his work nor his
rewards. Tangled changes are of primary concern for data analysts examining code changes
after the fact, but not for the engineer applying the code change. Different development pro-
cesses might prevent or cause even more tangled code changes, e.g. code reviews or highly
distributed development activities. However, these effects have not been studies widely and
remain speculative.

6.2 Untangling Changes (RQ2)

For RQ2 we evaluate the proposed untangling algorithm and measure its untangling pre-
cision using artificially tangled change sets. Table 5 contains the number of generated
artificially tangled change sets grouped by blob size and combination strategy (see Subsec-
tion 4.2). We could only generate a very small set of artificially tangled change sets for the
JAXEN project. So we excluded JAXEN from this experiment.

The last three rows of the table contain the sum of artificially tangled change sets
generated using different strategies but across different blob sizes. The number of artifi-
cially tangled change sets following the change coupling strategy (coupl.) is low except for
JRUBY. The ability to generate artificially tangled change sets from project history depends
on the number of atomic change sets, on the number of files touched by these atomic change
sets, on the change frequency within the project, and on the number of existing change
couplings.

The precision of our algorithm to untangle these artificially tangled change sets is shown
in Table 6. The presented precision values are grouped by project, blob size, and tangling
strategy. Rows stating y as strategy contain the average precision over all strategies for the
corresponding blob size. The column x shows the average precision across different projects
for the corresponding blob generation strategy. The cells (x, y) contain the average precision
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Table 5 Number of artificially generated tangled change sets sorted by blob size and generation strategy

Blob size Strategy ARGOUML GWT† JRUBY XSTREAM

2 pack. 40 110 1,430 32

coupl. 0 20 590 0

consec. 180 30 3,364 30

3 pack. 13 40 17.3k 133

coupl. 0 0 19.2k 0

consec. 673 70 11.4k 53

4 pack. 0 40 1.2M 83

coupl. 0 0 81.9k 0

consec. 743 70 695.3k 25

� pack. 53 190 1.2M 248

coupl. 0 20 101.1k 0

consec. 1,596 170 710.0k 108

†GOOGLE WEBTOOL KIT

across all projects and blob generation strategies for the corresponding blob size. Table cells
containing no precision values correspond to the combinations of blob sizes and generation
strategies for which we were unable to produce any artificially tangled change sets. In many
cases we were not able to produce any artificial blobs based on historic coupling (coupl.).
This is mainly due to the restrictions we applied for this type of artificially tangling: we only
allow changes that are not more than three change sets apart to be tangled and the historic
coupling must show a confidence value of 0.7 or above (see Subsection 4.2). Relaxing these
restrictions would allow us to produce more artificial tangled change sets, but would also
reduce the quality of these artificially tangled change sets and raise concerns about whether
these sets remain representative.

The algorithm performs well on all subject projects. Projects with higher number of
generated artificially tangled change sets also show higher untangling precision. The

Table 6 Precision rates of the untangling algorithm sorted by blob size and generation strategy

†GWT = GOOGLE WEBTOOL KIT
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more artificially tangled change sets, the higher the number of instances to train our
linear regression aggregation model. Overall, the precision values across projects show
similar ranges and most importantly similar trends in relation to the chosen blob size.

For all projects, the precision is negatively correlated with the used blob size. The more
change operations to be included and the more partitions to be generated, the higher the
likelihood of misclassification. Figure 7b shows that tangled change sets with a blob size of
two are most common (73 %). The results in Table 6 show that for the most popular cases
our untangling algorithm achieves precision values between 0.67 and 0.93—the harmonic
mean lies at 79 %. When the blob size is increased from two to three the precision drops
by approximately 14 %, across all projects and from 80 % to 66 % on average. Increasing
the blob size further has a negative impact on precision. For each project and blob size, the
precision values across different strategies differ at most by 0.09 and on average by 0.04.

These results are consistent with untangling results reported by Kawrykow and Robillard
(2011), Kawrykow (2011). The authors reported an untangling overall precision of 80 % and
an overall recall value of 24%. The similarity is not surprising as both untangling algorithms
follow very similar strategies, although developed in parallel without knowledge of each
other. However, the influence of blob-size on the precision of untangling is not reported by
Kawrykow and Robillard (2011), Kawrykow (2011).

Table 7 Relative untangling file error
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Table 6 shows that the precision values for artificially tangled change sets are
stable across tangling strategies. For each project and blob size, the precision val-
ues across different strategies differ at most by 0.09 and on average by 0.04.

The above-discussed results show that the proposed untangling algorithm is capable of
separating change operation applied to fix different code bugs with a reasonable precision.
However, the results do not indicate the fraction of source files that would be assigned
a false positive bug fix count. To show this impact, we measured the relative file error
during untangling tangled change sets. For each untangled change set, we lift the level
for computing precision values to the file level measuring the number source code files
correctly or falsely associated with an untangling result partition. Thus, the relative file
error reports the proportion of source files that would be falsely assigned to a developer
maintenance task. The relative file error is a value between 0 and 1, where a value of
0 is desirable as it corresponds to cases in which no file was wrongly associated to any
developer maintenance task. Table 7 shows the results for all subject projects grouped
by tangling strategy and blob size. Similar to Table 6, the y column contains the aver-
age error rates over all strategies: x rows contain the average error rates across different
projects for the corresponding blob generation strategy. The cells (x, y) contain the aver-
age error rates across all projects and blob generation strategies for the corresponding blob
size.

Overall, the average file error rates over all projects and strategies (red colored
cells) correspond to the overall precision values in Table 6. For a blob size of two,
the average relative file error rate lies at 0.19. Consequently, untangling change sets of
blob size two reduces the average number of source files falsely associated to devel-
opment tasks by at least 81 %.4 For a blob size of four, the average reduction rate
of falsely associated files drops to 55 %. Like untangling precision, the relative file
error is positively correlated with the blob size. The higher the blob size the lower
the untangling precision and the higher the relative file error rates. Although the rel-
ative file error rates raise to a value of 0.5 for blobs of size four, we still reduce
the number of source files falsely associated to development tasks by at least 50 %.

This result cannot be compared to the closely related study by Kawrykow and
Robillard (2011), Kawrykow (2011). In their study, the authors did not investigate the
impact of tangled or non-essential changes on bug counts for source files or other
codeentities.

6.3 The Impact of Tangled Changes (RQ3)

Remember that we untangled only those change sets that we manually classified as tan-
gled change sets (see Table 4). The fraction of tangled change sets lies between 6 % and

4Since we are analyzing artificially tangled change sets only, the file mapping error rate without untangling
lies at 100 %. Having a error rate after untangling of 19 %, the result is a reduction rate of 100 % − 19 % =
81 %.
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Fig. 8 The cutoff differences caused by real tangled change sets

15 %. Figure 8 shows that untangling these few tangled change sets already has a significant
impact on the set of source files marked as most defect prone. The impact of untan-
gling lies between 6 % and 50 % (harmonic mean: 17.4 %). The cutoff difference
and the fraction of tangled change sets is correlated. JRUBY has the lowest fraction of
blobs and shows the smallest cutoff differences. JAXEN has the highest tangled change
set fraction and shows the highest cutoff differences. We can summarize that untan-
gling tangled change sets impacts bug counting models and thus are very likely to
impact more complex quality models or even bug prediction models trained on these
data sets.

We further observed that in total between 10 % and 38 % and on average
(harmonic mean) 16.6 % of all source files we assigned different bug counts
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when untangling tangled change sets. Between 1.5 % and 7.1 % of the files
originally associated with bug reports had no bug count after untangling.

6.4 The Impact on Bug Prediction Models (RQ4)

6.4.1 Impact on Classification Models

Figure 9 compares precision, recall, and F-measure values for all models (across different
machine learners and across different cross-folds). The black line in the middle of each
box plot indicates the median value of the corresponding distribution. Larger median values
indicate better performance on the metric set for the project based on the respective evalua-
tion measure. Note that the red colored horizontal lines connecting the medians across the
box plots do not have any statistical meaning—they have been added to aid visual compari-
son of the performance of the metrics set. An upward horizontal line between two box plots
indicates that the metrics set on the right performs better than the one of the left and vice
versa.

The results in Figure 9 show no significant difference. As discussed in Subsection 6.2,
only a small fraction of source files (1.5 %–7.1 %) originally associated with bug reports
had no bug count after untangling. All other changes to bug counts, i.e. files with a reduced
number of associated bugs but still at least one association, cannot impact classification
models using a threshold of one bug to decide between positive and negative instances. As
the results show, these changes have no impact on the classification performances.

The R package caret (Kuhn 2011) allows computing the importance of individual
metrics using the filterVarImp function. The function computes a ROC curve by first
applying a series of cutoffs for each metric and then computing the sensitivity and
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Fig. 9 Comparing classification model results for tangled and untangled data sets
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specificity for each cutoff point. The importance of the metric is then determined by
computing the area under the ROC curve. We compared the top-10 most influential met-
rics for models trained and tested on tangled and untangled bug datasets and compared
these top-10 most influential metrics between tangled and untangled models. Similar
to the prediction performance results, there exists no difference in the most influential
metrics. Only GOOGLE WEBTOOL KIT and XSTREAM showed one out of ten metrics to
be different—a difference that might also be due to splitting and cross-fold differences.

6.4.2 Impact on Regression Models

As described in Subsection 4.3, we measured the impact of tangled changes using
regression precisionx—the intersection between the top x% of files with the most
observed and predicted number of bugs, respectively. The higher the overlap of these two
subsets, the higher the precision of the regression models in predicting the files that are the
likeliest ones to contain bugs.

The results of this experimental setup are shown in Fig. 10. The box plots in the fig-
ure compare regression precisionx values for x values 5 %, 10 %, 15 % and 20 %
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Fig. 10 Comparing regression model results for tangled and untangled data sets.
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as well as the distribution of prediction results across the used machine learners (see Sub-
section 4.3). The black line in the middle of each box plot indicates the median value of
the corresponding distribution (also shown in Table 8). Larger median values indicate bet-
ter performance on the corresponding bug data set (tangled or untangled) for the project.
Note that the red colored horizontal lines connecting the medians across the box plots do
not have any statistical meaning—they have been added to aid visual comparison of the
performance of the metrics set. An upward horizontal line between two box plots indicates
that the prediction models trained and tested on untangled bug data perform better than the
ones trained and tested on tangled bug data and vice versa. Additionally, we performed a
non-parametric statistical test (Kruskal-Wallis) to statistically compare the results. Table 8
contains the median values of the prediction models and the relative improvement when
comparing models based on untangled bug data with models based on tangled bug data. A
positive relative improvement value in Table 8 reflects a better result for untangled predic-
tion models (corresponding upward red horizontal line in box plots). Column x in Table 8
contains the median precision improvement across different projects for the corresponding
cutoff size. Row y contains the median precision values for individual software projects
across all cutoff values.

Both, Table 8 and Fig. 10 show that regression models trained and tested on untan-
gled bug data perform better than models based on tangled bug data. Except for the
top 5 % regression precision for JRUBY and XSTREAM untangling tangled code
changes improves the prediction accuracy of regression models—the prediction accuracy
for regression precision0.05 on JRUBY and XSTREAM is zero for both cases. The
prediction accuracy improvement seems to be unrelated to project size of the number of tan-
gled changes. XSTREAM, the project with the highest fraction of tangled changes, shows a
high improvement rate (30 %), while GOOGLE WEBTOOL KIT, the project with the second
lowest relative number of tangled change shows the highest improvement. Interestingly, the
impact of tangled changes on regression models for JRUBY is the lowest. This is surprising
as the relative number of tangled changes with higher blob sizes (see Fig. 7) for JRUBY is
higher than for any other project. This indicates that the number and size of tangled changes
is secondary. We suspect the relative number of tangled changes combining bug fixes with

Table 8 Median regression prediction model precision values and the relative improvement due to
untangling tangled changes
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other change types to be dominant. Such tangled changes are likely to cause heuristics com-
monly used to map bug reports with source files to create false associations and thus to
impact bug counts.

Across all projects, the prediction accuracy improvement is highest (median value)
for cutoff values of 10 %. Overall, we measured a prediction accuracy improvement
of 16.4 % (median value) across all projects and cutoffs. A non- parametric statistical
test (Kruskal-Wallis) showed that the difference in regression accuracy is statisti-
cally significant (p < 0.05), except for top 5 % JRUBY and top 5 % XSTREAM.

7 Threats to Validity

Empirical studies of this kind have threats to their validity. We identified the following
noteworthy threats.

The change set classification process involved manual code change inspection. The clas-
sification process was conducted by software engineers not familiar with the internal details
of the individual projects. Thus, it is not unlikely that the manual selection process or the
pre-filtering process misclassified change sets. Please note that we ignored all change sets
that could not we were unable to classify behind doubt. The main reason for this is the fact
that the persons conducting the manual classification were project outsiders and thus were
lacking expertise to make a decisive call. Due to the indecisiveness about many commits, the
presented numbers of tangled code changes should be considered a lower bound. Increas-
ing the precision and corpus of manual classified change sets could impact the number and
the quality of generated artificially tangled change sets and thus the untangling results in
general.

The selected study subjects may not be representative and untangling results for
other projects may differ. Choosing CONFVOTERS differently may impact untangling
results.

The untangling results presented in this paper are based on artificially tangled change
sets derived using the ground truth set which contains issue fixing change sets, only. Thus, it
might be that the ground truth set is not representative for all types of change sets. The pro-
cess of constructing these artificially tangled change sets may not simulate real life tangled
change sets caused by developers.

The results in this paper are produced using our untangling algorithm using a stopping
criteria that assumes the number of partitions to create is known. The number of partitions
to be creates may not be known in all cases. We can use hints in the commit messages
to approximate that value. The petter the development process and the more detailed the
commit messages the more accurate such a heuristic might be. Please note that using the
alternative stopping criteria using CONFVOTER thresholds would be much more realistic.
However, please also note that the purpose of this paper is not to build a fully automatic
and reliable process of untangling processes but rather assesses the impact of tangled code
changes on empirical version archive datasets and potential applications that consume such
data.
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Our analysis tool relies on the Eclipse Java Development Tools (JDT) and thus can only
be applied to JAVA projects. Hence, we cannot generalize our findings for projects written
in other programming languages.

Internally our untangling algorithm uses the partial program analysis tool (Dagenais and
Hendren 2008) by Dagenais and Hendren. The validity of our results depends on the validity
of the used approach.

8 Conclusion and Consequences

Tangled changes introduce noise in change data sets: In this paper, we found that up to
20 % of all bug fixes to consist of multiple tangled changes. This noise can severely
impact bug counting models and bug prediction models. When predicting bug-prone files,
on average, at least 16.6 % of all source files are incorrectly associated with bug reports
due to tangled changes. Although, in our experiments tangled changes showed no signif-
icant impact on classification models classifying source files as buggy or not buggy, bug
prediction regression models trained and tested on untangled bug datasets showed a sta-
tistically significant precision improvement of, on average, 16.4 %. These numbers are
the main contribution of this paper, and they demand for action, at least when studying
bug prediction regression models. The reason why simpler bug classification models seem
to be unaffected by tangled changes is quite simple. Only between 1.5 % and 7.1 % of
code files were falsely associated with any bug. Only for those cases, the binary decision
about the defect-proneness of the corresponding source file changes and makes a differ-
ence for the classification model. The fast majority of different bug counts (on average
16.6 % of source files) affect a bug count larger than one and thus make no difference
for any classification model, but certainly changes the dependent variable for regression
models.

What can one do to prevent this? Tangled changes are natural and from a developer’s per-
spective, tangled changes make sense and should not be forbidden. Refactoring a method
name while fixing a bug caused by a misleading method name should be considered as part
of the bug fix. However, we think that the extend of tangled changes could be reduced. Pre-
venting tangled code changes requires to change software engineers’ behavior. Changing
human behavior is a difficult task and often requires changes to the overall development pro-
cess, e.g. rewarding good development practices. Although there exists no clear evidence,
making code reviews mandatory might help to minimize unnecessary tangled changes.
Reviewers might be offended by large unrelated code changes, which may lead to longer
review processes. However, more research is needed to investigate such dependencies and
the driving factors of tangled code changes. In the meantime, version archive miners should
be aware of tangled changes and their impact. Untangling algorithms similar to the algo-
rithm proposed in this paper may help to untangle changes automatically and thus to reduce
the impact of tangled changes on mining models.

In our future work, we will continue to improve the quality of history data sets. With
respect to untangling changes, our work will focus on the following topics:

Automated untangling. The automated algorithms sketched in this paper can still
be refined. To evaluate their effectiveness, though, one
would require substantial ground truth—i.e., thousands of
manually untangled changes.
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Impact of change organization. Our results suggest that extensive organization of soft-
ware changes through branches and change sets would
lead to less tangling and consequently, better prediction.
We shall run further case studies to explore the benefits
of such organization.

To learn more about our work, visit our Web site:
http://softevo.org/untangling changes
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