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Abstract On the one hand, design patterns are solutions to recurring design problems,
aimed at increasing reuse, flexibility, and maintainability. However, much prior work found
that some patterns, such as the Observer and Singleton, are correlated with large code struc-
tures and argued that they are more likely to be fault prone. On the other hand, anti-patterns
describe poor solutions to design and implementation problems that highlight weaknesses
in the design of software systems and that may slow down maintenance and increase the risk
of faults. They have been found to negatively impact change and fault-proneness. Classes
participating in design patterns and anti-patterns have dependencies with other classes, e.g.,
static and co-change dependencies, that may propagate problems to other classes. We inves-
tigate the impact of such dependencies in object-oriented systems by studying the relations
between the presence of static and co-change dependencies and (1) the fault-proneness, (2)
the types of changes, and (3) the types of faults that these classes exhibit. We analyze six
design patterns and 10 anti-patterns in 39 releases of ArgoUML, JFreeChart, and XercesJ,
and investigate to what extent classes having dependencies with design patterns or anti-
patterns have higher odds of faults than other classes. We show that in almost all releases of
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the three systems, classes having dependencies with anti-patterns are more fault-prone than
others while this is not always true for classes with dependencies with design patterns. We
also observe that structural changes are the most common changes impacting classes hav-
ing dependencies with anti-patterns. Software developers could use this knowledge about
the impact of design pattern and anti-pattern dependencies to better focus their testing and
reviewing activities towards the most risky classes and to propagate changes adequately.

Keywords Anti-patterns · Design patterns · Faults proneness · Change proneness · Static
relationships · Co-change

1 Introduction

Developers use design patterns as recurring design solutions for object-oriented design
problems that can improve several quality attributes of their classes, such as reusability,
flexibility, and ultimately maintainability. Yet, recent work, e.g., (Aversano et al. 2009;
Gatrell and Counsell 2011; Vokac 2004), has shown that some design pattern classes, such
as the ones participating in the Composite design pattern, were more fault-prone than non
design-pattern classes in some systems. Similarly, developers may introduce poor solu-
tions when solving recurring design problems in their object-oriented systems. These poor
solutions are documented in the form of anti-patterns (Webster 1995). Having instances of
anti-patterns in a design negatively impacts code quality (Moha et al. 2010) because anti-
pattern classes are more change and fault-prone than others (Khomh et al. 2012). However,
no previous work (Aversano et al. 2009; Gatrell and Counsell 2011; Khomh et al. 2012;
Moha et al. 2010) analyzed the impact on faults of the presence of instances of design
patterns and anti-patterns on the rest of the classes of a system through their static and co-
change dependencies. Static dependencies between classes in software systems are typically
use, association, aggregation, and composition relationships (Guéhéneuc and Albin-Amiot
2004). Co-change dependencies (or temporal dependencies) exist when developers, while
changing a class, also must change other classes. It is not clear how classes having static
or co-change dependencies with instances of anti-patterns and design-patterns are linked
with faults.

Conjecture Therefore, our conjecture is that classes having dependencies with anti-pattern
and design-pattern classes could be involved in fault fixing changes more often than other
classes in a system and that faults could propagate from anti-pattern and design-pattern
classes to other classes through their dependencies.

Context We showed in our previous work (Jaafar et al. 2013a, b) that more attention should
be given to static and co-change dependencies between classes participating in instances of
anti-patterns and other classes. The finding by Marinescu and Marinescu (2011), that clients
of classes with Identity Disharmonies are more fault-prone than others, also supported our
work. In this paper, we replicate our study on 10 more releases of ArgoUML, JFreeChart,
and XercesJ to assess the generalizability of our results. We also present new results about
the impacts of static and co-change dependencies between classes participating in instances
of design patterns and other classes. Another contribution with respect to previous work is a
qualitative analysis of these impacts by reporting the variety of changes and faults occurring
in affected classes.
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Thus, we extend our previous work (Jaafar et al. 2013b) with the following three con-
tributions. First, we extend our approach to analyze the fault proneness of classes having
dependencies with design patterns. Second, we provide more details about our findings by
presenting a fine-grain analysis and some actionable recommendations. Third, we investi-
gate the kind of changes and faults impacting classes having dependencies with anti-pattern
or design-pattern classes. We study structural changes (Gerlec and Hericko 2012), which
are defined as changes that transform an object-oriented constituent (e.g., class, method,
field) as types of changes. We study data fault, interface fault, logic fault, description fault,
and syntax fault as types of faults.1

Research Questions We analyze the static and co-change dependencies between anti-
pattern and design-pattern classes and other classes in two ways. Quantitatively, we
investigate whether classes having static relationships (use, association, aggregation, and
composition relationships) with instances of anti-patterns or design patterns are more fault-
prone than others. Then, we investigate whether classes co-changing with anti-pattern or
design pattern classes are more fault-prone than others. Qualitatively, we analyze the types
of changes and faults impacting these classes. Consequently, we formulate the following
research questions:

– RQ1: Are classes that have static relationships with anti-pattern classes more fault-
prone than other classes?

– RQ2: Are classes that co-change with anti-pattern classes more fault-prone than other
classes?

– RQ3: Are classes that have static relationships with design pattern classes more fault-
prone than other classes?

– RQ4: Are classes that co-change with design pattern classes more fault-prone than
other classes?

– RQ5: What types of changes and faults are propagated by static and co-change
dependencies?

We perform the study on 11 releases of ArgoUML, 9 of JFreeChart, and 19 of XercesJ,
and across the changes and fault-fixing changes occurring between these releases. We detect
the instances of six design patterns and 10 anti-patterns in these systems to investigate the
relations between anti-pattern and design pattern classes and other classes through their
static and co-change dependencies while considering changes and faults.

The major results of this paper are that (1) static dependencies with anti-pattern classes
do have a negative impact on changes and faults and (2) co-change dependencies with anti-
pattern and design pattern classes have similar negative impacts on changes and faults. We
also discuss the types of changes and faults that affect classes with dependencies on anti-
pattern and design pattern classes. Classes with dependencies on anti-pattern classes are
more subject to logic faults and structural changes. Classes with dependencies on design
pattern classes are more subject to code addition changes and syntax faults.

Finally, we show the benefits of considering static and co-change dependencies with anti-
pattern and design pattern classes to improve the precision of the prediction of class fault-
proneness, along with other discussions on the usefulness and limitations of our study and
of its results. We show that considering anti-pattern dependencies improve the prediction of
fault-prone classes.

1http://standards.ieee.org/findstds/standard/1044-2009.html

http://standards.ieee.org/findstds/standard/1044-2009.html
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Organization Section 2 presents our methodology. Section 3 describes the empirical study.
Section 4 presents the study results while Section 5 analyzes the results along with threats
to their validity. Then, Section 6 relates our study with previous work. Finally, Section 7
concludes the study and outlines future work.

2 Methodology

This section describes our methodology as well as the steps necessary to extract and analyze
the data required to perform our empirical study. Given an object-oriented program, we use
DECOR (Moha et al. 2010) to extract instances of anti-patterns and DeMIMA (Guéhéneuc
and Antoniol 2008) to extract instances of design patterns. As we focused on the depen-
dencies of these patterns, we use PADL2 to extract static relationships and Macocha (Jaafar
et al. 2011) to detect co-changes. Finally, we analyze the impact of anti-pattern and design-
pattern dependencies on fault-proneness and we investigate the types of changes and faults
propagated by such dependencies.

2.1 Identifying Anti-pattern Classes

We use DECOR (Moha et al. 2010) to specify and detect instances of anti-patterns. DECOR
is based on a thorough domain analysis of anti-patterns defined in the literature and pro-
vides a domain-specific language to specify code smells and anti-patterns and methods to
detect their occurrences automatically. DECOR uses rules to describes anti-patterns, with
different types of properties: lexical (i.e., class names), structural (i.e., classes declaring
public static variables), internal (i.e., number of methods), and the relation among proper-
ties (i.e., use, association, aggregation, and composition relationships among classes). Using
this language, DECOR describes several anti-patterns.

In the following, we consider the instances of 10 anti-patterns from Brown et al. (1998)
described in Table 1. We choose these anti-patterns because they are representative of prob-
lems with data, complexity, size, and the features provided by classes (Khomh et al. 2012).
We also use these anti-patterns because they have been used and analyzed in previous work
(Khomh et al. 2012; Moha et al. 2010). Definitions and specifications are beyond the scope
of this paper and are available elsewhere (Romano et al. 2012; Brown et al. 1998).

We preprocess inconsistent anti-patterns (due to eventual errors and imprecisions of the
detection tools) to eliminate false positives. We manually validate each occurrence of the
anti-patterns detected by DECOR to verify the correctness of the analyzed set. This prepro-
cessing reduces the risks that we would answer our research questions incorrectly. Yet, our
results could still be affected by the presence of false negatives, i.e., by a low recall exhib-
ited by the detection approach. However, the sample of detected instances of anti-patterns
is large enough to support our conclusions.

2.2 Identifying Design Pattern Classes

We use DeMIMA (Guéhéneuc and Antoniol 2008) to specify and detect instances of design
patterns. DeMIMA ensures the traceability between design patterns and source code by first
identifying idioms related to binary class relationships to obtain an idiomatic model of the

2http://www.ptidej.net/tool/

http://www.ptidej.net/tool/
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Table 1 List of anti-patterns considered in this study

Anti-patterns Specifications

AntiSingleton A class that provides mutable class variables,

which consequently could be used as global variables

Blob A class that is too large and not cohesive enough, that monopolizes most

of the processing, makes most of the decisions,

and is associated with data classes

ClassDataShouldBePrivate A class that exposes its fields,

thus violating the principle of encapsulation

ComplexClass A class that has (at least) one large and complex method,

in terms of cyclomatic complexity and LOCs

LongMethod A class that has a method that is overly long in term of LOCs

LongParameterList A class that has (at least) one method with an excessively long list of parameters

with respect to the average number of parameters per method in the system

MessageChain A class that uses a long chain of method

invocations to realize (at least) one of its features

RefusedParentBequest A class that redefines one or more

inherited methods using empty bodies thus breaking polymorphism

SpeculativeGenerality A class that is defined as abstract

but that has very few children, which do not make use of its methods

SwissArmyKnife A class whose methods can be divided in disjunct

sets of many methods, thus providing many different unrelated functionalities

source code. Then, using this model, it can identify solutions to design patterns and generate
a design model of the system. Thus, DeMIMA makes it possible to recover two types of
design choices from source code: idioms pertaining to the relationships among classes and
design motifs characterizing the organization of the classes.

Design patterns were originally grouped into the categories: creational patterns, struc-
tural patterns, and behavioral patterns (Gamma et al. 1994). Creational patterns describe cre-
ation mechanisms to create objects in a suitable manner. They make code functionalities in-
dependents of how objects are created, composed, and represented. Structural patterns ease
the design by offering simple ways to relate classes. They are concerned with how classes
and objects are composed to form larger structures. Finally, behavioral patterns describe
common communication models among objects. They are concerned with algorithms and
the assignment of responsibilities among objects to increase software system flexibility.

In the following, we focus on the instances of six design patterns belonging to these three
categories: two creational patterns (Factory method and Prototype), two structural patterns
(Composite and Decorator), and two behavioral patterns (Command and Observer), which
are defined briefly in Table 2 while complete definitions are available elsewhere (Guéhéneuc
and Antoniol 2008; Gamma et al. 1994). In addition to belonging to different categories, we
chose these six design patterns because a preliminary study indicated that we could identify
enough of their instances to carry out our study. Indeed, some other design patterns do not
exist in the releases of the analyzed systems. Future work could replicate our study on other
design patterns if enough of their instances can be identified.
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Table 2 List of design patterns considered in this study

Design patterns Specifications

Command An object encapsulates all the information needed to call a method

This information includes the method name, the object and values for

the method parameters

Composite Compose objects into tree structures to represent whole-part hierarchies.

Composite lets clients treat individual objects and compositions of objects uniformly

Decorator Extend the functionality of a certain object statically,

or in some cases at run-time, independently of other instances of the same class

Factory method Define an interface for creating an object,

but let the classes that implement the interface decide which class to instantiate

Observer An object, called the subject, maintains a list of its dependents, called observers,

and notifies them automatically of any state changes, usually by calling one of

their methods

Prototype Allows an object to create customized objects

without knowing their class or any details of how to create them

2.3 Identifying Anti-patterns and Design-Pattern Static Relationships

DeMIMA depends on a set of formalizations for unidirectional binary class relationships
(Guéhéneuc and Albin-Amiot 2004). The formalizations define the relationships in terms of
four language-independent properties that are derivable from static and dynamic analyses
of systems: exclusivity, type of message receiver, lifetime, and multiplicity. Thus, we also
use DeMIMA to detect the relationships among classes (including anti-pattern classes).

We use the open-source Ptidej tool suite3 to identify anti-pattern and design pattern
classes as well as static relationships among classes. The Ptidej tool suite implements
DECOR and DeMIMA and uses the PADL (Guéhéneuc and Antoniol 2008) meta-model. It
parses the source code of systems to build models that include all of the constituents found
in any object-oriented system: class, interface, member class and interface, method, field,
inheritance and binary-class relationships.

First of all, we identify all the instances of the anti-patterns and design patterns of interest
in the different analyzed systems. Then, we detect the dependencies of the classes in these
instances with the rest of the classes. Thus, a class A having dependencies with two classes
B and C, which belong to an instance of an anti-pattern or design pattern, is considered as
having a dependency with the anti-pattern or design pattern.

2.4 Identifying Anti-pattern and Design-Pattern Co-changes

We use Macocha (Jaafar et al. 2011) to mine software repositories and identify classes
that are co-changing with instances of the anti-patterns or design patterns of interest.
In Macocha, a change contains several attributes: the changed class names, the dates of
changes, the developers having committed the changes. Macocha takes as input a CVS/SVN
change log. First, it calculates the duration of different change periods using the k-nearest

3https://bitbucket.org/yann-gael/ptidej-5/overview

https://bitbucket.org/yann-gael/ptidej-5/overview
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neighbor algorithm (Dasarathy 1991). Second, it groups changes in change periods. Third,
it creates a profile that describes the evolution of each class in each change period.
Fourth, it uses these profiles to compute the stability of the classes and, then, to identify
co-changed classes.

Similar to Aversano et al. (2007), we assume that a class C co-changes with an instance
of a design pattern or an anti-pattern X, if C co-changes with at least one class participating
in X. We also assume that a class S has static relationships with a design pattern or an anti-
pattern instance A, if S has use, association, aggregation, or composition relationships with
at least one class participating in A.

2.5 Identifying Faults in Classes

Fault-proneness refers to whether a class underwent at least one fault fix in the system life
cycle. Fault fixes are documented in bug reports that describe different types of problems
in a system. They are usually posted in issue-tracking systems, i.e., Bugzilla for the three
studied systems, by users and developers to warn their community about pending issues with
their functionalities; issues in these systems deal with different types of change requests:
fixing faults, restructuring, and so on.

We parse the CVS/SVN change logs of our subject systems and apply the heuristics by
Sliwerski et al. (2005) to identify fault fix locations and changes: we parse commit log
messages using a Perl script and extract bug IDs and specific keywords, such as “fixed”
or “bug” to identify fault-related commits from which we extract the list of files that were
changed to fix the faults. Then, we use the commit log messages of the identified faults to
categorize them as data fault, interface fault, logic fault, description fault, and syntax fault.

3 Study Definition Design

This section describes the design of our empirical study. We detail the approach and the
analyzed object systems in the study. Then, we discuss our research questions and the
analysis method.

The goal of our study is to assess whether classes having static or co-change dependen-
cies with anti-pattern or design pattern classes have a higher likelihood than other classes
to be involved in changes and faults. The quality focus is the improvement of maintain-
ability and the reduction of maintenance effort by detecting and analyzing the impacts of
anti-patterns and design patterns on faults and changes. The context of our study is both the
comprehension and the maintenance of systems.

3.1 Object Systems

We apply our study on three Java systems: ArgoUML,4 JFreeChart,5 and XercesJ.6 We use
these systems because they are open source, are of different domains, span several years and
versions, and have between hundreds and thousands of classes. Table 3 summarizes some
statistics about these systems.

4http://ArgoUML.tigris.org
5http://www.jfree.org
6http://xerces.apache.org/xerces-j

http://ArgoUML.tigris.org
http://www.jfree.org
http://xerces.apache.org/xerces-j
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Table 3 Descriptive statistics of the object systems

ArgoUML JFreeChart XercesJ

# of classes 3,325 1,615 1,191

# of snapshots 4,480 2,010 159,196

# of releases 11 9 19

SLOC average 240,762 181,895 206,291

# of AntiSingleton 3 38 24

# of Blob 100 49 12

# of ClassDataShouldBePrivate 51 3 6

# of ComplexClass 158 52 7

# of LongMethod 336 75 7

# of LongParameterList 281 76 4

# of MessageChains 162 59 8

# of RefusedParentBequest 123 5 7

# of SpeculativeGenerality 22 3 29

# of SwissArmyKnife 13 26 29

# of Command 126 118 72

# of Composite 154 202 46

# of Decorator 48 36 29

# of Factory method 39 43 19

# of Observer 24 26 7

# of Prototype 38 29 16

ArgoUML is a UML diagramming system in Java and released under the open-source
BSD License. For our study, we extracted a total number of 4,480 snapshots in the time
interval between September 27th, 2008 and December 15th, 2011.

JFreeChart is a Java open-source framework to create charts. For our study, we consid-
ered an interval of observation ranging from June 15th, 2007 (release 1.0.6) to November
20th, 2009 (release 1.0.13α) in which we extracted 2,010 snapshots.

XercesJ is a collection of software libraries to manipulate XML documents. It is devel-
oped in Java and managed by the Apache Foundation. For our analysis, we extracted a total
number of 159,196 snapshots from release 1.0.4 to release 2.9.0 in the time interval between
October 14th, 2003 and November 23th, 2006.

Tables 4 and 5 show the proportions of co-changing classes and static relationships
among classes participating in the anti-patterns and design patterns considered in this
study. They show that the chosen systems are relevant for the study because some
classes of these systems do co-change and have static relationships with anti-pattern and
design-pattern classes.

3.2 Research Questions

We break down our study into three steps: first, we investigate whether classes co-changing
or having static relationships (use, association, aggregation, and composition relationships)
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Table 4 Proportion of the anti-pattern dependencies (CC: co-change dependencies of anti-pattern classes
with other classes; SR: anti-pattern static relationships)

Anti-patterns Systems # of CC # of SR

AntiSingleton ArgoUML 13 152

JFreeChart 20 201

XercesJ 18 188

Blob ArgoUML 51 304

JFreeChart 36 164

XercesJ 24 93

ClassDataShouldBePrivate ArgoUML 4 167

JFreeChart 0 82

XercesJ 0 113

ComplexClass ArgoUML 2 192

JFreeChart 0 146

XercesJ 0 96

LongMethod ArgoUML 42 282

JFreeChart 51 314

XercesJ 0 266

LongParameterList ArgoUML 12 344

JFreeChart 0 276

XercesJ 0 309

MessageChains ArgoUML 48 244

JFreeChart 8 196

XercesJ 16 183

RefusedParentBequest ArgoUML 47 326

JFreeChart 6 183

XercesJ 25 93

SpeculativeGenerality ArgoUML 13 128

JFreeChart 4 139

XercesJ 8 201

SwissArmyKnife ArgoUML 20 69

JFreeChart 9 142

XercesJ 18 108

with anti-pattern classes are more fault-prone than other classes in the three analyzed
systems:

– For RQ1: Are classes that have static relationships with anti-pattern classes more fault-
prone than other classes? We test the following null hypothesis:

– HRQ10 : The proportions of faults carried by classes having static relationships
with instances of anti-patterns and other classes are the same. If we reject
the null hypothesis HRQ10 , it means that the proportions of faults carried by
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Table 5 Proportion of the design-pattern dependencies (CC: co-change dependencies of design-pattern
classes with other classes; SR: design-pattern static relationships)

Design patterns Systems # of CC # of SR

Command ArgoUML 63 269

JFreeChart 25 226

XercesJ 22 165

Composite ArgoUML 81 254

JFreeChart 66 144

XercesJ 34 89

Decorator ArgoUML 16 123

JFreeChart 14 184

XercesJ 10 86

Factory method ArgoUML 13 58

JFreeChart 15 37

XercesJ 9 26

Observer ArgoUML 42 69

JFreeChart 48 64

XercesJ 29 35

Prototype ArgoUML 12 39

JFreeChart 14 27

XercesJ 8 28

classes having static relationships with anti-patterns and faults carried by other
classes in the analyzed systems are not the same.

– For RQ2: Are classes that co-change with anti-pattern classes more fault-prone than
other classes? We test the following null hypotheses:

– HRQ20 : The proportions of faults involving classes having co-change depen-
dencies with instances of anti-pattern and other classes are the same. If we
reject the null hypothesis HRQ20 , the proportion of faults carried by classes co-
changing with anti-patterns is not the same as the proportion of faults carried
by classes not co-changing with anti-patterns.

Second, we investigate whether classes co-changing or having static relationships with
instances of design patterns are more fault-prone than other classes.

– For RQ3: Are classes that have static relationships with design pattern classes more
fault-prone than other classes? We test the following null hypothesis:

– HRQ30 : The proportions of faults carried by classes having static relationships
with instances of design patterns and other classes are the same. If we reject
the null hypothesis HRQ30 , the proportions of faults carried by classes having
static relationships with design patterns and faults carried by other classes are
not the same.
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– For RQ4: Are classes that co-change with design pattern classes more fault-prone than
other classes? We test the following null hypothesis:

– HRQ40 : The proportions of faults involving classes having co-change depen-
dencies with instances of design patterns and other classes are the same. If we
reject the null hypothesis HRQ40 , the proportion of faults carried by classes
co-changing with design patterns is not the same as that of other classes.

Third, we conduct a qualitative study to explore the types of changes and faults carried
by classes having dependencies with instances of anti-patterns or design patterns. Thus, we
answer the following research question:

– For RQ5: What types of changes and faults are propagated by static and co-
change dependencies? We study whether classes having dependencies with instances
of anti-patterns or design patterns undergo specific structural changes (Gerlec and
Hericko 2012) (addition/removal/change of/to attributes, addition/removal of methods,
or changes to the methods’ signatures) than non-structural changes, i.e., adding/dele-
ting/changing lines without changing the structure of the classes. We also study whether
such classes have specific types of faults (data faults, interface faults, logic faults,
description faults, and syntax faults).

3.3 Analysis Method

We perform the analyses reported in Section 4 using the R statistical environment.7 We use
Fisher’s exact test (Sheskin 2007) because it is a significance test that is considered to be
more appropriate for sparse and skewed samples of data than other statistical tests, such as
the log likelihood ratio or Pearson’s Chi-Squared test (Pedersen 1996). Indeed, this test is
useful for categorical data that results from classifying objects in two different groups. In
our study, we examine the significance of the relation between the occurrence of a static or
co-change dependency on anti-pattern or design pattern class(es) and the risk of fault.

We also compute the odds ratio (Sheskin 2007) that indicates the likelihood for an
event to occur. The odds ratio shows the strength of association between a predictor and
the response of interest. Indeed, its advantage is that it is invariable across case control,
follow-up, and cross-sectional studies and, thus, can be used to directly compare findings
of different study designs. Also, in the case of our study, the odds ratio can be computed
directly from the regression coefficients of logistic regressions. Finally, it is a good estima-
tor of risk ratio if the analyzed phenomena is rare and the cases and controls are randomly
selected from the population (Rothman et al. 2004). The odds ratio is defined as the ratio
of the odds p of an event occurring in one sample, i.e., the odds that classes having static
relationships with anti-patterns are identified as fault-prone to the odds q of the same event
occurring in the other sample, i.e., the odds that the rest of classes are identified as fault-
prone. Thus, if the probabilities of the event in each of the groups are p (faulty classes for
example) and q (not faulty classes), then the odds ratio is: OR = p/(1−p)

q/(1−q)
. An odds ratio

greater than 1 indicates that the event is more likely in the first sample, while an odds ratio
less than 1 indicates that it is more likely in the second sample.

7http://www.r-project.org

http://www.r-project.org
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4 Study Results

In this section, we answer each research question by reporting the empirical results and
some typical examples and other observations. Tables 6, 7, 8, and 9 summarize our findings
in term of fault-proneness.

4.1 RQ1: Are Classes that have Static Relationships with Anti-Pattern Classes
more Fault-prone than other Classes?

Table 6 reports for ArgoUML, JFreeChart, and XercesJ the numbers of (1) classes having
static relationships with anti-pattern classes and identified as faulty; (2) classes having static
relationships with anti-pattern classes and identified as clean (i.e., not faulty); (3) classes
without static relationships with anti-pattern classes and identified as faulty; and (4) classes
without static relationships with anti-pattern classes and identified as clean. Considering all
classes in the different analyzed systems, we also separate the results in Table 6 between

Table 6 Contingency table and Fisher test results for ArgoUML, JFreeChart, and XercesJ for classes having
static relationships with anti-patterns (SR: static relationship, AP: anti-pattern)

System Faulty Clean

Classes having SR with AP ArgoUML 1,062 1,003

Classes having SR with AP and not being part of anti-pattern ArgoUML 402 600

Class not having SR with AP ArgoUML 681 579

Class not having SR with AP and not being part of anti-pattern ArgoUML 205 456

Fisher’s test in ArgoUML 0.9336

Odd-ratio in ArgoUML 0.9002625

Fisher’s test for classes not being part of anti-patterns in ArgoUML 9.241e − 05

Odd-ratio for classes not being part of anti-patterns in ArgoUML 1.489969

Classes having SR with AP JFreeChart 432 226

Classes having SR with AP and not being part of anti-pattern JFreeChart 281 103

Class not having SR with AP JFreeChart 310 647

Class not having SR with AP and not being part of anti-pattern JFreeChart 140 342

Fisher’s test in JFreeChart 2.2e − 16

Odd-ratio in JFreeChart 3.98613

Fisher’s test for classes not being part of anti-patterns in JFreeChart 2.2e − 16

Odd-ratio for classes not being part of anti-patterns in JFreeChart 6.647686

Classes having SR with AP XercesJ 445 121

Classes having SR with AP and not being part of anti-patterns XercesJ 262 75

Class not having SR with AP XercesJ 126 499

Class not having SR with AP and not being part of anti-patterns XercesJ 81 279

Fisher’s test in XercesJ 2.2e − 16

Odd-ratio in XercesJ 14.5249

Fisher’s test for classes not being part of anti-patterns in XercesJ 2.2e − 16

Odd-ratio for classes not being part of anti-patterns in XercesJ 11.97391
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Table 7 Contingency table and Fisher test results for ArgoUML, JFreeChart and XercesJ for classes that
co-changed with anti-patterns (AP: anti-pattern)

System Faulty Clean

Classes co-changing with AP ArgoUML 241 102

Classes co-changing with AP and and not being part of anti-patterns ArgoUML 120 59

Class not co-changing with AP ArgoUML 1,502 1,480

Classes not co-changing with AP and and not being part of anti-patterns ArgoUML 1,023 852

Fisher’s test in ArgoUML 1.005e − 12

Odd-ratio in ArgoUML 2.32758

Fisher’s test for classes not being part of anti-patterns in ArgoUML 0.0007733

Odd-ratio for classes not being part of anti-patterns in ArgoUML 1.693495

Classes co-changing with AP JFreeChart 68 26

Classes co-changing with AP and and not being part of anti-patterns JFreeChart 33 10

Class not co-changing with AP JFreeChart 674 847

Classes not co-changing with AP and and not being part of anti-patterns JFreeChart 357 482

Fisher’s test in JFreeChart 8.556e − 08

Odd-ratio in JFreeChart 3.284357

Fisher’s test for classes not being part of anti-patterns in JFreeChart 9.158e − 06

Odd-ratio for classes not being part of anti-patterns in JFreeChart 4.4483

Classes co-changing with AP XercesJ 37 21

Classes co-changing with AP and and not being part of anti-patterns XercesJ 20 12

Class not co-changing with AP XercesJ 534 599

Classes not co-changing with AP and and not being part of anti-patterns XercesJ 343 401

Fisher’s test in XercesJ 0.009414

Odd-ratio in XercesJ 1.975234

Fisher’s test for classes not being part of anti-patterns in XercesJ 0.02696

Odd-ratio for classes not being part of anti-patterns in XercesJ 2.160657

anti-pattern classes and other classes. We perform this separation because it is difficult to tell
whether the observations made are caused by the fact that the classes belong to anti-patterns
or by the fact that they depend upon classes belonging to anti-patterns.

The results of the Fisher’s exact tests and odds ratios, when testing HRQ10 , are significant
for all three systems. For the three systems, the p-values are less then 0.05 and the likelihood
that a class with static relationship(s) with some anti-pattern class(es) experiences a fault
(i.e., odds ratio) is about two times higher than the likelihood that other classes have faults.

We can thus positively answer RQ1 as follows: classes having static relationships
with anti-pattern classes are significantly more fault-prone than other classes.

Other Observations When we take as input the list of code and change metrics described in
Section 2 and study whether there is a statistically significant difference on fault proneness
between a model based only on these metrics and a model based on these metrics plus anti-
pattern static relationships, we found that it is impossible to definitely exclude the possibility
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Table 8 Contingency table and Fisher test results for ArgoUML, JFreeChart and XercesJ for classes having
static relationships with design patterns (SR: static relationship, DP: design pattern)

System Faulty Clean

Classes having SR with DP ArgoUML 1,174 1,217

Classes having SR with DP and not being part of design patterns ArgoUML 165 198

Classes not having SR with DP ArgoUML 569 365

Classes not having SR with DP and not being part of design patterns ArgoUML 326 263

Fisher’s test in ArgoUML 1

Odd-ratio in ArgoUML 0.618911

Fisher’s test for classes not being part of design patterns in ArgoUML 0.9988

Odd-ratio for classes not being part of design patterns in ArgoUML 0.6725882

Classes having SR with DP JFreeChart 539 440

Classes having SR with DP and not being part of design patterns JFreeChart 145 132

Classes not having SR with DP JFreeChart 203 433

Classes not having SR with DP and not being part of design patterns JFreeChart 258 228

Fisher’s test in JFreeChart 2.2e − 16

Odd-ratio in JFreeChart 2.611343

Fisher’s test for classes not being part of design patterns in JFreeChart 0.6074

Odd-ratio for classes not being part of design patterns in JFreeChart 0.9707799

Classes having SR with DP XercesJ 341 407

Classes having SR with DP and not being part of design patterns XercesJ 16 18

Classes not having SR with DP XercesJ 230 213

Classes not having SR with DP and not being part of design patterns XercesJ 156 148

Fisher’s test in XercesJ 0.9851

Odd-ratio in XercesJ 0.7760848

Fisher’s for classes not being part of design patterns in XercesJ 0.7426

Odd-ratio for classes not being part of design patterns in XercesJ 0.8437318

that there is no statistically significant differences in fault prediction between classes hav-
ing static relationships with anti-patterns and other classes with similar complexity, change
history, and code size. However, if we group the results according to distinct anti-patterns
(see Table 14 in Section 5), we observe that classes having static relationships with classes
belonging to the Blob, ComplexClass, and SwissArmyKnife anti-patterns are significantly
more fault prone than other classes with similar complexity, change history, and code size.
We provide more details and discussions in Section 5.

4.2 RQ2: Are Classes that Co-change with Anti-pattern Classes more Fault-prone
than other Classes?

In the three systems, we detect co-change situations for the majority of anti-pattern
classes. In ArgoUML, we observe that classes participating in the Blob, LongMethod, and
RefusedParentBequest anti-patterns co-change with other classes more than the rest of the
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Table 9 Contingency table and Fisher test results for ArgoUML, JFreeChart and XercesJ for classes co-
changing with design patterns (DP: design pattern)

System Faulty Clean

Classes co-changing with DP ArgoUML 139 93

Classes co-changing with DP and not being part of design patterns ArgoUML 62 24

Classes not co-changing with DP ArgoUML 1,604 1,489

Classes not co-changing with DP and not being part of design patterns ArgoUML 1,308 1,056

Fisher’s test in ArgoUML 0.01049

Odd-ratio in ArgoUML 1.387325

Fisher’s test for classes not being part of design patterns in ArgoUML 0.001258

Odd-ratio for classes not being part of design patterns in ArgoUML 2.085003

Classes co-changing with DP JFreeChart 61 72

Classes co-changing with DP and not being part of design patterns JFreeChart 49 52

Classes not co-changing with DP JFreeChart 681 801

Classes not co-changing with DP and not being part of design patterns JFreeChart 410 662

Fisher’s test in JFreeChart 0.543

Odd-ratio in JFreeChart 0.9965146

Fisher’s test for classes not being part of design patterns in JFreeChart 0.02861

Odd-ratio for classes not being part of design patterns in JFreeChart 1.520868

Classes co-changing with DP XercesJ 34 34

Classes co-changing with DP and not being part of design patterns XercesJ 19 16

Classes not co-changing with DP XercesJ 537 586

Classes not co-changing with DP and not being part of design patterns XercesJ 301 486

Fisher’s test in XercesJ 0.4106

Odd-ratio in XercesJ 1.091165

Fisher’s test for classes not being part of design patterns in XercesJ 0.0435

Odd-ratio for classes not being part of design patterns in XercesJ 1.915825

anti-pattern classes. During the evolution of JFreeChart and XercesJ, classes participating
in the Blob anti-pattern co-change the most with other classes.

Table 7 presents a contingency table for ArgoUML, JFreeChart, and XercesJ that reports
the number of (1) classes co-changing with anti-pattern classes and identified as faulty;
(2) classes co-changing with anti-pattern classes and identified as clean; (3) other classes
identified as faulty; and (4) other classes identified as clean.

The results of the Fisher’s exact tests and odds ratios when testing HRQ20 are significant.
For all three systems, the p-values are less than 0.05 and the likelihood that a class co-
changing with some anti-pattern class(es) experiences a fault is about two and half times
higher than the likelihood that other classes experience faults.

We can also positively answerRQ2 as follows: classes co-changing with anti-pattern
classes are significantly more fault-prone than other classes.

Other Observations In ArgoUML, we detect some instances of the ClassDataShouldBePri-
vate, ComplexClass, and LongParameterList anti-patterns whose classes co-change with
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other classes. However, we do not detect any class belonging in these anti-patterns which are
co-changing with other classes in JFreeChart and XercesJ. We do not detect, also, classes
that are co-changing with LongMethod classes in XercesJ.

Finally, we observe that classes that are co-changing with anti-pattern classes are sig-
nificantly more fault-prone than other classes with similar complexity, change history, and
code size (see Table 14 in Section 5).

4.3 RQ3: Are Classes that have Static Relationships with Design Pattern Classes
more Fault-prone than other Classes?

Table 8 reports, for ArgoUML, JFreeChart, and XercesJ, the numbers of (1) classes hav-
ing static relationships with design patterns and identified as faulty; (2) classes having
static relationships with design patterns and identified as clean; (3) classes without static
relationships with design patterns and identified as faulty; and (4) classes without static rela-
tionships with design patterns and identified as clean. Considering all classes in the different
analyzed systems, we also also separate the results in Table 6 between classes in design pat-
tern instances and the rest of classes. We perform this distinction because it is difficult to
tell whether our observations are caused by the fact that the classes themselves belong to
design pattern instances or by the fact that they depend upon design pattern instances.

The results of the Fisher’s exact tests and odds ratios when testing HRQ30 are not signifi-
cant for all three systems for classes having static relationships with design patterns and not
being part of design patterns. For the three systems, the p-values are more then 0.05: the
likelihood that a class with static relationship(s) with design pattern class(es) experiences a
fault is almost equal to the likelihood of other classes to experience faults.

We therefore answerRQ3 as follows: classes having static relationships with design-
pattern classes are not significantly more fault-prone than other classes.

Other Observations Design pattern classes can have static relationships with anti-pattern
classes. We believe that developers attempt to overcome the negative impact of anti-patterns
by relating their classes with specific design pattern classes. This method can reduce the
impacts of anti-patterns on software systems so that, in the long term, developers could
eliminate these anti-patterns. Future studies should analyze the benefits and disadvantages
of such design choices on changes and faults.

For example, in XercesJ v1.0.4, class org.apache.xerces.validators.com-
mon.XMLValidator.java is an excessively complex class. The developers attempt
to provide services for all possible uses of this class. In their attempt, they added a large
number of interface signatures to meet all possible needs. The developers may not have
a clear abstraction or purpose for XMLValidator.java, which is represented by the
lack of focus in its interface. Thus, this class is a SwissArmyKnife. This anti-pattern is
problematic because the complicated interface is difficult for other developers to understand
and it obscures the class intent and use. It also makes it difficult to debug, document, and
maintain the class.

We observe that this class has a use-relationship with class org.apache.xer-
ces.validators.dtd.DTDImporter.java, which belongs to the Command
design pattern. Using Command classes makes it easier to construct general components
that delegate or execute method calls at a time of their choosing without the need to
know the owner of the method or the method parameters. Thus, a developer may use
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XMLValidator.java through the related Command, which encapsulates all the needed
information, to overcome the SwissArmyKnife.

4.4 RQ4: Are Classes that Co-change with Design Pattern Classes more Fault-prone
than other Classes?

Table 9 presents a contingency table for ArgoUML, JFreeChart, and XercesJ that reports
the number of (1) classes co-changing with design patterns and identified as faulty; (2)
classes co-changing with design patterns and identified as clean; (3) other classes identified
as faulty; and (4) other classes identified as clean.

The results of the Fisher’s exact tests and odds ratios when testing HRQ40 are significant
for the set of classes co-changing with design patterns and not being part of design patterns.
For all three systems, the p-values are less than 0.05 and the likelihood that a class co-
changing with some design-pattern class(es) experiences a fault is about one and half times
higher than that for other classes.

We consequently positively answer RQ4 as follows: classes co-changing with
design-pattern class(es) are more fault-prone than other classes.

Other Observations In the three systems, we observe that if co-change dependencies with
design patterns are not properly maintained, they can lead to faults in the systems. For
example, class chart.Title.java belongs to an Observer design pattern in JFreeChart.
This class is co-changing with class chart.event.ChartChangeEvent.java. In
the Bugzilla database of JFreeChart, the bug ID7728 reported that “a problem occurs
when JFreeChart is created with constructor parameter title set to null [...] As a result,
no ChartChangeEvent is sent when title is modified”. These results could help providing
developers with lists of classes that they should carefully consider to ensure proper change
propagation and to increase maintainability.

The findings of our analysis also indicate a relation between classes having dependencies
with design patterns and their fault-proneness during the evolution of systems. This connec-
tion was expected from previous work, such as (Vokac 2004; Gatrell and Counsell 2011).
However, design-pattern static relationships did not improve the precision of a fault predic-
tion model based on complexity metrics and change metrics. We will discuss this point with
more explanations in Section 5.

We detect co-change situations for all studied design patterns. Particularly, we observe
that Composite and Observer classes co-changed with other classes more than classes in
the other instances of the analyzed design patterns. The specifications and uses of these
two design patterns promote co-change dependencies between subjects and observers and
composite and components, respectively. The Observer design pattern defines an object,
called the subject, that maintains a list of its dependents, called observers, and notifies them
automatically of any state changes, usually by calling one of their methods. Class chart-
.Title.java belongs to an Observer design pattern in JFreeChart and co-changes with
the class chart.event.ChartChangeEvent.java. The composite class maintains
a collection of components. Typically, composite methods are implemented by iterating over
that collection and invoking the appropriate method for each Component in the collection,

8http://sourceforge.net/p/jfreechart/bugs/772/

http://sourceforge.net/p/jfreechart/bugs/772/
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as in ArgoUML for CrNodeInsideElement.java (a composite class) that co-changes
with WizAssocComposite.java

4.5 RQ5: What Types of Changes and Faults are Propagated by Static and Co-change
Dependencies?

To determine the types of changes and faults that are propagated by dependencies on
anti-patterns and design patterns, we mine software repositories, such as change logs and
Bugzilla. We query the SVN of each studied system using diff, which is a tool to com-
pare files and generate a list of differences. We record the lines of code that have been
added, deleted, or changed, as reported by diff. We identified the type of change by ana-
lyzing this list of differences and the log-messages in the different commits manually. We
also investigate the types of faults by analyzing the messages logs and the corresponding
comments in Bugzilla. This method is simple to implement because it is easy to extract the
deltas from a version control system, such SVN. Then, we report the types of changes and
faults propagating through dependencies on anti-patterns and design patterns.

Table 10 reports for ArgoUML, JFreeChart, and XercesJ, the most frequent (more than
50 % of the cases) types of changes for classes having dependencies with anti-patterns.
We observe that the majority of classes having dependencies with anti-patterns share struc-
tural changes. In fact, classes having dependencies with anti-patterns are usually subject
to changes impacting their interfaces. For example, classes having static relationships with
the LongMethod, ComplexClass, and LongParameterList anti-patterns undergo more refac-
toring operations than any other change operations, possibly because such classes are too
large and automated tools must be applied to divide them and make them manageable.
We also observe that classes having static relationships with the MessageChains and Swis-
sArmyKnife anti-patterns, which are complex and provide or call too many services, are
more likely to undergo structural changes, possibly to break down their complexity.

Table 11 reports for ArgoUML, JFreeChart, and XercesJ the more frequent (more than
50 % of classes) types of faults for classes having static and co-change dependencies with
anti-patterns. The majority of classes having dependencies with anti-pattern classes and
having faults share specific types of faults. For example: Blob, ComplexClass, and Long-
ParameterList anti-patterns characterize classes with a higher number of complex methods

Table 10 Most frequent types of changes for classes having static and co-change dependencies with anti-
patterns

Types of changes Descriptions Examples

Blob, AntiSingleton Refactoring Extract class Moving part of code

(92 %) into a new class

ClassDataShouldBePrivate Code addition Encapsulation Forcing access fields

(63 %) with getter/setter

LongMethod, ComplexClass, Refactoring Extract method Breaking down code

LongParameterList (86 %) in smaller pieces

MessageChains, Refactoring Move method/field Moving method to

SwissArmyKnife (100 %) appropriate classes

RefusedParentBequest, Refactoring Generalize type Creating more

SpeculativeGenerality (72 %) general types
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Table 11 Most frequent types of faults for classes having static and co-change dependencies with anti-
patterns

Types of faults Descriptions Examples

AntiSingleton Interface Concurrency errors Race conditiona

fault (61 %) in critical sections

Blob, ComplexClass, Logic High computational Infinite loopsb

LongParameterList fault (73 %) complexity

ClassDataShouldBePrivate, Data Uninitialized variable Null pointerc

MessageChains faults (52 %) or a wrong type

SwissArmyKnife Interface Incorrect Incorrect

fault (64 %) implementation API usaged

RefusedParentBequest, Description Incorrect Incorrect

SpeculativeGenerality fault (60 %) Design assumptione

ahttp://sourceforge.net/p/jfreechart/bugs/1049/
bhttp://sourceforge.net/p/jfreechart/bugs/1122/
chttp://sourceforge.net/p/jfreechart/bugs/1094/
dhttp://sourceforge.net/p/jfreechart/bugs/950/
ehttp://sourceforge.net/p/jfreechart/bugs/332/

than the average classes. Thus, developers adding new features or fixing issues are more
likely to touch these classes and their dependencies. Such maintenance activities increases
the risk of these classes to be involved on logic faults, such as infinite loops and infi-
nite recursion (more than 50 % of faults). This observation confirms Fowler and Brown’s
warnings about such classes (Brown et al. 1998).

Table 12 reports for ArgoUML, JFreeChart, and XercesJ, that the more frequent types
of changes for classes having static relationships and co-change dependencies with the six
analyzed design patterns was method addition/removal. Design patterns are solutions to
recurring problems in software design that help in improving reusability, maintainability,
comprehensibility, and robustness (Gamma et al. 1994). Thus, classes having dependencies
to design patterns are less subject to structural changes, such as refactoring. For example, the
Command design pattern interface defines usually only one method, typically execute(),
and therefore can be expected to not be subject to structural changes.

Design patterns do not always improve the quality of systems, thus they should be used
with caution. In RQ3 we observe that static relationships with design patterns do not impact
fault-proneness. In RQ4 we observe that co-change dependencies have an impact on fault
proneness. We report also that these co-change dependencies concern mainly the Composite

Table 12 Most frequent types of changes for classes having static and co-change dependencies with design
patterns

Changes types Descriptions Examples

Command, Composite, Factory Code Adding code to add features Method

method, Observer, Prototype, Decorator addition (93 %) or implement requirements addition

http://sourceforge.net/p/jfreechart/bugs/1049/
http://sourceforge.net/p/jfreechart/bugs/1122/
http://sourceforge.net/p/jfreechart/bugs/1094/
http://sourceforge.net/p/jfreechart/bugs/950/
http://sourceforge.net/p/jfreechart/bugs/332/
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Table 13 Most frequent types of faults for classes having static and co-change dependencies with design
patterns

Fault types Descriptions Examples

Composite and Observer Logic Programmer changes a class but forgets Late propagation,

fault (54 %) another class which uses the same code missing co-change

Decorator, Factory method Syntax Using an invalid instruction Using and displaying

Prototype and Command fault (96 %) or a wrong data type null values as zero.

and Observer design patterns. Table 13 reports for ArgoUML, JFreeChart, and XercesJ,
that the more frequent types of faults for classes having dependencies with the Composite
and Observer design patterns are logic faults. We observe also that the more frequent types
of faults for classes having dependencies with Decorator, Factory method, Prototype, and
Command are syntax errors. For the rest of the design patterns, we found that faults on
dependent classes are mostly related to the internal quality of these classes, such as invalid
instructions or wrong data types.

Thus, we answer RQ5 as follows: classes with dependencies on anti-pattern classes
are more subject to logic faults and structural changes. Classes with dependencies
on design pattern classes are more subject to code addition and syntax faults.

Other Observations Based on the finding of this study, it is impossible to categorize the
types of faults and changes for classes having static relationships or co-change dependen-
cies with LongMethod. Two observations could explain this fact. First, we observe the low
number of classes participating in the instances of this anti-pattern. Second, this anti-pattern
characterizes classes with long methods and using global variables for processing. Thus,
classes having dependencies with such anti-pattern instances are often too few and have the
structure of Lazy classes, i.e., with little reasons to change.

4.6 Improvement in Fault Prediction Models

Previous studies (Zimmermann and Nagappan 2008; Hassan 2009) showed that size, com-
plexity, and historical metrics are good predictors of faults in systems. Thus, we decide
to study whether static and/or co-change dependencies could provide additional useful
information, complementary to these traditional fault-prediction metrics. Our investigation
compares two models for predicting the presence or absence of faults in classes: (1) one
using only static code metrics and (2) one using static code metrics and dependencies with
anti-patterns or design patterns.

First, we use seven metrics to build a fault-prediction model using Support Vector
Machines (SVM). There are various machine learning techniques available to build such
models. We use Support Vector Machines because this technique has been widely used in
literature and has shown good results (Ostrand et al. 2005; Moser et al. 2008).

The metrics are: (1) the number of lines of code per class; (2) the number of method
calls of a class; (3) the depth of nested blocks in the methods in a class; (4) the number of
parameters of the methods in a class; (5) the McCabe cyclomatic complexity of the methods
in a class; (6) the number of fields of a class; and (7) the number of methods of a class. We
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chose these seven metrics because they have been successfully used in the past (Nagappan
and Ball 2005) to predict faults.

Second, we added to the previous model metrics based on the static and co-change
dependencies of classes with anti-pattern and design-pattern classes to investigate whether
such dependencies could improve fault prediction. The metrics consist of four variables that
must take an integer value (0, 1, 2, ...). The first variable indicates the number of static
relationships between a class and design-pattern classes. The second variable indicates the
number of co-change dependencies between a class and design-pattern classes. The third
variable indicates the number of static relationships between a class and anti-pattern classes.
The fourth variable indicates the number of co-change dependencies between a class and
anti-pattern classes. The models output the likelihood of a class to having one or more
post-release faults.

We use the significance test based on a likelihood ratio test (Hosmer and Lemeshow
2000), commonly used for logistic regressions, to examine (the significance of) the differ-
ence between the performance of the two models when predicting faults. Table 14 reports
the cases in which fault prediction was improved using anti-pattern or design pattern depen-
dencies. It shows that dependencies with different anti-patterns and design patterns do not
consistently bring improvements. If all anti-patterns and design patterns are considered,
it is impossible to definitely exclude the possibility that there is no statistically signif-
icant differences in fault prediction. However, if we consider specific anti-patterns, we
observe that using static and co-change dependencies improve the precision of the model.
In fact, we observe that for anti-patterns that have a high complexity in term of LOC,
such as Blob and ComplexClass, adding the analysis of static relationships improves the
precision of the model. Similarly, when considering anti-patterns that have a high num-
ber of method calls, such as MessageChains and SwissArmyKnife, adding the analysis of
co-change relationships improves the precision of the model.

Table 14 Difference in fault prediction between a model based on only static code metrics and a model
based on static code metrics plus anti-pattern and design-pattern dependencies

Static relationships Co-change

# of AntiSingleton No No

# of Blob Yes (+3 %) Yes (+8 %)

# of ClassDataShouldBePrivate No No

# of ComplexClass Yes (+4 %) No

# of LongMethod No Yes (+6 %)

# of LongParameterList No No

# of MessageChains No Yes (+5 %)

# of RefusedParentBequest No Yes (+2 %)

# of SpeculativeGenerality No Yes (+2 %)

# of SwissArmyKnife Yes (+2 %) Yes (+3 %)

# of Command No No

# of Composite No No

# of Decorator No No

# of Factory method No No

# of Observer No No

# of Prototype No No
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These results are encouraging because they show that even with a naive model, built using
only static code metrics, considering anti-pattern dependencies improves the prediction of
fault-prone classes. Thus, we conclude with this conservative and simplistic investigation
that the knowledge about the propagation of faults through static and co-change dependen-
cies is useful to improve the prediction of faults in classes and should be studied further in
future work.

5 Discussion

We now discuss the results of our empirical study. For each research question, we report
explanations about our findings and we compare them with related work. Finally, we discuss
threats to validity of our study.

First of all, we observe with Tables 4 and 5 that different anti-patterns and design pat-
terns have different proportions of static relationships with other classes in the analyzed
systems. These differences are not surprising because these systems have been developed
in three unrelated contexts, under different processes, and by different developers. Tables 4
and 5 highlight the importance of analyzing and reporting anti-pattern and design-pattern
dependencies when assessing the quality of systems.

The fact that we cannot find a correlation between having static relationships with the six
design patterns analyzed in this study and fault-proneness is not surprising. It confirms that
the key benefit of using design patterns is their positive impact on software quality, such as
reusability, flexibility, and maintainability (Gamma et al. 1994).

5.1 Dependencies Between Anti-patterns and Design Patterns

We observed that many dependencies from anti-pattern classes are with design-pattern
classes. We believe that developers use design patterns, possibly unintentionally, as proven
solutions to recurring design problems (Iacob 2011), i.e., when there is a proliferation of
similar methods and/or the user-interface code becomes difficult to maintain.

In our previous study (Jaafar et al. 2013a), we observe that anti-patterns do have static
relationships with design patterns, but that these relationships are temporary. Yet, anti-
pattern classes participating in such relationships are more change-prone but less fault-prone
than other anti-pattern classes. Therefore, it seems that developers sometimes use design
patterns as a temporary fix for anti-patterns because both the anti-patterns and their depen-
dencies on design pattern classes are removed later from the systems. The fix seems to be
working because the fault-proneness of anti-patterns is reduced. Detecting and analyzing
static relationships of anti-pattern classes is thus important from the points of view of both
researchers and practitioners.

We bring evidence in our previous work (Jaafar et al. 2013a) that (1) anti-patterns do
statically relate to some design patterns, and (2) some anti-patterns have more relation-
ships with design pattern classes than (with) other classes. We confirm with this study that
(3) these relationships indicate specific trends for the evolution of classes in term of fault-
proneness and change-proneness. For example, we observe in our previous work (Jaafar
et al. 2013a) that 50 % of static relationships among SpeculativeGenerality and design pat-
terns in ArgoUML are with the Command design pattern. In XercesJ, we observe that 41 %
of relationships among ClassDataShouldBePrivate was with the Command design pattern.
In all releases, except ArgoUML 28.1, we observe a significant difference of proportions
of changes among classes participating and not participating in a relationship between



918 Empir Software Eng (2016) 21:896–931

anti-patterns and design patterns. Indeed, the change-proneness of classes participating in
static relationships between anti-patterns and design patterns are, in most cases, higher than
those of other classes with anti-patterns and design patterns.

5.2 Impact of the Dependencies

Observing that classes having static relationships with anti-patterns undergo specific kind
of changes or faults support claims in previous work (Khomh et al. 2012; Yamashita
and Moonen 2013). Indeed, Khomh et al. (2012) show that classes participating in anti-
patterns undergo more structural changes than others changes (e.g., changes in the method
implementations). Thus, it is no surprising that classes sharing dependencies with anti-
pattern classes also undergo structural changes. Similarly, Yamashita and Moonen (2013)
show that specific maintenance problems, such as undesired behavior or unavailability of
functionalities, are correlated with bad smells. We complement this previous work by also
showing that classes having co-change dependencies with anti-pattern and design-pattern
classes are more fault-prone than other classes.

We also confirm that class co-changes imply the existence of (hidden) dependencies
between these two classes. If these dependencies are not properly maintained, they can intro-
duce faults in a system (Zimmermann et al. 2007). We find that classes that co-change with
anti-patterns and design patterns can be more fault-prone than other co-changing classes in
ArgoUML, JFreechart, and XercesJ. Thus, by knowing the sets of classes that co-changed
with anti-pattern and design-pattern classes, we could explain and possibly prevent faults.
If co-change dependencies with anti-patterns and design patterns are not properly followed,
they can lead to faults in the system. As an example, the class GoClassToNavigable-
Class.java belongs to a Blob anti-pattern in ArgoUML v0.26. Concretely, this class
is co-changing with class GoClassToAssociatedClass.java. However, these two
classes are not always maintained together. Indeed, when the developer makes some changes
to GoClassToNavigableClass.java, she should also assess GoClassToAsso-
ciatedClass.java for change. In the Bugzilla database of ArgoUML, the bug ID55059

confirms that the two classes are related but were not maintained together, leading to a fault.
Our approach could thus warn developers based on the system history and point out risky
classes that are co-changing with anti-patterns and design patterns. In addition, with the
availability of such information, a tester could decide to focus on classes having dependen-
cies with anti-pattern and design-pattern classes, because she knows that such classes are
likely to contain more faults.

5.3 Threats to Validity

We now discuss threats to the validity of our results (Yin 2002).
Construct validity threats concern the relation between theory and observation. In our

context, they are mainly due to errors introduced in measurements. We are aware that
the detection approaches used in our study include some subjective understanding of the
definitions of anti-patterns and design patterns. However, we are interested in analyzing
anti-patterns “as they are defined in DECOR” (Moha et al. 2010) and design patterns “as
they are defined in DeMIMA” (Guéhéneuc and Antoniol 2008). Similarly, our approach to
identify macro co-changes may have missed real and report wrong co-changes.

9http://ArgoUML.tigris.org/issues/show bug.cgi?id=5505

http://ArgoUML.tigris.org/issues/show_{b}ug.cgi?id=5505
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Yet, the precision and recall values of the anti-pattern, design-pattern, and co-changes
detection approaches are concerns that we agree to accept. Moha et al. (2010) reported that
the current DECOR detection algorithms for anti-patterns ensure 100 % recall and have a
precision greater than 31 % in the worst case, with an average precision greater than 60 %.
Guéhéneuc and Antoniol (2008) reported that DeMIMA can detect design patterns with a
recall of 100 % and a precision greater than 34 %. While, for the detection of relation-
ships among classes, DeMIMA guarantees 100 % recall and precision by definitions of the
relationships (Guéhéneuc and Albin-Amiot 2004). Macocha approach for macro co-change
ensures 96 % recall and has a precision greater than 85 % (Jaafar et al. 2011). Future investi-
gations aimed at assessing the extent to which the choice of the detection approaches impact
our results are needed.

Classes participating in an anti-pattern instance (respectively, a design pattern instance)
can have dependencies (static relationships and/or co-change dependencies) with classes
participating in other anti-pattern instances (or design pattern instances). Thus, the tests
reported in this paper cover classes that have a dependency with an anti-pattern instance
(or design patterns instance), regardless of the fact that these classes could belong to other
patterns. Nevertheless, we present in Section 4 the result of our analysis of the impact of
dependencies, for classes participating in anti-patterns or design patterns, and other classes
separately. If the analyzed class has dependencies with more than one pattern/anti-pattern,
it will be avoided by the analysis to minimize the noise of the interaction effects. In this
context, Yamashita and Moonen (2013) reported that such interactions affect the mainte-
nance and the code quality. For example, they revealed how smells that were co-located in
the same artifact interacted with each other, and affected maintainability.

We computed the fault-proneness of a class by relating fault reports and commits to the
class. Fault-fixing changes are documented in fault reports that describe different types of
problems in a system. We match faults/issues to changes using their IDs and their dates
in the change-log files and in the fault reports. We check independent changes that were
accidentally combined in the same commit. We also manually investigated the code to be
sure that the fault fixes documented in the commit message were related to the class changes
reported in the SVN/CVS log files.

Internal validity threats concern the extent to which a causal conclusion based on a study
is warranted. First of all, the study presented in this paper is an exploratory study. Thus,
we do not claim causation (Yinn 2002), but relate the presence of anti-pattern and design
pattern dependencies with the occurrences of changes and faults. Nevertheless, we tried to
explain by looking at specific changes, commit notes, and change histories why some of
these dependencies could have been the cause of changes/issues/faults. We are also aware
that, on the one hand, anti-patterns can be dependent on each other and relied on the logistic
regression model-building procedure to select the subset of non-correlated anti-patterns. On
the other hand, having a fault is a temporary property, whereas being involved in an anti-
pattern or design pattern is a rather somewhat long-term, persistent property. In previous
work (Jaafar et al. 2013a), we analyzed the volatility of anti-pattern and design pattern
dependencies in the same software systems (ArgoUML, JFreeChar, and XercesJ) and we
concluded that they continued to exist in all versions of these systems. Thus, there will be
times when an anti-pattern having dependencies with a class will have no fault and times
when it will have faults. In this study, and as in previous work (Khomh et al. 2012) analyzing
change- and fault-proneness, we declared that a class is a faulty class if it was involved in at
least one fault-fixing change. Indeed, we considered changes and faults that occurred after
the structural/co-change dependencies are detected. For instance, we cannot definitively
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claim that the co-changes are the result of a defect fix or are causing the defect. But we
reported the presence of these dependencies with the next occurrences of changes and faults.

Conclusion validity threats concern the relation between the treatment and the outcome.
We paid attention not to violate the assumptions of the statistical test that we used, i.e., the
Fisher’s exact test, which is a non-parametric test.

Reliability validity threats concern the possibility of replicating this study. We attempted
to provide all the necessary details to replicate our study. Moreover, the source code
repositories of ArgoUML, JFreeChart, and XercesJ are publicly available as well as the anti-
pattern and design pattern detection approaches used in this study. The analysis process is
described in detail in Section 2. All the data used in this study are available on-line.10

External validity threats concern the possibility of generalizing our observations. First,
although we performed our study on three different, real systems belonging to different
domains and with different sizes and histories, we cannot assert that our results and obser-
vations are generalizable to any other systems. All the analyzed systems were in Java and
open-source, which may also reduce the generalizability of our findings. In the future, we
plan to analyze more systems, written in different programming languages, to draw more
general conclusions.

Second, we used particular, yet representative, sets of anti-patterns and design patterns.
Different anti-patterns and design patterns could have lead to different results, which are
part of our future work. In addition, the list of metrics used in our study is by no means
complete. Therefore, using other metrics may yield different results. However, we believe
that the same approach can be applied to any list of metrics. The odds ratio and p-value
thresholds used in our study were chosen because they proved to be successful in previous
work (Khomh et al. 2012).

6 Related Work

During the past years, different approaches have been developed to address the problem
of detecting design patterns, specifying anti-patterns, and studying their impact on change-
and fault-proneness.

6.1 Anti-patterns Definition and Detection

Code smells and anti-patterns both describe occurring software problems. There are large
overlaps between many definitions of anti-patterns and code smells and they both span
abstraction levels that go from attributes associated to inner workings of the class to more
design/micro-architectural-related attributes (Webster 1995; Brown et al. 1998). Concretely,
code smells give warnings to software developers that the source code has some problems,
while anti-patterns provide software managers, architects, designers, and developers a com-
mon vocabulary for recognizing possible sources of higher-level problems in advance. We
noted that some of the definitions of code smells are equivalent to many of the anti-patterns.
For example: Blob can be interpreted as God Class, Long method can be interpreted as
God Method, etc. In this paper, we consider the specification of 10 anti-patterns described
in Brown et al. (1998) and follow several previous work (Moha et al. 2010; Khomh et al.
2012), etc.

10http://www.ptidej.net/download/experiments/emse14a/

http://www.ptidej.net/download/experiments/emse14a/
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Vokac (2004) analyzed the corrective maintenance of a large commercial program, com-
paring the defect rates of classes participating in design motifs against those that did not. He
found that the Observer and Singleton motifs are correlated with larger classes; classes play-
ing roles in Factory Method were more compact, less coupled, and less defect prone than
other classes; and, no clear tendency existed for Template Method. Their approach showed
correlation between some design patterns and smells like LargeClass but did not report an
exhaustive investigation of possible correlations between these patterns and anti-patterns.
Pietrzak and Walter (2006) defined and analyzed the different relationships that exist among
smells and provided tips about how they could be exploited to alleviate the detection of anti-
patterns. The authors performed an experiment to show that the use of knowledge about
identified smells in Jakarta Tomcat code supports the detection process. They found exam-
ples of several smell dependencies, including aggregate relationships. The certainty factor
for those relations in that code suggested the existence of correlation among the dependent
smells and applicability of this approach to anti-patterns detection.

The first book on “anti-patterns” in object-oriented development was written in 1995 by
Webster (1995). In this book, the author reported that an anti-pattern describes a frequently
used solution to a problem that generates ineffective or decidedly negative consequences.
Brown et al. (1998) presented 40 anti-patterns, which are often described in terms of lower-
level code smells. These books provide in-depth views on heuristics, code smells, and anti-
patterns aimed at a wide academic audience. They are the basis of all the approaches to
detect anti-patterns.

The study presented in this paper relies on the anti-pattern detection approach DECOR
(Moha et al. 2010). However several other approaches have been proposed in the past.
For example, Van Emden and Moonen (2002) developed the JCosmo tool, which parsed
source code into an abstract model (similar to the Famix meta-model). JCosmo used rules
to detect the presence of smells and anti-patterns. It could visualize the code layout and
display anti-pattern locations to help developers assess code quality and perform refactorings.

Marinescu et al. developed a set of detection strategies to detect anti-patterns based on
metrics (Ratiu et al. 2004). They defined history measurements which summarize the evo-
lution of the suspect parts of code. Then, they showed that the detection of God Classes and
Data Classes can become more accurate by using historical information of the suspected
flawed structures.

Settas et al. explored the ways in which an anti-pattern ontology, a representation of
anti-pattern specification in the form of a set of concepts, can be enhanced using Bayesian
networks (Settas et al. 2012). Their approach allowed developers to quantify the existence
of an anti-pattern using Bayesian networks, based on probabilistic knowledge contained in
an anti-pattern ontology.

The Integrated Platform for Software Modeling and Analysis (iPlasma) described in
previous work (Lanza and Marinescu 2006) can be used for anti-pattern detection. This
platform calculates metrics from C++ or Java source code and applies rules to detect
anti-patterns. The rules combine the metrics and are used to find code fragments that
exceed thresholds.

We share with all the above authors the idea that anti-pattern detection is an inter-
esting approach to assess code quality, in particular to study whether the existence of
anti-patterns and their relationships make the source code more difficult to maintain. This
previous work significantly contributed to the specification and detection of anti-patterns.
The approach used in this study, DECOR (Moha et al. 2010), builds on this previous work
to offer a method to specify and automatically detect anti-patterns. It has appropriate per-
formance, precision, and recall for our study. In addition, DECOR can be applied on any
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object-oriented system through the use of the PADL (Guéhéneuc and Antoniol 2008) meta-
model and POM framework (Guéhéneuc et al. 2004). PADL describes the structure of
systems and a subset of their behavior, i.e., classes and their relationships. POM is a
PADL-based framework that implements more than 60 structural metrics.

6.2 Design Pattern Definition and Detection

The first book on “design patterns” in object-oriented development was written in 1996 by
Gamma et al. (1994). Since this book, several workshops and conferences have emerged
to propose new patterns. Many papers have been published studying the use and impact of
design patterns.

The study presented in this paper relies on the design-pattern detection approach
DeMIMA (Guéhéneuc and Antoniol 2008). However, several other approaches have been
proposed in the past. For example, one of the first papers about detecting design patterns
was written by Krämer et al. (1996) in 1996. It introduced an approach for detecting design
information directly from C++ header files. This information was stored in a repository.
The design patterns were expressed as Prolog rules to query the repository and detect five
structural design patterns: Adapter, Bridge, Composite, Decorator, and Proxy.

Several other approaches have been proposed, using different representations of both the
design patterns and the systems in which to detect their occurrences and various algorithms
with different trade-offs between simplicity, performance, precision, and recall. Algorithms
used for the first time to detect design pattern include logic programming (Wuyts 1998),
constraint programming (Quilici et al. 1997), queries (Kullbach and Winter 1999), fuzzy
networks (Jahnke et al. 1997), graph transformations (Antoniol et al. 1998). Some dedicated
algorithms have also been introduced, e.g., (Alencar et al. 1995; Brown 1996; Lethbridge
1998; Tatsubori and Chiba 1998).

Recently, an approach based on similarity scoring has also been proposed by Tsantalis
et al. (2006), which provides an efficient means to compute the similarity between the graph
of a design pattern and the graph of a system to identify classes potentially participating in
the design pattern. The authors proposed an approach to exploit the fact that each design
pattern resides in one or more inheritance hierarchies because most design patterns involve
at least one abstract class/interface and its descendants. Consequently, the system is parti-
tioned into clusters of hierarchies (pairs of communicating hierarchies), so that the similarity
algorithm is applied to smaller subsystems rather than to the entire system.

We concur with this previous work on the importance of identifying design patterns in
systems as a means to aid program comprehension, to assess code quality as well as to study
their impact. The approach used in this study, DeMIMA (Guéhéneuc and Antoniol 2008),
follows previous work on using constraint programming to automatically identify design
patterns and some of their variants with reasonable performance, precision, and recall.
Indeed, DeMIMA makes it possible to recover two kinds of design choices from source
code: idioms pertaining to the relationships among classes and design motifs characterizing
the organization of the classes. DeMIMA depends on a set of definitions for unidirec-
tional binary class relationships. The formalizations define the relationships in terms of four
language-independent properties that are derivable from static and dynamic analyses of sys-
tems: exclusivity, type of message receiver, lifetime, and multiplicity. DeMIMA keeps track
of data and links to identify and ensure the traceability of these relationships. DeMIMA
also uses explanation-based constraint programming to identify microarchitectures similar
to design motifs. This technique makes it possible to identify microarchitectures similar to a
model of a design motif without having to describe all possible variants explicitly. We also
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use DeMIMA to detect motifs’s relationships. In fact, DeMIMA distinguishes use, associ-
ation, aggregation, and composition relationships because such relationships exist in most
notations used to model systems, for example, in UML.

6.3 Anti-patterns and Design Patterns Static Relationships

Binkley et al. (2008) defined the Dependence anti-patterns which indicated potential prob-
lems for ongoing software maintenance and evolution. They showed how these anti-patterns
can be identified using techniques for dependence analysis and visualization. While it is
hard to define what a “bad” dependence structure looks like, we believe that it is compar-
atively easy to identify dependence between anti-patterns and others classes. In this paper,
we investigate the impact of such dependencies in terms of fault proneness.

Oliveto et al. (2011) reported that analyzing smell relationships could help to refactor
the code and, in particular, to remove the Feature Envy smell. Indeed, this bad smell can
be considered as the most common symptom related to problems with class coupling and
cohesion. Our work differs in the studied objects (the anti-patterns and design patterns),
the analyzed parameters (static relationships and co-changes), and its goals (detecting the
impact on fault-proneness and the types of changes).

Marinescu and Marinescu (2011) reported that if a class makes use of a class that reveals
design flaws, that class is more likely to exhibit faults. Thus, when a developer is aware of
a class revealing design flaws within a system, she should also monitor the clients of this
class because they are likely to also exhibit faults. They considered four design flaws called
Identity Disharmonies and that a class use an Identity Disharmonies if that class calls at
least one method from a flawed class.

Our work differs from this previous work in that we analyze different types of dependen-
cies with both anti-patterns and design patterns. Thus, we claim that our study is the first
detailed analysis of the impact of different relationships (including calls, i.e., use relation-
ship), co-change dependencies, and fault-proneness. We also analyzed six design patterns
and 10 anti-patterns in comparison to four Identity disharmonies.

Vokac (2004) analyzed the corrective maintenance of a large commercial system, compa-
ring the fault rates of design pattern classes with others. Their approach showed a correlation
between some design patterns and smells such as LargeClass but did not report an exhaustive
investigation of possible correlations between these design patterns and anti-patterns.

Yamashita and Moonen (2012) reported maintainability factors that are important from
the software maintainer’s perspective, and provided an overview of the capability of code
smell definitions to evaluate the overall maintainability of a system. They also found that
code smell interactions occurred across coupled artifacts, with comparable negative effects
such as same artifact co-location. Pietrzak and Walter (2006) defined and analyzed the
different relationships that exist among smells and provided suggestions to exploit these
relationships to improve the detection of anti-patterns. They proposed six coarse rela-
tions: plain support, mutual support, rejection aggregate support, transitive support, and
inclusion. Indeed, the authors found examples of several smell dependencies, including
simple, aggregate and transitive support and rejection relation. The authors noticed that
the certainty factor for those relations suggested the existence of correlation among the
dependent smells.

Rather than focusing on the relationships among code smells and anti-patterns to increase
the accuracy of anti-pattern detection, our study focused on analyzing anti-pattern and
design pattern dependencies to understand their impact on fault-proneness.
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6.4 Co-change Dependencies

Bouktif et al. (2006) defined the general concept of change patterns and described one such
pattern, Synchrony, that highlights co-changing groups of classes. Their approach used a
sliding window algorithm (Zimmermann et al. 2004) to identify occurrences of the Syn-
chrony change pattern. This pattern models the fact that a change to one artifact may imply
a large number of changes to various other artifacts. Macro co-changes are another kind of
change pattern of interest to developers (Jaafar et al. 2013a, b).

Ying et al. (2004) and Zimmermann et al. (2004) applied association rules to iden-
tify co-changing files, i.e., occurrences of the Asynchrony change pattern. They used past
co-changed files to recommend source code files potentially relevant to a change request. An
association-rule algorithm extracts frequently co-changing files of a transaction into sets that
are regarded as change patterns to guide future changes. Such an algorithm uses co-change
history in CVS and avoids the source code dependency parsing process. Other approaches
to detect co-changing files exist (Gall et al. 1998; Zimmermann et al. 2004; Aversano
et al. 2007; Gı̂rba et al. 2007). They all are intrinsically limited in their definition of co-
change. They cannot express change patterns in long time intervals and–or performed by
different developers.

We introduced the novel change patterns of macro co-changes (MCCs) and dephase
macro co-changes (DMCCs) (Jaafar et al. 2011), inspired from co-changes and using the
concept of change periods. A MCC describes a set of classes that always change together
in the same periods of time (of duration much greater than 200 ms). A DMCC describes a
set of classes that always change together with some shift in time in their periods of change.
We proposed an approach, Macocha (Jaafar et al. 2013a, b), to mine software reposito-
ries (CVS and SVN) and identify (dephase) macro co-changing classes. We showed that
Macocha has a better precision and recall for co-changes detection than an approach based
on association rules. We used external information provided by bugs reports, mailing lists,
and requirement descriptions to show that detected MCCs and DMCCs explain real, impor-
tant evolution phenomena. In this paper, we use Macocha to mine software repositories and
identify classes that are co-changing with anti-patterns or design patterns.

Aversano et al. (2007) presented results from an empirical study analyzing the evolution
of design patterns in three open-source programs (JHotDraw, ArgoUML, and Eclipse-JDT).
The study analyzed the frequency of the modification of design pattern classes, the type
of changes that they undergo, and co-changing classes. Results suggested that developers
should carefully consider design pattern usage to support crucial features because the design
pattern classes will likely undergo frequent changes and be involved in large maintenance
activities. While Aversano et al. focused on design patterns, our study analyzed classes that
co-changed with anti-patterns and design patterns.

Khomh et al. (2012) investigated the impact of anti-patterns on classes in object-oriented
systems by studying the relation between the presence of anti-patterns and the change- and
fault-proneness of the classes. The authors showed that in 50 out of 54 releases of the four
analysed systems, classes participating in anti-patterns are more change and fault-prone than
others. In this paper, we showed that detecting classes that are co-changing with anti-pattern
classes help to identify which classes are more likely to be fault prone. Similarly, Aversano
et al. (2009) investigated the impact of design patterns on crosscutting code spread across
classes using the patterns as well as its fault proneness.

Similar to this previous work, we investigate fault proneness of classes to analyze
the impact of anti-pattern and design pattern dependencies. We aim to understand if the
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negative effects of anti-patterns can propagate to other classes through static and co-change
dependencies.

6.5 Fault-proneness

The most studied approach for fault prediction is to relate software faults with size and
complexity metrics (McCabe 1976; Halstead 1977). Chidamber and Kemerer (1994) pro-
posed a suite of object-oriented design metrics that has been supported by several theoretical
and empirical studies (Basili et al. 1996; Subramanyam and Krishnan 2003). Results show
that (1) the more complex the code is, the more faults exist in it and (2) size is one of
the best indicators for fault proneness. However, other measures can provide interesting,
complementary information to further improve our understanding of fault-proneness and its
propagation. Thus, Hassan and Holt (2005) proposed heuristics to analyze fault proneness.
They found that recently modified and fixed classes were the most fault-prone.

D’Ambros et al. (2009) reported that there was a correlation between change coupling
and defects that is higher than the one observed with complexity metrics. Further, defects
with a high severity seem to exhibit a correlation with change coupling which, in some
classes, is higher than the change rate of the classes. They also used change coupling
information in fault prediction models based on complexity metrics.

Marcus et al. (2008) used a cohesion metric based on Latent semantic indexing (LSI), an
indexing and retrieval method, to relate the terms and concepts contained in an unstructured
collection of source code. LSI is based on the principle that words that are used in the
same contexts tend to have similar meanings. The authors used LSI for fault prediction and
reported that structural and semantic cohesion impacts the understandability and readability
of the source code and, hence, its fault-proneness.

Ostrand et al. (2005), Bernstein et al. (2007), and Neuhaus et al. (2007) predict faults in
systems using historical change and fault data. Moser et al. (2008) used code and historical
metrics (e.g., code churn, past faults, and refactorings, etc.) to predict the presence/absence
of faults in files of Eclipse.

We share with all this previous work its interest in the fault-proneness of classes and
we reuse the traditional algorithms to assign faults to classes in the literature by mining
software repositories and issues tracking systems and relating the issues-ID in the tracking
systems with the changes in the repositories.

Previous Work Capitulation These previous works raised the awareness of the commu-
nity towards the impact of anti-patterns and design patterns on software development and
maintenance activities. In this paper, we build on these previous works and analyze the
existence and the impact of anti-pattern and design-pattern dependencies. We studied the
negative effects of anti-patterns and design patterns and their propagation through co-
change and static dependencies. We also performed a qualitative study to investigate the
types of changes and faults impacting classes having dependencies with anti-pattern and
design pattern classes.

7 Conclusion

Our conjecture was that classes having static and co-change dependencies with anti-pattern
and design-pattern classes could be involved in changes and faults more often than other



926 Empir Software Eng (2016) 21:896–931

classes because the changes and faults could propagate from anti-pattern and design-pattern
classes to other classes through their dependencies.

We conducted a quantitative study to answer four research questions and we reported
that:

– Classes having static or co-change dependencies with anti-pattern classes have signifi-
cantly more faults than other classes.

– Classes having co-change dependencies with design-pattern classes also have signifi-
cantly more faults than other classes, but not than classes having static relationships
with design pattern classes.

– Structural changes are more likely to occur in classes having dependencies with anti-
pattern classes than other classes.

– Code addition changes are more likely to occur in classes having dependencies with
design pattern classes than in classes.

– Specific types of faults are more prevalent with certain anti-patterns and design
patterns: for examples, Blob and Complex Class propagate mostly logic faults.

We confirmed that our conjecture is valid within the context of this study, and thus,
researchers can use these results (1) to improve fault prediction models, as we briefly illus-
trated in Section 5, (2) to understand the evolution of software systems, and (3) to detect the
types of faults and changes that possibly affect classes having such dependencies. Devel-
opers could use these observations to assign maintenance tasks and focus testing efforts on
classes having dependencies with anti-pattern and design pattern classes.

As limitation of this study, we used a particular, yet representative, set of design patterns
and anti-patterns. Different design patterns and anti-patterns could have lead to different
results. In addition, the list of metrics used in our study is not complete. Therefore, using
other metrics may yield different results. However, we believe that the same approach can
be tested on any list of patterns and metrics. Thus, future work includes (1) replicating our
study on other systems to assess the generalizability of its results, (2) studying change log
files, mailing lists, and issue reports to seek evidence of cause-effect relationships between
the presence of anti-patterns or design patterns and issues, and (3) analyzing the evolution
of such dependencies among different releases of a system.
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Guéhéneuc YG, Albin-Amiot H (2004) Recovering binary class relationships: Putting icing on the UML
cake. In: Schmidt DC (ed) Proceedings of the 19th Conference on Object-Oriented Programming,
Systems, Languages, and Applications pp 301–314. ACM Press
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of the Université de Montréal in Quebec, Canada. He is a member of IEEE. His current research projects
focus on software maintenance and evolution, software quality, and software reliability. These projects are
sponsored by a number of research funding agencies and industry. He has published several papers in inter-
national conferences and journals, including WCRE, CSMR, WCRE, JSP, and QSIC. He had several years of
industry experience in Canada and Africa in the areas of software engineering, web 2.0, and business process
management.



930 Empir Software Eng (2016) 21:896–931
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