
Empir Software Eng (2016) 21:72–103
DOI 10.1007/s10664-014-9347-3

Weighing lexical information for software clustering
in the context of architecture recovery

Anna Corazza ·Sergio Di Martino ·Valerio Maggio ·
Giuseppe Scanniello

Published online: 21 March 2015
© Springer Science+Business Media New York 2015

Abstract In this paper, we present a software clustering approach that leverages the infor-
mation conveyed by the zone in which each lexeme appears in the classes of object oriented
systems. We define six zones in the source code: Class Name, Attribute Name, Method
Name, Parameter Name, Comment, and Source Code Statement. These zones may convey
information with different levels of relevance, and so their contribution should be differently
weighed according to the software system under study. To this aim, we define a proba-
bilistic model of the lexemes distribution whose parameters are automatically estimated by
the Expectation-Maximization algorithm. The weights of the zones are then exploited to
compute similarities among source code classes, which are then grouped by a k-Medoid
clustering algorithm. To assess the validity of our solution in the software architecture
recovery field, we applied our approach to 19 software systems from different applica-
tion domains. We observed that the use of our probabilistic model and the defined zones
improves the quality of clustering results so that they are close to a theoretical upper bound
we have proved.

Communicated by: Thomas Zimmermann

A. Corazza · S. Di Martino
Department of Electrical Engineering and Information Technologies, University of Naples Federico II,
Napoli, Italy

A. Corazza
e-mail: anna.corazza@unina.it

S. Di Martino
e-mail: sergio.dimartino@unina.it

V. Maggio (�)
Department of Information and Electrical Engineering and Applied Mathematics,
University of Salerno, Fisciano, Salerno, Italy
e-mail: vmaggio@unisa.it

G. Scanniello
Dipartimento di Matematica, Informatica e Economia, University of Basilicata, Potenza, Italy
e-mail: giuseppe.scanniello@unibas.it

mailto:anna.corazza@unina.it
mailto:sergio.dimartino@unina.it
mailto:vmaggio@unisa.it
mailto:giuseppe.scanniello@unibas.it

Empir Software Eng (2016) 21:72–103 73

Keywords Software understanding · Reengineering · Software clustering · Probabilistic
model · Software maintenance

1 Introduction

Some pieces of knowledge on software systems are not explicitly stated in the documenta-
tion even if that documentation is up-to-date (Kuhn et al. 2007). Thus, software engineers
have to focus on the lexicon (i.e., identifiers and comments) in source code that embeds the
domain knowledge provided by developers (De Lucia et al. 2012; Ali et al. 2011; Marcus
and Poshyvanyk 2005; Poshyvanyk and Marcus 2006) to carry out maintenance activities
(e.g., program comprehension or regression testing). Any solution that can aid software
engineers can significantly impact on software development and evolution costs (Jarzabek
2007; Grubb and Takang 2003). In this scenario, the definition of approaches to group
related software artifacts is a longstanding and relevant research topic (Bavota et al. 2013a;
van Deursen et al. 2004; Koschke 2000; Tonella 2001; Kuhn et al. 2007; Wu et al. 2005;
Maqbool and Babri 2007; Scanniello et al. 2013). The rationale is that a software engineer
can be supported in his/her maintenance tasks if the entities of a large system sharing some
kinds of relationships/properties are automatically grouped together into smaller parts (Wen
and Tzerpos 2004; Scanniello et al. 2013). Researchers refer to this relevant topic as
software clustering.

In this paper, we propose an approach towards software clustering that groups related
source code artifacts relying on the lexical information provided by programmers (e.g.,
Maletic and Marcus 2001; Scanniello et al. 2010; Kuhn et al. 2007; Marcus and Poshy-
vanyk 2005; Liu et al. 2009). According to many factors, (e.g., programming attitude,
time-to-market, development context) developers may place different care in choosing lex-
emes for different programming language constructs (De Lucia et al. 2012; Ali et al.
2011). Our proposal estimates the relevance of these constructs (or zones, from here on)
based on the contained lexical information. To this end, we define a probabilistic model of
the lexicon distribution whose parameters are automatically estimated by the Expectation-
Maximization (EM) algorithm (Mclachlan and Krishnan 1996) that provides the weights of
the zones. We consider the following six zones in the source code of object oriented soft-
ware: (i) Class Name, (ii) Attribute Name, (iii) Method Name, (iv) Parameter Name, (v)
Comment, and (vi) Source Code Statement.

The weights of the zones are then used as multipliers in the Vector Space Model
(VSM) (Manning et al. 2008) to compute the lexical similarity among software entities
(classes in our case). This similarity is used to group classes by means of a customiza-
tion of a well-known clustering algorithm: k-Medoid (Kaufman and Rousseeuw 1990). To
understand whether the introduction of the zones and the use of our approach improve
the quality of clustering results in the context of software architecture recovery, we
conducted an experimental assessment on 19 open source software systems written in
Java.

The remainder of the paper is organized as follows: we motivate our research and pro-
vide some background on both software clustering and probabilistic models in Section 2.
The proposed approach and the underlying techniques are described in Section 3, while
we present the design and the execution of our empirical investigation in Section 4. The
obtained results are presented and discussed in Section 5, while related work is discussed in
Section 6. Final remarks and future work conclude the paper.

74 Empir Software Eng (2016) 21:72–103

2 Motivation and Background

Software maintenance represents one of the most expensive and time consuming activities
in the software life cycle (Erlikh 2000; Eastwood 1993; Port 1998), accounting up to 85–
90% of the total cost of a software project (Grubb and Takang 2003). To support software
engineers in the execution of several kinds of maintenance tasks, clustering approaches have
been proposed since they provide a way to look at the properties of the clusters instead
of the individual entities within them. This has the advantage to give insights or to raise
questions about these entities and their shared properties without paying attention to the
entire system or to each individual entity (Romesburg 2004). In the following sections,
we introduce software clustering and then we will focus on those approaches that only
use lexical information to group software entities. The section concludes with a theoretical
background for the application of clustering analysis and the use probabilistic model.

2.1 Software Clustering

Clustering-based approaches require the choice of the features to be used in groupping
entities in clusters, and the definition of a similarity measure to compare the entities with
respect to the considered features. Finally, the clustering algorithm is chosen to identify
groups of entities that are similar with respect to the defined and used measure (Wiggerts
1997).

Software clustering is widely used in software maintenance and evolution (Kuhn et al.
2007; Scanniello et al. 2014; Mahdavi 2005; Maqbool and Babri 2007). Indeed, there is a
plethora of approaches and techniques for software clustering that support different tasks
ranging from the comprehension of large software systems by recovering their architecture
from source code to software refactoring and testing Ducasse and Pollet(2009; Bavota et al.
2013a, 2014b; Scanniello et al. 2013). In the literature, there are two kinds of approaches
to group related source code artifacts: structural (Anquetil et al. 1999; Wiggerts 1997) and
lexical (Corazza et al. 2010, 2011; Scanniello et al. 2010; Kuhn et al. 2007). In the for-
mer case, structural dependencies among source code artifacts (e.g., method invocations)
are employed to determine cluster boundaries (Andritsos and Tzerpos 2005; Ducasse and
Pollet 2009). In the lexical-based clustering approaches (lexical clustering, from here on),
programs/classes are grouped on the basis of the similarity of their lexicon because these
classes share common concepts that reflect the domain of the software system (Marcus and
Poshyvanyk 2005; Liu et al. 2009). More recently, approaches that combine lexical and
structural information have been proposed (Scanniello et al. 2010; Bavota et al. 2013a). For
example, Bavota et al. (2013a) approach the package re-modularization problem by adapt-
ing and combining class-level coupling metrics and conceptual coupling between classes
(Poshyvanyk and Marcus 2006). Class-level coupling metrics provide information about the
structural cohesion of packages, while the latter measure captures the lexical information
embedded in comments and source code identifiers.

2.2 Lexical Clustering

The use of lexical information (i.e., names of methods, classes, and identifiers, and source
code comments) in software clustering is an enough recent research trend in software main-
tenance and evolution (e.g., Marcus and Poshyvanyk 2005; Maletic and Marcus 2001; Kuhn
et al. 2005, 2007). For example, Kuhn et al. (2005, 2007) propose a lexical based clustering

Empir Software Eng (2016) 21:72–103 75

approach asserting that the developers’ domain knowledge of source code is mainly embed-
ded in the comments and the identifier names. Indeed, what the code is about can be found
in the semantics of lexicon used in the source code. In such a context, Information Retrieval
(IR) techniques (Manning et al. 2008) can be applied on the assumption that source code
artifacts are semantically related with each other if they share a similar vocabulary (Risi
et al. 2012).

A number of IR techniques (e.g., VSM and LSI − Latent Semantic Indexing Deerwester
et al. 1990), have been used for clustering source code artifacts (Kuhn et al. 2007; Scanniello
et al. 2010). Based on our literature review and the experience gained in lexical clustering for
architecture recovery, we can conjecture that supposedly better IR techniques and cluster-
ing algorithms do not give better software clustering results (Corazza et al. 2011, 2013; Risi
et al. 2012; De Lucia et al. 2009). Accordingly, we postulate that the research has expended
all the benefit that can be gained from more elaborate techniques (IR and clustering) and
future progress will be achieved by exploring complementary information in the source
code. In fact, researchers are following two main directions: (i) combining information in
software artifacts (e.g., lexical and structural information) (Bavota et al. 2010, 2013a, 2014a,
b; Scanniello et al. 2010) or (ii) taking into consideration the place where lexemes appear
in source code (Corazza et al. 2010, 2011). There are benefits and drawbacks deriving from
the use of approaches falling in these two categories. For example, approaches in the former
category are less flexible than those in the latter category being them dependent from the
programming language used to implement the system under study. However, in the second
case a software engineer has to determine relevance weights (or simply weights in the fol-
lowing) of the zones on the basis of his/her knowledge of the software system under study.
In case the software engineer’s knowledge on a subject system is not adequate, automated
approaches should be advisable.

2.3 Probabilistic Models

Optimal values for the relevance weights are difficult to determine, because they are strictly
related to many factors concerned with the software under study. To deal with these con-
cerns, the use of machine learning (ML) techniques represents a viable solution (Corazza
et al. 2013). ML deals with the definition of algorithms and systems that improve their
knowledge or performance on a given task by learning from data (Flach 2012).

The cost to apply ML varies considerably depending on the learning approach these
techniques apply: supervised or unsupervised. Supervised approaches require information
provided by the experts (e.g., the software architect, in our case) to annotate data for learning
(Mitchell 1997). That information is usually very expensive and difficult to obtain (Ducasse
and Pollet 2009; Kuhn et al. 2007). On the other hand, unsupervised approaches do not
require any manual processing of input data, since the learning approach leverages informa-
tion automatically obtained from these data (source code lexicon, in our case). Clustering
algorithms are typical examples of unsupervised learning techniques.

Whatever the learning approach is, probabilistic models constitute a viable solution to
deal with complex tasks that cannot be modeled or are too complex to formalize. These
models assume that there is some underlying process that generates the data, according to a
well-defined but unknown probability distribution. This distribution has to be hypothesized
(Flach 2012) because deriving the type of probability distribution from the data could lead
to overfitting (Bishop 2006).

In our case, this distribution represents the probability that a lexeme appears within a
class. To define a unique probabilistic model, a mixture of distributions is needed: each

76 Empir Software Eng (2016) 21:72–103

distribution models how lexemes are arranged within a zone. The parameters of the mixture
can be determined using various criteria. The most widely adopted criterion is the Maximum
Likelihood Estimation (MLE) (Bishop 2006). It maximizes the likelihood,1 which is the
probability that data have been generated by the considered probabilistic model (Bishop
2006).

Expectation-Maximization (EM) is an iterative algorithm that has been proposed to
maximize the likelihood function when the probabilistic model involves hidden variables
(Dempster et al. 1977) as the relevance of the zones in our case. In particular, that algorithm
iterates over assigning a value to hidden variables given the current estimates of the model
parameters, re-estimating them from current estimations, until a stationary configuration is
reached.

3 The Approach

Our approach leverages the lexical information contained within the source code to group
related classes of object oriented software systems. In particular, we consider six zones in
each class:

(I) The Class Name (CN) zone contains lexemes appearing in the class declaration,
i.e., the name of the class and the names of the superclass and/or the implemented
interfaces, if any.

(II) The Attribute Name (AN) zone contains lexemes from the names of attributes and
their corresponding types (if not primitive).

(III) The Method Name (MN) zone contains lexemes appearing in the names of methods
and in their return types (if not primitive).

(IV) The Parameter Name (PN) zone contains lexemes that are in the parameters of
methods. The names of the parameters and their types (if not primitive) are included.

(V) The Comment (Co) zone contains lexemes extracted from all the comments of a class.
We remove copyright disclaimers placed at the beginning of source code artifacts as
Kuhn et al. (2007) did.

(VI) The Source Code Statement (SCS) zone contains only the lexemes occurring in the
body of methods.

To group classes, our approach consists of a pipeline composed by the following steps:

1. Corpus Creation. A corpus is created, containing a document for each class.
2. Corpus Normalization. The corpus is normalized using a different set of processing

steps.
3. Corpus Indexing. An inverted index is constructed for each zone, storing a mapping

from the lexemes to the documents containing them (Manning et al. 2008). All the
documents in the corpus are represented by using VSM (Manning et al. 2008).

4. Zone Weighting. Each zone is automatically weighed by means of a probabilistic
model, whose parameters are estimated with the MLE approach and the EM algorithm.
The weights are used as multipliers for the VSM representation of the documents.

5. Clustering Software Classes. Classes are grouped together by means of a clustering
algorithm, namely a customized version of k-Medoid (Kaufman and Rousseeuw 1990).

1It is equal to the probability of the observed data x given the values of the model parameters θ , i.e., L(θ |x) =
P(x|θ).

Empir Software Eng (2016) 21:72–103 77

The steps 1, 2, 3, and 5 are part of typical lexical clustering approaches (e.g., Kuhn
et al. 2007; Risi et al. 2012), while the step 4 is a new. In the remainder of this section, we
describe how we instantiated these steps.

3.1 Corpus Creation

Since our approach works at class granularity level, each class results in one document in
the corpus. A document is built also in correspondence of each inner class. The rationale
behind this choice is that a class and its inner class/es are different, and then they should
belong to different clusters. The words from a source code class (included the inner class/es)
are included in a single document taking into account the zones from which these words are
gathered.

3.2 Corpus Normalization

The words in the corpus are tokenized. This tokenization process is performed by separating
the words on the basis of blank and punctuation characters. To reduce noise and redundan-
cies, all the tokens extracted from documents are then normalized (Manning et al. 2008).
In Fig. 1, we report a sample Java class (i.e., NullHandle from jHotDraw 5.1) used as
running example to show how some of the steps of our approach work.

1. HTML tags and numbers are removed as they very commonly introduce noise
(Manning et al. 2008). As far as the class in Fig. 1 is concerned, the HTML tags of the
lines 5–8 are removed.

Fig. 1 The NullHandle Java class of jHotDraw 5.1

78 Empir Software Eng (2016) 21:72–103

2. The identifiers that are written using standard coding conventions are split. Identifiers
are often composed by multiple words using naming conventions. To date, we handle
the use of camel case, where capitalized letters are used to divide two or more words
in an identifier. For example, the identifier NullHandle (i.e., the name of the class
shown in Fig. 1) is split in Null and Handle. This normalization operation is also
applied on the identifiers that appear in the source code comments (e.g., line 9).

3. The tokens are lowercased. For example, Null and Handle are turned into null and
handle.

4. From all the tokens in the six zones, we removed the lexemes contained in a list of
most common English terms. A further list containing programming language key-
words (i.e., Java keywords in our case) is considered for the tokens in the zones Co
and SCS. For example, the terms a, as, are, the, in, is, its, only,
to, do, don, doesn, t, s, r, g, f, and that are removed, along with
Java keywords from the class in Fig. 1.

5. The tokens are partitioned into equivalence classes based on their morphological root
(or stem). The stemming goal is to reduce inflectional forms and other related forms of
a word to a common base form (Manning et al. 2008). To this end, we use the Porter’s
stemmer (Porter 1997). As for the example class in Fig. 1, handles and handle
appearing in the comments (lines 1–11) are reduced to handl.

The normalization operations in the first two steps take into account the fact that
we are dealing with source code lexicon (Binkley 2007). The remaining three steps
represent common operations for the normalization of lexicon in traditional IR-based
approaches (Manning et al. 2008), even if the step 4 has been here modified to remove also
programming language keywords. These steps are accomplished in the same order as they
are shown above. The output of Corpus Normalization is a set of terms.

3.3 Corpus Indexing

The basic idea of an inverted index is to keep a dictionary of terms,2 where each term is
connected to a list that records the references to the documents where this term occurs in
(Manning et al. 2008). In our approach, we have also to keep track of the zones from which
terms have been gathered. To this end, we have a vocabulary for each defined zone.

VSM is applied to represent the documents in the corpus as vectors. These representa-
tions constitute the term-document matrix A, whose entries at,d,z describe the relevance of
the term t with respect to the document d within the zone z. That relevance is computed
using the tf-idf schema:

tf − idf tdz = tf tdz · idf tz = at,d,z (1)

where tf tdz - term frequency - is defined as the number of occurrences of the term t in the
document d appearing in the given zone z. On the other hand, idf tz - inverse document
frequency - is computed as follows:

log
N

df tz
N is the total number of documents in the corpus, while df tz indicates the number of
documents in which the term t occurs, within the zone z. The rationale underlying idf is

2A term is a normalized type that is included in the dictionary. A type is the class of all the tokens containing
the same character sequence (Manning et al. 2008).

Empir Software Eng (2016) 21:72–103 79

that if a term appears in almost all the documents, then its discriminative contribution is
irrelevant (i.e., the corresponding idf value is close to 0). Conversely, the value of the idf
increases when a term appears in few documents.

The tf-idf schema assigns a weight that is:

1. higher when a term occurs many times within a small number of documents, so lending
high discriminating power to those documents;

2. lower when a term occurs fewer times in a document, or occurs in many documents;
3. lowest when the term occurs in virtually all the documents.

We use the tf-idf schema because it represents a good trade-off between simplicity and
effectiveness (Manning et al. 2008).

3.4 Zone Weighting

The weights of the zones are automatically estimated and used as multiplicative factors for
the tf-idf values. Figures 2 and 3 graphically show the defined workflow to weigh the zones
applying MLE and EM, by using the precise style by Reggio et al. (Reggio et al. 2011).

Figure 2 depicts the manipulated objects and the participant in the workflow by means
of an UML class diagram. The class diagram explicits the participant (i.e., the EM class
stereotyped by <<worker>>) in the workflow and six manipulated objects (stereotyped by
<<object>>). A dependency relationship (visually depicted as a dashed arrow) goes from
a class stereotyped by <<worker>> into a class stereotyped by <<object>> and shows
that the participant acts over the objects of the connected classes. Figure 3 summarizes the
behavioral view of how our approach works to weigh the zones.

MixtureModel in the class diagram (Fig. 2) represents the probabilistic model
used in our approach. It is formalized by a mixture of multivariate probabilistic dis-
tributions (Bishop 2006), where each of them indicates how terms are distributed in
zones.

We consider two types of distributions: Gaussian and Bernoulli. The Gaussian distribu-
tion is typically used when no previous information is available on the studied phenomenon
(Bishop 2006). It assumes that the tf-idf values are normally distributed in each zone. On
the other hand, the Bernoulli distribution is widely adopted in text retrieval approaches
(McCallum and Nigam 1998). The Bernoulli formulation only considers the presence or the
absence of a term in a zone.

Fig. 2 EM Class Diagram modelled with the precise style (Reggio et al. 2011)

80 Empir Software Eng (2016) 21:72–103

Fig. 3 EM Activity Diagram modelled with the precise style (Reggio et al. 2011)

To initialize the parameters of MixtureModel, the EM algorithm (that is
EM.Initialization) takes three objects as input, namely TermDocumentMatrix,
the InvertedIndex, and DistributionType (see Fig. 3). In Table 1, we report how
the initialization is performed for the Gaussian and Bernoulli distributions, respectively.
For example, for the Gaussian distribution this table shows how μz and σ 2

z are computed
together with αz (i.e., the initial weight of a given zone). Whatever the type of distribution
is, EM.Initialization produces two objects: MixtureModel.Distributions
and MixtureModel.Zones.

EM.ComputeProbabilities is in charge of computing the values for the docu-
ment probabilities and the likelihood of the model, namely the MixtureModel object is
updated.

For each document, this probability expresses how terms in the document have been
generated by the different distributions associated to the zones. Its value is calculated by
multiplying the weights of the zones by the conditional probability of the document and the
zones (see Table 1). Document probabilities are then used to compute the likelihood of the
mixture. Indeed, we consider the log-likelihood because it avoids possible numerical issues.
This choice is almost customary in ML approaches (Bishop 2006).

EM is an iterative algorithm composed of two main steps: expectation
(EM.Expectation) and maximization (EM.Maximization). In the former step, the
responsibility (or contribution) of each document to the zones distributions is computed
as reported in Table 1. The updated MixtureModel.Zone object is returned as the
output of EM.Expectation (Fig. 3). As far as the maximization step, the objects
MixtureModel.Distributions and MixtureModel.Zones are updated accord-
ing to the resulting output by EM.Expectation. These objects are then used to update
the MixtureModel by EM.ComputeProbabilities.

The loop in the activity diagram (Fig. 3) is iterated until the difference between the
likelihood values obtained in two subsequent iterations is less than a given threshold (i.e.,
the EM algorithm converged to a local-optimal value for the likelihood) or a maximum
number of iterations has been performed (see the guard condition of the loop in the activity
diagram).

The EM algorithm returns the values of the weights of the zones (see Zone in the class
diagram of Fig. 2). The larger the weight, the bigger the contribution of the z-th zone to the
obtained model is.

The choice of the initial values for the parameters of the EM algorithm might be critical
for determining the probabilistic model (Mclachlan and Krishnan 1996). The initialization
is straightforward when the probabilistic model is based on Bernoulli distributions, as it
is inducted by the formalization of the model (see Table 1). On the other hand, in case

Empir Software Eng (2016) 21:72–103 81

Table 1 EM computation steps for the probabilistic models based on the Gaussian and Bernoulli distribution
types

Gaussian Bernoulli

Initialization

μz = 1
N

N∑

d=1

∑

t :t∈d

tf − idf tdz

σ 2
z = 1

N

N∑

d=1

∑

t :t∈d

(tf − idf tdz − μz)
2

I (t, d, z) =
{

1 t ∈ d within the zone z

0 otherwise

Pr(t, z) = 1
N

∑

d:t∈d

I (t, d, z)

αz =
N∑

d=1

M∑

t=1
tf tdz

Z∑

z′=1

N∑

d=1

M∑

t=1
tf tdz′

αz =
M∑

t=1

∑

d:t∈d

I (t,d,z)

Z∑

z′=1

M∑

t=1

∑

d:t∈d

I (t,d,z′)

Compute probabilities

Pr(d|z) =
M∏

t=1
G(μz, σz) Pr(d|z) = ∏

t :t∈d

Pr(t, z)
∏

t :t �∈d

(1 − Pr(t, z))

Pr(d) =
Z∑

z=1
αz Pr(d|z) Pr(d) =

Z∑

z=1
αz Pr(d|z)

logL =
N∑

i=1
log Pr(d)

Expectation

rd,z = αz Pr(d|z)
Z∑

z′=1
αz Pr(d|z)

rd,z = αz Pr(d|z)
Z∑

z′=1
αz Pr(d|z)

Maximization

μz =
N∑

d=1
rd,z

∑

t :t∈d

tf −idf tdz

N∑

d=1
rd,z

σ 2
z =

N∑

d=1
rd,z

∑

t :t∈d

(tf −idf tdz−μz)
2

N∑

d=1
rd,z

Pr(t, z) =
∑

d:t∈d

rd,z

N∑

d=1
rd,z

αz =
N∑

d=1
rd,z

Z∑

z′=1

N∑

d=1
rd,z′

αz =
N∑

d=1
rd,z

Z∑

z′=1

N∑

d=1
rd,z′

Z =Total no. of zones, N = Total no. of documents, and M = Total no. of terms

of Gaussian distribution based models, different strategies may be applied (Corazza et al.
2010). We experimentally observed that good estimates for the weights could be obtained
by considering the rate between the number of tokens in the zones and the total number of
tokens when choosing the initial parameters of the model.

3.5 Clustering Software Classes

In VSM, each document is represented as a point in a multi-dimensional Euclidean
space. The similarity between pairs of documents is computed using the cosine similarity

82 Empir Software Eng (2016) 21:72–103

(Salton et al. 1975), which is the length normalized version of the inner product between
the vectors corresponding to these documents.

To identify groups of classes that are similar with respect to the defined similarity mea-
sure, we used the k-Medoid clustering algorithm (Kaufman and Rousseeuw 1990). Indeed,
we adapted this algorithm introducing a new halting criterion to reduce the risk of recover-
ing too tiny clusters (i.e., containing very few source code classes). This is recognized as a
desirable property in software clustering (Risi et al. 2012; Wu et al. 2005).

The pseudocode of the used k-Medoid clustering algorithm is reported in Algorithm 1.
This algorithm starts by initializing the medoids (Line 4) by randomly choosing a set

of k different documents. By default k is equal to 10% of the total number of documents
in the corpus (Bittencourt and Guerrero 2009). Then, the algorithm assigns each remaining
document to the most similar medoid according to the cosine similarity measure (line 10).
Afterwards, the new cluster configuration is computed and the corresponding medoids are
updated. The iteration ends when clusters’ medoids stop changing (line 18). The whole
procedure is repeated until the recovered partition (clustering result) does not contain too
tiny clusters or the maximum number of iterations has been performed (Line 20).

Empir Software Eng (2016) 21:72–103 83

4 Experimentation

4.1 Introduction and Problem Statement

The main goal of our experimental investigation is to quantitatively evaluate the bene-
fits deriving from the use of both the zones and the probabilistic model. To this end, the
following research questions (RQs) have been defined and investigated:

RQ1. Does the use of zones improve the quality of clustering?
RQ2. Does the use of zones weighed by applying our approach improve the quality of

clustering?
RQ3. Is the quality of the clustering affected by the type of the chosen distribution (i.e.,

Gaussian and Bernoulli)?
RQ4. Is the partition obtained with the probabilistic model close to the best possible

partition?

In this section, we present the design of our investigation following the guidelines pro-
posed by Wohlin et al. (2000). For replication purposes, an experimental package, the raw
data, and the scripts used to analyze these data are available on the web.3

4.2 Definition and Context

Applying the Goal Question Metric (GQM) template (Mashiko and Basili 1997), the goal
of our investigation can be defined as follows:

Analyze our six zones for the purpose of evaluating their use with respect to
software clustering applied to architecture recovery from the point of view of the
researcher and the professional, assessing whether the clustering quality improves
when using MLE and EM in the context of open source software systems written in
Java.

The use of GQM ensured us that the most important aspects of our investigation were
defined before its planning and before its execution took place (Wohlin et al. 2000).

The investigation has been conducted on 19 open source Java software systems having
different application domains. We chose these systems because they were previously used
in empirical investigations conducted in software maintenance and software clustering (e.g.,
Wu et al. 2005; Romano et al. 2011; Corazza et al. 2011). For each system, we have concen-
trated on the latest version available on the web when our experimental assessment started
on December 15th, 2012.

Information on these systems is shown in Table 2. The first column shows the ID of each
system (referenced in Fig. 5), while the second column reports the name of the software
system. The analyzed version of each system and the number of classes are reported in the
second and third columns, respectively. The number of lines of codes (KLOCs) is shown in
the fifth column, while the number of lines of comments is presented in the sixth column.

3http://www2.unibas.it/gscanniello/software-clustering/

http://www2.unibas.it/gscanniello/software-clustering/

84 Empir Software Eng (2016) 21:72–103

Table 2 The dataset

ID System Version Classes KLOCs KCLOCs Description

1 Ant 1.8.4 1452 103.56 89.6 A library and command-line

tool to define build files

for software applications

implemented in Java.

(ant.apache.org)

2 Lucene 3.6.1 1015 63.2 36.1 A framework that implements

IR algorithms.

(lucene.apache.org)

3 Tomcat 5.0 1530 163.8 110.5 A Servlet/JSP container

for Java web applications.

(tomcat.apache.org)

4 Azureus 4.8.1 4785 333.1 97.1 A client for sharing

files using the BitTorrent

file-sharing protocol.

(www.vuze.com)

5 Hibernate 4.1.9 2267 156.0 95.8 An ORM (Object Relational Mapping)

library for Java applications.

(www.hibernate.org)

6 iText.Net 5.3.4 1201 77.4 50.3 An open source library

for creating and manipulating

PDF, RTF, and HTML files.

(itextpdf.com)

7 jEdit 4.5.2 869 88.4 36.1 A text editor suited

to support programming tasks.

(www.jedit.org)

8 jFreeChart 0.6.0 89 8.7 7.8 A tool supporting the visualization

of bar charts, line charts,

scatter plots, histograms, and more.

(www.jfree.org/jfreechart)

9 jFTP 1.5.6 469 23.5 4.7 A graphical Java network and file

transfer client.

(j-ftp.sourceforge.net)

10 jHotDraw 7.4.1 899 73.0 38.3 A GUI framework for technical

and structured graphics.

(www.jhotdraw.org)

11 jRefactory 2.9.19 1522 110.7 91.3 A GUI application for the refactoring

of Java source code projects.

(jrefactory.sourceforge.net)

12 jUnit 4.8 547 15.0 4.1 A testing framework for Java programs.

(junit.org)

http://ant.apache.org/
http://lucene.apache.org/core/
http://tomcat.apache.org
http://www.vuze.com
http://www.hibernate.org
http://itextpdf.com
http://www.jedit.org
http://www.jfree.org/jfreechart/
http://j-ftp.sourceforge.net
http://www.jhotdraw.org
http://jrefactory.sourceforge.net
http://junit.org

Empir Software Eng (2016) 21:72–103 85

Table 2 (continued)

ID System Version Classes KLOCs KCLOCs Description

13 Liferay Portal 6.1 3961 379.1 137.3 An open source enterprise web

platform for building business

web-based solutions.

(www.liferay.com)

14 Pmd 4.2.5 680 49.6 8.9 A Java source code analyzer

able to find unused variables,

unnecessary object creation,

and so forth.

(pmd.sourceforge.net)

15 Synapse 1.2 613 45.7 20.9 An Enterprise Service

Bus application providing support

for XML, web services and

REST applications.

(synapse.apache.org)

16 Tiger Envelopes 0.8.9 917 73.4 25.9 An open source personal

mail proxy that automatically

encrypts and decrypts mail.

(tigerenvelopes.sourceforge.net)

17 Velocity 1.6.1 419 35.8 25.0 A framework to build web

and non-web applications.

(velocity.apache.org)

18 Xalan 2.5.0 915 123.7 128.3 XSLT processor for

transforming XML documents into

HTML, text, and other XML

document types.

(xml.apache.org/xalan-j)

19 Xerces 1.4.4 578 71.5 63.6 A collection of components

and utilities to parse, validate,

and serialize XML documents.

(xerces.apache.org)

The seventh column shows a short description of each system and the URL of its official
web page within brackets.

4.3 Planning

Our choice of empirical evaluation is based on considering the original allocation of source
code files in directories as the authoritative partition. This is not new and is well known
in the architecture recovery field (e.g., Risi et al. 2012; Scanniello et al. 2010, Bittencourt
and Guerrero 2009; Wu et al. 2005). The rationale is: given the bunch of classes of a soft-
ware system, if an approach is able to automatically arrange these classes in a partition that
resembles the packages proposed by the developers of the systems, then the approach would
likely perform well also on other systems (Wu et al. 2005).

http://www.liferay.com
http://pmd.sourceforge.net
http://synapse.apache.org
http://tigerenvelopes.sourceforge.net
http://velocity.apache.org
http://xml.apache.org/xalan-j/
http://xerces.apache.org

86 Empir Software Eng (2016) 21:72–103

4.3.1 Selected Variables

The main factor (i.e., the manipulated variable) on which our study is focused on is Tech-
nique. It is a nominal variable that assumes as values: VSM (flat vocabulary without zones),
ZU (zones unweighed), ZWB (zones weighed by EM assuming Bernoulli distributions),
ZWG (zones weighed by EM assuming Gaussian distributions), and TUB (theoretical
upper bound). It is worth mentioning that TUB is an estimation of the maximum possible
improvement that can be achieved by varying the weights of the six zones.

The clusters produced by a given approach should resemble as much as possible the
clusters in the authoritative partition (Wu et al. 2005; Risi et al. 2012; Corazza et al. 2011;
Scanniello et al. 2010). To estimate such a resemblance, we computed the MojoFM measure
(Wen and Tzerpos 2004) on the clustering results and the authoritative partition. MojoFM
is based on the Mojo measure. It computes the minimum number of move and join oper-
ations to transform either a source partition (i.e., the automatically identified partition) to
the target one (i.e., the authoritative partition) or vice versa (Tzerpos and Holt 1999). In
the context of architecture recovery, MojoFM has been introduced to overcome the follow-
ing two drawbacks of MoJo: (i) it does not make the clustering results comparable among
different software systems since its value depends on the number of classes in the system
under study and (ii) we are interested in determining how the automatically defined parti-
tion resembles the authoritative one and not vice versa. We compute MojoFM as proposed
by Wen and Tzerpos in (2004):

MojoFM(A, B) = 1 − mno(A, B)

max(mno(∀A,B))
(2)

where mno indicates the minimum number of move and join operations needed to turn
A (the partition obtained by applying our approach) into B (the authoritative partition),
while max(mno(∀A,B)) represents the maximal number of these operations to partition
B from every possible partition derived by the elements in A. In our study, we used the
implementation of MoJo available at www.cse.yorku.ca/∼bil/downloads.

MojoFM assumes values in between 0 and 1. The larger the value, the most the par-
tition recovered by the approach resembles the authoritative one. When comparing two
approaches, the one with the highest authoritative value (i.e., less effort to refine the
automatically recovered partition) is considered the best in term of clustering quality.

Since the k-Medoid algorithm may produce slightly different partitions on the same set
of classes, we executed this algorithm five times on the classes of each system and each time
we compute the MojoFM on the identified partitions. The arithmetic mean of the MojoFM
values is our dependent variable. We refer to this variable as the authoritativeness.

4.3.2 Hypotheses Formulation

With respect to the defined research questions and the considered dependent and indepen-
dent variables, we have formulated the following null hypotheses:

Hn1: There is not a statistically significant difference between the values of authorita-
tiveness obtained with VSM and ZU.

Hn2: There is not a statistically significant difference between the values of authorita-
tiveness obtained with weighed (ZWB and ZWG) and unweighed zones (ZU).

Hn3: There is not a statistically significant difference between the values of authorita-
tiveness obtained with ZWB and ZWG.

http://www.cse.yorku.ca/~bil/downloads

Empir Software Eng (2016) 21:72–103 87

The goal of the statistical analysis is to reject these null hypotheses and possibly to
accept the alternative ones (e.g., Ha1 = ¬Hn1), which can be easily derived because they
admit a positive effect of Technique on authoritativeness. Hn1, Hn2, and Hn3 have been
defined to investigate RQ1, RQ2, and RQ3, respectively. As far as RQ4, statistical tests
are not adequate (see Press et al. 1992, page 620) because this research question does not
involve a performance estimate, but an upper bound which has been estimated as the max-
imum for the corresponding sample. Therefore, we analyze the differences of the obtained
authoritativeness values between ZWG and TUB and between ZWB and TUB.

4.3.3 Design

We use a one factor with more than two treatments experiment design (Wohlin et al. 2000).
In particular, we analyze the effect of each technique on the 19 systems we selected and
studied.

4.3.4 Preparation and Execution

4.3.5 Authoritative Partition

To obtain authoritative partitions, we exploited the approach proposed by Wu et al.
in (2005). This approach can be summarized as follows:

1. create the subsystem hierarchy based on the directory structure (each directory is a
subsystem);

2. merge a subsystem with its parent in case it contains a number of source code files that
is less than or equal to five;

3. create a cluster for each resulting subsystem.

4.3.6 Theoretical Upper Bound

To correctly judge any improvement in the clustering authoritativeness, it is important
to estimate for a given software the maximum possible authoritative value achievable by
varying the weights of the six zones.

A possible strategy to perform this estimation consists in randomly assigning the weights
and computing authoritativeness values. In case this is repeated a large number of times,
the maximum of the obtained authoritativeness values can be considered as an estimate of
the highest authoritativeness value. However, it is important to know if this estimation is
reliable.

We control the probability distribution of the weights, assuming that they are uniformly
distributed in between 0 and 1. However, no hypothesis can be made about authoritativeness
values. In fact, we can hypothesize neither that the distribution of authoritativeness values
is uniform nor that their probability distribution is symmetric around the mean.

We consider a random sample S = X1, X2, . . . , Xn of values for the random variable X

corresponding to clustering quality. n is the number of random assignments (or repetitions)
to the weights of the zones. In this scenario, we can apply the Chebyshev theorem (Saw
et al. 1984) to the sample maximum XMAX. This theorem allows estimating an Upper Bound
(UB) of the probability that there exist authoritativeness values greater than XMAX, provided
that considered samples are independently and identically distributed.

88 Empir Software Eng (2016) 21:72–103

The resulting upper bound only depends on the variance of the sample, and on the differ-
ence between XMAX and the mean of the sample: the larger the rate λ between the two, the
lower the probability that the random variable assumes a greater value (Freund and Wilson
2003).

We compute the mean μ and the variance σ 2 of the sample as:

μ = 1

n

n∑

i=1

Xi (3)

σ 2 = 1

n − 1

n∑

i=1

| Xi − μ |2 (4)

If we have Q2 = n+1
n

σ 2 and λ ≥ 1, we can write

Pr(| X − μ |> λQ) ≤ v

n + 1
(5)

where v is an integer which depends on n and λ.4

In our case, we choose λ such that | XMAX − μ |= λQ and we obtain:

Pr(X > XMAX) ≤ Pr(| X − μ |> XMAX − μ) ≤ UB = v

n + 1
(6)

Table 3 reports the values for UB on the studied software systems: we empirically
checked that in all cases λ ≥ 1 so that we can apply relation (6). The reliability index of
the maximum estimate (see the third column) assumes values in between 0 and 1. When
this number is close to zero (e.g., JFTP), the maximum estimate for the authoritativeness
is nearly sure. In many cases, we obtained values for the reliability index smaller than 0.3
performing a number of repetitions n equal to 200. The only exception is represented by
Xerces, where 300 repetitions were needed.

4.3.7 Analysis Procedure

We use general descriptive statistics (i.e., min, max, median, mean and standard deviation)
and box plots. Box plots provide a quick visual representation to summarize the data using
five numbers: the median, upper and lower quartiles, minimum and maximum values, and
outliers.

To test the defined null hypotheses, we use the Wilcoxon rank-sum test (also known as
Mann-Whitney) (Conover 1998). It tests whether samples originate from the same distribu-
tion and it is used for comparing two samples that are independent, or not related. We plan
to use that non-parametric test because we expect the distribution of data to be non-normal.
We verified this assumption by applying the Shapiro-Wilk W test (Shapiro and Wilk 1965).
In case this test returns a p-value smaller than the chosen α threshold, the data are considered
as not normally distributed.

For all the statistical tests performed, we decided to accept a probability of 5 % (i.e.,
α = 0.05) to commit a Type-I-Error (Wohlin et al. 2000). To test Hn2, we perform the
Mann-Whitney test twice (ZWB vs. ZU and ZWG vs. ZU). To reject this hypothesis, we
use a conservative approach for the compensation of repeated statistical tests, namely the

4The complete formulation is reported in Saw et al. (1984).

Empir Software Eng (2016) 21:72–103 89

Table 3 Theoretical upper bound values

System Max authoritativeness value UB value

Ant 0.84 0.12

Lucene 0.89 0.14

Tomcat 0.86 0.12

Azureus 0.87 0.02

Hibernate 0.87 0.02

iText.Net 0.89 0.01

jEdit 0.88 0.03

jFreeChart 0.95 0.03

jFTP 0.87 0.00

jHotDraw 0.96 0.01

jRefactory 0.87 0.07

jUnit 0.87 0.19

Liferay Portal 0.89 0.01

Pmd 0.83 0.22

Synapse 0.83 0.25

TigerEnvelopes 0.86 0.20

Velocity 0.85 0.14

Xalan 0.89 0.03

Xerces (300 iterations) 0.87 0.29

Bonferroni correction. In practice, the hypothesis is rejected by comparing the p-values to a
corrected significance level αB = α/nt , where nt is the number of tests performed. In our
case, the corrected α is αB and it is equal to 0.025 (i.e., 0.05/2).

Statistical tests analyze the presence of a significant difference between groups, but they
do not provide any information about that difference. We used the point-biserial correlation
r to measure the magnitude of the effect size of that difference (Kampenes et al. 2006). The
magnitude of the effect size is: small (0 < r ≤ 0.193), medium (0.193 < r ≤ 0.456),
and large (0.456 < r ≤ 0.868) (Kampenes et al. 2006). We also computed the average
percentage improvement5 as a less robust though a more intuitive qualitative effect size
indicator.

The statistical power for each performed test is also computed. The statistical power is
the probability that a test will reject a null hypothesis when it is actually false. Researchers
assess the power of a test using 0.8 as the standard threshold for adequacy (Kevin Freedman
1999). A value larger than 0.8 indicates a high probability that a statistical test rejects a
null hypothesis when it is actually false. The statistical power is computed as 1 minus the
Type-II-Error (i.e., β-value). This type of error indicates that the null hypothesis is false,
but the statistical test erroneously fails to reject it. In the discussion of the results, the β-
value is used only when a statistical test is not able to reject a null hypothesis. The higher
the β-value, the lower the probability of erroneously not rejecting a null hypothesis is.

5Given two values a and b the means percentage improvement is computed as (b−a)
a

.

90 Empir Software Eng (2016) 21:72–103

4.3.8 Threats to Validity

To comprehend the strengths and limitations of our empirical investigation, we present and
discuss threats that could affect the validity of the achieved results. Despite our efforts to
mitigate as many threats to validity as possible, some are unavoidable.

The most important threat to the validity of our results is related to the authoritative par-
titions we used to assess clustering quality. In fact, the original distribution of the classes in
package could affect the authoritative partitions and then the obtained results. To overwhelm
any doubts on the validity of our approach, software engineers with experience on the stud-
ied systems should be involved to identify authoritative partitions. On open source software
systems, this becomes difficult in practice since it is very demanding to find people, who
have a deep knowledge on these systems and delighted to be involved in studies like the one
presented in this paper. This issue could be possibly overcome involving software indus-
tries, where their developed software could be employed. This part of our research might be
challenging because software companies are generally reluctant to share both their source
code and software engineers and developers that are expert on that code. Even if cluster-
ing depends on the task at hand and on human factors (e.g., a person might group together
two entities, while another not), the existence of a benchmark should allow dealing with the
issues discussed previously. Unfortunately, no benchmarks built on software systems writ-
ten in Java are available and therefore the building of our authoritative partitions as we did
can be considered an acceptable trade-off also taking into account that it is widely under-
taken in the context of architecture recovery (e.g., Bittencourt and Guerrero 2009; Wu et
al. 2005; Scanniello et al. 2010; Risi et al. 2012). The used approach, originally proposed
by Wu et al. (2005), has also the advantage to identify authoritative partitions is fair and
repeatable way.

The measure to assess authoritativeness could also affect the results. In our empirical
investigation, we opted for a well known and widely used measure (e.g., Bavota et al. 2010),
namely MojoFM (Wen and Tzerpos 2004). It is also worth noting, that MojoFM has been
applied on the partitions identified by applying each of the methods (i.e., VSM, ZU, ZWB,
ZWG, and TUB) considered in our investigation. In this way, the comparison among these
methods should be as much fair as possible.

The nondeterminism of the k-Medoid algorithm might also threaten the validity of the
results. In other words, clustering results depend on the chosen value for k and on the ran-
dom initialization of medoids. Regarding k, we chose values proportional to the size of the
systems under study. In addition, the number of classes in each cluster may not be well
distributed. Although the NoTinyClusters variable (see Algorithm 1) can handle the cases
where one cluster has too few classes, it is still possible that one cluster contains the major-
ity of the classes and others contain only a few classes. Possible threats to the validity of
the results are also related to the selected number of executions for the k-Medoid clustering
algorithm. We used a conservative approach considering the average values of the authori-
tativeness values. Different configurations for our approach could lead to different results.
To be fair, we used always the same configurations in all the instances of the clustering
approach (e.g., VSM, ZU, and ZWG).

The software systems on which the approach is applied (i.e., open source) may also affect
the validity of the results. It is possible that on commercial software our approach might
produce different results. The size of the systems could be an additional threat to validity.
As shown in Table 2, the smallest system has 8.7 KLOCs (JFreeChart), while the largest
379.1 (Liferay Portal).

Empir Software Eng (2016) 21:72–103 91

Table 4 Number of terms (lexicon sizes) and their distribution in the zones

System Terms CN AN FN PN Co SCS

Ant 187,615 1 % 4 % 6 % 4 % 41 % 44 %

Lucene 98,107 1 % 5 % 5 % 5 % 42 % 43 %

Tomcat 306,686 1 % 5 % 6 % 4 % 36 % 49 %

Azureus 570,813 2 % 5 % 8 % 6 % 14 % 66 %

Hibernate 299,879 2 % 5 % 10 % 8 % 20 % 54 %

iText.Net 165,626 1 % 5 % 5 % 5 % 31 % 55 %

jEdit 157,072 1 % 3 % 5 % 4 % 25 % 62 %

jFreeChart 26,639 1 % 2 % 5 % 6 % 31 % 55 %

jFTP 36,429 1 % 7 % 5 % 4 % 16 % 68 %

jHotDraw 127,633 1 % 4 % 7 % 6 % 28 % 54 %

jRefactory 229,178 2 % 2 % 6 % 6 % 27 % 58 %

jUnit 14,122 4 % 3 % 14 % 8 % 26 % 45 %

Liferay Portal 747,225 1 % 16 % 8 % 8 % 11 % 56 %

Pmd 85,828 2 % 4 % 9 % 8 % 14 % 63 %

Synapse 121,967 1 % 4 % 6 % 4 % 19 % 65 %

Tiger Envelopes 156,423 1 % 5 % 6 % 4 % 23 % 62 %

Velocity 54,991 2 % 2 % 6 % 5 % 39 % 46 %

Xalan 180,331 1 % 7 % 5 % 4 % 44 % 40 %

Xerces 160,792 1 % 3 % 5 % 4 % 38 % 50 %

Possible threats are also related to the statistical analyses. We use statistical tests well
known for their robustness and sensitiveness (Wohlin et al. 2000).

5 Results and Discussion

In this section, we present the achieved results with respect to the defined research ques-
tions. We conclude discussing the implications of these results from the researcher and the
practitioner perspectives.

5.1 Descriptive Statistics

In Table 4, we summarize how the terms are distributed among the zones after the Corpus
Normalization step. In particular, in this table we report the total number of unique terms6

present in each of the analyzed software systems, together with their corresponding per-
centage of distribution among the zones. In all the software, the largest number of terms

6Each zone has a different vocabulary, so if the same lexeme appears in two or more zones we considered
different the terms in all the zones where the lexeme appears.

92 Empir Software Eng (2016) 21:72–103

Fig. 4 Box plots of the authoritativeness values

came from SCS (with the only exception of Xalan), while the smallest from CN. Table 4
also shows that the second source for the terms is Co. Finally, the software with the largest
number of terms is Liferay Portal (747,225).

By means of box plots, Fig. 4 shows the distributions for the authoritativeness values of
VSM, ZU, ZWG, and ZWB. A quick analysis of the results indicates that both ZWG and
ZWB outperform VSM and ZU. With regards to ZU, the use of unweighed zones allows
improving authoritativeness values with respect to VSM.

Descriptive statistics are reported in Table 5. These statistics confirm that the use of the
zones makes the difference in term of authoritativeness of partitions, especially when our
probabilistic model is exploited.

5.2 RQ1-Hn1: Zones and Clustering Quality

The Mann-Whitney test7 allows us to reject Hn1 (p-value < 0.001). Therefore, there is a
statistically significant difference between the authoritativeness values obtained with and
without considering the zones (VSM vs. ZU), and this difference is in favor of ZU (see
Fig. 4 and Table 5). The effect size is large (0.832) and the statistical power is high (1). The
observed average percentage improvement is 44%.

According to the data analysis results, we can positively answer RQ1: the introduction
of the zones improves the quality of lexical-based clustering in the context of architecture
recovery.

7The Shapiro-Wilk W test returned 0.049 and 0.063 as the p-values for VSM and ZU, respectively. This
confirms our postulation on the distribution of data.

Empir Software Eng (2016) 21:72–103 93

Table 5 Descriptive statistics of authoritativeness values for Technique

Factor Min Max Median Mean StD

VSM 0.427 0.652 0.547 0.515 0.065

ZU 0.6 0.9 0.733 0.744 0.1

ZWG 0.696 0.895 0.822 0.826 0.045

ZWB 0.674 0.961 0.847 0.838 0.056

5.3 RQ2-Hn2: Unweighed vs. Weighed

The Mann-Whitney test8 allows us to reject Hn2. Indeed there is a statistically significant
difference between ZU and ZWG, with a p-value of 0.012 (less than αB). The value for the
point-biserial correlation r is 0.366 (i.e., medium), and the statistical power is 0.853. The
average percentage improvement is 11 %. As for the difference between ZU and ZWB, the
Mann-Whitney test returned 0.004 (less than αB), the effect size is medium (0.427), and the
statistical power is high (0.915). The obtained average percentage improvement is 13 %.

Therefore, we can also positively answer RQ2. Given this finding and the boost in clus-
tering quality shown in Section 5.2, we can claim that the observed improvement is due to
the combined use of the chosen zones and the probabilistic model.

5.4 RQ3-Hn3: Gaussian vs. Bernoulli

We did not reject Hn3 because we obtained 0.365 from the Mann-Whitney test as the
p-value. The value for the point-biserial correlation r was 0.056 (i.e., small in favor of
ZWB). The obtained β-value was 0.89, so indicating that the probability of erroneously non
rejecting the null hypothesis Hn3 is high.

The answer to RQ3 is: the quality of the clustering is slightly affected by the type of
the distribution chosen. The authoritativeness values obtained with ZWB are slightly better
than those obtained with ZWG. The average percentage improvement is about 1%.

5.5 RQ4: Probabilistic Model vs. Upper Bound

Figure 5 shows the authoritativeness values for TUB, ZWG, and ZWB for each software
system. This line plot shows that the authoritativeness values obtained with ZWG and ZWB
are mostly close to TUB. This finding is further confirmed by the descriptive statistics of
the differences between the authoritativeness values of TUB and ZWG and of TUB and
ZWB, respectively. These statistics are reported in Table 6. We also graphically show these
differences in Fig. 6. A further analysis indicated that the highest differences between TUB
and ZWG and between TUB and ZWB were obtained for Liferay Portal (see the outliers
on the top of both the boxes in Fig. 6). Among the analyzed software systems, Liferay Por-
tal is the only one conceived to create web applications and it is the largest we analyzed.
In addition, we also looked at the lexicons of the studied software to get further indications

8The Shapiro-Wilk W test returned 0.063 for ZU and 0.04 for ZWB. On the other hand, this test returned
0.098 for ZWG. Although the results Shapiro-Wilk W test suggest that a parametric test (e.g., unpaired
t-test) could be used to verify the presence of a statistically significant difference between the values of
authoritativeness obtained with ZWG and ZU, we used the Mann-Whitney test because repeated statistical
tests were needed to test Hn2.

94 Empir Software Eng (2016) 21:72–103

1 2 3 4 5 6 7 8 5 10 11 12 13 14 01 16 17 18 01

0.
5

0.
6

0.
7

0.
8

0.
5

1.
0

System

A
ut

ho
rit

at
iv

en
es

s
va

lu
e

TUB
ZWB
ZWG

Fig. 5 Authoritativeness values for TUB, ZWB, and ZWG

to explain the obtained results. We noted that Liferay Portal is that with the worst lexicons,
namely the names of identifiers (class and method names and variables) are single chars or
are composed by English words shortened by applying contraction or abbreviation opera-
tions often without using any naming convention. In addition, source code comments very
often contained identifier names.

Summarizing the authoritativeness values achieved by applying ZWB on all the software
systems are slightly closer to their theoretic upper bounds. This confirms that ZWB slightly
outperforms ZWG although this difference is not statistically significant. This is further
corroborated by the sum of the differences for ZWG and ZWB that are 0.897 and 0.656,
respectively.

5.6 Discussion

We observed that: (i) the use of zones improves clustering with respect to the use of a flat
vocabulary and (ii) the use of weights computed by applying MLE and EM improves the
quality of clustering. The observed improvements are statistically significant. Therefore, we
can postulate that the terms placed in the considered zones convey information with different
levels of relevance, and the use of this information improves the quality of clustering in the
context of architecture recovery.

The use of a theoretical proof for the upper bound of the authoritativeness values allowed
us to show that our probabilistic approach (both using Gaussian and Bernoulli distribution
types) produces partitions that resemble the best possible partition. Therefore, the use of our

Table 6 Descriptive statistics of the differences

Comparison Min Max Median Mean StD Sum

TUB - ZWG 0.005 0.199 0.047 0.047 0.045 0.897

TUB - ZWB 0.004 0.221 0.02 0.035 0.049 0.656

Empir Software Eng (2016) 21:72–103 95

Fig. 6 Box plots of the differences between TUB and ZWB (left) and TUB and ZWG (right)

solution represents a viable alternative to manually assigning weights to the zones. This is
one of the most important results of our research.

The partitions choosing Gaussian and Bernoulli distributions are almost similar as the
obtained authoritativeness values show. This result suggests that the boost in the cluster-
ing quality is mostly related to both the zones and MLE and EM. That is, the quality of
clustering is slightly affected by the type of the assumed distributions of the terms among
the zones. Therefore, it is better to chose the model that converge faster, namely the model
based on Bernoulli. It could be also possible that different kinds of assumed distributions
produce better clustering results. Our findings pose the basis for future investigations.

As for the Gaussian distribution, we experimentally observed that better estimates for the
weights of the zones were obtained by using a frequency approach (i.e., the rate between
the number of terms in the zones and the total number of terms) to initialize the parameters
of the model. The random choice of these parameters led to worse results (Corazza et al.
2011). A possible justification is that a zone that contains more lexical information can be
more relevant for building the probabilistic model.

5.6.1 On the Quality of Lexicon

It is not surprising that our approach succeeds and fails with the lexicon quality of source
code, since partitions are identified on the basis of identifier names and comments. Despite
some threats about the generalizability of the results, we observed that when program-
mers choose good identifiers and properly comment source code, the quality of partitions
improves. The results of our empirical investigation confirm with stronger evidence the
findings by Kuhn et al. (2007).

The quality of the lexicon of some analyzed software systems is good (e.g., jHotDraw
and jFreeChart), while it is worse in some other cases (e.g., Liferay Portal). In case of a good
quality lexicon the differences between theoretical upper bounds and the authoritativeness
values identified by our approach are very small (e.g., see Fig. 5). On the other hand, this
difference increases when the quality of lexicon decreases. This outcome also holds for

96 Empir Software Eng (2016) 21:72–103

VSM, where its authoritativeness values are still farther from the theoretical upper bound
values. That is, our probabilistic model gives a boost in the authoritativeness values even if
the quality of lexicon is not so good.

The results of a further analysis suggests that our approach seems to be a little sensitive
to the number of lexemes in the source code. This pattern is different from that observed for
other clustering approaches based on LSI (Deerwester et al. 1990): (i) the larger the number
of the lexemes, the better clustering performs and (ii) the smaller the number of lexemes,
the stronger the effect of the quality of terms on clustering is Kuhn et al. (2007) and Risi
et al. (2012).

5.7 Implications

To judge the implications of our empirical assessment, we adopted a perspective-based
approach (Basili et al. 1996). We base our discussion on the implications from the
practitioner/consultant (simply practitioner in the following) and researcher perspectives
(Kitchenham et al. 2008). These implications can be summarized as follows:

– The use of zones (although unweighed) yields an average improvement of clustering
authoritativeness of about 44%. The effect of using the zones in architecture recovery is
also statistically significant with respect to the use of a flat vocabulary, whose clustering
quality is always worse than that with the zones (both weighed and unweighed). This
confirms the idea that programmers place different care in choosing terms for different
programming language constructs. This finding is relevant from the researcher perspec-
tive because it could be interesting to investigate how programmers choose terms (e.g.,
Scanniello et al. 2014; De Lucia et al. 2011). A deeper understanding on this point
could allow the research to better exploit complementary information in source code,
thus improving reverse engineering and program comprehension approaches. In other
words, our findings go in the direction that future progresses in reverse engineering
and program comprehension approaches will be achieved by exploring complementary
information in source code.

– Although the approach proposed here is language independent, we performed an empir-
ical assessment on software systems implemented in Java. Due to the magnitude of the
benefits deriving from the use of the zones and due to similarities of Java with other
object oriented programming languages (e.g., C# and C++), it could be possible that
similar results could be obtained with software systems implemented with other object
oriented programming languages. This result is practically relevant for the researcher,
who could be interested in investigating whether or not there is a correlation between
programming language and clustering results.

– Clustering quality seems to be not affected by the type of distributions chosen for EM.
From the researcher perspective, this point is interesting in the context of software
clustering. This outcome is also of interest for the researcher, who could plan future
studies taking into account our outcomes.

– The authoritativeness values of the automatically identified partitions using EM are
not far from those of the theoretical upper bound. In addition, reliability index of the
maximum estimate is smaller than 0.3 in many cases. These two findings are relevant
for the practitioner because the application of our probabilistic model allows him/her
to maximize the improvements deriving from the use of the zones.

– Our approach seems to be a little sensitive to the size of the lexicon with respect to
the clustering approaches based on LSI. This result is relevant for the practitioner, who

Empir Software Eng (2016) 21:72–103 97

could use our approach without paying attention to the lexicon in the source code.
Differently, the researcher could be interested in investigating what is the effect of the
IR technique on clustering.

– The studied software systems have been developed in open source projects. The mag-
nitude of the benefits deriving from the use of the zones and EM suggests that similar
results could be also obtained on different kinds of software projects. This finding is
relevant from both the practitioner and the researcher perspectives.

– The study is focused on desktop applications, development frameworks, tools, and
libraries. From the researcher perspective, the effect of using our solutions on differ-
ent kinds of applications (e.g., business and web based) represents a possible future
direction.

– We observed that clustering quality is not affected by the kind of software. This is
relevant for the practitioner, who could be interested in using our approach in the
maintenance of the software marketed by his/her company.

– The obtained results seem to be independent from the size of the chosen software.
Although we are not sure that the achieved results scale to very large software, the
magnitude of the benefits stemming from the use of the zone and EM reassures us that
the outcomes might be generalized also on this kind of software. This results is relevant
for the practitioner.

– The use of our approach does not require deep changes in an interested company. In
other words, the developers have not to change their habits in programming. They
should only pay more attention to the lexicon to be used. This find can be considered
relevant for the practitioner.

– The diffusion of a new technology/method is made easier when empirical evaluations
are performed and their results show that such a technology/method solves actual issues
(Pfleeger and Menezes 2000). This is why the results of our experimental evaluation
could increase the diffusion of lexical clustering in the software industry. This concern
is of particular interest for the practitioner.

6 Related Work

The definition of effective solutions for documenting software architectures is a longstand-
ing and relevant research topic in the field of software maintenance and evolution (van
Deursen et al. 2004; Koschke 2000; Tonella 2001; Kuhn et al. 2007; Ducasse and Pollet
2009; Maqbool and Babri 2007; Bavota et al. 2013a). In the literature, several terms have
been used: modularization, remodularization, reverse architecting, or architecture extrac-
tion, reconstruction, mining, recovery, or discovery (Mendonça and Kramer 1996). A
complete and extensive survey of the techniques and approaches that only use structural
information is presented in Ducasse and Pollet (2009), while approaches that use both lex-
ical and structural information are extensively discussed in Corazza et al. (2013) and Risi
et al. (2012). For the sake of brevity, the description of the related literature is limited
here to those techniques and approaches based on clustering and that exploit only lexical
information in object oriented source code.

Lexical software clustering approaches are based on the idea that artifacts that contain
similar lexemes are related. For example, Kuhn et al. (2007) propose an automatic and
language independent approach for clustering software entities (e.g., classes or methods)
based on LSI. The approach uses a flat vocabulary, whose lexemes are gathered from source
code comments and identifier names. Then software entities are clustered according to their

98 Empir Software Eng (2016) 21:72–103

similarity. A correlation matrix is used to identify how the clusters are related to each other.
Several are the differences with respect to our work. The most remarkable differences are:
the type of empirical evaluation used (qualitative vs. quantitative), the size of the used
data set (2 vs. 19), and the IR techniques exploited (LSI vs. VSM). In addition, our work
fills in a gap in that work because we explore complementary information in source code
investigating the relevance of lexemes according to the zone where these lexemes appear in.

Scanniello et al. (2010) propose an approach that uses LSI to compare source code
classes (implemented both in Java and in C++). The k-means clustering algorithm is then
exploited to group software entities. Successively, Risi et al. (2012) analyzed the effect of
using a variant of LSI on clustering results. Differently, from any other clustering approach,
the authors also analyze the efficiency of the approach when performing software clustering.
As we did here, the quality of a partition is assessed with respect to its resemblance with the
package structure proposed by the original developers. Differently from us, MojoFM is not
used to estimate this resemblance. This makes unfair any comparison between the approach
by Risi et al. (2012) and ours. It is worth noting that we opted for MojoFM because it is
considered better suited to estimate the authoritativeness of clustering (Shtern and Tzerpos
2011) with respect to any other measure based on Mojo (Tzerpos and Holt 1999). The main
differences concern the used techniques to perform clustering and the performed empiri-
cal assessment. In addition, we explore here whether complementary information in source
code might improve the quality of clustering in the context of architecture recovery.

The work by Corazza et al. (2010) is the first attempt to use a probabilistic model to
weigh the relevance of lexemes in software clustering. That work has been successively
extended by the same authors better characterizing the zones in source code and their rel-
evance (Corazza et al. 2011). With respect to these two approaches, we extended here the
probabilistic model introducing a new kind of distribution (i.e., the Bernoulli model) and
performed a more exhaustive and rigorous empirical evaluation. With respect to Corazza
et al. (2011), we used the K-Medoid algorithm with respect to a hierarchical clustering algo-
rithm because we experimentally observed that authoritative values improved and because
the chosen algorithm requires a lower number of tuning variables to be specified. In this
paper, we also theoretically prove an upper bound for our approach. Another remarkable
difference concerns the discussion of practical implications from both the researcher and
professional perspectives. Finally, we delineate a number of possible future directions for
lexical-based software clustering. This is one of the most important contributions of the
research work presented in this paper.

7 Conclusion and Future Work

In this paper, we have presented an approach to partition object oriented software systems,
by grouping classes on the basis of their lexical similarity. Differently from other approaches
presented in the literature (e.g., Risi et al. 2012; Kuhn et al. 2005; Maqbool and Babri
2007), our solution separately considered the relevance of the lexical information embed-
ded by programmers in six zones of source code, namely Class Names, Attribute Names,
Method Names, Parameter Names Comments and Source Code Statements. The relevance
of each zone is automatically weighed using a Maximum Likelihood Estimation, applied on
a probabilistic model by means of the Expectation Maximization algorithm.

To assess the validity of our proposal, we have conducted an empirical assessment on 19
Java open source systems. The results indicated that the introduction of both the defined six
zones and the probabilistic model significantly improves the clustering quality with respect

Empir Software Eng (2016) 21:72–103 99

to the use of a flat vocabulary. Another remarkable result is that the quality of clustering
obtained by exploiting the zones and by applying the probabilistic model is close to a the-
oretical upper bound we have proved. That is, our approach to weigh the contribution of
the different zones allows to reach almost the maximum possible improvement in terms of
clustering quality.

A possible future direction for our research could concern the involvement of actual
developers in special conceived empirical assessment aimed at evaluating our technique
with respect to a baseline, that is VSM without zone. An experimental procedure similar
to that used by Bavota et al. (2013b) could be used. In the future, we also plan to apply
our approach at granularity levels different from that proposed in this paper (i.e., method
with respect to class) opportunely rethinking the zones in which lexemes appear. This new
kind of clustering could be compared with respect to previously proposed techniques in the
context of concept location and fault prediction (Scanniello and Marcus 2011; Scanniello
et al. 2014; Revelle et al. 2011).

References

Ali N, Gueheneuc YG, Antoniol G (2011) Requirements traceability for object oriented systems by partition-
ing source code. In: Proceedings of working conference on reverse engineering. IEEE Computer Society,
pp 45–54

Andritsos P, Tzerpos V (2005) Information-theoretic software clustering. IEEE Trans Softw Eng 31(2):150–
165

Anquetil N, Fourrier C, Lethbridge TC (1999) Experiments with clustering as a software remodulariza-
tion method. In: Proceedings of working conference on reverse engineering. IEEE Computer Society,
Washington, pp 235–255

Basili VR, Green S, Laitenberger O, Lanubile F, Shull F, Sørumgård LS, Zelkowitz MV (1996) The empirical
investigation of perspective-based reading. Empir Softw Eng 1(2):133–164

Bavota G, De Lucia A, Marcus A, Oliveto R (2010) Software re-modularization based on structural and
semantic metrics. In: Proceedings of international working conference on reverse engineering. IEEE
Computer Society, pp 195–204

Bavota G, De Lucia A, Marcus A, Oliveto R (2013a) Using structural and semantic measures to improve
software modularization. Empir Softw Eng 18(5):901–932

Bavota G, Dit B, Oliveto R, Penta MD, Poshyvanyk D, Lucia AD (2013b) An empirical study on the
developers’ perception of software coupling. In: Proceedings of international conference on software
engineering. IEEE / ACM, pp 692–701

Bavota G, Gethers M, Oliveto R, Poshyvanyk D, De Lucia A (2014a) Improving software modularization via
automated analysis of latent topics and dependencies. ACM Trans Softw Eng Methodol 23(1): 4:1–4:33.
doi:10.1145/2559945

Bavota G, Oliveto R, Gethers M, Poshyvanyk D, De Lucia A (2014b) Methodbook: Recommending move
method refactorings via relational topic models. IEEE Trans Softw Eng 40(7):671–694

Binkley D (2007) Source code analysis: a road map. In: Future of software engineering. IEEE Computer
Society, pp 104–119

Bishop C (2006) Pattern recognition and machine learning. Information science and statistics. Springer
Bittencourt RA, Guerrero DDS (2009) Comparison of graph clustering algorithms for recovering software

architecture module views. In: Proceedings of the European conference on software maintenance and
reengineering. IEEE Computer Society, pp 251–254

Conover WJ (1998) Practical nonparametric statistics, 3rd. Wiley
Corazza A, Di Martino S, Maggio V, Moschitti A, Passerini A, Scanniello G, Silvestri F (2013)

Using machine learning and information retrieval techniques to improve software maintainabil-
ity. In: Eternal systems, communications in computer and information science. Springer, Berlin.
In Press

Corazza A, Di Martino S, Maggio V, Scanniello G (2011) Investigating the use of lexical information
for software system clustering. In: Proceedings of European conference on software maintenance and
reengineering. IEEE Computer Society, pp 35–44

http://dx.doi.org/10.1145/2559945

100 Empir Software Eng (2016) 21:72–103

Corazza A, Di Martino S, Scanniello G (2010) A probabilistic based approach towards software system
clustering. In: Proceedings of European conference on software maintenance and reengineering. IEEE
Computer Society, pp 89–98

De Lucia A, Di Penta M, Oliveto R (2011) Improving source code lexicon via traceability and information
retrieval. IEEE Trans Softw Eng 37(2):205–227

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2012) Using ir methods for labeling source
code artifacts: is it worthwhile? In: Proceedings of international conference on program comprehension.
IEEE Computer Society Press, pp 193–202

De Lucia A, Risi M, Scanniello G, Tortora G (2009) An investigation of clustering algorithms in the
comprehension of legacy web applications. J Web Eng 8(4):346–370

Deerwester SC, Dumais ST, Landauer TK, Furnas GW, Harshman RA (1990) Indexing by latent semantic
analysis. J Am Soc Inf Sci 41(6):391–407

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm.
J Roy Stat Soc Ser B 39(1):1–38

van Deursen A, Hofmeister C, Koschke R, Moonen L, Riva C (2004) Symphony: view-driven software
architecture reconstruction. In: Proceedings of working conference on software architecture, pp 122–134

Ducasse S, Pollet D (2009) Software architecture reconstruction: a process-oriented taxonomy. IEEE Trans
Softw Eng 35(4):573–591. doi:10.1109/TSE.2009.19

Eastwood A (1993) Firm fires shots at legacy systems. Comput Canada 19(2):17
Erlikh L (2000) Leveraging legacy system dollars for e-business. IT Professional 2:17–23
Flach P (2012) Machine learning: the art and science of algorithms that make sense of data. Cambridge

University Press
Freund RJ, Wilson WJ (2003) Statistical methods, 2nd edn. Academic Press
Grubb P, Takang AA (2003) Software maintenance: concepts and practice, 2nd edn. World Scientific
Jarzabek S (2007) Effective software maintenance and evolution—a reuse-based approach. Auerbach Publ
Kampenes V, Dyba T, Hannay J, Sjoberg I (2006) A systematic review of effect size in software engineering

experiments. Inf Softw Technol 49(11–12):1073–1086
Kaufman L, Rousseeuw P (1990) Finding groups in data an introduction to cluster analysis. Wiley

Interscience
Kevin Freedman JB (1999) Current concepts review - sample size and statistical power in clinical orthopaedic

research. J Bone Joint Surg 81:1454–60
Kitchenham B, Al-Khilidar H, Babar M, Berry M, Cox K, Keung J, Kurniawati F, Staples M, Zhang H, Zhu

L (2008) Evaluating guidelines for reporting empirical software engineering studies. Empir Softw Eng
13(1):97–121

Koschke R (2000) Atomic architectural component recovery for program understanding and evolution. Ph.D.
thesis, University of Stuttgart

Kuhn A, Ducasse S, Girba T (2005) Enriching reverse engineering with semantic clustering. In: Proceed-
ings of international working conference on reverse engineering. IEEE Computer Society, pp 133–142.
doi:10.1109/WCRE.2005.16

Kuhn A, Ducasse S, Gı̂rba T (2007) Semantic clustering: Identifying topics in source code. Inf Softw Technol
49(3):230–243

Liu Y, Poshyvanyk D, Ferenc R, Gyimȯthy T, Chrisochoides N (2009) Modeling class cohesion as mixtures
of latent topics. In: Proceedings of international conference on software maintenance. IEEE Computer
Society, pp 233–242

Mahdavi K (2005) A clustering genetic algorithm for software modularisation with a multiple hill climbing
approach. Ph.D. thesis, Department of Information Systems and Computing, Brunel University

Maletic JI, Marcus A (2001) Supporting program comprehension using semantic and structural informa-
tion. In: Proceedings of international conference on software engineering. IEEE Computer Society,
Washington, pp 103–112

Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge University
Press, New York

Maqbool O, Babri H (2007) Hierarchical clustering for software architecture recovery. IEEE Trans Software
Eng 33(11):759–780

Marcus A, Poshyvanyk D (2005) The conceptual cohesion of classes. In: International conference on software
maintenance. IEEE Computer Society, pp 133–142

Mashiko Y, Basili V (1997) Using the GQM paradigm to investigate influential factors for software process
improvement. J Syst Softw 36(1):17–32

McCallum A, Nigam K (1998) A comparison of event models for naive bayes text classification. In:
Proceedings of workshop on learning for text categorization. AAAI Press, pp 41–48

Mclachlan J, Krishnan T (1996) The EM algorithm and extensions. Wiley Inter-science

http://dx.doi.org/10.1109/TSE.2009.19
http://dx.doi.org/10.1109/WCRE.2005.16

Empir Software Eng (2016) 21:72–103 101

Mendonça NC, Kramer J (1996) Requirements for an effective architecture recovery framework. In: Joint
proceedings of the second international software architecture workshop and international workshop on
multiple perspectives in software development. ACM, pp 101–105. doi:10.1145/243327.243620

Mitchell TM (1997) Machine learning, 1st edn. McGraw-Hill, Inc., New York
Pfleeger SL, Menezes W (2000) Marketing technology to software practitioners. IEEE Softw 17:27–33
Port O (1998) The software trap – automate or else. Bus Week 9(3051):142–154
Porter MF (1997) An algorithm for suffix stripping. Morgan Kaufmann Publishers Inc., San Francisco,

pp 313–316
Poshyvanyk D, Marcus A (2006) The conceptual coupling metrics for object-oriented systems. In: Pro-

ceedings of international conference on software maintenance. IEEE Computer Society, pp 469–
478

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C, the art of scientific
computing, 2nd edn. Cambridge University Press

Reggio G, Ricca F, Scanniello G, Di Cerbo F, Dodero G (2011) A precise style for business process mod-
elling: Results from two controlled experiments. In: Proceedings of model driven engineering languages
and systems, lecture notes in computer science. Springer, pp 138–152

Revelle M, Gethers M, Poshyvanyk D (2011) Using structural and textual information to capture feature
coupling in object-oriented software. Empir Softw Eng 16(6):773–811

Risi M, Scanniello G, Tortora G (2012) Using fold-in and fold-out in the architecture recovery of software
systems. Formal Asp Comput 24(3):307–330

Romano S, Scanniello G, Risi M, Gravino C (2011) Clustering and lexical information support for the
recovery of design pattern in source code. In: Proceedings of international conference on software
maintenance. IEEE Computer Society, pp 500–503

Romesburg H (2004) Cluster analysis for researchers. Lulu Press. http://books.google.it/books?
id=ZuIPv7OKm10C

Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM
18(11):613–620. doi:10.1145/361219.361220

Saw JG, Yang MCK, Mo TC (1984) Chebyshev inequality with estimated mean and variance. Am Stat
38(2):130–132

Scanniello G, D’Amico A, D’Amico C, D’Amico T (2010) Using the Kleinberg algorithm and Vector
Space Model for software system clustering. In: Proceedings of international conference on program
comprehension. IEEE Computer Society, pp 180–189

Scanniello G, Gravino C, Marcus A, Menzies T (2013) Class level fault prediction using software clustering.
In: Proceedings of international conference on automated software engineering. IEEE / ACM, pp 640–
645

Scanniello G, Marcus A (2011) Clustering support for static concept location in source code. In: Proceedings
of international conference on program comprehension. IEEE Computer Society, pp 1–10

Scanniello G, Marcus A, Pascale D (2014) Link analysis algorithms for static concept location: an empirical
assessment. Empir Softw Eng 1–55. doi:10.1007/s10664-014-9327-7

Scanniello G, Risi M, Tortora G (2010) Architecture recovery using latent semantic indexing and k-means:
an empirical evaluation. In: Proceedings of international conference on software engineering and formal
methods. IEEE Computer Society, pp 103–112

Shapiro S, Wilk M (1965) An analysis of variance test for normality. Biometrika 52(3–4):591–611
Shtern M, Tzerpos V (2011) Evaluating software clustering using multiple simulated authoritative decompo-

sitions. In: Proceedings of international conference on software maintenance. IEEE Computer Society,
pp 353–361

Tonella P (2001) Concept analysis for module restructuring. IEEE Trans Softw Eng 27(4):351–363.
doi:10.1109/32.917524

Tzerpos V, Holt RC (1999) Mojo: A distance metric for software clusterings. In: Proceedings of the working
conference of reverse engineering, pp 187–193

Wen Z, Tzerpos V (2004) An effectiveness measure for software clustering algorithms. In: Proceed-
ings of international conference on program comprehension. IEEE Computer Society, pp 194–
203

Wiggerts TA (1997) Using clustering algorithms in legacy systems remodularization. In: Proceedings of
working conference on reverse engineering. IEEE Computer Society, Washington, pp 33–43

Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A (2000) Experimentation in software
engineering - an introduction. Kluwer

Wu J, Hassan AE, Holt RC (2005) Comparison of clustering algorithms in the context of software evolution.
In: Proceedings of international conference on software maintenance. IEEE Computer Society, pp 525–
535

http://dx.doi.org/10.1145/243327.243620
http://books.google.it/books?id=ZuIPv7OKm10C
http://books.google.it/books?id=ZuIPv7OKm10C
http://dx.doi.org/10.1145/361219.361220
http://dx.doi.org/10.1007/s10664-014-9327-7
http://dx.doi.org/10.1109/32.917524

102 Empir Software Eng (2016) 21:72–103

Anna Corazza is assistant professor at the Department of Electrical Engineering and Information Technolo-
gies at the University of Naples Federico II in Italy. She obtained the Laurea Degree in Electronic Engineering
and the PhD degree at the University of Padua. From 1990 to 2000, she worked as researcher at FBK in
Trento and afterwards at the University of Milan. Her research interests focus on statistical approaches to
natural language processing, bioinformatics, software engineering and information retrieval.

Sergio Di Martino received the PhD in Computer Science from the University of Salerno (Italy) in 2005.
Since 2007 he is Assistant Professor at University “Federico II” in Naples. He has served as consultant for
many Research Centres, especially in the automotive domain. His research interests focus on knowledge
discovery and visualization from complex datasets, such as software repositories. He has published more
than 80 papers on these topics in international journals, books, and conference proceedings.

Empir Software Eng (2016) 21:72–103 103

Valerio Maggio received his Master degree in Computer Science from the University of Naples, “Federico
II”, in 2009. He also received the Ph.D. in Computational Science and Informatics from the University of
Naples (Italy), in 2013. He served as a Research Fellow in the Dept. of Electrical Engineering and Informa-
tion Technologies at the University of Naples “Federico II” for eight months. He then joined the Dept. of
Information and Electrical and Applied Mathematics at the University of Salerno, in 2014, where he is cur-
rently employed as a Post Doc Researcher. His research interests focus on empirical software engineering,
software maintenance, information retrieval, and machine learning. He is a member of the IEEE Computer
Society.

Giuseppe Scanniello received his Laurea and Ph.D. degrees, both in Computer Science, from the University
of Salerno, Italy, in 2001 and 2003, respectively. In 2006, he joined the Department of Mathematics and
Computer Science, University of Basilicata, Potenza, Italy, where he is currently an assistant professor and
leads the Software Engineering group. Recently, he got the national qualification as an Associate professor for
the scientific disciplinary sectors 01/B1 (Computer Science) and 09/H1 (Information Processing Systems).
His research interests include requirements engineering, empirical software engineering, reverse engineering,
reengineering, software visualization, workflow automation, migration, wrapping, integration, e-learning,
global software engineering, cooperative supports for software engineering, and visual languages. He has
published more than 130 papers in international journals, books, and proceedings of refereed conferences.
He serves on the organizing and program committees of several major international conferences in the field
of software engineering. He is a member of the IEEE Computer Society.

	Weighing lexical information for software clustering in the context of architecture recovery
	Abstract
	Introduction
	Motivation and Background
	Software Clustering
	Lexical Clustering
	Probabilistic Models

	The Approach
	Corpus Creation
	Corpus Normalization
	Corpus Indexing
	Zone Weighting
	Clustering Software Classes

	Experimentation
	Introduction and Problem Statement
	Definition and Context
	Planning
	Selected Variables
	Hypotheses Formulation
	Design
	Preparation and Execution
	Authoritative Partition
	Theoretical Upper Bound
	Analysis Procedure
	Threats to Validity

	Results and Discussion
	Descriptive Statistics
	RQ1-Hn1: Zones and Clustering Quality
	RQ2-Hn2: Unweighed vs. Weighed
	RQ3-Hn3: Gaussian vs. Bernoulli
	RQ4: Probabilistic Model vs. Upper Bound
	Discussion
	On the Quality of Lexicon

	Implications

	Related Work
	Conclusion and Future Work
	References

