
Empir Software Eng (2016) 21:854–895
DOI 10.1007/s10664-014-9348-2

Mining architectural violations from version history

Cristiano Maffort ·Marco Tulio Valente ·
Ricardo Terra ·Mariza Bigonha ·Nicolas Anquetil ·
André Hora

Published online: 29 January 2015
© Springer Science+Business Media New York 2015

Abstract Software architecture conformance is a key software quality control activity that
aims to reveal the progressive gap normally observed between concrete and planned soft-
ware architectures. However, formally specifying an architecture can be difficult, as it must
be done by an expert of the system having a high level understanding of it. In this paper,
we present a lightweighted approach for architecture conformance based on a combination
of static and historical source code analysis. The proposed approach relies on four heuris-
tics for detecting absences (something expected was not found) and divergences (something
prohibited was found) in source code based architectures. We also present an architecture
conformance process based on the proposed approach. We followed this process to evaluate

Communicated by: Rocco Oliveto, Massimiliano Di Penta and Romain Robbes

C. Maffort (�)
Department of Computer Engineering, CEFET-MG, Minas Gerais, Brazil
e-mail: cristiano@decom.cefetmg.br

C. Maffort · M. T. Valente · M. Bigonha
Department of Computer Science, UFMG, Minas Gerais, Brazil

M. T. Valente
e-mail: mtov@dcc.ufmg.br

M. Bigonha
e-mail: mariza@dcc.ufmg.br

R. Terra
Department of Computer Science, UFLA, Lavras, Brazil
e-mail: terra@dcc.ufla.br

N. Anquetil · A. Hora
RMoD Team, INRIA, Lille Nord Europe, France

N. Anquetil
e-mail: nicolas.anquetil@inria.fr

A. Hora
e-mail: andre.cavalcante.hora@inria.fr

mailto:cristiano@decom.cefetmg.br
mailto:mtov@dcc.ufmg.br
mailto:mariza@dcc.ufmg.br
mailto:terra@dcc.ufla.br
mailto:nicolas.anquetil@inria.fr
mailto:andre.cavalcante.hora@inria.fr

Empir Software Eng (2016) 21:854–895 855

the architecture of two industrial-strength information systems, achieving an overall preci-
sion of 62.7 % and 53.8 %. We also evaluated our approach in an open-source information
retrieval library, achieving an overall precision of 59.2 %. We envision that an heuristic-
based approach for architecture conformance can be used to rapidly raise architectural
warnings, without deeply involving experts in the process.

Keywords Software architecture conformance · Software architecture erosion · Mining
software repositories · Reflexion models

1 Introduction

Software architecture conformance is a key software quality control activity that aims to
reveal the progressive gap normally observed between concrete and planned software archi-
tectures (Passos et al. 2010; Knodel and Popescu 2007; Ducasse and Pollet D 2009; Brunet
et al. 2014). More specifically, the activity aims to expose statements, expressions or dec-
larations in the source code that do not match the constraints imposed by the planned
architecture. The ultimate goal is to prevent the accumulation of incorrect implementation
decisions and therefore to avoid the phenomenon known as architectural drift or erosion
(Perry and Wolf 1992).

There are at least two main techniques for architecture conformance: reflexion models
and domain-specific languages. Reflexion models compare a high-level model manually
created by the architect with a concrete model, extracted automatically from the source
code (Murphy et al. 1995). As a result, reflexion models can reveal two kinds of architec-
tural anomalies: absences (relations prescribed by the high-level model that are not present
in the concrete model) and divergences (relations not prescribed by the high-level model,
but that are present in the concrete model). Alternatively, domain-specific languages with
focus on architecture conformance provide means to express in a customized syntax the
constraints defined by the planned architecture (Terra and Valente 2009; Eichberg et al.
2008; Mens et al. 2006). However, the application of current architecture conformance tech-
niques requires a considerable effort. For example, reflexion models may require successive
refinements in the high-level models to reveal the whole spectrum of architectural viola-
tions (Koschke 2010; Koschke and Simon 2003) and domain-specific languages may require
the extensive definition of constraints.

In a previous paper, we presented an approach that combines static and historical source
code analysis to provide an alternative technique for architecture conformance (Maffort
et al. 2013). The proposed approach includes four heuristics to discover suspicious depen-
dencies in the source code, i.e., dependencies that may denote divergences or absences. The
common assumption behind the proposed heuristics is that dependencies denoting archi-
tectural violations—at least in systems that are not facing a massive erosion process—are
rare events in the space-time domain, i.e., they appear in a small number of classes (accord-
ing to particular thresholds) and they are frequently removed during the evolution of the
system (according to other thresholds). In this paper, we extend your previous work by
proposing an iterative architecture conformance process, based on the defined heuristics.
By following this process, architects can experiment and adjust the thresholds required
by the defined heuristics, starting with rigid thresholds. Basically, as the thresholds are
made less rigid, more false warnings are generated. Therefore, the architect can finish
the conformance activity when enough violations are detected or when the heuristics start
to produce too many false positives. We also propose a strategy to rank the generated

856 Empir Software Eng (2016) 21:854–895

warnings, which is used to show first the warnings that are more likely to denote real
violations.

We evaluated our work in three systems. First, we applied the proposed conformance
process in two industrial-strength information systems. We were able to detect 389 and 150
architectural violations, with an overall precision of 62.7 % and 53.8 %, respectively. We
also present and discuss examples of architectural violations detected by our approach and
the architectural constraints associated to such violations, according to the systems’ archi-
tects. Finally, we relied on the proposed conformance process to evaluate the architecture of
a well-known open-source system (Lucene). In this case, using as oracle a reflexion model
independently proposed by another researcher, we found 264 architectural violations, with
an overall precision of 59.2 %.

The remainder of this paper is organized in nine sections and three appendices. In
Section 2, we introduce the proposed approach for architecture conformance and the
heuristics for detecting absences and divergences, respectively. Section 3 describes the
architecture of the prototype tool that supports our approach. Section 4 describes an itera-
tive conformance process, based on the proposed heuristics. Particularly, Sections 5 and 6
describe the usage of this process to evaluate the architecture of two proprietary informa-
tion systems and an open-source information retrieval library (Lucene). Section 7 discusses
the lessons learned with our work. Section 8 presents related work and Section 9 con-
cludes the paper. There are also three appendices, presenting a formal definition of the
proposed heuristics (Appendix A), the detailed results of the evaluation of one of the infor-
mation systems considered in the paper (Appendix B) and the results achieved for Lucene
(Appendix C).

2 Heuristics for Detecting Architectural Violations

Figure 1 illustrates the input and output of the proposed heuristics for detecting architec-
tural violations. Basically, the heuristics rely on two types of input information on the target
system: (a) history of versions; and (b) high-level component specification. We consider
that the classes of a system are statically organized in modules (or packages, in Java terms),
and that modules are logically grouped in coarse-grained structures, called components.
The component model includes a mapping from modules to components, using regular
expressions (complete examples are provided in Sections 5.1 and 5.3). Given the compo-
nent model, the proposed heuristics automatically identify suspicious dependencies (or lack
of) in source code by relying on frequency hypotheses and past corrections made on these
dependencies. In practice, the heuristics consider all static dependencies between classes,
including dependencies due to method calls, variable declarations, inheritance, exceptions, etc.

Evidences of
Architectural

Violations

History of
Versions

High-level
Component
Specification

Heuristics

Fig. 1 Input and output of the proposed heuristics

Empir Software Eng (2016) 21:854–895 857

We do not make efforts in automatically inferring the high-level components because it
is usually straightforward for architects to provide this representation. When architects are
not available (e.g., in the case of open-source systems), a high-level decomposition in major
subsystems is often included in developers’ documentation or can be retrieved by inspecting
the package structure. In fact, as described in Section 6, we applied our approach to an open-
source system (Lucene). In this case, we reused high-level models independently defined
by other researchers using information available in the Lucene’s documentation.

In the following sections, we motivate and describe the heuristics to detect absences
(Section 2.1) and divergences (Section 2.2). We also propose a strategy to rank the warnings
produced by the heuristics according to their relevance (Section 2.3). A complete formal
specification of the heuristics is presented in Appendix A.

2.1 Heuristic for Detecting Absences

An absence is a violation due to a dependency defined by the planned architecture, but that
does not exist in the source code (Murphy et al. 1995; Passos et al. 2010). For example,
suppose an architectural rule that requires classes located in a View component to extend
a class called ViewFrame. In this case, an absence is counted for each class in View that
does not follow this rule.

To detect absences, we initially search for dependencies denoting minorities at the level
of components. We assume that absences are an exceptional property in classes and there-
fore minorities have more chances to represent architectural violations. Moreover, we rely
on the history of versions to mine for dependencies dep introduced in classes originally cre-
ated without dep. The underlying assumption is that absences are usually detected and fixed.
The goal is to reinforce the evidences collected in the previous step by checking whether
classes originally created with the architectural violation under analysis (i.e., absence of
dep) were later refactored to include the missing dependency.

Figure 2 illustrates this heuristic for detecting absences. As can be observed, class C2
has an absence regarding T argetClass because: (a) C2 is the unique class in component cp

that does not depend on T argetClass; and (b) a typical evolution pattern among the classes
in cp is to introduce a dependency with T argetClass, when it does not exist, as observed
in the history of classes C1, C4, and C5.

Fig. 2 Example of absence (C2 does not depend on T argetClass). The label Ins denotes a dependency
inserted later in the class

858 Empir Software Eng (2016) 21:854–895

Additionally, we consider specific types of dependencies. For example, the planned
architecture might prescribe that a given BaseClass must depend on a T argetClass by
means of inheritance, i.e., BaseClass must be a subclass of T argetClass. Table 1 reports
the types of dependency considered by the heuristic.

Definition The proposed heuristic for detecting absences relies on two definitions:

• Dependency Scattering Rate—denoted by DepScaRate(c, t, cp)—is the ratio between
(i) the number of classes in component cp that have a dependency of type t with a target
class c and (ii) the total number of classes in component cp.

• Dependency Insertion Rate—denoted by DepInsRate(c, t, cp)—is the ratio between
(i) the number of classes in component cp originally created without a dependency of
type t with a target class c, but that have this dependency in the last version of the
system under analysis, and (ii) the total number of classes in component cp originally
created without the a dependency of type t with class c.

Using these definitions, the candidates for absences in component cp are defined as
follows:

Absences(cp) = {(x, c, t) | comp(x) = cp ∧ ¬depends(x, c, t, H)∧
DepScaRate(c, t, cp) ≥ Asca ∧
DepInsRate(c, t, cp) ≥ Ains}

According to this definition, an absence is a tuple (x, c, t) where x is a class located in
component cp that, in the current version of the system in the control version repository
(denoted by the symbol H), does not include a dependency of type t with the target class c,
when most classes in component cp have this dependency. Moreover, several classes in
component cp were initially created without this dependency, but have evolved to establish
it. Parameters Asca and Ains define the thresholds for dependency scattering and insertion,
respectively.

Table 1 Dependency types, assuming that C1 depends on C2

Dependency type Description

AttributeAnnotation C2 is used as an annotation over an attribute in C1

ClassAnnotation C2 is used as an annotation over C1

LocalVariableAnnotation C2 is used as an annotation over a local variable in C1

MethodAnnotation C2 is used as an annotation over a method of C1

ClassAttribute C2 is used as an attribute in C1

CaughtException C2 is an exception caught in a method of C1

DeclaredException C2 is an exception declared in a method of C1

Inheritance C2 is the superclass of C1

LocalVariable C2 is used as a local variable in a method of C1

ParameterizedType C2 is used as a generic type in C1

ReturnMethod C2 is the type returned by a method of C1

ThrownException C2 is an exception thrown in a method of C1

Empir Software Eng (2016) 21:854–895 859

2.2 Heuristics for Detecting Divergences

A divergence is a violation due to a dependency that is not allowed by the planned architec-
ture, but that exists in the source code (Murphy et al. 1995; Passos et al. 2010). Our approach
includes three heuristics for detecting divergences, as described next.

2.2.1 Heuristic #1

This heuristic targets a common pattern of divergences: the use of frameworks and
APIs by unauthorized components (Terra and Valente 2009; Santonu S et al. 2009). For
example, enterprise software architectures commonly define that object-relational map-
ping frameworks must only be accessed by components in the persistence layer (Fowler
2002). Therefore, this constraint authorizes the use of an external framework, but only by
well-defined components.

The heuristic initially defines that the searching for divergences must be restricted to
dependencies present in a small number of the classes of a given component (according to
a given threshold, as described next). However, although this is a necessary condition for
divergences, it is not enough to characterize this violation. For this reason, the heuristic
includes two extra conditions: (i) the dependency must have been removed several times
from the high-level component under analysis (i.e., along the component’s evolution, the
system was changed to fix the violation; but it was introduced again, possibly by another
developer in another package or class that is part of the component); and, (ii) the heuristic
also searches for components where the dependency under analysis is extensively found
(i.e., components that act as “heavy-users” of the target module). The assumption is that it is
common to have modules that—according to the intended architecture—are only accessed
by classes in well-delimited components.

Figure 3 illustrates the proposed heuristic. In this figure, class C2 presents a divergence
regarding T argetModule because: (a) C2 is the only class in component cp1 that depends

Fig. 3 Example of divergence (C2 depends on T argetModule). The label Del denotes a dependency
removed in a previous version of the class

860 Empir Software Eng (2016) 21:854–895

on T argetModule; (b) many classes in cp1 (such as C1, C4, and C5) had in the past
established and then removed a dependency with T argetModule; and (c) most dependen-
cies to T argetModule come from another component cp2 (i.e., cp2 is a “heavy-user” of
T argetModule).

Definition This heuristic relies on two definitions:

• Dependency Deletion Rate of a component cp regarding a target module m—denoted
by DepDelRate(m, cp)—is the ratio between (i) the number of classes in compo-
nent cp that established a dependency in the past with classes in module m, but no
longer have this dependency, and (ii) the total number of classes in component cp that
have a dependency with any class in module m. As described before, a module is a set
of classes (e.g., a package, in the case of Java systems).

• HeavyUser(m) is a function that return the component whose classes mostly depend
on classes located in module m.

The candidates for divergences in a component cp1 are defined as follows:1

Div1(cp) = { (x, c) | comp(x) = cp ∧ mod(c) = m ∧ depends(x, c, ,H) ∧
DepScaRate(m, cp) ≤ Dsca ∧
DepScaRate(m, cp) ≤ Ddel ∧
HeavyUser(m) �= cp }

According to this definition, a divergence is a pair (x, c), where x is a class located in
component cp that depends on a target class c located in a module m, when most classes in
component cp do not have this dependency (as defined by the scattering rate lower than a
minimal threshold Dsca). Moreover, the definition requires that several classes in the com-
ponent under evaluation must have removed the dependencies with m in the past, as defined
by a threshold Ddel . Finally, there is another component with a heavy-user behavior with
respect to module m.

2.2.2 Heuristic #2

Similarly to the previous case, this second heuristic restricts the analysis to dependen-
cies defined by few classes of a component and that were removed in the past (in other
classes of the component). However, this heuristic has two important differences to the first
one: (a) it is based on dependencies to a specific target class (instead to an entire mod-
ule); and (b) it does not require the existence of a heavy-user for the dependency under
analysis.

Figure 4 illustrates the proposed heuristic. In this figure, class C2 has a divergence
regarding T argetClass because: (a) C2 is the only class in component cp that depends
on T argetClass; and (b) a common evolution pattern among the classes in cp is to
remove dependencies to T argetClass, as observed in the history of classes C1, C4, and
C5.

1In a depends predicate, the pattern (underscore) matches any value.

Empir Software Eng (2016) 21:854–895 861

Fig. 4 Example of divergence (C2 depends on T argetClass). The label Del denotes a dependency removed
in a previous version of the class

This heuristic aims to detect two possible sources of divergences: (a) the use of
frameworks that are not authorized by the planned architecture (e.g., a system that occa-
sionally relies on SQL statements instead of using the object-relational mapping framework
prescribed by the architecture) (Terra and Valente 2009); and (b) the use of incorrect
abstractions provided by an authorized framework (e.g., a system that occasionally relies on
inheritance instead of annotations when accessing a framework that provides both forms of
reuse, although the architecture authorizes only the latter).

Definition This heuristic relies on the Dependency Deletion Rate, as defined by the pre-
vious heuristic. However, it counts deletions regarding a target class c and a dependency
type t—and not an entire module m. Thereupon, the heuristic is formalized as follows:

Div2(cp) = { (x, c, t) | comp(x) = cp ∧ depends(x, c, t, H) ∧
DepScaRate(c, t, cp) ≤ Dsca ∧
DepDelRate(c, t, cp) ≥ Ddel }

According to this definition, a divergence is a tuple (x, c, t), where x is a class located in
component cp that has a dependency of type t with a target class c, when most classes in
component cp do not have this dependency (as defined by the threshold Dsca). Moreover,
the definition requires that several classes in the component under evaluation might have
removed the dependencies (c, t) in the past, as defined by a threshold Ddel .

2.2.3 Heuristic #3

This heuristic is based on the assumption that a common type of divergences is the cre-
ation of asymmetrical cycles between components. More specifically, as illustrated in Fig. 5,
this heuristic aims to identify pairs of components cp1 and cp2 where most references are
from cp2 to cp1, but there are also few references in the reverse direction. The assumption
is that the components were originally designed to communicate unidirectionally and the
dependencies in the “wrong” direction are highly likely to represent architectural violations
(and might not be exceptions authorized by the architecture, e.g., for performance issues).

862 Empir Software Eng (2016) 21:854–895

Fig. 5 Divergences due to asymmetrical cycles

This heuristic is particularly useful to detect back-call violations, a typical violation in lay-
ered architectures that occurs when a lower layer relies on services implemented by upper
layers (Sarkar et al. 2009).

Definition To evaluate the third heuristic for divergences, we assume that rf (cp1, cp2)

denotes the number of references from classes in component cp1 to classes in compo-
nent cp2. We also define the Dependency Direction Weight between components cp1 and
cp2 as follows:

Using this definition, the heuristic is formalized as follows:

Div3(cp1) = { (x, c) | comp(x) = cp1 ∧ comp(c) = cp2 ∧ cp1 �= cp2 ∧
depends(x, c, , H) ∧
Ddir � DepDirWeight (cp1, cp2) < 0.5 }

Basically, divergences are pairs of classes (x, c) where x is a class in component cp1
(i.e., the component under analysis) that have a dependency with a class c in component cp2
and the dependencies from cp1 to cp2 satisfy the following conditions: (a) they are not
exceptions, since they occur in a number that is greater than the minimal threshold Ddir ; (b)
but they are also not dominant, since there are more dependencies in the reverse direction,
as specified by the Dependency Direction Weight lower than 0.5.

2.3 Ranking Strategy

The proposed heuristics generate warnings for architectural absences and divergences. How-
ever, by their nature, they are subjected to false positives. For this reason, it is important to
report the warnings sorted by their potential to denote true violations. As usual in the case
of heuristic-based results, the first presented warnings should ideally denote real violations
to increase the confidence of the architects in the heuristics.

To rank the warnings generated by our approach, the natural strategy is to rely on the
scattering and change (insertion or deletion) rates of the dependencies that characterize an
absence or divergence. For example, in the cases of absences, we should first present the
dependencies that are observed frequently in a component (i.e., have a very high Depen-
dency Scattering Rate) and that are also introduced frequently (i.e., have a very high
Dependency Insertion Rate). More specifically, the rank score of a given warning denoting

Empir Software Eng (2016) 21:854–895 863

an absence (x, c, t)— where x is a class that is missing a dependency of type t with a target
class c—is defined as:

ScoreAbsence(x, c, t) = DepScaRate(c, t, cp) + DepInsRate(c, t, cp)

2
where cp = comp(x). This score represents the arithmetic mean of the scattering rate and
the insertion rate of the dependency that characterizes the absence. The warnings denoting
absences must be presented according to their respective scores, the ones with the highest
score values first.

Additionally, the ranking scores of the warnings detected by heuristics #1 and #2 for
divergences are defined as follows, respectively:

ScoreDiv1(x,m) = (1 − DepScaRate(m, cp)) + DepDelRate(m, cp)

2

ScoreDiv2(x, c, t) = (1 − DepScaRate(c, t, cp)) + DepDelRate(c, t, cp)

2
where cp = comp(x). In the first score, the pair (x,m) is used to express that a class
x is incorrectly establishing a dependency with a class in module m. Analogously, in the
second score, the tuple (x, c, t) is used to express that a class x is incorrectly establishing
a dependency of type t with a target class c. In both cases, we assume that high-ranked
divergences should have a low scattering rate and a high deletion rate.

Finally, divergences detected by heuristic #3 are ranked according to the Dependency
Direction Weight between the components in a cycle, as follows:

ScoreDiv3(cp1, cp2) = DepDirWeight(cp1, cp2)

where the divergences in this case denote a dependency between classes in components cp1
and cp2 and they represent the “wrong” direction of the interaction between these compo-
nents. For example, consider two cycles, where the first cycle has 18 % of the dependencies
and the second one has 15 % of the dependencies in the wrong direction. In this case, the
dependencies responsible for the “wrong” interaction of the second cycle should be ranked
before the dependencies in the first one.

3 Tool Support

We implemented a prototype tool, called ArchLint, that supports the four heuristics for
detecting architectural violations. As presented in Fig. 6, ArchLint’s implementation follows
a pipeline architectural pattern with three main components:

• The Code Extractor module is responsible for extracting the source code of all ver-
sions of the system under evaluation. Currently, our prototype provides access to svn
repositories.

• The Dependency Extractor module is responsible for creating a model describing the
dependencies available in each version considered in the evaluation. Essentially, this
model is a directed graph, whose nodes are classes and the edges are dependencies. To
extract the dependencies from source code, we rely on VerveineJ,2 a Java parser that
exports dependency relations in the format for modeling static information assumed by
the Moose platform for software analysis (Nierstrasz et al. 2005; Ducasse et al. 2011).

864 Empir Software Eng (2016) 21:854–895

Fig. 6 ArchLint architecture

Nevertheless, we modified VerveineJ to store this information in a relational database
to facilitate queries over the collected data.

• The Architectural Violations Detector module implements the heuristics described in
Section 2. Basically, the heuristics are implemented as SQL queries. Additionally, this
module ranks the architectural violations evidences—as described in Section 2.3—and
reports them to the architect of the system under analysis.

4 A Heuristic-Based Architecture Conformance Process

In this section, we describe a process for architecture conformance, based on the pro-
posed heuristics, as implemented by the ArchLint tool. Basically, this process addresses two
central challenges regarding the practical use of our heuristics:

• The heuristics rely on thresholds to classify a dependency as a rare event in the space
(scattering thresholds) and in time (insertion and deletion thresholds). Therefore, the
thresholds must be defined before using a tool like ArchLint. Moreover, based on our
initial experiments with the proposed heuristics (Maffort et al. 2013), we figured out
that it is not possible to rely on universal thresholds, which could be reused for any
system. This is the case especially of the insertion and deletion thresholds, since they
depend on how often the architectural violations are detected and fixed, which vary
from system to system.

• By their own nature, the proposed heuristics may lead to false positive warnings. For
this reason, it is important to avoid the generation of a massive number of warnings,
possibly with many false positives. Moreover, when presenting the architectural warn-
ings to developers or architects, it is important to present the true warnings before the
false ones, following the ranking strategies defined in Section 2.3.

2https://gforge.inria.fr/projects/verveinej.

https://gforge.inria.fr/projects/verveinej

Empir Software Eng (2016) 21:854–895 865

To tackle the aforementioned challenges, we advocate that an architecture conformance
process based on the proposed heuristics should follow an iterative approach. More specifi-
cally, we propose that a tool like ArchLint must be executed several times, starting with rigid
thresholds. After each execution, the new warnings, i.e., the warnings not raised by the pre-
vious iterations, should be evaluated by the architect, in order to check whether they really
denote true architectural violations. As a practical consequence of this evaluation step, the
architect can for example request a change in the system to fix the detected violations. The
architect may also decide to perform another iteration of the conformance process, with
flexible thresholds. This process stops when a relevant number of violations is detected,
e.g., a number of violations that is possible and worth to fix by the maintenance team in a
given time frame. Moreover, it is also possible that he/she decides to finish the conformance
process when most of the warnings raised after an iteration are false positives—and hence
it is not worth to experiment with new thresholds.

Figure 7 defines the key steps of the proposed iterative conformance process. Basi-
cally, the process consists of a main loop where a given heuristic is applied (Step 2)
and the old warnings, i.e., the warnings already detected in a previous iteration, are dis-
carded (Step 3). After that, if very few warnings remain as the result of the iteration
(Step 4), a new iteration is automatically started with more flexible thresholds (Step 5).
The rationale is that it is better to trigger a new execution immediately than to evalu-
ate few warnings that will be raised anyway by the next iteration. However, in case of
enough warnings, they are first ranked—as described in Section 2.3—and then presented
to the architect for analysis and classification as true or false warnings (Steps 6 and 7).
After that, if the architect evaluates that it is worthwhile to continue searching for new
warnings, considering the current workload of the maintenance team and the precision
achieved by the current iteration, the thresholds are adjusted (Step 5) and a new iteration is
started.

It is worth noting that the proposed conformance process is not a fully automatic pro-
cedure, as expected in the case of architecture conformance. Particularly, the final word
on when the process should stop depends on the architect’s judgment, based on his eval-
uation on whether it is relevant to fix the already detected violations and whether smaller
precision rates can be tolerated. Moreover, the process depends on a constant that defines
the minimal number of warnings that are worthwhile to evaluate in a given iteration
(constant MIN RESULTS).

Finally, the process depends on the initial threshold values used by each heuristic and
on a procedure to adjust such thresholds before a new iteration, in order to make them less
rigid. Figure 8 presents the proposed initial threshold values and the thresholds adjustment
procedure, for each heuristic. Basically, the initial values represent very rigid thresholds. For
example, for absences, we are recommending to start with a scattering rate of 95 % and an
insertion rate of 95 %. Regarding the adjustment procedure, initially the insertion threshold
is decremented in intervals of 5 %, starting at 95 % and finishing at 35 %. When this lower
bound is reached, the scattering rate is decremented by 5 % and the insertion rate is reset to
95 %.

5 First Study: Proprietary Systems

To start evaluating our approach, we conducted a first study using two real-world infor-
mation systems: SGA and M2M (we omit the real names for confidentiality reasons). Our
central goal is to perform experiments with the iterative conformance process described in

866 Empir Software Eng (2016) 21:854–895

Fig. 7 Architecture conformance using the proposed heuristics

Section 4. Thereupon, we report the number of iterations required by the process, the preci-
sion achieved after each iteration, and the effectiveness of the strategy proposed to rank the
warnings raised by a given heuristic.

This first study is organized as follows. Sections 5.1 and 5.2 present the methodology
and the results of using the conformance process on the SGA system. Likewise, Sections 5.3
and 5.4 present the methodology and the results on the M2M system. Last, Section 5.5
enumerates threats to validity.

5.1 Methodology for the SGA System

We followed the architecture conformance process defined in Section 4 to detect violations
in the architecture of an EJB-based information system used by a major Brazilian university,

Empir Software Eng (2016) 21:854–895 867

(a)

(c)

(b)

Fig. 8 Initial thresholds values and thresholds adjustment procedures for each heuristic

which for confidentiality reasons we will just call SGA. The system includes functional-
ities for human resource management, finance and accounting management, and material
management, among others. In this system, we considered 7,692 revisions (all available
revisions), stored in a svn repository, from March, 2009 to June, 2013. After parsing these
revisions, ArchLint —our prototype tool— generated a dependency model with more than
147 million relations, requiring 68 GB of storage in a relational database. The generation
of this database took 72 hours and 27 minutes (in a six-core Intel Xeon 2.20 GHz server,
with 64 GB RAM, running Ubuntu 12.04 and Java version 1.7). Regarding this total time,
11 hours and 57 minutes were used by VerveineJ to parse the extracted versions.

All extracted versions were considered for computing the functions DepInsRate and
DepDelRate, described in Sections 2.1 and 2.2. The last considered revision has 1,864
classes and interfaces, organized in 100 packages, comprising around 273 KLOC.

We initially asked SGA’s senior architect to define the system’s high-level component
model. After a brief explanation on the purpose and characteristics of this model, the
architect suggested the following components:

• ManagedBean: bridge between user interface and business-related components.
• IService: facade for the service layer.
• ServiceLayer: core business process automated by the system.
• IPersistence: facade for the persistence layer.
• PersistenceLayer: implementation of persistence.
• BusinessEntity: domain types (e.g., Professor, Student, etc.).

Table 2 shows the number of packages and classes in the high-level components defined
by the SGA’s architect. As can be observed, the proposed components are coarse-grained
structures, ranging from components with 15 packages and 286 classes (ManagedBean) to
components with 17 packages and 330 classes (BusinessEntity). The table also shows

868 Empir Software Eng (2016) 21:854–895

Table 2 High-level components in the SGA system

Component Packages Classes Regular Expression

ManagedBean 15 286 br.sga*.managedbeans*

IService 17 312 br.sga*.ejb.facade*

ServiceLayer 17 312 br.sga*.ejb.local*

IPersistence 17 313 br.sga*.dao* <excludes> br.sga*.dao.jpa*

PersistenceLayer 17 311 br.sga*.dao.jpa*

BusinessEntity 17 330 br.sga*.domain*

the regular expressions proposed by the architect to define the packages in each component.
We can observe that most expressions are simple, usually selecting packages with common
names or prefixes.

Using as input the regular expressions specifying the high-level SGA components, we
executed ArchLint multiple times, as prescribed by the conformance process described
in Section 4. Particularly, for each heuristic, we considered the initial thresholds and the
thresholds adjustment procedure suggested in Fig. 8. Moreover, SGA’s architect was only
requested to evaluate the warnings generated by iterations that produces at least 10 new
warnings (constant MIN RESULTS). When this happened, we asked the architect to care-
fully examine the new warnings and to classify them as true or false positives. Since the
architect has a complete domain of SGA’s architecture and implementation, he is the right
expert to play an oracle role in our evaluation. We did not measure recall because it would
require finding the whole set of missing or undesirable dependencies, which in practice
requires a detailed and complete inspection of the source code, which is certainly a hard
task considering the size of the SGA system.

To evaluate the strategy used to rank the warnings generated by a given iteration, we
relied on a discounting cumulative function, often used to evaluate web search engines and
other information retrieval systems (Baeza-Yates and Ribeiro-Neto 2011). This function
progressively reduces the value of a document—a warning, in our case—as its position in
the rank increases. Basically, the value of a warning is divided by the log of its rank position,
as follows:

DCG = rel1 +
p∑

i=2

reli
log2(i)

where p is the number of warnings generated by the heurist ic and rel is the relevance of a
warning. In our particular case, this relevance is a binary value: true positive warnings have
relevance value equal to 1; false positive warnings have a relevance value of zero.

More specifically, we report the effectiveness of the ranking strategy using a normalized
discounted cumulative gain (nDCG) function, as follows:

nDCG = DCG

IDCG

where IDCG is the best possible value for the DCG function, i.e., the value generated by
a perfect ranking strategy, considering a given list of warnings. Therefore, nDCG values
range from 0.0 to 1.0, where 1.0 is the value produced by a perfect ranking algorithm.

Empir Software Eng (2016) 21:854–895 869

Table 3 Detecting absences in the SGA system

Warnings Precision

Iteration Asca;Ains Iter. New Eval. Iter. Overall nDCG

1 0.95; 0.80 3 3 — — — —

2 0.95; 0.55 26 23 26 100.0 % 100.0 % 1.00

3 0.95; 0.40 42 16 16 87.5 % 95.2 % 0.94

4 0.95; 0.35 46 4 — — — —

5 0.90; 0.55 52 26 30 83.3 % 90.3 % 0.99

6 0.90; 0.50 73 21 21 95.2 % 91.4 % 0.98

7 0.85; 0.50 108 35 35 74.3 % 86.7 % 0.90

5.2 Results for the SGA System

This section presents the results achieved after following the proposed conformance pro-
cess to detect absences (Section 5.2.1) and divergences (Sections 5.2.2, 5.2.3, and 5.2.4) in
the architecture of the SGA system. Additionally, Section 5.2.5 summarizes the precision
achieved by our approach for divergences. Next, Section 5.2.6 compares our results with
reflexion models (RM). Finally, Section 5.2.7 evaluates how the proposed heuristics per-
form in different stages of the evolution of the SGA system.

5.2.1 Results for Absences

Table 3 presents the results achieved by each iteration of the conformance process, when
it was used to provide warnings for absences. For each iteration, the table presents the
following data: (a) the thresholds required by the heuristic for detecting absences; (b) the
number of warnings produced in the iteration, including the number of new warnings and
the number of warnings evaluated by the architect, if any; (c) the precision achieved by the
current iteration and the overall precision until this execution, i.e., considering the warnings
evaluated in the current iteration and also in previous iterations. Precision is defined as
usual, by dividing the number of true warnings by the total number of warnings. For the
sake of clarity, we do not show data on thresholds that did not produce warnings or that
produced exactly the same warnings as previous iterations. For example, the first execution
was performed with Asca = 0.95 and Ains = 0.95. These thresholds did not generate
warnings and therefore are not presented in Table 3. The same happened with the next two
tested thresholds, i.e., (0.95; 0.90) and (0.95; 0.85). The first selection to generate warnings
was (0.95; 0.80), which generated three (new) warnings. However, since we configured the
process to just require the architect’s evaluation when a minimal of ten new warnings is
generated by an iteration, these initial warnings were not presented to the architect. In the
second iteration, 26 warnings were produced in total. From these warnings, 23 warnings are
new and three warnings correspond exactly to the warnings generated by the first iteration.
Therefore, the 26 warnings were showed and discussed with the architect, for classification
as true or false positives. In this case, a precision of 100 % was achieved.

As can be observed in Table 3, we decided to stop the process after seven iterations,
including iterations #1 and #4 that did not generate enough warnings for the evaluation. In

870 Empir Software Eng (2016) 21:854–895

Table 4 Detecting divergences in the SGA system using Heuristic #1

Warnings Precision nDCG

Iteration Dsca;Ddel Iter. New Eval. Iter. Overall

1 0.05; 0.85 1 1 — — — —

2 0.05; 0.75 4 3 — — — —

3 0.05; 0.50 5 1 — — — —

4 0.10; 0.60 10 6 11 100 % 100 % 1.00

5 0.10; 0.30 92 81 81 100 % 100 % 1.00

the remaining five iterations, the architect evaluated 128 warnings, with an overall precision
of 86.7 %. In Table 3, we can also observe a downward tendency in the precision after each
iteration. For example, in iteration #2 we achieved a precision of 100 % and in the last
iteration the precision was 74.3 %. Finally, by evaluating the nDCG results, we can conclude
that the criteria used to rank the warnings generated by a given iteration was quite effective.
As in the case of the precision, the nDCG values in Table 3 present a tendency to decrease
after each iteration. For example, in the last iteration the ranking strategy achieved 90 % of
the effectiveness of a perfect ranking algorithm.

We finished after seven iterations because the architect considered that the true warn-
ings detected by such iterations should be first addressed by the maintenance team before
continuing with the conformance process.

Example 1 As an example of a true warning (detected in iteration #1), we can mention the
following:3

Component: IService

Class: br.sga.doc.ejb.facade.DictionaryService

Missing Dependency : javax.ejb.RemoteClassAnnotation

DepScaRate;DepInsRate : 0.990; 0.800

In the SGA system, the architect explained that interfaces in the IService component
must receive a Remote annotation, which is an EJB annotation used to mark a remote
business interface for a session bean. In fact, 99 % of the interfaces in IService have
this annotation (DepScaRate). Moreover, 80 % of the interfaces originally created without
this annotation where later maintained to include the annotation (DepInsRate). The lack of
this annotation does not have an impact on the behavior of the system in its current version
because the classes implementing the interfaces missing the annotation are used only by
local clients. However, according to their specification, they should also support remote
accesses.

3To improve the paper’s comprehension, we translated the class names from Portuguese to English.

Empir Software Eng (2016) 21:854–895 871

Example 2 As an example of a false warning, we can mention the following (detected in
iteration #7):

Component: BusinessEntity

Class: br.sga.core.domain.FederatedUnit

Missing Dependency: br.sga.core.domain.AuditInfoInheritance

DepScaRate;DepInsRate : 0.885; 0.524

The SGA system has an internal audit service, used to log changes in classes storing
highly sensitive data, such as personal info. The classes subjected to this service must inherit
from a special class, called AuditInfo. Particularly, in the BusinessEntity com-
ponent, 88.5 % of the classes use this service (DepScaRate). Moreover, more than half of
the classes in BusinessEntity were changed after their initial creation to inherit from
AuditInfo (DepInsRate) because the audit service was introduced later in the system. For
this reason, the heuristic incorrectly inferred that all classes in BusinessEntity must
inherit from AuditInfo. However, there are classes that by their own nature do not need
this service, such as FederatedUnit, which is a class that stores information about the
Brazilian States (i.e., data that rarely changes and therefore does not need an audit service,
according to SGA’s architect).

5.2.2 Results for Divergences - Heuristic #1

Table 4 shows the results achieved after each iteration of the conformance process, when
configured to provide warnings using the first heuristic for divergences. As can be observed,
we performed five iterations, but only in the last two the evaluation of the architect was
required. We asked the architect to evaluate 92 warnings, with a precision of 100 %. We
finish the process because the architect considered this number of true divergences worth to
be handled, before continuing to search for new warnings.

Example 3 As an example of a true warning (detected in iteration #2), we can mention the
following:

Component: PersistenceLayer
Class: br.sga.core.dao.jpa.PRSystDAO
Unauthorized dependency: br.sga.ejb.facade.PersonFacade
DepScaRate;DepDelRate: 0.012; 0.750

In this case, a DAO class in the PersistenceLayer has a dependency with a
class in the SGA’s facade, which is not allowed by the architecture. In fact, less than
1.5 % of the DAOs establish a dependency with IService classes (DepScaRate). More-
over, in the past, 75 % of the classes that established a dependency like that in a
given version were later changed to remove the dependency (DepDelRate). Finally, pack-
age br.sga.ejb.facade has a well-defined heavy-user in the system, which is the
ManagedBean component. In fact, 73.4 % of the dependencies to this package are estab-
lished by classes located in ManagedBean. Therefore, these evidences when combined
are responsible for this true divergence. In fact, the architect commented that this divergence
represents a back-call because a lower layer (PersistenceLayer) is using a service
from an upper module (br.sga.ejb.facade).

872 Empir Software Eng (2016) 21:854–895

5.2.3 Results for Divergences - Heuristic #2

Table 5 shows the results achieved by the second heuristic for divergences. In six out of
nine iterations, the evaluation of the architect was required. In total, we asked the architect
to evaluate 325 warnings, with an overall precision of 34.2 %, which corresponds to the
lowest precision in the conformance process. We finish the process because the architect
considered this precision too low, specially the precision of the last iteration, which was
20.3 %. In summary, after nine iterations, the architect considered the process no longer
productive, demanding the evaluation of many false positives per true warning discovered.

Despite the lower precision, by analyzing the nDCG values in Table 5, it is possible
to observe that the strategy to rank the warnings generated by the iterations was partially
effective. In the last five iterations, for example, we achieved an average precision of 40.7 %
with the nDCG values ranging from 0.44 to 0.92, with an average value of 0.68. In other
words, the lower precision was compensated by a tendency to present the true warnings in
the top ranked results.

Example 4 As an example of a false warning (detected in iteration #1), we can mention the
following:

Component: ManagedBean
Class: br.sga.web.managedbeans.MBEducLevel
Unauthorized dependency: br.sga.ejb.facade.EducLevelFacade

AttributeClass
DepScaRate;DepDelRate: 0.003; 0.888

This particular false warning is due to two facts. First, among the 286 classes in
ManagedBean, only a single class references a particular class in the SGA’s facade, called
br.sga.ejb.facade.EducLevelFacade (DepScaRate = 0.003). Second, in the
past, a common refactoring in SGA was removing the dependencies to this class coming
from ManagedBean. In fact, 88.8 % of the classes that once had this dependency were
later changed to remove it (DepDelRate). Despite these two evidences, the warning in this
case is false, according to the architect. He explained that EducLevelFacade is a spe-
cific class in the system, responsible for very specific scholar degrees. However, in the past

Table 5 Detecting divergences in the SGA system using Heuristic #2

Warnings Precision

Iteration Dsca;Ddel Iter. New Eval. Iter. Overall nDCG

1 0.05; 0.85 5 5 — — — —

2 0.05; 0.80 12 7 — — — —

3 0.05; 0.70 25 13 25 60.0 % 60.0 % 0.75

4 0.05; 0.65 27 2 — — — —

5 0.05; 0.60 58 31 33 27.3 % 41.4 % 0.71

6 0.05; 0.55 88 30 30 60.0 % 47.7 % 0.76

7 0.05; 0.50 136 48 48 29.2 % 41.2 % 0.44

8 0.05; 0.45 172 36 36 66.7 % 46.5 % 0.92

9 0.05; 0.40 325 153 153 20.3 % 34.2 % 0.51

Empir Software Eng (2016) 21:854–895 873

this class was also responsible for regular scholar degrees and at a certain point in the sys-
tem’s evolution a design change was made towards creating a new class to represent such
degrees. Despite that, EducLevelFacade remained in the system, but it is used only
for very specific degrees. In summary, the changes in the system responsible for the high
Dependency Deletion Rate were motivated by a design decision not related to removing
architectural violations.

5.2.4 Results for Divergences - Heuristic #3

Table 6 shows the results achieved by the second heuristic for divergences. In this case,
as defined in Fig. 8, we started searching for cycles where 45 % of the dependencies are
in one direction and 55 % are in the reverse one, i.e., Ddir = 0.45. We found no pair of
components attending this precondition. The same happened when we reduced Ddir until
0.20. However, when we defined Ddir = 0.15, 75 warnings were generated for the first
time and they were all ranked as true positives. Finally, in the next three iterations, no new
warning was produced.

Example 5 By analyzing the results with SGA’s architect, we discovered that all 75 warn-
ings are between the components PersistenceLayer and ServiceLayer. Specifi-
cally, there are 320 dependencies from ServiceLayer to PersistenceLayer and 75
(unauthorized) dependencies in the reverse direction, which represents a DepDirWeight

equal to 0.189 (75/(320 + 75)). For this reason, the warnings were only produced when we
tested a minimal threshold of 15 % to classify dependencies in the “wrong direction” as
divergences. Moreover, exactly the same warnings were generated again when this threshold
was reduced until zero.

5.2.5 Overall Results for Divergences

Table 7 presents the precision achieved by our approach for divergences, considering the
warnings evaluated for the three heuristics. As can be observed, both heuristics #1 and #3
achieved 100 % of precision, and heuristic #2 achieved a precision of 34.2 %. Considering
the results of all heuristics, we generated 278 true divergences and 214 false warnings in
nine iterations, with an overall precision of 56.5 %.

5.2.6 Comparison with Reflexion Models

This section compares our results with reflexion models (RM) (Murphy et al. 2001; Murphy
et al. 1995), which is a well-known and lightweight approach for architecture conformance.

Table 6 Detecting divergences in the SGA system using Heuristic #3

Warnings Precision

Iteration Ddir Iter. New Eval. Iter. Overall nDCG

1 0.15 75 75 75 100 % 100 % 1.00

2 0.10 75 0 — — — —

3 0.05 75 0 — — — —

4 0.00 75 0 — — — —

874 Empir Software Eng (2016) 21:854–895

Table 7 Precision considering the warnings evaluated for three heuristics for divergences

Heuristic #1 Heuristic #2 Heuristic #3 Total

Iterations 2 6 1 9

Warnings 92 325 75 492

True Positives 92 111 75 278

False Positives 0 214 0 214

Precision 100 % 34.2 % 100 % 56.5 %

To make this comparison, we calculated a reflexion model for the SGA system, reusing the
high-level model used as input by our approach. As illustrated in Fig. 9, we had to enrich our
initial model in two directions. First, we defined six extra components, to denote external
components used by the SGA implementation, including frameworks for presentation (Java
Server Faces), for communication (Servlets), and for persistence (Java Persistence API and
SQL). Second, we included 25 relations (edges) between the defined components. On the
other hand, when using our approach, external frameworks and relations between compo-
nents are automatically inferred by the considered heuristics. Using the enriched high-level
model, we calculated a reflexion model, i.e., a model that highlights divergences.

Figure 10a compares the results for divergences achieved by RM and by our approach.
As mentioned in Section 5.2, the proposed heuristics detected 254 true and unique warnings
in the SGA system. On the other hand, RM was able to detect 75 divergences. For exam-
ple, RM missed 57 divergences between ManagedBean and JavaIO, two divergences
between IService and EJB, and 26 divergences between BusinessEntity and JPA.
In fact, ManagedBean has a dependency with JavaIO, but with the wrong class in this
component. Specifically, an architectural rule states that ManagedBean can only establish

external/java external/java
view

controller

Manag edBean

JSP

SGA

business

IService

model

persistence

PersistenceLayer

BusinessEntity

JSF

JPA

EJB

ServiceLayer

IPersistence

SQL

Servlet

JavaIO

Fig. 9 Enriched high-level model for the SGA system

Empir Software Eng (2016) 21:854–895 875

(a) (b)

Fig. 10 Absences and divergences detected by RM and the proposed heuristics

dependencies with a single class in JavaIO, called IOException. Despite this, there
are 57 dependencies with other JavaIO classes, such as BufferedReader and File.
To detect these divergences, the high-level model used by the RM technique must be fur-
ther refined, by creating two nested components in JavaIO, one component with only the
IOException class and another one with File, FileReader, BufferedReader,
FileOutputStream, and OutputStream. After this modification, we must update
the dependency from ManagedBean to reach just the IOException subcomponent. In
fact, this need to refine reflexion models motivated the extension of the original proposal
with hierarchical modules (Koschke and Simon 2003).

Figure 10b compares the results for absences achieved by RM and by our approach.
As reported in Section 5.2, the proposed heuristics detected 111 true absences in the SGA
system. On the other hand, RM missed all of them. To explain the reason for this mas-
sive failure in detecting absences, we will consider the components PersistenceLayer
and JPA. As illustrated in Fig. 9, the high-level model prescribes that there must exist a
dependency from PersistenceLayer to JPA. However, PersistenceLayer is a
coarse-grained component—with 311 classes. For this reason, a single class that relies on
JPA is sufficient to hide all eventual absences in the remaining classes of the component.
Of course, it is possible to refine the high-level model by creating a nested component in
PersistenceLayer with exactly the classes that must depend on JPA and to establish
an edge between each of such classes and JPA. However, the proliferation of nested com-
ponents increases complexity and contrasts with the lightweight profile normally associated
with RM-based techniques.

Finally, it is important to state that RM is a precise technique, assuming the relations
defined by the architect reflect the idealized architecture. Therefore, the technique does not
generate false warnings. On the other hand, for the 278 true divergence warnings raised by
the proposed heuristics, there were also 214 false warnings (precision equals 56.5 %).

5.2.7 Historical Analysis

In this section, we evaluate how the proposed heuristics perform in different stages of the
evolution of the SGA system. More specifically, we performed again the heuristics that
depend on historical information, i.e., heuristic for absence and heuristics #1 and #2 for
divergences, but considering a limited number of versions. In each execution, we discarded
the versions of the first, second, third, and fourth years, respectively. Moreover, we reused
the same thresholds from the first iteration of the process followed by the SGA architect
when validating the results using the complete dataset. For example, when computing the
heuristic for absence, we considered Asca = 0.95 and Ains = 0.55, which are exactly

876 Empir Software Eng (2016) 21:854–895

Table 8 Historical analysis results

Dataset discarding

Full dataset 1st yr 2nd yr 3rd yr 4th yr

Absences 26 3 3 3 0

Divergence - Heuristic #1 11 11 7 7 0

Divergence - Heuristic #2 15 2 2 2 0

the first thresholds evaluated by the architect in the original study (see Table 3). We then
checked whether each violation detected using the complete dataset is also detected when
the first n initial years are discarded (1 ≤ n ≤ 4).

Table 8 reports the true warnings detected in each time frame. Considering the complete
dataset, the heuristic for absences detected 26 violations, and the heuristics #1 and #2 for
divergences detected 11 and 15 violations, respectively. When we discard the first-year ver-
sions, there is a major reduction in the number of absences (from 26 violations to three
violations) and in the number of divergences detected by heuristic #2 (from 15 violations
to two violations). On the other hand, the number of violations detected by heuristic #1
remains exactly the same when considering the full dataset (11 violations).

To explain these results, we first characterize the changes that have an impact in the
proposed heuristics. The heuristic for absences monitors a change that inserts a missing
dependency in the target class, which we will refer to Insert Missing Dependency change.
In the case of divergences, the heuristics monitor a change that removes an undesirable
dependency from a target class, which we will refer to Remove Undesirable Dependency
change. Figure 11 reports the distribution of these changes in our dataset, in four years.
We can observe that both changes happened most of the times in the first year of SGA’s
evolution. For example, 53 % of the Insert Missing Dependency changes were performed in

Insert Missing Dependency
Remove Undesirable Dependency (Heuristic #1)
Remove Undesirable Dependency (Heuristic #2)

Fig. 11 Distribution of the change operations by year (for each operation, the bars show the percentage of
changes performed in each year considered in the SGA conformance process)

Empir Software Eng (2016) 21:854–895 877

the first year. Regarding the Remove Undesirable Dependency, we have that 56 % (for the
ones associated to heuristic #1) and 46 % (for the ones associated to heuristic #2) happened
in the first year. Therefore, when we removed the commits collected in the first year, we
also removed most of the changes responsible for triggering the warnings of architectural
violations, as considered by the three heuristics that depend on historical data. In the case
of the heuristic for absence and the heuristic #2 for divergences, the changes performed in
the remaining years were not sufficient to attend the respective thresholds (Dsca = 0.05
and Ddel = 0.70), which are very rigid. On the other hand, in the case of the heuristic #1
for divergences, they were still sufficient to trigger the same 11 violations when using the
full dataset. The central reason in this case is the fact that the computation of this heuristic
uses more flexible thresholds (Dsca = 0.10 and Ddel = 0.60). Finally, in all cases, after
removing four years of revisions, we were not able to detect violations anymore.

Clearly, it is not possible to generalize the results of this subsection to other systems.
However, in the specific case of the SGA system, they show that most changes the pro-
posed heuristics depend on happened in the first year of the system’s evolution. Therefore,
we can extrapolate that at this year the development team was not completely aware of
SGA’s planned architecture. For that reason, many violations were introduced but also fixed,
as the architecture quickly became clearer to the initial team of developers. Finally, the
results reported in this historical analysis reinforce the importance of the thresholds when
computing the heuristics. For example, the heuristic #1 for divergences was not deeply
impacted by removing the commits of the first year due to its evaluation with more flexible
thresholds.

5.3 Methodology for the M2M System

M2M is an ERP management system designed for use by Brazilian government institutions.
The system manages the administrative process of acquisition and distribution of products
and services. The system also documents the entire process workflow and includes other
features such as integration with governmental systems, reports, etc.

Table 9 High-level components in the M2M system

Component # Classes Regular Expression

PersistenceLayer 173 br.m2m.*Impl

IPersistenceLayer 398 br.m2m.*.dao.*DAO <excludes> br.m2m.*Impl

BusinessEntity 1,143 br.m2m.*DTO <or> br.m2m.*.domain.*

ExceptionHandler 12 br.m2m.*Exception

Timer 58 br.m2m.*.timers.* <or> br.m2m.*.Timer*

Security 9 br.m2m.*.security.*

Action 1,056 br.m2m.*Action

Form 243 br.m2m.*Form

WEBController 1,048 br.m2m.*MBean <or> br.m2m.*.jsf.*

<or> br.m2m.*Servlet <or> br.m2m.*.struts.*

Report 17 br.m2m.*.Rep* <or> br.m2m.*.Graphic*

IService 16 br.m2m*.interfaces.*

ServiceLayer 656 br.m2m.*.Processor* <or> br.m2m.*.business.*

Util 170 br.m2m.*Utils <or> br.m2m.*.util.*

878 Empir Software Eng (2016) 21:854–895

Table 10 Precision considering the warnings raised in M2M system.

Iterations Warnings Mean precision Overall precision

Absences 2 112 81.5 % 82.1 %

Divergence - Heuristic #1 0 0 — —

Divergence - Heuristic #2 3 119 41.7 % 18.5 %

Divergence - Heuristic #3 2 48 63.9 % 75.0 %

All Heuristics 7 279 62.4 % 53.8 %

We considered 61,785 revisions available in the system’s control version repository (all
available revisions), from November, 2010 to October, 2013. The last considered revision
has 4,999 classes and interfaces, organized in 485 packages, comprising 610 KLOC. After
parsing all revisions, the dependency model generated by our approach has 271.5 million
relations and requires 107 GB of storage in a relational database.

Similarly to SGA, we asked M2M’s architect to define the system’s high-level compo-
nent model. Table 9 presents the components suggested by the architect and the regular
expressions that define the classes in each component, besides the respective number of
classes. We can observe that the regular expressions in M2M map classes to components,
and not packages to components as occur in the SGA system. The main reason is that classes
associated to different components may be located in the same package. As an example,
classes from components PersistenceLayer and IPersistenceLayer are located
in the same package, called br.m2m.arq.dao.contract. Furthermore, the size of the
proposed components ranges from nine classes (component Security) to 1,143 classes
(component BusinessEntity).

The regular expressions in Table 9 were used as input to the heuristics. Each heuristic
was executed several times and the architect was only requested to evaluate the warnings
raised by the iterations that produced at least 10 new warnings. In this case, the architect
carefully examined the warnings and classified them as true or false positives.

5.4 Results for the M2M System

Table 10 summarizes the precision achieved by the proposed heuristics in M2M. In short,
we achieved an overall precision ranging from 18.5 % (heuristic #2 to detect divergences)
to 82.1 % (the heuristic to detect absences). Nevertheless, heuristic #1 did not indicate any
divergence in M2M. Considering the mean precision of the iterations, we achieved results
ranging from 41.7 % to 81.5 %.4

Moreover, to discover the violations we executed seven iterations, raising 279 warnings
with an overall precision of 53.8 %. Appendix B presents a detailed description of the
warnings detected by each heuristic.

During the evaluation, the architect commented that the detected violations are, in fact,
due to some relevant architectural constraints in M2M, as follows:

• All classes in PersistenceLayer must depend on class org.hibernate.
Query (35 absences detected).

4Mean precision is the average precision of the iterations evaluated by the architect, whereas Overall
precision is the total number of true warnings by the total number of warnings.

Empir Software Eng (2016) 21:854–895 879

• Only classes in IPersistenceLayer must depend on class org.hibernate.
Session (three divergences detected by heuristic #2).

• Classes in ServiceLayer cannot depend on class java.net.UnknownHost
Exception as a CaughtException (four divergences detected by heuristic #2).

• Classes in BusinessEntity cannot depend on classes located in Persistence-
Layer (four divergences detected by heuristic #3).

• Only classes in WEBController can depend on classes located in WEBControl-
ler (18 divergences detected by heuristic #3).

• Classes in PersistenceLayer cannot depend on classes located in
ServiceLayer (three divergences detected by heuristic #3).

Therefore, we argue that the proposed heuristics were able to detect violations of well-
known architectural patterns and rules in the M2M system, without requiring their explicit
formalization, as required by other architecture conformance approaches.

5.5 Threats to Validity

The threats of this study are the same in both systems. We relied on a single architect
per system to design our initial model and to classify our warnings. Therefore, as any
human-made artifact, the model and the classification are subjected to errors and impre-
cision. However, we interviewed senior architects, with a complete domain of SGA’s and
M2M’s architecture and implementation. Furthermore, one can argue that these archi-
tects might be influenced to design a model favoring ArchLint. However, we never
explained to the architects the heuristics followed by ArchLint to discover architectural
violations.

6 Second Study: an Open-Source System

In this study, we report the application of the proposed heuristics in an open-source system
named Lucene.

6.1 Study Setup

In this system, our evaluation is fully based on a Reflexion Model (RM) independently
proposed by Bittencourt et al. (Bittencourt 2012). We reused the component specifications
from the high-level model (HLM) defined as the input for the proposed heuristics. Table 11
lists the components defined by the Lucene’s HLM.

Because the HLM was carefully designed for architecture conformance purposes, we
considered the computed reflexion models as a reliable oracle for evaluating the precision
of the heuristics. More specifically, we classify a warning as a true positive when it is
also reported in the reflexion model. In other words, in this second study, we replaced the
architect with a reflexion model. Moreover, we decided by ourselves when to stop the iter-
ative process followed for each heuristic. Basically, we targeted around 100 warnings per
heuristic, stopping when this value was reached.

In the case of absences, the reflexion model did not indicated absences in Lucene because
in RM a single class in a component satisfying the prescribed architectural rule is sufficient
to hide all absences in this component. For instance, the HLM prescribes that a depen-
dency from Search to Index must exist. However, Search is a component with 351 classes

880 Empir Software Eng (2016) 21:854–895

Table 11 High-level components in Lucene

Component Regular Expression

QueryParser org.apache.lucene.queryparser.*

Search org.apache.lucene.search.*

Index org.apache.lucene.index.*

Store org.apache.lucene.store.*

Analysis org.apache.lucene.analysis.* <or> org.apache.lucene.collation.*

Util org.apache.lucene.util.* <or> org.apache.lucene.message.*

Document org.apache.lucene.document.*

and therefore a single class from Search that relies on Index is sufficient to hide eventual
absences in the remaining classes of the component.

To evaluate the heuristics, we checked out 1,959 revisions, from March, 2010 to July,
2012. The last revision considered in the study has 336 KLOC.

6.2 Results for the Lucene System

Table 12 reports the precision achieved by the heuristics for divergences. The overall preci-
sion was 59.2 %. In 16 iterations, our approach raised 446 warnings with a mean precision
in the iterations used for each heuristic ranging from 7.0 % to 98.5 %. Appendix C presents
a detailed description of the warnings detected by each heuristic.

An analysis of the divergences missed by our approach—i.e., divergences we missed
but that were detected by the reflexion model—revealed that we missed many divergences
with a high scattering and a low deletion rate. For example, the high-level model does not
define a dependency between components Search and Store. However, 81 dependencies
like that are presented in 32 % of the classes in Store, which exceed by a large margin
the thresholds we tested. Moreover, only 6 % of such dependencies were removed along
Lucene’s evolution. Stated otherwise, in Lucene, it is common to observe divergences that
are not spatially and historically confined in their source components. Therefore, we argue
that Lucene’s architecture might have evolved during the time frame considered in our study.
As a result, many dependencies that were not authorized by the initial high-level model
might have turned themselves into a frequent and enduring property of the system.

Table 12 Precision considering the warnings raised in Lucene system.

Iterations Warnings Mean precision Overall precision

Divergence - Heuristic #1 6 168 49.3 % 55.4 %

Divergence - Heuristic #2 4 114 7.0 % 7.9 %

Divergence - Heuristic #3 6 164 98.5 % 98.8 %

All Heuristics 16 446 51.6 % 59.2 %

Empir Software Eng (2016) 21:854–895 881

6.3 Threats to Validity

It is possible that the Lucene’s high-level model does not capture some (true) violations.
However, we argue that the chances are reduced since the models were carefully designed
and refined to create a benchmark for architecture conformance.

7 Discussion

In this section, we discuss the main lessons learned in the studies reported in Sections 5
and 6.

7.1 Are our Results Good Enough?

We detected a relevant number of architectural violations with the proposed heuristics: 389
violations in the SGA system; 150 violations in the M2M system; and 264 violations in
Lucene.

Furthermore, we achieved the following overall precision rates: 53.8 % (M2M), 59.2 %
(Lucene), and 62.7 % (SGA). These precision values are compatible to the ones normally
achieved by static analysis tools, such as FindBugs (Hovemeyer and Pugh 2004). For exam-
ple, in a previous study, we found that precision rates greater than 50 % are only possible
by restricting the analysis to a small subset of the warnings raised by FindBugs (Araujo
et al. 2011). Clearly, such tools have different purposes than ArchLint, but our inten-
tion here is to show that developers accept false warnings when using software analysis
tools.

According to the architects of the SGA and M2M systems, most warnings generated
by our approach are in fact due to violations in meaningful architectural constraints. For
example, the SGA’s architect commented that a relevant architecture rule in his system
prescribes that “all IService classes must have a Remote annotation”. The heuristic for
absences was able to detect three violations in this rule.

Regarding the false positives generated by the heuristics, we observed that they can be
due to a design or requirement change that implied in a bulk insertion or deletion of depen-
dencies from a component. For example, this happened in the SGA system when the audit
service (a new requirement) was introduced, adding new dependencies in many classes.
Finally, we also observed that we may miss many true warnings when the system under
evaluation is facing a major erosion process or when its architecture has evolved. For exam-
ple, in Lucene we missed many divergences which are not “minorities” in their components,
i.e., the dependencies responsible for such divergences are not spatially and historically
confined in their source components.

7.2 How Difficult is to Set Up the Required Thresholds?

After applying the heuristic-based conformance process three systems, we concluded that it
is not possible to rely on universal thresholds, which could be reused from system to sys-
tem, especially in the case of thresholds denoting insertion and deletion rates. For example,
Figures 12a and b present respectively the distribution of the scattering (DepScaRate) and
the deletion rates (DepDelRate), regarding the true warnings detected by heuristic #2 for
divergences. We can observe that usually the warnings present very low scattering rates.
For example, the 3rd quartile values for DepScaRate are 2.7 % (SGA), 0.7 % (M2M),

882 Empir Software Eng (2016) 21:854–895

(a) (b)

Fig. 12 Thresholds distribution in heuristic #2 for divergences

and 1.7 % (Lucene). On the other hand, there are more differences in terms of the dele-
tion rates (DepDelRate). For example, the median values of DepDelRate are 50 % (SGA),
64 % (M2M), and 37 % (Lucene). Such differences reveal that the frequency that true
architectural violations are removed varies significantly among the considered systems.

Therefore, the proposed conformance process, by allowing developers to gradually test
and evaluate the required thresholds, demonstrated to be the right strategy to use the pro-
posed heuristics. First, the process did not require many iterations. Considering all systems
and both absences and divergences, we counted 14, 7, and 16 iterations requiring feedback
from the developers in the SGA, M2M, and Lucene systems, respectively. Second, we nor-
mally observed lower precision rates as soon as new iterations were executed, as expected.
For this reason, we claim that the detected true warnings are not mere coincidences, but the
result of spatial and temporal patterns that characterize architectural violations.

7.3 How Much Overlapping is there in the Heuristics for Divergences?

In the specific case of divergences, since we have three heuristics, it is possible for a warning
to be raised by more than one heuristic. However, we observed that such warnings followed
different patterns in the three systems, especially in the case of true warnings. In the SGA
system, as presented in Fig. 13a, there is some intersection between the true warnings raised
by the heuristics for divergences, although it is not relevant. In the M2M system, we have
not found true warnings raised by more than one heuristic, as showed in Fig. 13b. Finally,
in Lucene, we found an expressive intersection between heuristics #1 and #3, as showed
in Fig. 13c. Also, only in Lucene we found warnings detected simultaneously by the three
heuristics. In summary, our results show that each single heuristic could detect real and
unique violations in at least one of the evaluated systems.

Empir Software Eng (2016) 21:854–895 883

(a) (b) (c)

Fig. 13 Warnings raised by more than one heuristic for detecting divergences

7.4 What are the Most Common Dependency Types Responsible for Violations?

As defined in Section 2, the heuristics for absence and the second heuristic for divergence
consider a violation regarding a specific dependency type. Table 13 shows the depen-
dency types more common considering the true violations detected by these two heuristics
in the SGA system. As we can observe, the most common dependency types were due
to missing local variable declarations (absences) or due to unauthorized variable declara-
tions (divergences). In the case of absences, most missing local variables are related to
the implementation of the audit service. In some cases, the classes subjected to this ser-
vice must inherit from AuditInfo (as discussed in Example #2, Section 5.2.1). In other
cases, the methods requiring auditing must declare a local variable of type AuditDAO
and call a save method from this class. However, the proposed heuristic for absences
detected many classes whose methods do not use the audit service by declaring this local
variable when they were supposed to. Regarding the divergences detected by heuristic #2,
many methods were using a local variable of an incorrect type to persist data. Specif-
ically, in many cases classes from JPA—a Java API for persistence—should have been
used, but instead the code used local variables of types supporting direct access to SQL. In
the case of absences, we also detected classes that were not inheriting for example from
br.sga.core.domain.AuditInfo and also classes missing a javax.ejb.Local
annotation. Finally, in the case of divergences, we also detected classes incorrectly using
the javax.persistence.OneToMany annotation.

Table 13 Most common dependency types in the SGA system

Absences Heuristic #2

LocalVariable 32.8 % 42.3 %

Inheritance 21.8 % 0.0 %

DeclaredException 17.6 % 0.0 %

AnnotationClass 15.1 % 13.5 %

CaughtException 0.0 % 12.6 %

AnnotationAttribute 10.0 % 19.8 %

884 Empir Software Eng (2016) 21:854–895

8 Related Work

We divided related work into three groups: static analysis tools, software repository analysis
tools, and architecture conformance tools. The tools in the first two groups detect program
anomalies, but not at the architectural level. The tools in the third group target architectural
anomalies, but are not based on static or historical analysis techniques.

8.1 Static Analysis Tools

Starting with the Lint tool (Johnson 1977) in the late seventies, several tools have been
proposed to detect suspicious programming constructs by means of static analysis, includ-
ing PREfix/PREfast (Larus et al. 2004) (for programs in C/C++), FindBugs (Hovemeyer
and Pugh 2004), and PMD (Copeland 2005) (for programs in Java). Such tools rely on
static analysis to detect problematic programming constructs and events, such as uncaught
exceptions, null pointer dereferences, overflow in arrays, synchronization pitfalls, security
vulnerabilities, etc. Therefore, they are not designed to detect architectural anomalies, such
the ones associated to violations in the planned architecture of object-oriented systems.

The dissemination of static analysis tools has motivated the empirical evaluation of the
relevance of the warnings raised by such tools. For example, in a previous study, based
on five stable releases of the Eclipse platform, we measured the precision of the warnings
raised by two Java-based bug finding tools (Araujo et al. 2011). We defined precision by
the following ratio: (#warnings removed after a given time frame) / (#warnings issued by
the tool). We found that precision rates superior to 50 % are only possible by restricting
the analysis to a small subset of the warnings raised by FindBugs (basically, high priority
warnings from the correctness category). For PMD, the precision was less than 10 %. In
another study, Kim and Ernst define precision in a different way: (#warnings on bug-related
lines) / (#warnings issued by the tool) (Kim and Ernst 2007). Using this strict definition,
the precision was less than 12 %. Therefore, precision values ranging from 53.8 % (M2M
System) to 62.7 % (SGA System) as the ones we achieve with ArchLint are greater than the
values typically provided by traditional static analysis tools.

8.2 Software Repository Analysis Tools

Many tools have been proposed to extract programming patterns from software reposito-
ries. DynaMine is a tool that analyzes source code check-ins to discover application-specific
coding patterns, such as highly correlated method calls (Livshits and Zimmermann 2005).
BugMem (Kim et al. 2006) and FixWizard (Nguyen et al. 2010) are tools that mine for
repeated bug fix changes in a project’s revision history (e.g., changes where an incorrect
condition is replaced with a correct one). Lamarck is a tool that mines for evolution pat-
terns (i.e., not only bug fixes) in software repositories by abstracting object usage into
temporal properties (Mileva et al. 2011). In Lamark, to evaluate the tool effectiveness in
detecting errors, precision is defined as: (#code smells and defects) / (#warnings issued by
the tool). Using this definition, Lamarck’s success rate ranges from 33 % to 64 %. Hora
et al. (2013) extract system specific rules from source code history by monitoring how
API is evolving with the goal of providing better rules to developers. They focus on struc-
tural changes that have been done to support API modification or evolution. In contrast to
previous approaches, they do not only focus on just mining bug-fixes or system releases.
Palomba et al. (2013) propose an approach called HIST to detect five different code smells
(Divergent Change, Shotgun Surgery, Parallel Inheritance, Feature Envy, and Blob) that are

Empir Software Eng (2016) 21:854–895 885

distinguished by inspecting how the source code changed over time. Basically, they use
change history information extracted from software repositories to detect bad smells by
analyzing co-changes among source code artifacts over time. Using only historical analy-
sis, their precision ranges from 61 % to 80 %, which is compatible with those found by
our approach. The authors suggest that better performances can be achieved by combin-
ing static and historical analysis, as performed by our approach. Silva et al. (2014) rely
on a sparse graph clustering algorithm to extract groups of classes that frequently change
together, called co-change clusters. They also propose some patterns of co-change clusters,
like well-encapsulated, octopus, and crosscutting, which are used to assess the traditional
decomposition of systems in packages, but using historical information.

In common, the aforementioned works adopt a vertical approach for discovering project-
specific patterns in software repositories (in contrast to static analysis tools that assume a
horizontal approach based on a pre-defined set of bug patterns). Our approach also relies on
a vertical approach, but with focus on architecture conformance.

8.3 Architecture Conformance Tools

Besides reflexion models, another common solution for architecture conformance is cen-
tered on domain-specific languages, such as SCL (Hou and Hoover 2006), LogEn (Eichberg
et al. 2008), DCL (Terra and Valente 2009), Grok (Holt 1998), Intensional Views (Mens
et al. 2006), and DesignWizard (Brunet et al. 2011). Certainly, by using such languages, it
is possible to detect the same absences and divergences than ArchLint. On the other hand,
even using a customized syntax, the definition of architectural constraints may represent a
burden for software architects and maintainers. For example, in a previous experience with
the DCL language, we had to define 50 constraints to provide a partial specification for the
architecture of a large information system (Terra and Valente 2009).

In a recent work, we used association rules to mine architectural patterns in version
history(Maffort et al. 2013). First, our goal was to investigate the automatic generation
of architectural constraints in the DCL language. Second, we aimed to propose a theory
to explain and support the heuristics proposed in this paper. On one hand, we found that
the heuristic for absences and the first two heuristics for divergences can be modeled as
a frequent itemset mining problem. On the other hand, the number of association rules
produced by frequent itemset mining techniques is considerable large. Hammad et al. (2009)
proposed a technique based on source code changes for extracting UML class diagrams,
which could be used as a first approximation for the component model required by our
approach.

9 Conclusion

We conclude with the main contributions of our research both for practitioners and for soft-
ware engineering researchers. First, for practitioners, especially ones who are not experts
on the system under evaluation, we envision that an heuristic-based approach for archi-
tecture conformance can be used to rapidly raise architectural warnings, without deeply
involving experts in the process. Moreover, after evaluating many of the warnings raised
by the heuristics, practitioners can get confidence on the most relevant architectural con-
straints, which can be therefore formalized using languages such as DCL (Terra and
Valente 2009). Moreover, especially among developers who frequently use popular static
analysis tools, ArchLint can be promoted as a complementary tool that elevates to an

886 Empir Software Eng (2016) 21:854–895

architectural level the warnings raised by such tools. Finally, for researchers the approach
described in this paper may open a novel direction for the investigation on architectural
conformance techniques, based not only on static information, but also on information
extracted from version repositories, which are ubiquitously used nowadays on software
projects.

As future work, we plan to evaluate new heuristics, especially heuristics that take into
account the age of the changes, which can mitigate the impact that changes in architectural
decisions have in our current approach. We are also working on the integration of ArchLint
with ArchFix (Terra et al. 2013; 2012), which is a recommendation tool that suggests refac-
torings for repairing architectural violations. ArchLint—our supporting tool—is publicly
available at: http://aserg.labsoft.dcc.ufmg.br/archlint

Acknowledgments Our research is supported by CAPES, FAPEMIG, and CNPq. We thank the architects
of the SGA and M2M systems for validating the warnings raised by the proposed approach.

Appendix A: Formal Definition

In this appendix section, we describe the heuristics proposed by ArchLint.

Notation

The definition of the heuristics relies on the following notation:

• C = {c1, c2, ..., cn} is the set of all classes in the system under analysis.

• CP = {cp1, cp2, ..., cpn} is the set of components in the high-level component model.

• depends(c1, c2, t, v) indicates that class c1 has a dependency of type t with class c2 in
a given version v.

• comp(c) is the component cp of a class c.

• mod(c) is the module m of a class c.

• first(c) is the version in which class c was originally inserted in the repository.

• H is the identifier of the last version of the system in the repository.

In a depends predicate, the pattern (underscore) matches any value. For example,
depends(c1, c2, ,) indicates that class c1 depends on class c2, despite the dependency
type and the version.

Detecting Absences

DepCompClass(c, t, cp) is the set of classes in a component cp that—in the current
version of the system—have a dependency of type t with a class c, as follows:

DepCompClass(c, t, cp) = {x ∈ C | depends(x, x, t, H) ∧ comp(x) = cp}
ClassComp(cp) is the set of classes in the component cp, as follows:

ClassComp(cp) = {x ∈ C | comp(x) = cp}

http://aserg.labsoft.dcc.ufmg.br/archlint

Empir Software Eng (2016) 21:854–895 887

DepScaRate(c, t, cp) is the ratio between (i) the number of classes in component cp

that have a dependency of type t with a target class c and (ii) the total number of classes in
component cp, as follows:

DepScaRate(c, t, cp) = |DepCompClass(c, t, cp)|
|ClassComp(cp)|

CreatedWithoutDep(c, t, cp) is the set of classes of a component cp that were com-
mitted in the repository for the first time without a dependency of type t with a target class
c, as defined next:

CreatedWithoutDep(c, t, cp) = {x ∈ C | comp(x) = cp ∧ ¬depends(x, c, t, f irst (x))}

DepAdd(c, t, cp) is the set of classes in component cp initially created without a depen-
dency of type t with a target class c but that later were maintained to include this
dependency, as follows:

DepAdd(c, t, cp) = {x ∈ CreatedWithoutDep(c, t, cp) | depends(x, c, t, H)}

DepInsRate(c, t, cp) is the ratio between (i) the number of classes in the component cp

originally created without a dependency of type t with a target class c, but that have this
dependency in the last version of the system under analysis, and (ii) the total number of
classes in component cp originally created without a dependency of type t with class c, as
follows:

DepInsRate(c, t, cp) = |DepAdd(c, t, cp)|
|CreatedwithoutDep(c, t, p)|

Finally, the candidates for absences in a component cp are defined as follows:

Absences(cp) = { (x, c, t) | comp(x) = cp ∧ ¬depends(x, c, t, H) ∧
DepScaRate(c, t, p) ≥ Asca ∧

DepScaRate(c, t, p) ≥ Ains }

Detecting Divergences

Heuristic #1

DepSysMod(m) is the set of classes in the current version of the system that have a
dependency with classes of a module m, as follows:

DepSysMod(m) = {x ∈ C | depends(x, c, ,H) ∧ mod(c) = m}

DepCompMod(m, cp) is the set of classes in component cp that have a dependency with
a module m, as defined next:

DepCompMod(m, cp) = {x ∈ DepSysMod(m) | comp(x) = cp}

888 Empir Software Eng (2016) 21:854–895

DepScaRate(m, cp) is the ratio between (i) the number of classes in component
cp that have a dependency with a module m and (ii) the total number of classes
in the current version of the system that have a dependency with classes of m, as
follows:

DepScaRate(m, cp) = |DepCompMod(m, cp|)
|DepSysMod(m)|

DepAddAny(m, cp) is the set of classes in component cp that have established—in any
version of the system—a dependency with a class in module m, as defined next:

DepAddAny(m, cp) = {x ∈ C | comp(x) = cp ∧ depends(x, c, ,) ∧ mod(c) = m}
DepDel(m, cp) is the set of classes returned by DepAddAny(m, cp) that in the current
version of the system no longer have a dependency with classes in module m, as defined
next:

DepDel(m, cp) = {x ∈ DepAddAny(m, cp) | ¬depends(x, c, H) ∧ mod (c) = m}
DepDelRate(m, cp) is the ratio between (i) the number of classes in component cp that no
longer have a dependency with classes in module m and (ii) the total number of classes in
component cp that have established a dependency with any class in module m, as defined
next:

DepDelRate(m, cp) = |DepDel(m, cp)|
|DepAddAny(m, cp)|

HeavyUser(m) is a function that returns the component whose classes mostly depend
on classes located in module m, i.e., the component cp that provides the following maximal
value:

max∀cp ∈ CP

(|DepCompMod(m, cp)|
|DepSysMod(m)|

)

However, this maximal value must be greater than 0.5. Otherwise, the function
HeavyUser returns null.

Finally, the candidates for divergences in a given component cp are defined as follows:

Div1(cp) = { (x, c) | comp(x) = cp ∧ mod(c) = m ∧ depends(x, c, ,H) ∧
DepScaRate(m, cp) ≤ Dsca ∧
DepDelRate(m, cp) ≥ Ddel ∧
HeavyUser(m) �= cp }

Heuristic #2

DepAddAny(c, t, cp) is the set of classes in component cp that have established—in any
version of the system—a dependency of type t with a class c, as defined next:

DepAddAny(c, t, cp) = {x ∈ C | comp(x) = cp ∧ depends(x, c, t,) }
DepDel(c, t, cp) is the set of classes returned by DepAddAny(c, t, cp) that no longer have
a dependency of type t with a class c (i.e., the dependencies were removed), as defined next:

DepDel(c, t, cp)={ x ∈ DepAddAny(c, t, cp) | comp(x)=cp ∧ ¬depends(x, c, t, H) }

Empir Software Eng (2016) 21:854–895 889

Additionally, DepDelRate(c, t, cp) is the ratio between (i) the number of classes in com-
ponent cp that no longer have a dependency of type t with a class c, and (ii) the total number
of classes in component cp that have established a dependency of type t with a class c, as
defined next:

DepDelRate(c, t, cp) = |DepDel(c, t, cp)|
|DepAddAny(c, t, cp)|

Finally, the candidates for divergences in a given component cp are defined as follows:

Div2(cp) = { (x, c, t) | comp(x) = cp ∧ depends(x, c, t, H) ∧
DepScaRate(c, t, cp) ≤ Dsca ∧
DepDelRate(c, t, cp) ≥ Ddel }

Heuristic #3

This heuristic assumes that rf (cp1, cp2) denotes the number of references from classes in
component cp1 to classes in component cp2, as defined next:

rf (cp1, cp2) = | { (x, c) | comp(x) = cp1 ∧ comp(c) = cp2 ∧ depends(x, c, ,H) }|
DepDirWeight (cp1, cp2) is defined as follows:

DepDirWeight (cp1, cp2) = rf (cp1, cp2)

rf (cp1, cp2) + rf (cp2, cp1)

Finally, the candidates for divergences in a given component cp are defined as follows:

Div3(cp1) = {(x, c) | comp(x) = cp1 ∧ comp(c) = cp2 ∧ cp1 �= cp2 ∧
depends(x, c, ,H) ∧

Ddir � DepDirWeight (cp1, cp2) < 0.5}

Appendix B: M2M Conformance Process

In this section, we show the results achieved after each iteration when detecting architec-
tural violations in the M2M system. Table 14 shows the iterations performed for detecting
absences. Tables 15 and 16 shows the results achieved by the second and third heuristics for
detecting divergences, respectively. Heuristic #1 for divergences did not report warnings in
the M2M system.

Table 14 Detecting absences in the M2M system

Warnings Precision

Iteration Asca;Ains Iter. New Eval. Iter. Overall nDCG

1 0.70; 0.55 45 45 45 77.8 % 77.8 % 0.97

2 0.60; 0.55 112 67 67 85.1 % 82.1 % 0.98

890 Empir Software Eng (2016) 21:854–895

Table 15 Detecting divergences in the M2M system using Heuristic #2

Warnings Precision

Iteration Asca;Ains Iter. New Eval. Iter. Overall nDCG

1 0.05;0.90 1 1 0 — — —
2 0.05;0.85 3 2 0 — — —
3 0.05;0.80 8 5 0 — — —
4 0.05;0.75 10 2 10 90.0 % 90.0 % 0.96
5 0.05;0.70 14 4 0 — — —
6 0.05;0.65 18 4 0 — — —
7 0.05;0.60 42 24 32 31.3 % 45.2 % 0.52

8 0.05;0.55 51 9 0 — — —
9 0.05;0.50 119 68 77 3.9 % 18.5 % 0.50

Table 16 Detecting divergences in the M2M system using Heuristic #3

Warnings Precision

Iteration Ddir Iter. New Eval. Iter. Overall nDCG

1 0.25 3 3 — — — —
2 0.20 5 2 — — — —
3 0.10 12 7 12 41.7 % 41.7 % 1.0
4 0.05 17 5 — — — —
5 0.00 48 31 36 86.1 % 75.0 % 0.94

Appendix C: Lucene Conformance Process

In this section, we show the results achieved after each iteration when detecting architectural
violations in the Lucene system. Tables 17, 18, and 19 shows the results achieved by the
first, second and third heuristics for detecting divergences, respectively. The heuristic for
absences did not report warnings in the Lucene system.

Table 17 Detecting divergences in Lucene using Heuristic #1

Warnings Precision

Iteration Dsca;Ddel Iter. New Eval. Iter. Overall nDCG

1 0.05;0.70 2 2 — — — —
2 0.05;0.65 6 4 — — — —
3 0.05;0.60 10 4 10 60.0 % 60.0 % 0.67
4 0.05;0.55 17 7 — — — —
5 0.05;0.50 19 2 — — — —
6 0.05;0.40 25 6 15 60.0 % 60.0 % 1.00
7 0.05;0.30 37 12 12 66.7 % 62.2 % 0.93
8 0.05;0.25 40 3 — — — —
9 0.05;0.20 70 30 33 9.1 % 37.1 % 1.00
10 0.10;0.50 50 31 31 0.0 % 25.7 % 0.00
11 0.10;0.25 74 3 — — — —
12 0.10;0.20 168 64 67 100.0 % 55.4 % 1.00

Empir Software Eng (2016) 21:854–895 891

Table 18 Detecting divergences in Lucene using Heuristic #2

Warnings Precision

Iteration Dsca;Ddel Iter. New Eval. Iter. Overall nDCG

1 0.05;0.90 1 1 0 — — —

2 0.05;0.80 3 2 0 — — —

3 0.05;0.75 4 1 0 — — —

4 0.05;0.70 7 3 0 — — —

5 0.05;0.65 24 17 24 12.5 % 12.5 % 0.27

6 0.05;0.50 56 32 32 3.1 % 7.1 % 0.26

7 0.05;0.40 59 3 0 — — —

8 0.05;0.35 97 38 41 12.2 % 9.3 % 0.41

9 0.10;0.75 21 17 17 0.0 % 7.9 % 0.00

Table 19 Detecting divergences in Lucene using Heuristic #3

Warnings Precision

Iteration Ddir Iter. New Eval. Iter. Overall nDCG

1 0.30 12 12 12 100.0 % 100.0 % 1.00

2 0.25 16 4 — — —

3 0.20 34 18 22 90.9 % 94.1 % 1.00

4 0.15 98 64 64 100.0 % 98.0 % 1.00

5 0.10 128 30 30 100.0 % 98.4 % 1.00

6 0.05 142 14 14 100.0 % 98.6 % 1.00

7 0.00 164 22 22 100.0 % 98.8 % 1.00

References

Araujo JE, Souza S, Valente MT (2011) Study on the relevance of the warnings reported by Java bug-finding
tools. IET Software 5(4):366–374

Baeza-Yates R, Ribeiro-Neto B (2011) Modern Information Retrieval: The Concepts and Technology Behind
Search. Addison Wesley Professional

Bittencourt RA (2012) Enabling Static Architecture Conformance Checking of Evolving Software. PhD
thesis, Universidade Federal de Campina Grande

Brunet J, Guerreiro D, Figueiredo J (2011) Structural conformance checking with design tests: An evaluation
of usability and scalability. In: 27th International Conference on Software Maintenance (ICSM), pp 143–
152

Brunet J, Murphy GC, Serey D, Figueiredo J (2014) Five years of software architecture checking: A case
study of Eclipse. IEEE Software 1–6

Copeland T (2005) PMD Applied. Centennial Books
Ducasse S, Anquetil N, Bhatti MU, Hora A, Laval J, Girba T (2011) MSE and FAMIX 3.0 an Interexchange

Format and Source Code Model Family. Technical report. Software Composition Group - SCG, RMOD
- INRIA Lille - Nord Europe

Ducasse S, Pollet D (2009) Software architecture reconstruction: A process-oriented taxonomy. IEEE Trans
Software Eng 35(4):573–591

892 Empir Software Eng (2016) 21:854–895

Eichberg M, Kloppenburg S, Klose K, Mezini M (2008) Defining and continuous checking of structural
program dependencies. In: 30th International Conference on Software Engineering (ICSE), pp 391–400

Fowler M (2002) Patterns of Enterprise Application Architecture. Addison-Wesley
Hammad M, Collard ML, Maletic JI (2009) Automatically identifying changes that impact code-to-design

traceability. In: 17th IEEE/ACM International Conference on Program Comprehension (ICPC), pp 20–
29

Holt RC (1998) Structural manipulations of software architecture using tarski relational algebra. In: 5th
Working Conference on Reverse Engineering (WCRE), pp 210–219

Hora A, Anquetil N, Ducasse S, Valente MT (2013) Mining system specific rules from change patterns. In:
20th Working Conference on Reverse Engineering (WCRE), pp 1–10

Hou D, Hoover JH (2006) Using SCL to specify and check design intent in source code. IEEE Trans Software
Eng 32(6):404–423

Hovemeyer D, Pugh W (2004) Finding bugs is easy. SIGPLAN Notices 39(12):92–106
Johnson SC (1977) Lint: A C program checker. Technical Report 65, Bell Laboratories
Kim S, Ernst MD (2007) Which warnings should I fix first? In: 15th International Symposium on Foundations

of Software Engineering (FSE), pp 45–54
Kim S, Pan K, Whitehead EEJ Jr. (2006) Memories of bug fixes. In: 14th International Symposium on

Foundations of Software Engineering (FSE), pp 35–45
Knodel J, Popescu D (2007) A comparison of static architecture compliance checking approaches. In: 6th

Working IEEE/IFIP Conference on Software Architecture (WICSA), p 12
Koschke R (2010) Incremental reflexion analysis. In: 14th European Conference on Software Maintenance

and Reengineering (CSMR), pp 1–10
Koschke R, Simon D (2003) Hierarchical reflexion models. In: 10th Working Conference on Reverse

Engineering (WCRE), pp 36–45
Larus JR, Ball T, Das M, DeLine R, Fahndrich M, Pincus J, Rajamani SK., Venkatapathy R (2004) Righting

software. IEEE Software 21(3):92–100
Livshits B, Zimmermann T (2005) DynaMine: finding common error patterns by mining software revision

histories. In: 13th International Symposium on Foundations of Software Engineering (FSE), pp 296–
305

Maffort C, Valente MT, Anquetil N, Hora A, Bigonha M (2013) Heuristics for discovering architectural
violations. In: 20th Working Conference on Reverse Engineering (WCRE), pp 222–231

Maffort C, Valente MT, Bigonha M, Hora A, Anquetil N (2013) Mining architectural patterns using asso-
ciation rules. In: 25th International Conference on Software Engineering and Knowledge Engineering
(SEKE), pp 375–380

Mens K, Kellens A, Pluquet F, Wuyts Roel (2006) Co-evolving code and design with intensional views A
case study. Comput Languages Syst & Struct 32(2-3):140–156

Mileva YM, Wasylkowski A, Zeller A (2011) Mining evolution of object usage. In: 25th European conference
on Object-oriented programming, pp 105–129

Murphy G, Notkin D, Sullivan K (1995) Software reflexion models Bridging the gap between source and
high-level models. In: 3rd Symposium on Foundations of Software Engineering (FSE), pp 18–28

Murphy G, Notkin D, Sullivan KJ (2001) Software reflexion models bridging the gap between design and
implementation. IEEE Trans Software Eng 27:364–380

Nguyen TT, Nguyen HA, Pham NH, Al-Kofahi J, Nguyen TN (2010) Recurring bug fixes in object-oriented
programs. In: 32nd International Conference on Software Engineering (ICSE), pp 315–324

Nierstrasz O, Ducasse S, Gı̌rba T (2005) The story of Moose: an agile reengineering environment. In:
Foundations of Software Engineering (FSE), pp 1–10

Palomba F, Bavota G, Penta MD, Oliveto R, Lucia AD, Poshyvanyk D (2013) Detecting bad smells in
source code using change history information. In: 28th International Conference on Automated Software
Engineering (ASE), pp 268–278

Passos L, Terra R, Diniz R, Valente MT, Mendonca N (2010) Static architecture-conformance checking An
illustrative overview. IEEE Software 27(5):82–89

Perry DE, Wolf AL (1992) Foundations for the study of software architecture. Software Eng Notes 17(4):40–52
Sarkar S, Maskeri G, Ramachandran S (2009) Discovery of architectural layers and measurement of layering

violations in source code. J Syst Software 82:1891–1905
Santonu S, Ramachandran S, Kumar GS, Madhu K, Iyengar K, Rangarajan, Sivagnanam S (2009)

Modularization of a large-scale business application: A case study. IEEE Software 26:28–35
Silva L, Valente MT, Maia M (2014) Assessing modularity using co-change clusters. In: 13th International

Conference on Modularity, pp 49–60
Terra R, Valente MT (2009) A dependency constraint language to manage object-oriented software

architectures. Software: Practice and Experience 32(12):1073–1094

Empir Software Eng (2016) 21:854–895 893

Terra R, Valente MT, Czarnecki K, Bigonha R (2012) Recommending refactorings to reverse software archi-
tecture erosion. In: 16th European Conference on Software Maintenance and Reengineering (CSMR),
pp 335–340

Terra R, Valente MT, Czarnecki K, Bigonha RS (2013) A recommendation system for repairing violations
detected by static architecture conformance checking. Software: Practice and Experience 1–36

Cristiano Maffort received his PhD in Computer Science from the Federal University of Minas Gerais,
Brazil (2014). He is now an associate professor in the Department of Computing at CEFET-MG, Brazil. His
research interests include software architecture and software maintenance and evolution.

Marco Tulio Valente received his PhD degree in Computer Science from the Federal University of Minas
Gerais, Brazil (2002), where he is an associate professor in the Computer Science Department, since 2010.
His research interests include software architecture and modularity, software maintenance and evolution, and
software quality analysis. He is a “Researcher I-D” of the Brazilian National Research Council (CNPq). He
also holds a “Researcher from Minas Gerais State” scholarship, from FAPEMIG. Valente has co-authored
more than 60 refereed papers in international conferences and journals. Currently, he heads the Applied
Software Engineering Research Group (ASERG), at DCC/UFMG.

894 Empir Software Eng (2016) 21:854–895

Ricardo Terra received his PhD degree in Computer Science from the Federal University of Minas Gerais
(DCC/UFMG) with a 1-year internship at the University of Waterloo. Terra is an associate professor in the
Department of Computer Science at the Federal University of Lavras (DCC/UFLA). His research interests
include software architecture and software maintenance and evolution. Currently, he co-heads the Applied
Software Engineering Research Group (ASERG), at DCC/UFLA.

Mariza A. S. Bigonha is an Associate Professor at the Computer Science Department, Universidade Fed-
eral de Minas Gerais, (UFMG), Brazil. She received her MSc degree in Computer Science from UFMG, in
1985, and her PhD degree in Informatics: Computer Science from Pontifı́cia Universidade Católica do Rio
de Janeiro, Brazil in 1994. Her main research interests include Programming Languages and Software Engi-
neering. She has specific interest on software modularity and measurement methods that should be part of
a software quality assessment process. She has published more than 30 papers in international journals and
conference proceedings.

Empir Software Eng (2016) 21:854–895 895

Nicolas Anquetil is been assistant professor at the University of Lille-1, France, since September 2009. He
obtained his PhD in 1996 from the University of Montreal, Canada. He also worked at University of Ottawa,
Canada; Federal University of Rio de Janeiro, Brazil; Catholic University of Brasilia, Brazil; and, Ecole des
Mines de Nantes, France. His research focuses on software evolution and maintenance at large which already
included work on software re-architecturing, knowledge management for software maintenance, or software
maintenance management. He is best known for his work on software re-architecturing.

Andŕe Hora is a Post-doctoral fellow in Software Engineering in the ASERG Group at the Department of
Computer Science, Federal University of Minas Gerais, Brazil. He received an MSc degree from Federal
University of Minas Gerais in 2010 and a PhD degree from Université Lille 1/Inria, France, in 2014. His main
research interests include software evolution, reverse engineering, software analysis, and empirical software
engineering.

	Mining architectural violations from version history
	Abstract
	Introduction
	Heuristics for Detecting Architectural Violations
	Heuristic for Detecting Absences
	Heuristics for Detecting Divergences
	Heuristic #1
	Heuristic #2
	Heuristic #3

	Ranking Strategy

	Tool Support
	A Heuristic-Based Architecture Conformance Process
	First Study: Proprietary Systems
	Methodology for the SGA System
	Results for the SGA System
	Results for Absences
	Results for Divergences - Heuristic #1
	Results for Divergences - Heuristic #2
	Results for Divergences - Heuristic #3
	Overall Results for Divergences
	Comparison with Reflexion Models
	Historical Analysis

	Methodology for the M2M System
	Results for the M2M System
	Threats to Validity

	Second Study: an Open-Source System
	Study Setup
	Results for the Lucene System
	Threats to Validity

	Discussion
	Are our Results Good Enough?
	How Difficult is to Set Up the Required Thresholds?
	How Much Overlapping is there in the Heuristics for Divergences?
	What are the Most Common Dependency Types Responsible for Violations?

	Related Work
	Static Analysis Tools
	Software Repository Analysis Tools
	Architecture Conformance Tools

	Conclusion
	Acknowledgments
	Appendix A Formal Definition
	Notation
	Detecting Absences
	Detecting Divergences
	Heuristic #1
	Heuristic #2
	Heuristic #3
	 M2M Conformance Process
	Appendix B M2M Conformance Process
	 Lucene Conformance Process
	Appendix C Lucene Conformance Process
	References

