
The effects of visualization and interaction techniques
on feature model configuration

Mohsen Asadi & Samaneh Soltani & Dragan Gašević &

Marek Hatala

Published online: 19 March 2015
Springer Science+Business Media New York 2015

Abstract A Software Product Line is a set of software systems of a domain, which share some
common features but also have significant variability. A feature model is a variability modeling
artifact which represents differences among software products with respect to variability
relationships among their features. Having a feature model along with a reference model
developed in the domain engineering lifecycle, a concrete product of the family is derived by
selecting features in the feature model (referred to as the configuration process) and by
instantiating the reference model. However, feature model configuration can be a cumbersome
task because: 1) feature models may consist of a large number of features, which are hard to
comprehend and maintain; and 2) many factors including technical limitations, implementation
costs, stakeholders’ requirements and expectations must be considered in the configuration
process. Recognizing these issues, a significant amount of research efforts has been dedicated to
different aspects of feature model configuration such as automating the configuration process.
Several approaches have been proposed to alleviate the feature model configuration challenges
through applying visualization and interaction techniques. However, there have been limited
empirical insights available into the impact of visualization and interaction techniques on the
feature model configuration process. In this paper, we present a set of visualization and
interaction interventions for representing and configuring feature models, which are then
empirically validated to measure the impact of the proposed interventions. An empirical study
was conducted by following the principles of control experiments in software engineering and
by applying the well-known software quality standard ISO 9126 to operationalize the variables
investigated in the experiment. The results of the empirical study revealed that the employed
visualization and interaction interventions significantly improved completion time of compre-
hension and changing of the feature model configuration. Additionally, according to results, the
proposed interventions are easy-to-use and easy-to-learn for the participants.

Keywords Software product line engineering . Controlled experiment . Tools

Empir Software Eng (2016) 21:1706–1743
DOI 10.1007/s10664-014-9353-5

Communicated by: Ebrahim Bagheri, David Benavides, Per Runeson and Klaus Schmid.

M. Asadi (*) : S. Soltani :M. Hatala
Simon Fraser University, Burnaby, Canada
e-mail: mohsen.asadi62@gmail.com

D. Gašević
Athabasca University, Athabasca, Canada

1 Introduction

Mass customization is defined as “a large-scale production of products tailored to individual
customers’ needs” (Linden et al. 2007) . The key factors for the success in mass-customization
are reusability and flexibility—i.e., adapt software products to fit into different requirements
(Linden et al. 2007). An efficient approach to realizing mass-customization in software
engineering is through Software Product Line Engineering (SPLE). SPLE targets the devel-
opment of a set of software systems that satisfy requirements of a specific domain and that
share common features. SPLE contributes into mass-customization by providing mechanisms
for managing variability and commonality in order to address flexibility and reusability,
respectively.

There are two lifecycles in SPLE, namely, domain engineering and application engineer-
ing. Domain engineering (i.e. development for reuse) is concerned with the process of
understanding the target domain and developing a relevant, suitable and comprehensive
representation of the concepts in that domain (Asadi et al. 2011). Moreover, the commonality
and variability of the domain are identified and explicitly modeled. The result of this stage is a
family of software systems, defined by a number of core assets. The two key assets produced in
domain engineering are a variability model (commonly defined as a feature model) and
reference models. On the other hand, application engineering receives the reusable assets
(i.e. variability and reference models) developed in domain engineering and creates an
application instance based on a given set of requirements. The application is produced by
binding the variation points (i.e., choosing suitable variant (s) for every variation points) and
by instantiating the right elements of the representation of the domain model (i.e. reference
models) (Bagheri & Gasevic 2010).

1.1 Problem Statement

Developing a product line and deriving a product based on the target application requirements
is a creative process which requires high levels of cognitive resources from software devel-
opers. Software developers need to explore and compare alternative solutions in order to come
up with the best solution satisfying both functional and non-functional requirements. Accord-
ing to empirical evidence in the creativity support tools (Shneiderman 2007) and software
engineering ((Byelas & Telea 2009); (Lange & Chaudron 2007)) research areas, one way to
assist software developers in their tasks is to provide an efficient visualization and interaction
support to enhance software developers’ cognition of complex models (e.g., variability
models) (Cawley et al. 2009). Many researchers in software product lines developed a wide
variety of tools with innovative visualization and interaction techniques for assisting software
developers in different tasks of software product line lifecycle ((Cawley et al. 2009);
(Siegmund et al. 2014); (Nestor et al. 2007)). For example, in the context of feature-oriented
software product line, Feature Modeling Tool (Fernández et al. 2009), FeatureIDE (Thüm
et al. 2014), Feature Model Plugin (fmp) (Czarnecki & Kim 2005), and faMa Tool Suit;
(Benavides et al. 2007) use an indented list and a tree structure to represent feature models;
FeatureMapper ((Heidenreich et al. 2008a); (Heidenreich et al. 2008b)) uses color for
representing mapping between features and design and implementation models; CIDE
(Siegmund et al. 2014) applies background colors to show code annotations; FeatureVisu
(Apel & Beyer 2011) applies clustering layout to illustrate the degree of relatedness of features
elements. Also, decision oriented product line tools like Dopler (Dhungana et al. 2011) apply
various graphs, trees, and coloring techniques to depict a tabular and hierarchical decision
view and effect view for application engineers.

Empir Software Eng (2016) 21:1706–1743 1707

Despite many efforts to apply visualization and interaction techniques in software
product lines, only a few empirical insights have been gained regarding the impact of
visualization and interaction techniques on improvement of developer tasks. In this article,
we aim to contribute to the body of empirical evidence on the effectiveness of visualization
and interaction techniques when applied to software product line engineering. Considering
a variety of approaches in software product lines (e.g. feature oriented, decision oriented,
orthogonal variability, etc.) and diversity of tasks (domain and application engineering
lifecycles), it would be nearly impossible to empirically investigate efficiency of visuali-
zation and interaction techniques for all the approaches and tasks in a single study. Hence,
we narrow the scope of our study to feature-oriented product lines and the configuration
process (i.e. feature selection) due to their significance reported in the research literature
(Benavides et al. 2010). The research problem that we target within the scope of feature-
oriented product line configuration is: To what extent visualization and interaction inter-
ventions enhance the configuration process for application engineers? The significant parts
of the research question are visualization and interaction interventions and measures for
facilitating developers’ tasks.

To form an effective set of visualization and interaction intervention, we utilize existing
theories in cognitive science ((Card et al. 1999); (Zhicheng et al. 2008)) and software
engineering such as the physics of notation (Moody 2009) and creative support tools
principles ((Shneiderman 2007); (Shneiderman 1996)) and existing knowledge of visual-
izing the feature model configuration ((Botterweck et al. 2008); (Siegmund et al. 2014);
(Thüm et al. 2014). The detail of derivation process and the visualization and interaction
intervention set were explained in Section 3. Although we have considered many resources
to develop the visualization and interaction intervention set, we do not claim that this set is
complete and the best set for the configuration. This set forms a basis for empirical
investigation of the impacts of the visualization and interaction techniques in the configu-
ration process and can be revised with researchers in software product line community for
further studies.

To measure how well the introduced intervention set assists developers in the feature
oriented configuration process, we utilized the ISO 9126 quality model ((ISO/IEC Standard
No. 14598: Information technology – Software product evaluation et al. 1999); (ISO/IEC
Standard No. 9126: Software engineering – Product quality et al. 2001)), an international
standard which defines a hierarchy of software quality attributes including functionality,
reliability, usability, efficiency, maintainability, and portability at the highest level which later
are refined into more quantifiable attributes. The reasons behind the selection of the ISO 9126
model are an extensive use of the standard in software engineering literature ((Losavio 2002);
(Chua BB and Dyson LE 2004); (Behkamal et al. 2009)) for a similar objective (i.e.,
quantifying attributes for the evaluation products qualities) and fitness of the standard to the
context of our study (i.e., exploring interventions effects in the configuration process).
Following the guidelines of the ISO 9126 standard, we identified two tasks which developers
perform during configuration of a feature model and can be used for measuring this quality
attribute: comprehension (understanding and interpreting) of the configured feature model; and
changing a feature model configuration. The comprehension task in the context of configura-
tion of feature models refers to understanding a configuration model (i.e., selected and
deselected features) as well as interpreting relations among selected features and functional
and non-functional requirements of a target application. The changing task refers to decisions
that drive the change of a feature model (i.e., selecting and deselecting the features), based on
the stakeholders’ requirements. Hence, the introduced visualization and interaction interven-
tions were evaluated for their effects on the comprehension of the feature model configurations

1708 Empir Software Eng (2016) 21:1706–1743

and the change of feature model configurations. Consequently, the research question is further
refined into following questions:

1. To what extent do the introduced visualization and interaction interventions help software
developers in the comprehension tasks in the context of the feature model configuration?

2. To what extent do the introduced visualization and interaction interventions help developers
in the changing tasks in the context of the feature model configuration?

3. To what extent do the introduced visualization and interaction interventions improve the
usability of the base tool?

1.2 Contributions and Outline

To answers the research questions mentioned in the previous section, we devised an
empirical study following principles of empirical studies in software engineering
((Easterbrook et al. 2007); (Kitchenham et al. 2002)). In our study, we observed the
participants while performing comprehension and change tasks. We defined time on task
and accuracy (i.e., a lower number of errors) metrics for measuring helpfulness of visual-
ization and interaction interventions in comprehension and changing tasks. These metrics
were chosen for operationalizing the effect of the introduced interventions because reducing
developers’ errors while developing a best configuration based on the given requirements
and performance is crucial for customers and software developers, respectively. Also, in
these two metrics are common for measuring the effectiveness of information visualization
techniques in cognitive tasks (Zhicheng et al. 2008). After we defined the metrics, we
hypothesized that the visualization and interaction interventions decrease time on task and
improve accuracy (i.e., a lower number of errors) of developers when performing compre-
hension and changing of feature models. To test our hypotheses, we conducted a controlled
experiment that was aimed at investigating impacts of visualization and interaction inter-
ventions. The results of our data analysis revealed that employing the proposed visualiza-
tion and interaction interventions decreases the time developers spend on the comprehen-
sion and changing tasks of feature models. Moreover, the visualization and interaction
interventions make the tool easier to learn and easier to use for software developers.

The paper provides the following contributions:

1. Identifies a set of visualization and interaction interventions that can have a positive effect
on comprehension and changing tasks related to the configuration of feature models. The
introduced set can form a basis for further investigation of the visualization and interaction
interventions in the configuration process.

2. Designing, conducting, and reporting an empirical study on comprehension and changing
tasks of the feature model configuration process. The methodology can be used by other
researchers in software product line engineering for investigating similar research ques-
tions related to feature model configuration and configuration process of other approaches
such as decision-oriented product lines (Dhungana et al. 2011).

The reminder of the paper is organized as follow: Section 2 introduces the notion of feature
models, the configuration process, and relevant software quality background. The proposed
interventions are introduced in Section 3. Research questions and hypotheses of our study are
outlined in Section 4. Section 5 describes the experimental design, while Section 6 reports the
results of the study. Discussion of the findings and related works is provided in Section 7,

Empir Software Eng (2016) 21:1706–1743 1709

while Section 8 discusses the threats to validity of our empirical findings. Finally, we conclude
the paper and point out future works in Section 9.

2 Background

2.1 Extended Feature Model

In SPLE, feature models are a prevalent modeling language used for representing variability in
the domain. The notion of feature is commonly used to represent a logical unit of behavior
specified by a set of functional and non-functional requirements ((Batory 2005); (Bosch 2000);
(Apel & Kästner 2009)). Therefore, a feature shows functional and nonfunctional properties of
the system. Feature models also formalize commonality and variability relations of the
features. A feature model has a tree-like structure whose root node represents a domain
application and other nodes represent the features of products of the domain. Features in the
feature model typically classified as (see Fig. 1):

& Mandatory feature: the feature must be included in the description of its parent feature;
& Optional feature: the feature may or may not be included in its parent description;
& Alternative feature group: one and only one of the features from the feature group can be

included in the parent description;
& Or feature group: one or more features from the feature group can be included in the

description of the parent feature.

Although features represent both functional and non-functional characteristics of a family,
explicit representations of a non-functional aspect have been neglected. In the other words, in
many approaches, a feature in a feature model represents the functionality of a family without
depicting non-functional aspects of the functionality. Recently, several efforts have been proposed
in order to integrate non-functional aspects of features in feature models ((Bagheri et al. 2010);
(Bagheri & Gasevic 2010); (Asadi et al. 2011); (Benavides et al. 2005a)), referred to as extended
featuremodels. In theseworks, quality attributes are defined for features and their values show the
level of quality provided by the features. Examples of quality attributes are implementation cost,
time, and customer importance. In an extended feature model, one can define the security for the
deposit money feature and specify the level of provided security by the feature by assigning
proper values into the security property of the deposit money feature. In our study we consider
extended feature models to investigate the impact of visualization and interaction interventions
for the task of configuring the feature model based on both functional and non-functional
requirements.

Fig. 1 Different types of features in feature model a) Optional feature, b) Mandatory feature, c) alternative
feature group, and 4) Or feature group

1710 Empir Software Eng (2016) 21:1706–1743

2.2 Feature Model Configuration Process

Having developed a feature model in domain engineering, in application engineering, the most
appropriate features for a target product are selected. Selection of both the most suitable and
allowed combination of features (called Configuration Process) is an important issue in SPLE.
Software developers can find the configuration process to be a cumbersome task for two
reasons: 1) feature models may contain hundreds of features, which affect their maintainabil-
ity; 2) selecting proper features requires close consideration of many factors such as technical
limitations, implementation costs, and stakeholders’ requests and expectations (Asadi et al.
2011). To make the most suitable decisions, one should consider all constraints and business
objectives of the stakeholders and apply them in the selection process (Bagheri et al. 2010). In
the configuration process, software developers start with requirements (including both func-
tional and non-functional requirements) and select a set of features satisfying the requirements.
In selecting a feature for a product not only should the functional requirements be satisfied, but
non-functional requirements should also be satisfied.

In order to handle the complexity of the configuration process, some techniques like stage
configuration (Czarnecki & Eisenecker 2000) were proposed which configuration decisions
can be made in several stages. Also, several automation techniques have been proposed which
employ different formalisms for developing configured feature models such as Constraints
Satisfaction Problem (CSP) ((Benavides et al. 2005b); (Siegmund et al. 2011)), Genetic
Algorithm (Guo et al. 2011), Planning techniques (Soltani et al. 2012), Binary Decision
Diagrams (Mendonca et al. 2008). However, due to the complexity of problems and need
for considering functional and non-functional requirements, these approaches have scalability
problems and require well defined inputs (Soltani et al. 2012).

2.3 Software Quality Standard

Software quality plays an important role in the software product success. The ISO 9126
standard was defined to provide developers with a quality model for evaluating software-
intensive products. To assess the quality of a software product by using ISO 9126, one should
select the quality attributes and sub-attributes to be evaluated, identify the appropriate direct
and indirect measures to be applied, identify the relevant metrics, and then interpret the
measurement and the measurement result in an object manner (ISO/IEC Standard No.
14598: Information technology – Software product evaluation et al. 1999).

According to ISO 9126, software quality attributes are categorized into internal and external
quality attributes. The former refers to the attributes that can be measured purely based on
software features (e.g., length of software document), while the latter refers to those quality
attributes that assess how well a software system relates to its environment (e.g., reliability or
maintainability) (Korson & McGregor 1990).

Usability and maintainability as two key quality attributes investigate how well a software
system can be used by its users (ISO/IEC Standard No. 14598: Information technology –
Software product evaluation et al. 1999). The usability attributes evaluate the effort needed for
the use of a software product when the software is used under specific condition. Usability is
viewed as a composition of the ease-of-learning and ease-of-use sub-quality attributes. Ease-
of-learning investigates how easy a user can learn to use the software product and ease-of-use
refers to how much effort is required from a user for using the software product.

The maintainability attributes are concerned with evaluating how well models developed by
a software product can be understood and changed (Genero et al. 2001). In this paper, we
investigate maintainability as a composition of two sub-quality attributes namely changeability

Empir Software Eng (2016) 21:1706–1743 1711

and understandability (N.B., maintainability can also include other attributes such as analyz-
ability). According to the ISO 9126 standard these sub-characteristics are defined as follows:
Changeability is the possibility and ease of change in a model developed using a software
product when modifications are necessary; and Understandability (comprehension or inter-
pretation) is the prospect and likelihood of the software model developed using a software
product to be comprehended and interpreted by its users.

3 Visualization and Interaction Interventions

3.1 Identification of the Visualization and Interaction Interventions

Following the principle of the GQM approach proposed by Basili (Victor & Basili 1992), we
presented the goal of this activity as follow:

Analyze existing visualization and interaction literature and theories for the purpose of
identifying effective visualization and interaction techniques for feature model configuration
from the point of view of application engineers.

We refined this goal into the one to identify the visualization and interaction interventions
which: 1) visualize both functional and non-functional aspects of features in a feature model;
2) represent variability and constraints among features; and 3) provide advanced user interface
interactivity for developers with feature models when conducting configuration.

In order to achieve aforementioned objectives (i.e. identifying a set of visualization and
interaction interventions for configuration process), we adopt top down and bottom up
approaches. In the top down approach, we investigated existing theories on visualization
techniques ((Shneiderman 1996); (Davis 1989); (Card et al. 1999); (Zhicheng et al. 2008));
theoretical foundations in software engineering about visualization (Moody 2009), and liter-
ature on creativity support tools ((Shneiderman 2007); (Schneiderman 2009)). The results of
this investigation lead to a set of principles and criteria which guided us in selecting proper
visualization and interaction interventions.

Existing cognitive science theories ((Card et al. 1999); (Zhicheng et al. 2008)) in informa-
tion visualization emphasize the role of visualization and interaction techniques in amplifying
cognition. These theories posit that tools augment human cognitive capabilities and enable
human to accomplish more. Furthermore, distributed cognitive theory (Zhicheng et al. 2008)
considers external representation (e.g., visualization) as a part of cognitive system and suggests
that cognitive tasks are accomplished by means of an interplay between perceptual processes
acting with external representations (i.e. visualization) and processes acting with internal
cognitive representations (Zhicheng et al. 2008). Moreover, the cognitive load theory suggests
that unproductive (i.e., extraneous) load is caused by the limited capacity of working memory,
which is predicted by the lack of schemas—i.e., prior knowledge—available in the long-term
memory ((Zhicheng et al. 2008); (Paas et al. 2004)). When there are no schemas that can easily
be retrieved from long-term memory and activated into the working memory– i.e., information
a human interacts with is not learned and stored into the long-term memory—different cues,
mnemonics, and scaffolds should be used to reduce the cognitive load. Given the size of
feature models, their complete storing into long-term memory can hard or sometimes imprac-
tical. This means that an extraneous load can easily emerge when developers interact with
feature models that are not stored into their long-term memory, and easily activated into their
working memory. Therefore, visualization and interaction techniques during a configuration
process can become an important factor to improve the cognition of developers when
configuring feature models.

1712 Empir Software Eng (2016) 21:1706–1743

According to Moody (Moody 2009), the notations for a visual language are divided
into primary and secondary notations. The primary notation defines a set of symbols and
their literal meaning. For example, in the context of feature models, primary notation
includes notation for defining features, mandatory, optional, OR, alternative features, and
cross-tree constraints. Secondary notations, on the other hand, refer to the use of visual
variables that are not formally specified in the notation of a software language in order to
reinforce or clarify the meaning of a specific (set of) constructs or tasks, e.g. the use of
color to highlight information (Moody 2009). In our study, we do not intend to create
new visual notations for feature models, but we want to apply visual variables to add
additional meanings to features (i.e., adding non-functional aspects) and provide addi-
tional information during the configuration tasks of comprehension and changing. Con-
sequently, from the principles introduced in ((Moody 2009); (Stone M “Choosing Colors
for Data Visualization); (Shneiderman 1996); (Davis 1989)), we only concentrate on a
subset of those related to visual variables. The identified principles are shown in Table 1.
We should note that we do not claim that these principles are neither a complete nor the
best set of principles for visualization and interaction, but they provide a comprehensive
criteria set for investigating visualization and interaction interventions fitted to the
feature model configuration.

After identifying the principles fitted to the domain of feature model configuration, we
followed a bottom up approach to identifying visualization and interaction techniques relevant
to feature model configuration tasks of comprehension and changing. For this purpose, we
investigated the visualization surveys in software engineering ((Cawley et al. 2009); (Teyseyre,
Campo 2008); (Herndon et al. 1994)), software product line engineering (Pleuss et al. 2011),
and the existing tools and visualization and interaction interventions for feature model
configuration ((Botterweck et al. 2008); (Thüm et al. 2014); (Benavides et al. 2007)).
Afterward, we analyzed the identified set of visualization and interaction techniques with
regard to principles identified from top-down approach and we selected a subset of these
interventions for our empirical study. Next section explains the selected intervention set.

3.2 Visualization and Interaction Intervention Set

In this section, we explain the selected visualization and interaction intervention set. These
interventions only concentrate on secondary notations where we apply visual variables to show
additional information enhancing the cognition of software developers during the configura-
tion process. In visual analytics techniques, the possible options for visualization are selected
based on the target task and underlying data (Reddivari 2013). In our case, the task is the
configuration process and the data is the feature model and associated data (i.e. non-functional
properties). Considering these two aspects, in the following we discuss possible options and
select the proper one.

Explicit vs Implicit Representations In the former case, hierarchy relations between nodes are
illustrated by explicit links between nodes (i.e., node-link representation). In the latter case, the
hierarchy relations are shown by special arrangement of nodes (Siegmund et al. 2014) (i.e.,
space-filling representation). Examples of implicit representation are Tree-maps (Johnson &
Shneiderman 1991) and SunBurst (Stasko & Zhang 2000). The cone-trees (Robertson et al.
1991) and space trees (Plaisant et al. 2002) are examples of explicit representation. Based on
the adequacy for complex models principle introduced in Table 1 as well as considering the
size of feature models and the weaknesses of implicit visual rendering of large trees, we
decided to employ the explicit representation.

Empir Software Eng (2016) 21:1706–1743 1713

3D vs 2D Representation Interventions 3D visualization due to the use of three dimensions is
more appropriate for showing large scale hierarchies. However, a 3D representation may
possess the following problems: 1) 3D representations are suitable mechanisms for showing
information but changing information in a 3D representation can be a cumbersome task; 2)
some researchers indicate that it is not desirable to consider a third dimension when 2D is
enough for representing information (i.e., feature model, non-functional properties, and con-
figuration) (Purchase H 1997); 3) 3D visualizations may have problems which include
intensive computation, more complex implementation, hard user adaptation, and orientation
(Teyseyre and Campo 2008); 4) 3D visualization increases difficulty of performing actions and
complexity of interactions ((Herndon et al. 1994); (Bowman et al. 2001)); and 5) finally,
occlusion as a common problem in 3D representation may distort software developers during
the configuration (Chuah et al. 1995). Considering these problems with 3D representation and

Table 1 Visualization and interaction principles based on theoretical investigation

Principle Description Application in the configuration process

Data oriented
objective

The visualization and interaction technique
should depend on the underlying data.

Data in the feature model configuration
tasks includes features, variability
relations, non-functional and functional
aspects of the features.

Task oriented
objective

The visualization and interaction technique
should depend on the nature of the task. This
includes both the domain of the task and the
kind of interactions which a user makes with
the presented information. For example,
whether the user only views the information
or makes changes as well.

The main task is the configuration of a
feature model which includes both
viewing and changing in the feature
model.

Adequacy for
complex
models

The technique should include explicit
mechanisms for dealing with the complexity
of model.

A feature model may include a large
number of features with complex
dependency relationships. The
approach should be able to manage
this complexity.

Holistic view
of data

The technique should provide a holistic view of
the source data or raw material which
designer is going to work with.

The approach should provide a holistic
view to feature models including
functional and non-functional aspects.

Low threshold,
high ceiling,
wide walls

The technique should be easy for novices, but
possible for expert to create complex artifacts.

Application engineers with different levels
of expertise should be able to perform
configuration tasks.

Support
exploration

The technique should support and suggest a
wide range of explorations and enables the
user to navigate through different possible
solutions.

The technique should support exploration
of different feature selection and the
impact on the overall quality of the
product.

The primary
of shape

The technique should use shapes as a primary
factor for distinguishing between different
concepts of the language.

Feature model languages used different
shapes to represent feature and
variability relations. The technique
should utilize shapes to present further
information about feature models such
as non-functional aspects.

Visual
expressiveness

A visualization technique should use a full range
and capacities of visual variables (i.e. shape,
texture, brightness, size, and color) to
communicate information.

Combination of visual variables should be
utilized to encode the required
information related to feature model
configuration.

1714 Empir Software Eng (2016) 21:1706–1743

task-oriented objective principle (with the task being configuration of feature models), and 2D
is sufficient for feature models, we selected 2D representation.

Use of Color Intervention In information visualization, color is used to group the items and
showmore information. The literature reviews show that a proper use of color can enhance and
clarify a presentation ((Brewer 1999); (Stone 2006)). Also, the visual expressiveness principle
from Table 1 emphasizes on employing several visual variables (e.g., color) for adding more
meaning to the notations. Features include both functional and non-functional aspects where
the functional aspect is shown with a feature notation and the non-functional aspect is not
emphasized. We used color to show the non-functional properties related to each feature in a
feature model. When using colors, several challenges—e.g., how many colors should be used
and how color will be used—should be addressed (Few 2008). To this end, we assigned
predefined colors to each non-functional property, the number of colors equals to the number
of non-functional properties. However, software developers can define desired colors for the
non-functional properties. Following the rules by Few (Few 2008), we made sure that the
selected colors were consistent. Having indicated colors corresponding to the non-functional
properties, the coloring can be applied to the features of the feature model for showing the non-
functional properties with which they were annotated. Since a feature may be annotated with
more than one non-functional property, we need a technique to represent all colors related to
the non-functional properties accompanied with feature representation. Therefore, colored
squares are inserted in the bottom of features (tree nodes) representing the non-functional
properties assigned to the features.

Use of Texture Intervention In addition to showing non-functional properties related to each
feature, other information to convey is the level of the non-functional property for each feature. To
represent this information we used other visual variable, i.e. texture for representing a symbol
inside a color square (i.e., “H” as high value, “M” as medium, and “L” as low). The other option
would be to use the size for representing different values for non-functional properties. However,
using size requires users to make a semantic connection between size and values.

Unfolding Intervention Based on the holistic view of data principle and in order to present all
features having a specific non-functional property, we designed an unfold intervention. The
intervention unfolds the features and expands the feature tree to show all features having a
selected non-functional property. This intervention makes it easy for software developers to
quickly discover which non-functional properties are covered with the specific features; which
features contain a specific non-functional property; or how the coverage of non-functional
properties are in the feature model.

Detail on Demand Intervention This type of interaction is usedwhenmore details about an itemor
a group are needed (Shneiderman 1996). More information about features (e.g., a list of the non-
functional properties, the values of the non-functional properties, feature attributes, feature descrip-
tion, and feature constraints) is shown in a detail view. Bymoving themouse over the features in the
tree or by selecting the features, a detail view is updated and information about the feature is shown.

Filtering Intervention Industrial feature models contain many features organized in different
levels of granularity. Unfolding the whole feature model may cause a visual clutter. Moreover,
software developers may not need to view the entire feature model. Therefore, filtering
intervention can help manage the complexity of the feature model by initially showing high-
level features (top three levels). Next, an incremental browsing can be provided for the users

Empir Software Eng (2016) 21:1706–1743 1715

by two options: 1) Filter-level—software developers can set the level of the feature model tree
in which they are interested; then, the tool unfolds all the features between the tree root and the
indicated level; and 2) Fisheye Tree Filter—using this option, software developers can explore
the feature model by unfolding sub-features of the features they are interested in. When
software developers select a feature for further exploration, the intervention closes other nodes
in the same level in order to create more space to show the opened nodes. To assist software
developers for identifying features which require further unfolding, the number of children of
each node can be shown along with their name.

Zooming Intervention Zooming in and zooming out interventions provides the user with
capabilities of concentrating on a specific part of a model and reaching to an overall view of
data, respectively. In the context of the feature model configuration, the zooming intervention
can be used to view either the features of interest or the overview of the whole feature model.
Moreover, auto-zooming is used to fit the tree to the screen after expanding.

Highlighting Intervention Highlighting is an important visualization intervention to enhance
human cognition in data-intensive applications with concentrating on critical information and
filter out irrelevant information for the given task (Siegmund et al. 2014). In the context of
configuration this intervention is beneficial to provide additional information like status of
features (i.e., selected, deselected, or undecided). Additionally, highlight intervention can be
applied in combination with search so that the tool highlights the found features in the tree
based on the user search.

3.3 Implementation of Interventions

In order to investigate the effect of the visualization and interaction interventions, we identified
a tool which provides basic representation and interaction techniques; implemented the
visualization and interaction interventions in the tool; and conducted a controlled experiment
to confirm or reject the impact of the introduced interventions on the configuration process.
Among existing tools, we selected a well-known feature model plug-in called fmp (Czarnecki
& Kim 2005) for the following reasons: 1) fmp supports very basic visualization (i.e., it uses
an indented list to show feature models) and interactivity; however, it provides a good facilities
to define a feature model and to manage its variability; 2) the tool is open-source and is
accessible for academic researchers, so that we could add the interventions to the tool easily; 3)
the tool provides all primary notations of the feature model including notation for mandatory,
optional, or, alternative relations. This makes the tool a convenient platform for implementing
the visualization and interaction interventions which are secondary notations for clarifying
meaning and adding extra information; 4) Finally, our goal was not the comparison of different
tools in software product lines, but rather we aimed to empirically validate if the identified set
of visualization and interaction interventions could help software developers in the
configuration process. One approach for evaluation would be studying the existing
tools with respect to visualization interventions which we tried to make an effort in
section 3.4.

The fmp tool is an Eclipse plug-in developed by the research group of Krzysztof Czarnecki
at the University of Waterloo. Fmp supports editing and configuring feature models (Czarnecki
& Kim 2005). The screen shot of the tool is shown in Fig. 2a. The tool provides some limited
interactivity functionality such as search for a feature by name and expanding composite
features.

1716 Empir Software Eng (2016) 21:1706–1743

Fmp supports standard feature models and does not include any support for non-functional
properties along with the features. However, we considered extended feature models which
include both functional and non-functional aspects of features. Hence, we extended the fmp
tool to incorporate non-functional properties into the feature model (see Fig. 2) and enabled
configuration based on both functional and non-functional requirements. The non-functional
properties are represented in the separate view shown beside the feature model view. By
clicking on the features, the non-functional properties related to each feature are represented in
the non-functional view and software developer can edit them or annotate features with new
non-functional properties.

During configuration process, application engineers can view both the functionality of a
feature (shown in feature view—Fig. 2 (a)) and its non-functional properties (shown in non-
functional view—Fig. 2 (b)) and decide to select or deselect the feature based on the
requirements.

To implement the interventions in the fmp tool, we used prefuse (Prefuse 2010), a Java
graphic library with different tree and graph views. One of the 2D tree-views in prefuse
provides means to fulfill all of our requirements discussed above. We used this tree as an initial
representation and extended it for our purposes (i.e., visualizing feature models, non-functional
properties, and configurations). In this tree, that provides a layout of this visualization, nodes
represent the features of the feature model and links show the composition and variability
relations between features. A screenshot of the tool is shown in Fig. 3. Influenced by

Fig. 2 Screen shot of Feature Model Plug-in tool (a) Feature Model, (b) non-functional properties related to the
Deposit money feature

Empir Software Eng (2016) 21:1706–1743 1717

Shneiderman’s information visualization interaction mantra (Shneiderman 1996) (i.e. “over-
view first, zoom/filter, details on demand”) and similar to Keim et al. (Daniel A.Keim et al.
2008), we defined feature model configuration interaction mantra as 1) show overall feature
model configuration, 2) show undecided features, 3) zoom, filter, and analyze further, and 4)
details on demand for features.

In the reminder of this paper, we refer to fmp tool as a basic tool and refer to extended
version of fmp with the visualization and interaction interventions as a visually-enhanced
tool.1.

3.4 Investigating Feature Modeling Tools w.r.t Visualization and Interaction Interventions

In our study, one of the main sources of identifying visualization and interaction interventions
was the existing tools in feature-oriented software product lines. We selected the tools by
investigating previous studies on the evaluation of feature model tools ((El Dammagh & De
Troyer 2011); (Lisboa et al. 2010)) as well as main software product lines research venues such
as the SPLC conference. This section evaluates a set of the tools used for identifying
interventions against the selected interventions. Our criteria for considering tools for evaluation
were: 1) Tools provide configuration support and employ visualization and interaction tech-
niques during configuration; 2) tools are designed to support feature model configuration; 3)
There are available resources related to tools to explore tools configuration capabilities. For
example, we did not have access to GEAR and RequiLine, hence, we could not analyze these
tools. In the following we briefly introduce each tool.

Feature Model Plug-in (fmp) The fmp tool (Czarnecki & Kim 2005) is an Eclipse plug-in
which supports editing and configuring feature models. The tool uses an indented list for

Fig. 3 The implementation of visualization and interaction interventions

1 Demo of the tool is available at: http://www.sfu.ca/~masadi/Demo%201.1.html

1718 Empir Software Eng (2016) 21:1706–1743

http://www.sfu.ca/%7Emasadi/Demo%201.1.html

visualizing feature models and facilitates the configuration process by providing configuration
options for software developers. The tool provides some limited interactivity functionality
such as search for a feature by name and expanding composite features. Fmp supports standard
feature models and does not include any support for non-functional properties along with the
features.

Pure:Variants (Pure-systems GmbH 2003) is a commercially robust Eclipse plug-in developed
by Pure-Systems company. The tool uses an indented list along with a visual representation of
feature models. The tool supports fast navigation to feature by double clicking on the displayed
entry. It also shows the properties of a feature when the feature is selected. In addition to a tree
representation, during the configuration, a matrix based representation is provided in the tool.

Feature Modeling Tool (Fernández et al. 2009) This tool represents feature models by using an
indented list and a tree structure (non-commercial tool). The tool is integrated into Visual Studio
IDE, by using the Microsoft DSL tools. It can support a visual representation and manipulation
of features and integrity constraints (i.e. include or exclude relations among features). With
respect to configuration support, the tool provides an intended list for visualizing feature. The
tool does not provide mechanisms for representing the non-functional aspects for features.

S2T2 Tool (Botterweck et al. 2009) Botterweck et al. provided a tool to support feature model
configuration (non-commercial tool). They employed colors for visualizing dependencies
between features and feature states. Additionally, features are decorated by iconic representa-
tions of common cardinalities.

XFeature (Pasetti and Rohlik 2005) This tool is a commercial eclipse plug-in developed by an
association of P & P Software Company with the Swiss Federal Institute of Technology
(ETH). The tool provides an outline view of feature models (a holistic view of the model) and
shows extra information of a feature in a separate property view. In order to present that a
feature has attributes, the tool renders a small circle along with the feature. The tool supports
zooming in and zooming out and uses texture for showing annotation over features.

faMa Tool Suit (Benavides et al. 2007) FaMa tool suit are also used for editing and config-
uring feature models (a non-commercial tool). The tool suite provides an explicit representa-
tion of feature models in 2D representation. It supports extended feature models and represents
non-functional aspects of features along with their functional aspects.

FeatureIDE (Thüm et al. 2014) The tool is an eclipse plug-in which provides explicit
representations of feature models and their configurations (non-commercial tool). The tool
includes a configuration editor to create and edit configurations and has a support for deriving
valid configurations. Color is used to shows difference between abstract features and concrete
features. Also, during the configuration process, a combination of color and texture is used to
support user in creating a valid configuration. Features whose selection or elimination turns an
invalid configuration into a valid one are marked with different color. Colored checked boxes
in the advanced configuration view are used to define different states of feature (i.e., selected,
deselected, and undecided).

Visual and Interactive Tool for Feature Configuration (VISIT-FC) ((Botterweck et al. 2008);
(Cawley et al. 2009)) This tool utilizes visualization techniques in order to enhance devel-
opers’ tasks such as feature model configuration. The tool uses a 2D tree for representing

Empir Software Eng (2016) 21:1706–1743 1719

feature models. The tool provides detail of demand, incremental browsing, and focus+context
capabilities and uses colors to show different configuration states (i.e. selected, deselected, and
undecided).

Table 2 shows the evaluation of feature model configuration tools against the visualiza-
tion and interaction interventions. All the selected tools support explicit representation and
apply 2D representation for visualizing the configuration space. Pure::Variant provides a
matrix representation in addition to a tree representation during the configuration process.
Detail on demand and unfolding are other interventions which are supported by all tools.
Among identified intervention, highlighting, zooming, and filtering have received less
attention from the developers of these tools. Results of our empirical study show
empowering the tools with these interventions helps software developers in the configura-
tion of feature models.

4 Research Questions and Hypotheses Formulation

The main purpose of our research was to assist software developers in the configuration
process by enhancing their cognition of a feature model by using visualization and interaction
techniques. At this point of our work, the following questions were raised: 1) Do the employed
visualization and interaction interventions enhance the comprehension of the feature model
and assist software developers in a configuration process? 2) Do the employed visualization
and interaction interventions improve usability aspect (ease-of learning and ease-of-use) of the
basic tool? That is, we were interested to know the effects of the visualization and interaction
techniques on the performance of software developers. Moreover, we intended to know if the
employed visualization and interaction techniques improve usability of the basic tool (i.e. ease
of learning and ease of use). Consequently, we designed and executed an empirical evaluation
to find out whether applying visualization helps software developers in their tasks during a
configuration process and increases usability aspects.

To evaluate the impacts of the interventions using empirical study, first, we considered the
ISO 9126 standard to derive the quality attributes suitable to our research questions. The
maintainability and usability quality attributes were selected based on the first and second
research questions, respectively. Next, the understandability and changeability sub-quality
attributes from maintainability were chosen and two following tasks were devised to enable
measuring the effects of visualization and interaction interventions on these quality attributes:

& Understanding and interpreting feature model configuration (Comprehension task): Dur-
ing a feature model configuration, software developers should have a good insight into the
feature model and integration of its non-functional properties allowing for efficient
comprehension of models (time-wise). Also, an effective representation causes to avoid
the misunderstanding of relations between features and non-functional properties, and
incorrect decisions during the configuration process.

& Comprehending change to perform (Changing task): Stakeholders’ requirements change
during the development of applications. Changes in requirements urge changes in a
configured feature model. Therefore, understanding required changes in the configured
feature model and making right decisions to select or deselect features based on the
changed requirements is common activity in a configuration process. Thus, a representa-
tion that facilitates making changes and helps to point out the impacts of change easily,
correctly, and quickly is desirable.

1720 Empir Software Eng (2016) 21:1706–1743

T
ab

le
2

E
va
lu
at
io
n
of

fe
at
ur
e
m
od
el
co
nf
ig
ur
at
io
n
to
ol
s
ag
ai
ns
t
vi
su
al
iz
at
io
n
an
d
in
te
ra
ct
io
n
in
te
rv
en
tio

n
se
t

E
xp
lic
it
re
pr
es
en
ta
tio

n
2D

re
pr
es
en
ta
tio

n
U
se

of
co
lo
r

U
se

of
te
xt
ur
e

U
nf
ol
di
ng

D
et
ai
l
on

de
m
an
d

Fi
lte
ri
ng

zo
om

in
g

H
ig
hl
ig
ht

Fe
at
ur
e
m
od
el
pl
ug
-i
n
(f
m
p)

+
+

+
+

Pu
re
::v

ar
ia
nt

+
+

+
+

+
+

+

Fe
at
ur
e
m
od
el
in
g
to
ol

+
+

+
+

+

S2
T
2

+
+

+
+

+
+

X
Fe
at
ur
e

+
+

+
+

+
+

+

Fa
m
a
to
ol

su
ite

+
+

+
+

+
+

Fe
at
ur
e
ID

E
+

+
+

+
+

+

V
is
it-
FC

+
+

+
+

+
+

+
+

+

Empir Software Eng (2016) 21:1706–1743 1721

In order to operationalize the evaluation of the proposed visualization and interaction
interventions during these two tasks derived from understandability and changeability quality
attributes, we defined two metrics for each quality attribute including time efficiency and
accuracy (i.e., having fewer errors) of developers while performing the tasks. Accuracy is
calculated according to the number of correct answers for the comprehension and changing
tasks. Therefore, according to the types of two tasks (i.e., comprehension and changing) and
measurement variables (i.e., time and accuracy), we formulized the following hypotheses:

& H1: The visualization and interaction interventions significantly decrease time spent by
software developers while performing the comprehension task on a configuration of a
feature model.

& H2: Visualization and interaction interventions significantly increases the accuracy of
software developers (in terms of fewer errors) while performing the comprehension task
on a feature model.

& H3: Visualization and interaction interventions significantly decrease time spend by
software developers while performing the changing task on a configured feature model.

& H4: Visualization and interaction interventions significantly increases software developers’
accuracy (in terms of fewer errors) while performing the changing task on a configured
feature model.

With respect to the usability quality attribute, we considered ease-of-use and ease-of-
learning sub-qualities. Afterwards, we derived four metrics for each of these quality attributes
and defined a Likert-point scale measuring system. We formulated the following hypotheses
regarding usability of visually-enhanced tool.

& H5: A feature model configuration tool with the employed visualization and interaction
interventions is significantly easier to use than the tool without interventions when
performing maintainability tasks (i.e. changing and comprehension).

& H6: A feature model configuration tool with the employed visualization and interaction
interventions is significantly easier to learn than the tool without the interventions when
performing maintainability tasks (i.e. changing and comprehension).

The above hypotheses are summarized in Table 3. They are categorized based on the
quality attributes derived from the ISO 9126 standard.

5 Method

Figure 4 illustrates the method followed the design and executing of the empirical study. The
method consists of the study design and study execution phases. In this section, we explain
different activities of these two phases.

5.1 Study Design

The purpose of our study is to evaluate the efficiency of the visualization and interaction
interventions based on the ISO 9126 quality evaluation framework. Accordingly, a number of
research questions corresponding to quality aspects defined in ISO 9126 (e.g. usability and
maintainability) were described. The types of our research questions are causality-comparative
questions (Easterbrook S), which aim to investigate relationships between different causes (i.e.

1722 Empir Software Eng (2016) 21:1706–1743

the relation between the employed visualization and interaction interventions in visually-
enhanced tool and the basic visualization and interaction techniques in basic tool). The
hypotheses corresponding to the research questions formulated the comparative cause-effect
relationships in terms of quantitative variables (e.g. time and number of correct answer). As a
result, a controlled experiment is more suited to our research questions and hypotheses than the
other existing research methods in empirical software engineering such as case-study or
ethnographies. Hence, we designed our study by following the guidelines provided for
designing controlled experiments (Kitchenham et al. 2002). Given the similarity of the
research purpose, the controlled experiment was used in other papers such as (De Lucia
et al. 2010).

Due to limitation on the number of participants, we conducted a repeated measure
experiment in which participants performed tasks with both implementations of the tool (i.e.
basic tool and visually-enhanced tool). In a repeated measure experiment (also known as
within-subject design), participants’ performance is measured before (using basic tool) and
after a treatment (using visually-enhanced tool) (Minke 1997). Using this method, variability

Legend

Process FlowactivityPhase

Study Design Study Execution

Develop Research
Question Based on

ISO9126

Run Pilot
Study

Run Main Study
Develop Research

Hypotheses

Identify Material
and Participants

Collect the
Results

Analyze the
ResultsDefine Variables

Fig. 4 The experiment method

Table 3 Formal definitions of the experiment hypotheses visually-enhanced tool refers to implementation of
visualization and interaction interventions in the basic tool

QA Sub-QAs Hypotheses

Maintainability Comprehension H1: Completion time (basic tool) > Completion time
(visually-enhanced tool)

H2: Number of correct answer (basic tool)
< Number of correct answer (visually-enhanced tool)

Changeability H3: Completion time (basic tool) > Completion time
(visually-enhanced tool)

H4: Number of correct answer (basic tool)
< Number of correct answer (visually-enhanced tool)

Usability Ease of use H5: Effort to use (visually-enhanced tool)
< Effort to use (basic tool)

Ease of learning H6: Effort to learn (visually-enhanced tool)
< Effort to learn (basic tool)

Empir Software Eng (2016) 21:1706–1743 1723

between participants gets isolated and analysis can focus more precisely on the effects of the
employed visualization and interaction interventions. We balanced the order of visually-
enhanced tool and basic tool, that is, a half of the participants first used basic tool and then
visually-enhanced tool and the rest used tools in inverse order. The participants were randomly
distributed to these two groups. Moreover, we designed different tasks with different questions
for each tool.

5.2 Context

5.2.1 Participants

The experiment was executed at Simon Fraser University in Canada and involved 20 graduate
students and trainees (including 10 master’s students, nine PhD students, and one postdoctoral
fellow) of the Department of Computer Science and the School of Interactive Art and
Technology. Since our context was the configuration process in SPLE and we used feature
models for configuration, the participants were required to be familiar with software modeling
languages such as Feature Models (FM), Unified Modeling Language (UML), and Entity
Relationship Diagram (ERD). This constraint (i.e., understanding of the used materials—
feature models and non-functional properties) caused limitations in recruiting participants for
the study. On the other hand, we aimed at having enough participants to ensure that the p value
of less than .05 is considered significant in our data analyses. Therefore, we calculated the
sample size for the study using JMP tool2 by setting power level into 0.95. According to the
result, 16 participants was the least number of participants to ensure the 0.95 power level. All
participants had a good knowledge of software engineering and based on their answers in a
pre-questionnaire they were all familiar with the abovementioned modeling languages. Their
background knowledge made them suitable for our study.

In this study, all the participants agreed to take part in the experiment, and received neither
financial nor non-financial credits for their participation. The participants who responded to
our invitation to take part in the study successfully completed all the tasks of the study. The last
point regarding participants is that due to the difficulty of obtaining professional subject, we
select students as participants. According to Basili and Lanubile (Basili et al. 1999) using
students in experiments is well-suited.

5.2.2 Materials

In this study, we used basic implementation of Feature Model Plug-in (basic tool) and
implementation containing the proposed visualization and interaction interventions (visually-
enhanced tool). Participants performed designed tasks using those two implementations of
fmp. Moreover, a demo for both basic tool and visually-enhanced tool was created in order to
train the participants. The demo explained: 1) all parts of the tools; 2) details of each part; and
3) how users interact with tool and perform the feature model configuration. In the demo, an
ATM machine feature model was used which contained six mandatory features, eight optional
features, two OR-group features, and one alternative group feature. For experiments, different
tasks were designed with different feature models (different from the feature model used in the
demo).

In feature modeling, we deal with two types of complexity: the first one is the complexity of
a domain for which the feature model is designed, and the second one is the internal structure

2 A statistical tool: http://www.jmp.com/

1724 Empir Software Eng (2016) 21:1706–1743

http://www.jmp.com/

of the model, as per the general principle identified in (Briand et al. 1999), and empirically
confirmed for feature models in (Bagheri & Gasevic 2010). These complexities may have an
influence on both the comprehension and changing tasks in the experiment. The aim of our
work (developing visualization and interaction interventions) does not deal with the first type
of complexity; hence, we used feature models about domains with which all the participants
were familiar with (i.e., the electronic shopping feature model). The second type of complexity
has been controlled by designing tasks with different levels of complexity (i.e., so-called
simple and complex feature models).

With respect to questionnaires, three forms were created including: 1) pre-questionnaire; 2)
the instruction of performing tasks and some questions regarding those tasks; and 3) post-
questionnaire. The pre-questionnaire includes questions about the educational background of
participants, their familiarity with software modeling languages.

The instruction forms contained instructions for the tasks, two questions for every com-
prehension task, and one question for every changeability task. Features in a feature model
represent both functionalities and non-functionalities of a family and both aspects are taken
into account in configuration process. Hence, data to visualize are both functional and non-
functional aspects of a feature model. Considering the data oriented objective principle in
Table 1, we developed two questions: the first question was concerned with the comprehension
of the functionality aspect, and the second question was concerned with the comprehension of
the non-functionality aspect. When designing these questions, we considered visualization and
interaction principles introduced in Table 1. For example, as shown in samples of the
comprehension question in Table 4, for designing the comprehension of the functional aspect,
we considered the support for exploration, holistic view of the functional aspect, and
representing variability relations between features principles. To answer this question, devel-
opers need to explore different features and relate them to functional requirements, investigate
the variability relations between features, and have a holistic view on the feature model. Also,
for the comprehension of non-functional aspect the same principles are applied. Similarly, in
the changing task, the changes were made based on both functional and non-functional
requirements and principles of visualization and interaction are considered in developing of
questions. For instance, for providing medium and high international sale, developers should
explore non-functional values of features (e.g., support for exploration), consider the variabil-
ity relations when selecting a desirable feature, and have a holistic view of the overall provided
international sale non-functional property. However, we combined two aspects (i.e. function-
ality and non-functionality) in one question in which features must be selected or deselected
based on requested functionalities and non-functionalities. Finally, the post-questionnaire
encompasses two categories of questions about ease-of-use and ease-of-learning of the tools
and each group has four questions. As mentioned in Section 4, in order to evaluate usability
of visually-enhanced tool, the ease-of-use and ease-of-learning sub-quality attributes were
defined. Next, for each of these sub-qualities, four metrics were defined. A Likert-point
scale question corresponding to each metric was created and subjective opinions of partic-
ipants were collected. We used a 5-point Likert scale including: strongly disagree, disagree
somewhat, neither agree nor disagree, agree somewhat, and strongly agree which were
encoded to 1, 2, 3, 4, and 5, respectively. Tables 5 and 6 show the questions of the post-
questionnaire.

Based on hypotheses 1–4, we required to measure completion time and participants’
accuracy (number of correct answers). Hence, Camtasia Studio (screen recording software)
was employed for logging the participant’s activities. We calculated the completion time for
each task performed by each participant and number of correct answers in changeability task
based on Camtasia Studio log files.

Empir Software Eng (2016) 21:1706–1743 1725

T
ab

le
4

Sa
m
pl
e
qu
es
tio

ns
fo
r
co
m
pr
eh
en
si
on

an
d
ch
an
ge
ab
ili
ty

ta
sk
s

Ta
sk

A
sp
ec
t

Q
ue
st
io
n

C
om

pr
eh
en
si
on

an
d
in
te
rp
re
ta
tio

n
Fu

nc
tio
na
lit
y
as
pe
ct

W
hi
ch

se
nt
en
ce

(s
)
is
(a
re
)
co
rr
ec
t
ab
ou
t
th
e
co
nf
ig
ur
at
io
n?

(S
el
ec
t
on
e
or

m
or
e)

B
ot
h
A
dv
an
ce
d
an
d
B
as
ic
se
ar
ch

op
tio

ns
ar
e
av
ai
la
bl
e
on

th
e
co
nf
ig
ur
ed

ca
ta
lo
g.

C
us
to
m
er

re
vi
ew

,A
va
ila
bi
lit
y,
D
et
ai
l
de
sc
ri
pt
io
n,

an
d
D
oc
um

en
ts
ar
e
se
le
ct
ed

fo
r

pr
od
uc
t.

3D
im

ag
e,
G
al
le
ry
,a
nd

V
id
eo

ar
e
se
le
ct
ed

A
ss
oc
ia
te
d
as
se
ts
in

th
e
pr
od
uc
t.

Fi
lte
ri
ng

ba
se
d
on

Pr
ic
e
an
d
Q
ua
lit
y
is
po
ss
ib
le
an
d
Se
rv
ic
es

an
d
E
le
ct
ro
ni
c
go
od
s

ar
e
Pr
od
uc
t
ty
pe
s
ex
is
t
in

th
e
ca
ta
lo
g.

N
on
-f
un
ct
io
na
lit
y
(N

on
-f
un
ct
io
na
l
pr
op
er
tie
s)
as
pe
ct

W
hi
ch

of
th
e
fo
llo

w
in
g
st
at
em

en
t
(s
)
is
(a
re
)
co
rr
ec
t
ac
co
rd
in
g
to

th
e
co
nf
ig
ur
at
io
n?

(S
el
ec
t
on
e
or

m
or
e)

P
er
fo
rm

an
ce

is
no
t
im

po
rt
an
t

A
t
m
os
t
m
ed
iu
m

co
st
is
re
qu
ir
ed

(A
ll
th
e
se
le
ct
ed

fe
at
ur
e
ha
ve

lo
w

or
m
ed
iu
m

co
st
)

A
t
le
as
t
m
ed
iu
m

se
cu
ri
ty
is
co
ve
re
d
(A

ll
th
e
se
le
ct
ed

fe
at
ur
es

ha
ve

m
ed
iu
m

or
hi
gh

se
cu
ri
ty
)

Fo
r
th
e
E
xp
ir
at
io
n
fe
at
ur
e
lo
w
er

co
st
is
m
or
e
im

po
rt
an
t
th
an

hi
gh
er

se
cu
ri
ty

C
ha
ng
ea
bi
lit
y

B
ot
h
fu
nc
tio

na
l
an
d
no
n-
fu
nc
tio
na
l
A
sp
ec
ts

C
ha
ng
e
th
e
co
nf
ig
ur
at
io
n
ba
se
d
on

fo
llo

w
in
g
re
qu
ir
em

en
ts
:

Fo
r
cu
st
om

er
s,
in
te
rn
at
io
na
l
sa
le
an
d
co
st
be
co
m
e
ve
ry

im
po
rt
an
t.
Se
le
ct
al
l
al
lo
w
ab
le

fe
at
ur
e
(s
)
w
ith

m
ed
iu
m

or
hi
gh

in
te
rn
at
io
na
l
sa
le
an
d
lo
w

or
m
ed
iu
m

co
st
.D

es
el
ec
t

th
e
fe
at
ur
es

w
ith

hi
gh

co
st
an
d
lo
w

in
te
rn
at
io
na
l
sa
le
.

T
he

cu
st
om

er
al
so

as
ke
d
th
at
D
et
ai
l
of

A
dd
re
ss

sh
ou
ld

no
t
be

C
ity
.C

ity
m
us
t
no
t
be

se
le
ct
ed

ev
en

th
ou
gh

it
co
ve
rs
th
e
no
n-
fu
nc
tio

na
l
pr
op
er
tie
s.

1726 Empir Software Eng (2016) 21:1706–1743

5.3 Defining Variables

5.3.1 Independent Variables and Confounding Variables

We conducted a single factor experiment where the main factor is visualization and interaction
techniques used in the interface (i.e. visually-enhanced tool, these techniques have been
explained in section 3). Therefore, one independent variable (visualization technique) with
two levels (basic tool and visually-enhanced tool) was defined. To assess better the effects of
visualization and interaction techniques, we controlled other factors (i.e. confounding vari-
ables), which could have an influence on the results of the experiment. We were concerned
with the following confounding variables:

& Complexity of the feature model: As explained in Section 5.1.2 (materials), we controlled
two types of feature model complexity. All the feature models used in the tasks were
selected from the electronic shopping feature model. All parts of that feature model are
easy to understand (e.g., checkout, catalog, taxation, and password) and participants were
familiar with them. Moreover, tasks designed with two levels of complexity: simple and
complex feature models. According to the study of Bagheri & Gašević (Bagheri & Gasevic
2010) some structural metrics can be considered as good predictors of complexity of
feature models and assessing the maintainability of a software product line. They per-
formed a controlled experiment to find out the relation between the proposed structural
metrics and maintainability (i.e. analyzability, changeability, and understandability) of
feature models. Based on the achieved results the number of features (NF) and number
of leaf features (NLeaf) are good indicators for understandability and changeability of a
feature model. Hence, a feature model with higher values of the NF and NLeaf metrics can
be considered more complex. It is possible that the efficiency of employed visualization
techniques on comprehension and changeability tasks varies for different feature models
with various level of complexity. Hence, we decided to design feature models with two
levels of complexity designed based on metrics identified by Bagheri & Gašević (Bagheri
& Gasevic 2010). When designing complex feature models, we find out that for very large
feature models, it would require us to take longer time for the experiments so that the

Table 5 First part of the post questionnaire

Ease of use

Q1 The tool is user friendly.

Q2 Using the tool is effortless.

Q3 Interaction with the tool is clear and understandable.

Q4 Overall, I find the tool easy to use.

Table 6 Second part of the Post Questionnaire

Ease of learning

Q1 I learned to use the tool quickly.

Q2 I easily remember how to use the tool.

Q3 Learning to operate the tool is easy for me.

Q4 I quickly became skillful with the tool.

Empir Software Eng (2016) 21:1706–1743 1727

participants had enough time to get familiar with the entire models. This would problematic
as the experiment would take much longer and would prevent us to control fatigue effect.
Thus, the size of the featuremodels was determined by bearing in mind the balance between
the actual size of models and fatigue effect. Information about four designed feature models
are shown in Table 7.We have reported the number of total features (NF) and the number of
leaf features (NLeaf) as well as the number of different types of features (i.e. Mandatory
feature, Optional feature, OR feature group, and Alternative feature group) for each feature
model. The participants completed both the comprehension and changing tasks on simple
and complex feature models by using both the basic tool and visually-enhanced tools.

& Learning effect: For controlling the learning effect during the experiment, we tried to train
participants before running the experiment. To this end, the demo of basic tool and visually-
enhanced tool was created and the participants were asked to follow the demo thoroughly.
We answered the participants’ questions about the tools while they were watching the
demo. Moreover, a preparation task was designed to make the participants familiar with the
tasks and provide them with an opportunity to interact and practice with both the tools.
Hence, we made sure that before performing the real tasks all the participants had been
trained properly. The feature model used in the preparation task was totally different from
the feature models in the tasks of the experiment reported. Only the structure of the training
tasks and the type of asked questions were similar to the real tasks. Therefore, the
participants had become familiar with tools and tasks before performing the real tasks.

5.3.2 Dependent Variables

The aims of this experiment are: first to find out the accuracy and performance level of software
developers by using visually-enhanced tool versus basic tool (Hypotheses 1–4); second to
evaluate usability aspects of visually-enhanced tool versus basic tool (Hypotheses 5–6). For
measuring the efficiency and accuracy, we used the following metrics respectively: 1) comple-
tion time of the tasks; 2) number of incorrect answers to the questions given regarding the tasks.
As explained in Section 5.1.2, we logged the activities of users during performing the tasks
using Camtasia Studio (a separate log file for each task and participant). The values of these
variables (i.e. completion time and number of correct answers) were extracted from log files.
With regard to usability, ease-of-use and use-of-learning were defined as dependent variables
whose values were captured through post-questionnaires given to the participants.

5.4 Experimental Procedures

The experiment was conducted in the Laboratory for Ontological Research of the School of
Interactive Art and Technology at Simon Fraser University and took around one hour per each
participant. During the experiment, we followed this procedure:

Table 7 Feature models information

Task Info. Complexity NF NLeaf Mandatory Optional OR-feature X-OR

Comprehension Simple [Password] 11 7 3 0 8 0

Complex [Catalog] 30 20 5 10 15 0

Changeability Simple [Taxation] 15 9 7 1 7 0

Complex [Check Out] 30 23 5 7 15 3

1728 Empir Software Eng (2016) 21:1706–1743

3. The participants were given the pre-questionnaire, which contained the questions regarding
their knowledge level about the context of study (i.e. software product line and featuremodel).

4. The participants watched the demo of the tools (explained in Section 5.1.2) and their
questions regarding different parts of tools were answered.

5. The participants were given the preparation tasks’ form containing instruction about the
preparation tasks and some questions regarding the performed tasks. They completed the
preparation tasks with both the tools in order to get ready for doing real tasks.

6. After the preparation phase, the participants were given the first form containing four tasks
in the following order: 1. simple comprehension task; 2. simple changing task; 3. complex
comprehension task; and 4. complex changing task. The participants were asked to record
their screen during doing tasks by Camtasia Studio.

7. After completing the tasks of the first form, the participants were asked to fill up the first
post-questionnaire. They were asked to complete the post-hoc questionnaire about per-
ceived ease-of-use and ease-of-learning of the tool (i.e., visually-enhanced tool or basic
tool), with which they worked in the previous stage.

8. The participants were given the second form containing four tasks in the same order as in
Step 4. The tasks of the second form were different from the tasks in the first one in terms
of required comprehension and changes. The group of participants, who used the basic
tool for performing the tasks from the first form, completed the tasks of the second form
with the visually-enhanced tool and vice versa.

9. Finally, the participants were asked to fill out the second post-questionnaire related to the
tool with which they performed the tasks in step 6.

By finishing the experiment, we acquired three filled questionnaires (one pre-questionnaire
and two post-questionnaires) and eight files (recordings of screen capturing) for each participant.

5.5 Pilot Study

In order to verify the experimental parameters and optimize them, we conducted a pilot study
with two participants. The participants did not take part in the actual experiment later on. One
of the participants performed the tasks with basic tool first and then with visually-enhanced
tool, and the other one did the tasks in the reverse order.

As a result of the pilot study, we revised both the tasks and the feature model configurations
to make them clearer and feasible. For example, we disambiguated two options of the
comprehension questions and one of the changing tasks. Other than these unclarities, the tasks
were found to be sufficiently feasible for both the basic tool and visually-enhanced tools; and
performing them did not take time more than our expected time.

5.6 Data Analysis

According to the type of study (i.e. repeated measures design), hypotheses (causality-compar-
ative questions), and independent and dependent variables; appropriate tests were identified for
the hypotheses. Generally, for repeated measure designs where each participant performs the
tasks on all the groups (e.g., the basic tool and visually-enhanced tool groups), the suitable
paired test is employed. Since the dependent variables (i.e., completion time, number of correct
answers, ease-of-use, and ease-of-learning) are numerical and the independent variable (i.e.,
visualization technique) is categorical with two levels, we can either use one-tailed paired t-test
or Wilcoxon Sign-Rank test. One-tailed paired t-test is a well-known statistical test for
comparing the means of two groups of data with normal distribution. It is also suitable for

Empir Software Eng (2016) 21:1706–1743 1729

the samples with small sizes. The Wilcoxon Sign-Rank test is a none-parametric statistic test
which is an alternative to the paired t-test when the sample is not normally distributed.

To identify appropriate test for the hypotheses, we investigated normality of the involved
variables: 1) time completion variable is continuous variable and based on the ShapiroW test it
has a normal distribution. Therefore, the one-tailed paired t-test was used for comparing the
mean of this variable in two groups (Hypotheses 1 and 3); 2) the number of correct answers,
based on the Shapiro W test, was not distributed normally, so we used the Wilcoxon Sign-Rank
test for comparing two samples in terms of accuracy (Hypotheses 2 and 4); 3) the collected data
regarding ease-of-use and ease-of-learning also did not have normal distribution, so we used the
Wilcoxon Sign-Rank test to compare two tools in terms of these variables (Hypotheses 4 and 6).

As mentioned in Section 5.2.1, complexity of a feature model is considered as a confound-
ing variable and we designed two variants for each task—one with simple feature model and
one with complex feature model—to handle this variable. As a result, two variant of hypoth-
eses 1–4 were tested—one for simple task (e.g. simple comprehension task) and one for
complex task (e.g. complex comprehension task).

6 Experimental Results

In this section, we report on the results obtained in conducting the experiment. To perform the
analysis, we used the JMP v8.0.2 statistical tool.

6.1 Descriptive Analysis

In Tables 8 and 9, descriptive statistics (i.e. median, mean, and standard deviation values) for
the completion time (measured in seconds) are reported—grouped by complexity of feature
model and tools. As the results show, for the comprehension and changing tasks, the mean and
median values of the completion time by using the visually-enhanced tool are less than the
mean and median values of the completion time by using the basic tool.

Descriptive statistics (i.e. median, mean, and standard deviation values) for the number of
incorrect answer are reported in Tables 10 and 11—grouped by the complexity of the feature
models and tools. As the results show, for the comprehension and changing tasks, the mean
and median values of the number of incorrect answers by using visually-enhanced tool are less
than the mean and median values of the number of incorrect answers by using basic tool
(except for the simple comprehension task).

As it is shown in Tables 8 to 9, the standard deviations of dependent variables for visually-
enhanced tool are always lower than dependent variables for basic tool (except for the number
of incorrect answers in the simple comprehension task). This indicates that the data points vary

Table 8 Descriptive statistics of completion time (in Seconds) for the comprehension tasks

Feature model Tool Median Mean Std Dev

Simple Basic tool 214.50 218.60 80.21

Visually-enhanced tool 177.50 186.50 61.60

Complex Basic tool 376.00 350.65 93.77

Visually-enhanced tool 248.00 273.05 86.81

1730 Empir Software Eng (2016) 21:1706–1743

less from the mean values. Based on this, there is some evidence that the participants’
performance is more consistent while using visually-enhanced tool rather than using basic tool.

Figures 5 and 6 show the descriptive statistics of data collected by the post questionnaires
about the perceived ease-of-use and ease-of-learning of the two implementations of the tool
investigated in the experiment.

According to the results, the visually-enhanced tool has the higher mean values for the
perceived ease-of-use and ease-of-learning than the basic tool. Further details of the results are
discussed in Section 6.3.

6.2 Hypotheses Testing

In this section based on the data and our hypotheses we apply suitable statistical tests (e.g., t-
test and Wilcoxon Sign-Rank test). The test results are used to statistically support or reject
hypotheses and show if there is statistically significant difference between two tools. In
addition to these tests, we also compute the effect size for each statistical test to find out the
magnitude of differences. According to guideline of Cohen (Cohen 1992), effect size 0.2, 0.5,
0.8 shows small effect, medium effect, and large effect, respectively.

6.2.1 Basic Tool vs. Visually-Enhanced Tool Based on Comprehension Tasks

According to our dependent variables (i.e. completion time and number of incorrect answers),
we formalized two hypotheses for the comprehension tasks (i.e. H1 and H2). The null
hypothesis for H1 is formalized as a follow:

& H01: There is no significant difference between the time completion of the comprehension
task done by software developers using basic tool and visually-enhanced tool (including
the visualization and interaction interventions).

Results First, we report the results for the complex comprehension task. As the distribution of
the collected data for completion time was normal, the paired t-test for the complex

Table 9 Descriptive statistics of completion time (in Seconds) for the changing tasks

Feature model Tool Median Mean Std Dev

Simple Basic tool 145.75 190.50 67.64

Visually-enhanced tool 116.75 150.00 52.46

Complex Basic tool 260.50 257.40 84.20

Visually-enhanced tool 173.50 177.50 59.10

Table 10 Descriptive statistic of the number of incorect answers forthe comprehension tasks

Feature model Tool Median Mean Std Dev

Simple Basic tool 0.50 0.55 0.60

Visually-enhanced tool 0.00 0.55 0.68

Complex Basic tool 1.00 0.80 0.89

Visually-enhanced tool 0.00 0.50 0.82

Empir Software Eng (2016) 21:1706–1743 1731

comprehension tasks revealed that there is a significant difference in the mean values of the
completion time for basic tool (M=350.65, SD=93.77) and visually-enhanced tool (M=273.5,
SD=86.81), t (19)=5.75, p<0.0001. The effect size is equal to 0.80 which means applying
visualization and interaction interventions has a large effect in reducing time required for
comprehending complex feature models. Based on the paired t-test for the simple comprehen-
sion tasks, there is a significant difference in the mean values of the completion time for basic
tool (M=218.60, SD=80.21) and visually-enhanced tool (M=186.50, SD=61.60), t (19)=
4.17, p=0.0005. Hence, we can reject the null-hypothesis H01. The effect size is equal with d=
0.70 which shows applying visualization and interaction interventions shows a medium effect
in time required for comprehending simple feature models.

The second hypothesis (H2) for the comprehension tasks compares the accuracy of
software developers while performing the tasks by using the basic tool and visually-
enhanced tools. The corresponding null hypothesis is as follows:

& H02: There is no significant difference between the accuracy (i.e. fewer errors) of the
comprehension task done by software developers using basic tool and visually-enhanced
tool (including the visualization and interaction interventions).

Results– The results of the Wilcoxon Sign-Rank test indicate that for the simple com-
prehension tasks there is no significant difference between the number of incorrect
answers when using basic tool (Mdn=0.5) and Visually-enhanced tool (Mdn=0), Z=0,
p=1.00. Moreover, for the complex comprehension tasks, no significant difference
between the number of incorrect answers when using basic tool (Mdn=1) and visually-
enhanced tool (Mdn=0) was found, Z=14.50, p=0.40. Therefore, we cannot reject null-
hypothesis H02, which means there is no significant difference between the number of
incorrect answers based on the simple and complex comprehension tasks for the basic
tool and Visually-enhanced tool.

3.2 2.65
4.05 3.35

4.7 4.4 4.6 4.85

0

1

2

3

4

5

Q1 Q2 Q3 Q4

fmp vis-fmp

Fig. 5 Descriptive statistics of the participants’ feedback about the perceived ease of use of the tools

Table 11 Descriptive statistic of the number of incorect answers for the changing tasks

Feature model Tool Median Mean Std Dev

Simple Basic tool 0.00 0.70 0.98

Visually-enhanced tool 0.00 0.55 0.89

Complex Basic tool 1.50 1.50 1.19

Visually-enhanced tool 0.00 0.75 0.97

1732 Empir Software Eng (2016) 21:1706–1743

6.2.2 Basic Tool vs. Visually-Enhanced Tool Based on Changeability Tasks

We also formalized two hypotheses for the changeability tasks (i.e. H3 and H4) based on our
dependent variables (i.e. completion time and number of incorrect answers). The null hypoth-
esis for H3 is formalized as a follow:

& H03: There is no significant difference between the completion time of the changeability
tasks done by software developers by using basic tool and visually-enhanced tool (includ-
ing the visualization and interaction interventions).

Results First, we report the results for the complex changeability task. As the distribution of
the collected data for completion time was normal, the paired t-test for the complex change-
ability tasks revealed that there is a significant difference in the mean values of the completion
time for basic tool (M=257.40, SD=84.20), and Visually-enhanced tool (M=177.50, SD=
59.10), t (19)=5.25, p<0.0001. The effect size is equal to 0.78 which shows applying
visualization and interaction interventions has a medium effect in reducing time required for
changing complex feature models. Based on the t-test for paired samples for the simple
changing tasks, there is a significant difference in the mean values of the completion time
for basic tool (M=190.50, SD=67.64), and Visually-enhanced tool (M=150.00, SD=52.46), t
(19)=2.79, p=0.01. Hence, we can reject null-hypothesis H03. The effect size is equal to 0.32
which shows applying visualization and interaction interventions has a low effect in reducing
time required for changing simple feature models.

The second hypothesis (H4) for the changing task compares the accuracy of software
developers when applying changes to a feature model by using the basic and visually-
enhanced tools. The corresponding null hypothesis is as a follow:

& H04: There is no significant difference between the accuracy (i.e. fewer errors) of the
changing tasks done by software developers by using basic tool (basic implementation)
and visually-enhanced tool (including the visualization and interaction interventions).

Results The Wilcoxon Sign-Rank test on the number of incorrect answers for the simple
changeability task revealed that there is no significant difference in the number of the incorrect
answers when using basic tool (Mdn=0) and Visually-enhanced tool (Mdn=0) Z=6.50, p=
0.45. In addition, for the complex changing tasks when using basic tool (Mdn=1.5) and
visually-enhanced tool (Mdn=0), there is no significant difference in the number of incorrect

4.3 4.4 4.45 4.05
4.75 4.85 4.85 4.65

0

1

2

3

4

5

Q1 Q2 Q3 Q4

fmp vis-fmp

Fig. 6 Descriptive statistic of the participants’ feedback about the perceived ease of learning of the tools

Empir Software Eng (2016) 21:1706–1743 1733

answers, Z=24.00, p=0.06. Therefore, we cannot reject null hypothesis H04 for the simple and
complex feature model which means that for changing tasks, the use of basic tool or visually-
enhanced tool does not have an impact on the number of incorrect answer.

6.2.3 Perceived Ease-of-Use and Ease-of-Learning

In addition to investigating the effect of the visualization and interaction interventions on
performing the comprehension and changing tasks of feature model configuration, we collect-
ed the participants’ feedback about the ease-of-use and ease-of-learning of both the tools. By
analyzing two formulized hypotheses H5 and H6, the difference between visually-enhanced
tool and basic tool in terms of ease-of-use and ease-of-learning can be revealed. The corre-
sponding null hypothesis for H5 (ease of use) is as follow:

& H05: Visualization and interaction interventions do not make visually-enhanced tool
significantly easier to use than basic tool when performing maintainability tasks (i.e.
changeability and comprehension).

Results By performing the Wilcoxon Sign-Rank test on the participants’ responses about ease
of use, the following results were obtained:

& The visually-enhanced tool (Mdn=5) is perceived significantly more user friendly than the
basic tool (Mdn=3.5), Z=56.50, p=0.0004. The effect size is equal to 0.59 which means
applying visualization and interaction interventions shows a medium effect on increasing
perceived user-friendliness of the tool by participants.

& The visually-enhanced tool (Mdn=4.5) is perceived to need significantly less efforts to use
than effort required for using the basic tool (Mdn=2), Z=75.50, p=0.0001. The effect size
is equal to 0.67 which means applying visualization and interaction interventions has a
medium effect on reducing perceived effort to use of the tool by participants.

& The interaction with the visually-enhanced tool (Mdn=4) is perceived to be significantly clearer
and understandable than the interaction with the basic tool (Mdn=5), Z=23.50, p=0.02. The
effect size is equal to 0.28 which means applying visualization and interaction interventions has
a low effect on increasing perceived clearness and understandability of the tool by participants.

& TheVisually-enhanced tool (Mdn=4) is perceived to be significantly easier to use than the basic
tool (Mdn=5), Z=60.00, p=0.0001. The effect size is equal to 0.62 which means applying
visualization and interaction interventions has a medium effect on perceived ease-of-use of the
tool by participants. Similarly, the null hypothesis for H6 (ease-of-learning) is defined as a
follow

& H06: Visualization and interaction interventions do not make visually-enhanced tool
significantly easier to learn than basic tool when performing maintainability tasks (i.e.
changeability and comprehension).

Results For the ease of learning questions, we performed the Wilcoxon Sign-Rank test and the
following results were obtained:

& There is no significant difference in the perceived amount of time needed to learn either
visually-enhanced tool (Mdn=5) or basic tool (Mdn=5), Z=18.00, p=0.13.

1734 Empir Software Eng (2016) 21:1706–1743

& The Visually-enhanced tool (Mdn=4.5) is perceived to be significantly easier to remember
how to use than the basic tool (Mdn=5), Z=18.00, p=0.03. The effect size is equal to 0.35
which means applying visualization and interaction interventions has a low effect on
increasing perceived easer to remember of the tool by participants.

& The Visually-enhanced tool (Mdn=4.5) is perceived to be significantly easier to learn to
operate than the basic tool (Mdn=5), Z=22.00, p=0.03. The effect size is equal to 0.37
which means applying visualization and interaction interventions has a low effect on
increasing perceived easer to learn of the tool by participants.

& The perceived amount of time needed to be a skillful user is significantly better in visually-
enhanced tool (Mdn=4) than basic tool (Mdn=5), Z=2.08)=28.00, p=0.01. The effect
size is equal to 0.33 which means applying visualization and interaction interventions has a
low effect on decreasing perceived time needed to be a skillfule of the tool by participants.

7 Discussion of the Results and Related Work

7.1 Discussion of the Results

The results of the data analysis applied are affirmative for our hypotheses and provide some
evidence that the proposed approach (applying visualization and interaction interventions)
improves software developers’ performance while conducting comprehension and changing
tasks. Based on the results, the required time for the comprehension of simple and complex
feature models is significantly shorter when using visually-enhanced tool (implementation of fmp
with visualization and interaction interventions) than basic tool. The lower time requirements for
the comprehension tasks in the visually-enhanced tool can be attributed to several factors. First of
all, visually-enhanced tool unlike basic tool provides a single representation of both features and
their associated non-functional properties in which non-functional properties of each feature were
shown along with the feature. According to cognitive science theories ((Card et al. 1999);
(Zhicheng et al. 2008)), effective visualization and interaction techniques during improve the
cognition of developers which leads to better performance and higher accuracy. Hence, the
selected visualization and interaction interventions improve the cognition of developers when
configuring feature models. Moreover, zooming and highlighting properties facilitate focus on
specific parts of feature models. This likely has a promising potential for a practical configuration
of feature models in industrial settings where software developers deal with large feature models
with a high number of features. Therefore, applying visualization techniques have a potential to
improve the comprehension of feature models along with their associated non-functional
properties.

Moreover, based on the results obtained by using visually-enhanced tool, the completion
time for the changing tasks of the feature model configuration is significantly reduced. The
facilities, that visually-enhanced tool provides for navigation in the visual view such as detail
on demand, zooming, and highlighting may be factors to significant decrease of the time of the
changing tasks in visually-enhanced tool in contrast to basic tool where the user does not have
these facilities. Hence, the application of the visualization and interaction techniques has a
potential to improve time needed for the comprehension and application of changes to feature
models. The configuration process includes the comprehension and changing tasks, so de-
creasing the completion time of these tasks means decreasing the completion time of the

Empir Software Eng (2016) 21:1706–1743 1735

configuration process. The results motivate us to apply more visualization and interaction
techniques suitable for feature model configuration for further improvement. The results can
be beneficial for other researchers in SPLE to apply similar techniques in their tools.

With respect to the participants’ feedback on the visually-enhanced tool and basic tool, the
results showed that visually-enhanced tool is perceived to be easier to use (i.e., the participants
on average ranked 4.64 out of 5 for visually-enhanced tool and 3.31 out of 5 for basic tool).
Based on the design of our experiment, there is some evidence that this difference can be
attributed to the use of visualization and interaction interventions. This makes a feature model
more intuitive and integrates non-functional properties and features in one representation (see
Fig. 3). However, both the tools were perceived to be easy to learn (i.e., the participants on
average ranked 4.78 and 4.30 out of 5 for visually-enhanced tool and basic tool, respectively).
This can likely be attributed to the simplicity of learning the feature model structure.

7.2 Related Works

In addition to the tools mentioned in section 3.4, we also studied another group of related
works that concentrate on representation of features models. Pablo Trinidad et al. (Trinidad
et al. 2008) proposed a visualization approach, which visualizes large feature models by using
cone trees − a three-dimensional visualization technique to represent hierarchical information.
Their work did not cover feature model configuration and it only aimed at presenting and
understanding large size feature models. Daren Nestor et al. (Nestor et al. 2007) also employed
visualization techniques to support feature model management and product derivation in
SPLE. They aimed at improving the tasks such as retrieving a set of features and their
attributes, retrieving architectural structures of a feature set and comparing the architecture
design to the implementation by using different visualization techniques such as tree-map,
graph with a force-directed layout, TreeJuxtaposer, and semantic zoom. David Sellier et al.
(Sellier & Mannion 2007) developed a tool named V-Visualise which visualize the decision
model and interdependency between requirements decisions. They tried to provide under-
standable views of interdependencies between product lines for software developers. The
toolset which includes V-visualise have a product derivation tool called V-Resolve and V-
Define.

Finally, we broaden the scope of related work to those which focused on the visualization of
other software models. The following works are related to our work in that they tried to
improve the comprehension of software model by visualizing software model and related
attributes of elements in the models. Lange and Chaudron (Lange & Chaudron 2007) have
been working on the improvement of comprehension of UML diagrams and proposed visuals
which aim at visualizing the inter-diagram relations (Meta View), visualizing the context of a
model element—consists of all other related model elements to that element—(Context View),
and visualizing metrics of each elements on top of the diagram (Metric View). They also
evaluated their work on comprehension tasks and the results showed that their tool (i.e. the
implementation of above views) is successful to reduce the completion time by 20 % and
increase the correctness by 4.5 %. Byelas and Telea (Byelas & Telea 2009) have also been
working on visualizing software metrics a top of UML diagram. They proposed a solution to
visualize Areas Of Interest (AOIs)—as a group of elements in a UML diagram which share
common software metrics—on the UML diagram. Similar to our approach, their suggested
that their approach helps software developers associate non-functional properties with dia-
grams and understand models better. They also performed a controlled experiment to show the
level of understandability and quality of drawn AOIs. The result of the evaluation revealed that
the drawn AOIs using their algorithm are close to good human drawn AOIs. Another approach

1736 Empir Software Eng (2016) 21:1706–1743

was introduced by Langelier et al. (Langelier et al. 2005) that supports complex software
analysis by employing visualization. They proposed a visualization framework to assist
software developers understand the quality of software effectively. Their evaluation of the
visualization framework had promising results. In the evaluation, the participants perform a
complex analysis task correctly in less than one minute−the tasks need significantly more time
to complete without using the visualization framework.

8 Threats to Validity

8.1 Internal Validity

For internal validity of our study, we investigate if and to what extent some confounding
factors affect our results. Possible confounding factors for our study were as following.

& Motivation of participants: Since all the participants, who responded to our invitation,
voluntarily participated in the experiment and for that received no material or immaterial
compensation, we can exclude the motivation as a confounding factor. Moreover, none of
our participants left the experiments.

& Learning effect in the tasks: we controlled this threat by creating a demo and introduced
both the tools to the participants. The participants watched the demo and asked any
questions they have about different parts of the tool. Moreover, we designed the preparation
tasks similar to the main tasks with different feature models (in the domain of ATM). All the
participants had to perform the preparation tasks before starting with the main tasks.

& Complexity of feature model: The other factor which could have affected the internal
validity of our experiment is the domain complexity of feature models (i.e. selecting
feature models from domains which the participants were not familiar with). The domain
of the used feature models was online shopping and all the participants were familiar with
the online shopping systems. In addition, by designing tasks with the two level of
complexity (i.e. feature models with different number of features and leaf features), we
controlled the other type of feature model complexity (more details have been addressed in
Section 5.2.1). Therefore, we filtered out this factor as a threat to validity of our study.

& Carry-over effect: in a repeated measure experiment this factor occurs when a treatment is
effected by previous one. In our experiment, we handled this threat by designing different tasks
for each tool. Moreover, we used balance order for performing the task related to each tool.

& Fatigue effects: The total time of experiment for each participant was about one hour on
average in which the time of performing the tasks was 30 min on average (except the time
of watching the demo and the preparation task). This time is not too much in contrast with
the regular lecture time (considering that the participants are computer science students)
which is about 90 min. So, we can ignore the effect of fatigue on the result of study
because it is not significant.

& Possible information exchange among the subjects: To avoid the effect of this threat we
asked all participant to not share the information about tasks with others

8.2 External Validity

The external validity explores whether and to what extent the results of a study can be
generalized. In our case, we should investigate whether we can generalize the results and

Empir Software Eng (2016) 21:1706–1743 1737

applied them to the industrial context of feature model configuration. The main confounding
factor is population (Chin 2001). Our population is comprised of master’s and PhD students,
and a postdoctoral fellow who had experience in software engineering and SPLE. The
argument that the participants may not be representative of the real target users (professional
software developers) and their performance on the tools is probably not that relevant.
However, based on the questionnaire, which investigated their familiarity with modeling
languages such as UML, ERD, and feature modeling and based on their experience, they
are not far from at least junior industrial software developers. Furthermore, Basili et al. (Basili
et al. 1999) believe that in many cases, the use of students in experiments has little impact on
the validity of the results. Since there are some differences between industry and academic
contexts, a field experiment should be conducted with the industry subjects to validate the
reported results.

The other confounding factor is the type of feature models used in the tasks. One can say
that the feature models in the tasks are not representative of industry ones. Although the size of
feature models used in the experiment is smaller than industry versions of feature models, all
of them are subsets of a large feature model, which is designed for the electronic shopping and
which was downloaded from the SPLOT repository.3 Since we have several tasks (i.e., eight
tasks) in the experiment and the participants were supposed to complete all the tasks for a
given amount of time (to control the fatigue effect, which could affect the internal validity of
our findings, as discussed in Section 8.1), we could not select larger size feature models.

8.3 Construct Validity

Construct validity explores whether the independent and dependent variables provide accurate
measurements of what they are intended to measure (Bagheri & Gasevic 2010). In our case,
according to our hypotheses, we were interested to investigate the effects of the visualization
and interaction interventions on comprehension and changing of a feature model configuration
and aimed at generalizing the effects to visualization techniques for feature model configura-
tion in general (see section 7.1). However, we should mention that the experiment does not
distinguish between the visualization and interaction implemented in visually-enhanced tool
and visualization techniques for feature model configuration. That is, we cannot tell whether
the improvement in the completion time and the number of correct answers is because of the
investigated visualization and interaction interventions for feature model configuration in
general or specific techniques employed in visually-enhanced tool (e.g., 2-dimentional tree).
To discriminate the difference, more similar experiments involving other visualization tech-
niques (e.g. 3D representation) are required.

Furthermore, the completion time and the number of correct answers were used as measures
in our hypotheses. The completion time is measured by the amount of time that the participants
spent on performing comprehension and changing tasks. This is a straightforward and direct
measurement mechanism, and hence, poses the least threats to construct validity. With regard
to measuring the number of correct answers in the comprehension tasks, the aim of our study
was to analyze whether visually-enhanced tool provides a better support than basic tool in the
comprehension of the feature model configuration process. Therefore, we decided to use a
multi-choice questionnaire where each question admitted one or more correct answers. In
particular, each question investigates a comprehension of one feature model where each of its
options investigates understandability of a part of the feature model or the whole feature
model. With respect to the changing task, the changing questions were designed such that

3 http://www.splot-research.org

1738 Empir Software Eng (2016) 21:1706–1743

http://www.splot-research.org/

requested changes lead to one correct configuration. We measured the number of incorrect
answers by comparing the final answer (i.e. configured feature model) of participants with the
correct configuration that we designed in advance. These measurement mechanisms satisfy
objective of our study and poses the least threats to construct validity.

Regarding usability variables, the subjective opinions of participants were collected. The
main threat of applying a subjective measurement is different attitudes of different participants
towards the evaluation of dependent variables. For example, some participants may easily
provide high subjective values to the options (usability of basic tool or usability of visually-
enhanced tool) that they are evaluating, while others may be reluctant to provide high
subjective values. However, since we used repeated measure design in which one participant
provides subjective values for both tools, this subjective measurement exactly captures what it
claims to capture, which is the difference between usability of basic and visually-enhanced
tools from users’ point of view. Moreover, standard models for measuring ease-of-use and
ease-of-learning such as the technology acceptance model ((Davis 1989); (Venkatesh & Davis
2000); (Venkatesh & Bala 2008)) and system usability scale (Bangor et al. 2008) are based on
perceived values.

Another potential threat to construct validity is the use of a 5-point Likert scale to collect the
subjective opinions of the participants. The problem of Likert scales is that it provides a limited
number of ordinal options for evaluation and it may prevent participants from accurately
expressing their opinion. Empirical studies, however, have shown that the best number of
options for a Likert scale is between 4 and 7 (Lozano et al. 2008). According to the study
(Lozano et al. 2008), in many cases more than 7 options are likely to exceed the discriminative
capacity of participants, even though it leads to better psychometric properties. By considering
the 5 point Likert scale, we tried to minimize the threats to validity of this measurement
mechanism.

9 Conclusion and Future Work

One of the main challenges in software product line engineering is the use of variability
models to configure products in the application engineering. A feature model represents
feasible features and properties of a domain in hierarchical representation. In application
engineering, a final product is created by selecting or deselecting of the features based on
the target requirements. Configuring feature models is a challenging task because many factors
should be taken into account and high cognitive abilities are required. We identified a set of
visualization and interaction interventions which help software developers in the configuration
tasks by using visual aids. The visualization interventions are employed to represent the feature
model and non-functional properties in the feature model. Also, a number of interactivity
interventions are embedded in the tool to assist software developers in their tasks on the feature
model.

To understand the effects of visualization and interaction interventions on the feature model
configuration process, we performed a controlled experiment on the developed tool with
respect to common activities in configuration, i.e., changing and comprehension. The results
revealed that applying visualization and interaction techniques significantly decreases time
required for changing and comprehension configuration tasks of simple and complex feature
models. The participants’ inputs showed that the ease-of-use and ease-of-learning are better for
the visually-enhanced tool implementation (includes visualization and interaction interven-
tions) than the basic tool, which uses a basic tree view without additional visualization and
interaction techniques.

Empir Software Eng (2016) 21:1706–1743 1739

For future work, we aim at enhancing the visualization and interaction interventions based
on the participants’ feedback. In this experiment, we investigated the effects of the employed
visualization and interaction interventions on software developers’ performance. Hence, other
experiments should be performed to compare the effects of different types of visualization and
interaction interventions on software developers’ performance. We also investigated these
interventions collectively. Further interesting steps for experimentation could be include the
investigation of each of these interventions individually and record their impact on software
developers’ performance. Moreover, we intended to add visualization and interaction inter-
ventions for mapping between feature models and other artifacts used in SPLE. Afterwards,
the visualization and interaction interventions will be evaluated for the mapping representation.
Finally, in our current study, we concentrated on the visualization and interaction intervention
related to the visualization of hierarchy relations and non-functional properties in feature
models. An important aspect in the feature model configuration is inter-dependencies between
features and feature attributes. In our future works, we aim at identifying a set of visualization
and interaction interventions for representing the inter-dependencies between feature selec-
tions, between feature attribute values of two different features, between one feature and
another feature’s attribute value, and between groups of selection decisions. Next, we will
design an empirical study to investigate the comprehension and changeability of these relations
by software developers during the feature model configuration process.

Acknowledgments We wish like to thank Dr. Chris Shaw and Dr. Bernhard E. Riecke for their valuable
comments on the first draft of the paper. We also would like to thank all participants for taking part in the
experiment.

References

Apel S, and, Beyer D (2011) Feature cohesion in software product lines: an exploratory study. In Proceedings of the
33rd International Conference on Software Engineering (ICSE ’11). ACM, New York, NY, USA, 421–430

Apel S, Kästner C (2009) An overview of feature-oriented software development. J Object Technol (JOT) 8(5):
49–84

Asadi M, Bagheri E, Gašević D, Hatala M (2011) “Goal-driven software product line engineering,” In
Proceedings of the 26th ACM Symposium on Applied Computing, TaiChung, Taiwan, (in press)

Bagheri E, and, Gasevic D (2010) “Assessing the Maintainability of Software Product Line Feature Models using
Structural Metrics,” Software Quality Journal (2010), Springer, To appear

Bagheri E, Asadi M, Gašević D, Soltani S (2010) “Stratified Analytic Hierarchy Process: Prioritization and
Selection of Software Features,” In Proceedings of the 14th International Software Product Lines
Conference, Jeju Island, South Korea, (Lecture Notes in Computer Science Vol. 6287), pp. 300–315

Bangor A, Kortum P, Miller J (2008) An empirical evaluation of the system usability scale. Int J Hum Comput
Interact 24(6):57–594

Victor R, Basili (1992) Software Modeling and Measurement: The Goal/Question/Metric Paradigm. Technical
Report. University of Maryland at College Park, College Park, MD, USA

Basili VR, Shull F, Lanubile F (1999) Building knowledge through families of experiments. Softw Eng IEEE
Trans 25(4):456–473

Batory D (2005) “Feature models, grammars, and propositional formulas,” Software Product Lines, p. 7–20
Behkamal B, Kahani M, Akbari MK (2009) Customizing ISO 9126 quality model for evaluation of B2B

applications. Inf Softw Technol 51(3):599–609
Benavides D, Trinidad P, and Ruiz-Cortés A, “Automated reasoning on feature models,” in Advanced

Information Systems Engineering, 2005, p. 491–503
Benavides D, Trinidad P, and Ruiz-Cortés A (2005) “Automated Reasoning on Feature Models,” in Proc. 17th

Int’l conf. Advanced Information Systems Engineering, pp. 491–503
Benavides D, Segura S, Trinidad P, and Ruiz-Cortés A (2007) “FAMA: Tooling a framework for the automated

analysis of feature models,” in Proceeding of the First International Workshop on Variability Modelling of
Software-intensive Systems

1740 Empir Software Eng (2016) 21:1706–1743

David B, Sergio S, Antonio R-C (2010) Automated analysis of feature models 20 years later: A literature review.
Inf Syst 35(6):615–636

Bosch, J (2000) Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach.
ACM Press / Addison-Wesley

Botterweck G, Thiel S, Nestor D, Abid S, and, Cawley C (2008) “Visual Tool Support for Configuring and
Understanding Software Product Lines,” In Proceedings of the 12th International Software Product Line
Conference (SPLC ’08). IEEE Computer Society, Washington, DC, USA

Botterweck G, Janota M, and SchneeweissD (2009) A Design of a Configurable Feature Model Configurator,
Proceedings of the 3rd International Workshop on Variability Modelling of Software-Intensive Systems
(VAMOS 09)

Bowman DA, Kruijff E, Laviola JJ Jr, Poupyrev I (2001) An introduction to 3D user interface design. Presence
10(1):96–108

Brewer (1999) “Color use guidelines for data representation,” In Proceedings of the Section on Statistical Graphics
Briand LC, Wüst J, Ikonomovski SV, and Lounis H, “Investigating quality factors in object-oriented designs: an

industrial case study,” in Proceedings of the 21st international conference on Software engineering, New
York, NY, USA, 1999, p. 345–354

Byelas H, Telea A (2009) Towards realism in drawing areas of interest on architecture diagrams. J Vis Lang
Comput 20:110–128

Card SK, Mackinlay JD, and Shneiderman B (1999) Readings in informa-tion visualization: using vision to
think, chapter 1, pages 1–34. Morgan Kaufmann Publishers Inc, 25

Cawley C, Botterweck G, Healy P, Abid SB, Thiel S (2009) “A 3D Visualisation to Enhance Cognition in
Software Product Line Engineering,”. In: Bebis G (ed) Advances in Visual Computing, 5876. Heidelberg:
Springer Berlin Heidelberg, Berlin, pp 857–868

Chin DN (2001) Empirical evaluation of user models and user-adapted systems”. User Model User-Adap Inter
11(1–2):181–194

Chua BB and Dyson LE (2004) “Applying the ISO 9126 model to the evaluation of an elearning.”In R.
Atkinson, C. McBeath, D. Jonas-Dwyer & R. Phillips (Eds), Beyond the comfort zone: Proceedings of
the 21st ASCILITE Conference (pp. 184–190).

Chuah MC, Roth SF, Mattis J, and, Kolojejchick J “SDM: selective dynamic manipulation of visualizations,” in
Proceedings of the 8th annual ACM symposium on User interface and software technology, New York, NY,
USA, 1995, p. 61–70

Cohen J (1992) “A power primer.”. Psychol Bull 112:155–159
Czarnecki K, and, Eisenecker U (2000) “Generative Programming: Methods, Tools, and Applications,” Addison-

Wesley
Czarnecki K, and, Kim CHP (2005) “Cardinality-based feature modeling and constraints: A progress report,” in

International Workshop on Software Factories
Daniel A.Keim, Florian Mansmann, Jörn Schneidewind, Jim Thomas, and Hartmut Ziegler (2008) Visual Analytics:

Scope and Challenges. In Visual DataMining, Simeon J. Simoff,Michael H. Böhlen, andArturasMazeika (Eds.).
Lecture Notes In Computer Science, Vol. 4404. Springer-Verlag, Berlin, Heidelberg 76–90

Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology.
MIS Q 13(3):319–340

De Lucia A, Gravino C, Oliveto R, Tortora G (2010) An experimental comparison of ER and UML class
diagrams for data modelling. Empir Softw Eng 15:455–492

Dhungana D, Grünbacher P, Rabiser R (2011) The DOPLER meta-tool for decision-oriented variability
modeling: a multiple case study. Automated Software Engg 18(1):77–114

Easterbrook S (2007) Empirical research methods for software engineering. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering (ASE '07). ACM, New York, NY,
USA, pp 574–574

El DammaghM, De Troyer O (2011) Feature modeling tools: evaluation and lessons learned. In: Olga De T, Claudia
Bauzer M, Roland B, Pierre H, Alkis S (eds) In proceedings of the 30th international conference on advances in
conceptual modeling: recent developments and new directions (ER’11). Springer, Berlin, pp 120–129

Fernández R, Laguna MA, Requejo J, Serrano N “Development of a Feature Modeling Tool using Microsoft
DSL Tools” GIRO Technical Report 2009–1.ver 1.0, Department of Computer Science, University of
Valladolid

Few S (2008) Practical Rules for Using Color in Charts. Visual Business Intelligence Newsletter, Perceptual
Edge. Retrieved from http://www.perceptualedge.com/articles/visual_business_intelligence/rules_for_
using_color.pdf

Genero M, Olivas J, Piattini M, and Romero F, “Using Metrics to Predict OO Information Systems
Maintainability,” in Proceedings of the 13th International Conference on Advanced Information Systems
Engineering, London, UK, UK, 2001, p. 388–401

Empir Software Eng (2016) 21:1706–1743 1741

http://www.perceptualedge.com/articles/visual_business_intelligence/rules_for_using_color.pdf
http://www.perceptualedge.com/articles/visual_business_intelligence/rules_for_using_color.pdf

Guo J, White J, Wang G, Li J, Wang Y (2011) A genetic algorithm for optimized feature selection with resource
constraints in software product lines. J Syst Softw 84(12):2208–2221

Heidenreich F, Kopcsek J, andWende C (2008) “FeatureMapper: mapping features to models,” in Companion of
the 30th international conference on Software engineering, pp. 943–944

Heidenreich F, Savga I, and Wende C (2008) “On controlled visualisations in software product line
engineering,” in Proceedings of the 2nd International Workshop on Visualisation in Software Product
Line Engineering (ViSPLE 2008), collocated with the 12th International Software Product Line Conference
(SPLC 2008)

Herndon KP, van Dam A, Gleicher M (1994) The challenges of 3D interaction: a CHI’94 workshop. ACM
SIGCHI Bulletin 26:36–43

ISO/IEC Standard No. 14598: Information technology – Software product evaluation; Parts 1–6. International
Organization for Standardization (ISO) / International Electrotechnical Commission (IEC), Geneva,
Switzerland, 1999–2001

ISO/IEC Standard No. 9126: Software engineering – Product quality; Parts 1–4. International Organization for
Standardization (ISO) / International Electrotechnical Commission (IEC), Geneva, Switzerland, 2001–2004

Johnson B, and Shneiderman B (1991) “Tree-Maps: a space-filling approach to the visualization of hierarchical
information structures,” in Proceedings of the 2nd conference on Visualization ’91, pp. 284–291

Kitchenham BA et al (2002) “Preliminary guidelines for empirical research in software engineering,” IEEE
Transactions on software engineering, p. 721–734

Korson T, McGregor JD (1990) Understanding object-oriented: a unifying paradigm. Commun ACM 33:40–60
Lange CFJ and Chaudron MRV (2007) “Interactive Views to Improve the Comprehension of UML Models - An

Experimental Validation,” in Proceedings of the 15th IEEE International Conference on Program
Comprehension, pp. 221–230

Langelier G, Sahraoui H, and Poulin P, “Visualization-based analysis of quality for large-scale software systems,”
in Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering -
ASE’05, Long Beach, CA, USA, 2005, p. 214

Linden F, Schmid K, Rommes E (2007) Software product lines in action - the best industrial practice in product
line engineering. Springer, Berlin

Lisboa LB, Garcia VC, Almeida ES, Meira SL, Lucrédio D, Fortes RP (2010) A systematic review on domain
analysis tools. Inf Softw Technol 52:1–13

Losavio F (2002) Quality models to design software architecture. J Object Technol 1(4):165
Lozano LM,Garcıa-Cueto E,Muñiz J (2008) Effect of the number of response categories on the reliability and validity

of rating scales. Methodol Eur J Res Methods Behav Social Sci 4(2):73–79. doi:10.1027/1614-2241.4.2.73
Mendonca M, Wasowski A, Czarnecki K, and Cowan D, “Efficient compilation techniques for large scale feature

models,” in Proceedings of the 7th international conference on GPCE, 2008, p. 13–22
Minke A (1997) “Conducting Repeated Measures Analyses: Experimental Design Considerations,” Annual

Meeting of the Southwest Educational Research Association, Austin
Moody D (2009) The “physics” of notations: toward a scientific basis for constructing visual notations in

software engineering. IEEE Trans Softw Eng 35(6):756–779
Nestor D, O’Malley L, Healy P, Quigley A, and Thiel S (2007) “Visualisation techniques to support derivation

tasks in software product line development,” in Proceedings of the 2007 conference of the center for
advanced studies on Collaborative research, pp. 315–325

Paas F, Renkel A, Sweller J (2004) Cognitive load theory: instructional implications of the interaction between
information structures and cognitive architecture. Instr Sci 32:1–8

Plaisant C, Grosjean J, and Bederson B (2002) “SpaceTree: supporting exploration in large node link tree, design
evolution and empirical evaluation,” in Information Visualization, 2002. INFOVIS 2002. IEEE Symposium
on, pp. 57–64

Pleuss A, Rabiser R, and Botterweck G (2011) Visualization techniques for application in interactive product
configuration. In Proceedings of the 15th International Software Product Line Conference, Volume 2 (SPLC
’11), Ina Schaefer, Isabel John, and Klaus Schmid (Eds.). ACM, New York, NY, USA,, Article 22, 8 pages

prefuse (2010) interactive information visualization toolkit, http://prefuse.org/, Accessed in November
Purchase HC (1997) Which aesthetic has the greatest effect on human understanding?. In Proceedings of the 5th

International Symposium on Graph Drawing (GD '97), Giuseppe Di Battista (Ed.). Springer-Verlag, London,
UK, UK, pp 248–261

Pure-systems GmbH: Variant Management with pure:variants (2003–2004) http://www.pure-systems.com
Reddivari S (2013) “Visual analytics for software requirements engineering,” Requirements Engineering

Conference (RE), 2013 21st IEEE International, vol., no., pp.389,392, 15-19
Robertson GG, Mackinlay JD, and Card SK (1991) “Cone Trees: animated 3D visualizations of hierarchical

information,” in Proceedings of the SIGCHI conference on Human factors in computing systems: Reaching
through technology, pp. 189–194

1742 Empir Software Eng (2016) 21:1706–1743

http://dx.doi.org/10.1027/1614-2241.4.2.73
http://prefuse.org/
http://www.pure-systems.com/

Schneiderman B (2009) Creativity support tools: A grand challenge for HCI researchers. In Engineering the User
Interface (M. Redondo, Ed.), Springer

Sellier D and Mannion M (2007) “Visualising Product Line Requirement Selection Decision Inter-dependencies,
” in Proceedings of the Second International Workshop on Requirements Engineering Visualization, pp. 7

Shneiderman B (1996) “The eyes have it: a task by data type taxonomy for information visualizations,” in Visual
Languages, 1996. Proceedings., IEEE Symposium on, pp. 336–343

Shneiderman B (2007) Creativity support tools: accelerating discovery and innovation. Commun. ACM 50, 12
(December 2007), 20–32

Siegmund N, Rosenmüller M, Kuhlemann M, Kästner C, Apel S, and Saake G (2011) “SPL Conqueror: Toward
optimization of non-functional properties in software product lines,” Software Quality Journal

Siegmund J, Kästner C, Apel S, Parnin C, Bethmann A, Leich T, Saake G, and, Brechmann A (2014)
Understanding Source Code with Functional Magnetic Resonance Imaging. In Proceedings of the 36th
International Conference on Software Engineering (ICSE)

Soltani S, Asadi M, Gašević D, Hatala M, Bagheri E (2012) “Automated Planning for Feature Model
Configuration based on Functional and Non-Functional Requirements,” In Proceedings of the 16th
International Software Product Line Conference, Salvador, Brazil

Stasko J and Zhang E (2000) “Focus+context display and navigation techniques for enhancing radial, space-
filling hierarchy visualizations,” in Information Visualization, 2000. InfoVis 2000. IEEE Symposium on, pp.
57–65

Stone M (2006) “Choosing Colors for Data Visualization,” Dostupné na internete: http://www.perceptualedge.
com/articles/b-eye/choosing_colors.Pdf

Teyseyre D, Campo M (2008) “An overview of 3d software visualization”. IEEE Trans Vis Comput Graph. doi:
10.1109/TVCG.2008.86

Thüm T, Kästner C, Benduhn F, Meinicke J, Saake G, Leich T (2014) FeatureIDE: An extensible framework for
feature-oriented software development. Sci Comput Program 79:70–85

Trinidad P, Ruiz-Cortes A, Benavides D, and Segura S (2008) “Three-dimensional feature diagrams visualiza-
tion,” In ViSPLE, pages 295{302. Lero

Venkatesh V, Bala H (2008) Technology acceptance model 3 and a research agenda on interventions. Decis Sci
39(2):273–315

Venkatesh V, Davis FD (2000) A theoretical extension of the technology acceptance model: four longitudinal
field studies. Manag Sci 46(2):186–204

Pasetti A, Rohlik O (2005) XFeature: FeatureModeling Tool http://www.pnp-software.com/XFeature/Home.html
Zhicheng L, Nancy N, John S (2008) Distributed cognition as a theoretical framework for information

visualization. IEEE Trans Vis Comput Graph 14(6):1173–1180

Empir Software Eng (2016) 21:1706–1743 1743

http://www.perceptualedge.com/articles/b-eye/choosing_colors.Pdf
http://www.perceptualedge.com/articles/b-eye/choosing_colors.Pdf
http://dx.doi.org/10.1109/TVCG.2008.86
http://www.pnp-software.com/XFeature/Home.html

	The effects of visualization and interaction techniques on feature model configuration
	Abstract
	Introduction
	Problem Statement
	Contributions and Outline

	Background
	Extended Feature Model
	Feature Model Configuration Process
	Software Quality Standard

	Visualization and Interaction Interventions
	Identification of the Visualization and Interaction Interventions
	Visualization and Interaction Intervention Set
	Implementation of Interventions
	Investigating Feature Modeling Tools w.r.t Visualization and Interaction Interventions

	Research Questions and Hypotheses Formulation
	Method
	Study Design
	Context
	Participants
	Materials

	Defining Variables
	Independent Variables and Confounding Variables
	Dependent Variables

	Experimental Procedures
	Pilot Study
	Data Analysis

	Experimental Results
	Descriptive Analysis
	Hypotheses Testing
	Basic Tool vs. Visually-Enhanced Tool Based on Comprehension Tasks
	Basic Tool vs. Visually-Enhanced Tool Based on Changeability Tasks
	Perceived Ease-of-Use and Ease-of-Learning

	Discussion of the Results and Related Work
	Discussion of the Results
	Related Works

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusion and Future Work
	References

