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Abstract It is well-known that software defect prediction is one of the most important tasks
for software quality improvement. The use of defect predictors allows test engineers to focus
on defective modules. Thereby testing resources can be allocated effectively and the quality
assurance costs can be reduced. For within-project defect prediction (WPDP), there should be
sufficient data within a company to train any prediction model. Without such local data, cross-
project defect prediction (CPDP) is feasible since it uses data collected from similar projects in
other companies. Software defect datasets have the class imbalance problem increasing the
difficulty for the learner to predict defects. In addition, the impact of imbalanced data on the
real performance of models can be hidden by the performance measures chosen. We investi-
gate if the class imbalance learning can be beneficial for CPDP. In our approach, the
asymmetric misclassification cost and the similarity weights obtained from distributional
characteristics are closely associated to guide the appropriate resampling mechanism. We
performed the effect size A-statistics test to evaluate the magnitude of the improvement. For
the statistical significant test, we used Wilcoxon rank-sum test. The experimental results show
that our approach can provide higher prediction performance than both the existing CPDP
technique and the existing class imbalance technique.

Keywords Boosting . Class imbalance . Cross-project defect prediction . Transfer learning

1 Introduction

It is very difficult to develop a defect-free software system. Therefore, most software devel-
opment organizations have been trying to detect and correct defects as many as possible to
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improve the process and project performance before they release their software products.
Various types of defect prediction mechanisms (or models) have been developed to predict
defective modules or components in software intensive systems. Based on the defect predic-
tion results, software developers can concentrate on defect-prone modules with schedule and
cost constraints, which can lead to high project success. In general, software project measures
are collected locally within a company and utilized for process and quality improvements.
Especially for quality improvement, it is difficult to build prediction models using local project
data in case of a pilot project or the lack of historical project data within a company. Cross-
project defect prediction (CPDP) is known as a feasible alternative solution in such cases.
There have been different approaches for CPDP. First, a transfer learning technique extracts
common knowledge from one domain and transfers it to another, and a prediction model can
be constructed using the transferred knowledge (Ma et al. 2012; Nam et al. 2013). Second,
instance selection can be used to find the most appropriate training data for classifying the
project. This method exploits the distributional characteristics of a dataset, e.g., median, mean,
and variance. Then, the relationship among the distributional characteristics of datasets and the
CPDP results can be examined. Training data are selected from other projects using the
verified distributional characteristics of a dataset (He et al. 2011). Third, a data filtering
technique can be used to guide the selection of the filtered training dataset because the
prediction models developed from the entire dataset have low recall and high false alarm rates
(Turhan et al. 2009; Peters et al. 2013).

Mostly, the number of defective instances is significantly fewer than that of non-defective
instances. This imbalanced distribution can cause poor prediction performance of specific
classification methods (Arisholm et al. 2010; Hall et al. 2012; GRBAC and GORAN 2013).
As Hall et al. (Hall et al. 2012) asserted, the performance measures chosen can hide the impact
of imbalanced data on the real performance of classifiers. It means that the probability of defect
detection can be low while the overall performance is high. Under WPDP settings, there exist
different methods, e.g. data sampling (Gao and Khoshgoftaar 2011), threshold moving (Zheng
2010), and ensemble methods (Wang and Yao 2013). However, none of the existing CPDP
methods have taken into account on the class imbalance problem of software defect datasets.
Since there is no previous CPDP approaches considering the class imbalance problem, it is
uncertain whether the class imbalance learning can improve the prediction performance under
CPDP settings.

In this study, we investigate the applicability of the class imbalance learning under CPDP
setting with our proposed method called the value-cognitive boosting with support vector
machine (VCB-SVM).

To evaluate the VCB-SVM method, the following research questions are explored.

& RQ1: Does the VCB-SVM provide higher prediction performance than the existing CPDP
techniques not prepared for the class imbalance?

& RQ2: Does the VCB-SVM provide higher prediction performance than the class imbal-
ance techniques not prepared for the cross-project learning?

The main goal of this research is to develop a more effective prediction modeling method
dealing with the class imbalance issue for cross-project environments as the answers to the two
research questions. The VCB-SVM is a novel boosting model designed to improve the
prediction performance by sampling and modifying the datasets (Class Imbalance Learning)
based on the common knowledge in different distributions (Transfer Learning). For the first
question, we compare our approach with Transfer Naïve Bayes (Ma et al. 2012) to identify
whether the emphasis of the minority class is useful under the CPDP setting. For the second
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question, we compare our method with Boosting-SVM (Wang and Japkowicz 2009) to figure
out whether the class imbalance learning methods not using any procedure to transfer
knowledge can be useful for CPDP. The experimental results demonstrate that the proposed
approach is promising. According to the experimental results using the effect size test and the
Wilcoxon rank-sum test, the performance of our approach was better than those of other
methods. The answers to these questions will help to design an effective prediction model for
CPDP.

The remainder of this paper is organized as follows. In the next section, we briefly
introduce software defect prediction, transfer learning, and class imbalance learning to provide
the necessary background to this study. In section 3, we describe related work in the area of
CPDP and the class imbalance learning. In section 4, we present our new approach. The
experimental setup is described in section 5 and the results of the experiments are given in
section 6. The threats to the validity of our approach are explained in section 7. In the last
section, we conclude this paper and discuss future research.

2 Background

2.1 Software Defect Prediction

Software testing and inspection are crucial software quality assurance activities but they are
labor-intensive and time-consuming. In general, there are limited human and time resources for
those activities. Software defects are distributed disproportionally. According to the Pareto
principle, most software defects are found in a small number of modules. Thus, to enhance the
efficacy and efficiency of software quality control, resources should be allocated cautiously to
defect-prone software modules (He et al. 2011). Software defect prediction is a method for
predicting defect-prone software modules. Defect prediction can help to optimize resource
allocation for testing and inspection. There are two types of defect prediction, i.e. change
classification and buggy file prediction (Kim et al. 2011). Change classification learns the
buggy and clean change patterns from the revision history, before predicting a defect that
introduces a change. Buggy file prediction uses code features, e.g., complexity metrics and
process metrics, to predict buggy files. For example, complexity metrics include the lines of
code and the number of attributes. Process metrics include the number of fixes and the number
of lines added. In the present study, we focus on the buggy file prediction method. Various
buggy file prediction models are proposed, but most are only applicable to WPDP, which
requires sufficient historical data to train models. Occasionally, there are cases where historical
data are not available, such as when an organization starts a pilot project or does not have
enough set of training dataset. Some organizations may not be able to maintain a software
repository because of the cost involved. To address this problem, we can employ a CPDP that
uses data from other projects to build defect classifiers (He et al. 2011; Ma et al. 2012).

2.2 Transfer Learning Technique

In real-world applications, there is sometimes a limited set of data (or no data) for the domain
of interest. As Pan and Yang (Pan and Yang 2010) explained, the transfer learning technique is
a relatively new learning technique where knowledge obtained from another domain, which
has an adequate training dataset, can be transferred to the domain of interest. Using the
extracted knowledge, data from different domains and distributions can be used for training
during the learning process.
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CPDP can be considered a transfer learning problem because the training data and testing
data used in CPDP come from different projects with different feature distributions (Ma et al.
2012). According to Pan and Yang (Pan and Yang 2010), there are different transfer learning
settings. In our study, we considered that the most reasonable setting is that the source project
has an adequate labeled dataset with defect information whereas the target project only has
some unlabeled data without defect information.

According to Zimmermann et al. (Zimmermann et al. 2009), the identification of the
distributional characteristics of data sets are crucial to the success of CPDP. Previous
researches of CPDP (He et al. 2011; Ma et al. 2012; Nam et al. 2013) also employed dataset
characteristics to measure the similarity between a source project and a target project. The
elements of the characteristics include the mean, median, minimum, maximum, standard
deviation, etc. In this study, we utilize the range between the maximum value and the
minimum value of the attribute which can represent an aspect of the distributional character-
istic of a target project.

2.3 Class Imbalance Learning Technique

Class imbalance learning indicates the learning on data sets with imbalanced class distribu-
tions, meaning that the number of defective instances is much fewer than that of non-defective
instances (Tan et al. 2005). Though the frequency of occurrence is low, classifying an instance
correctly from the minority class has greater value. If defective instances are not correctly
identified, software quality could be significantly deteriorated. In the context of the class
imbalance learning, it is important to obtain a learner providing high accuracy for the minority
class without severely lowering the accuracy of the majority class (Garcia 2009). Since many
of the existing learning methods do not effectively detect instances of the minority class,
various methods have been developed at data and algorithm levels. As a data-level method,
sampling is a widely used method to deal with the class imbalance problem (Tan et al. 2005).
Under-sampling the majority class can be used to provide a balanced distribution. As the
opposite of under-sampling, over-sampling is utilized to duplicate the minority instances.

As an algorithm-level method, cost-sensitive learning assigns distinct costs to the training
instances. Zheng (Zheng 2010) suggested a cost-sensitive method using a neural network for
software defect prediction. Boosting techniques have been used with success for handling the
class imbalance problem (Wang and Yao 2013).

3 Related Work

3.1 Cross-Project Defect Prediction

Many defect prediction approaches using machine learning techniques have been proposed
(Kim et al. 2008; Elish and Elish 2008; Shatnawi and Li 2008; Mende and Koschke 2009;
Singh et al. 2009; Arisholm et al. 2010; Menzies et al. 2010; Lee et al. 2011; D’Ambros et al.
2011; Dejaeger 2013). In the within-project settings, several studies have used AUC (the area
under the receiver operating characteristic curve) as a performance measure (Shatnawi and Li
2008; Mende and Koschke 2009; Singh et al. 2009; Arisholm et al. 2010; Menzies et al. 2010;
D’Ambros et al. 2011; Dejaeger 2013). Recently, researchers have become interested in the
issue of predicting defects in cross-project environments.

Using 12 applications, Zimmermann et al. (Zimmermann et al. 2009) performed 622
CPDPs, but only 21 predictions worked successfully. This indicates that CPDP will not be
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successful in most cases without the careful selection of training data. The characteristics of the
data and the process have important roles in successful CPDP. Decision trees for the precision,
recall, and accuracy are used to discover the interactions among the characteristics that affect
cross-project predictions. CPDP is considered challenging and more researchers should be
concerned about this problem.

He et al. (He et al. 2011) examined defect prediction with a focus on selecting training data
in a cross-project setting. They performed three experiments using 34 datasets from 10 open
source projects. They showed that the prediction results were connected with the distributional
attributes of datasets, which is useful for training data selection. Indicators of the distributional
characteristics of a dataset include the median, mean, range, variance, standard deviation,
skewness, and kurtosis. They used the precision, recall, and F-measure to demonstrate the
performance of the proposed instance selection method.

Turhan et al. (Turhan et al. 2009) applied the principle of analogy-based learning (i.e.,
nearest neighbor (NN) filtering) to cross-project data. They analyzed 10 projects, i.e., seven
NASA projects from seven different companies and three projects from a Turkish software
company. They used the static code attributes to construct defect predictors and a defect
classifier learned from within-project data was superior to those learned from cross-project
data.

Nam et al. (Nam et al. 2013) applied transfer learning approaches to CPDP. This approach
applied transfer component analysis (TCA) to defect prediction. They also proposed a new
approach called TCA+, which selected suitable normalization options for TCA. The precision,
recall, and F-measure were used for the performance evaluation.

Premraj et al. (Premraj and Herzig 2011) compared the network metrics and code metrics
for three open source Java projects in a cross-project setting. They found that network metrics
were not superior to code metrics in the context of cross-project prediction. A series of cutoffs
for each metric was used to calculate a ROC curve. Next, the importance of the metric is
determined using the AUC.

Ma et al. (Ma et al. 2012) proposed an algorithm called transfer naive Bayes (TNB), which
used information from all of the suitable attributes in the training data. Based on the estimated
distribution of the test data, this method transferred cross-company data information to the
weights of the training data. The defect prediction model was constructed using these weighted
data.

Previous works studied various software defect prediction approaches under cross-project
settings. However, the class imbalance issue of software defect datasets was not taken into
consideration. Hall et al. (Hall et al. 2012) carried out a systematic literature review on
software defect prediction. In their work, they indicated that data imbalance with regard to
specific classification methods may be connected to poor performance. In addition, they
suggested more studies be aware of the need to deal with data imbalance. Particularly, they
assert that the performance measures chosen can hide the impact of imbalanced data on the real
performance of classifiers.

3.2 Class Imbalance Learning

Grbac and Goran (GRBAC and GORAN 2013) studied the performance stability of
machine learning techniques while differentiating levels of imbalance for software
defect datasets. The results showed a high level of imbalance could make the
prediction performance unstable.

Gao and Khoshgoftaar (Gao and Khoshgoftaar 2011) proposed an approach to deal with
high dimensionality and class imbalance of software defect data. To this end, feature selection
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and data sampling were utilized together. This method deals with class imbalance by modi-
fying the training data.

Ren et al. (Ren et al. 2014) presented kernel based prediction models to deal with the class
imbalance issue. The NASA and SOFTLAB datasets are used for experiments.

Wang and Yao (Wang and Yao 2013) propose a boosting algorithm, which adjusted its
parameter automatically during training. Imbalance learning techniques, e.g., resampling
methods, threshold moving, and ensemble methods were investigated. The G-mean and
AUC were used to evaluate the performance.

Zheng (Zheng 2010) suggested a boosting approach where a neural network was used for
software defect prediction. A threshold-moving method was proposed to construct a cost-
sensitive boosting algorithm. To predict more buggy modules correctly, this method moved the
prediction threshold toward the clean modules. The normalized expected cost of misclassifi-
cation (NECM) was utilized as a performance measure. The misclassification costs and the
prior probabilities of the two classes were combined in the NECM.

For imbalanced datasets, a classifier can be built under the influence of skewed vector
spaces. To solve the skewed vector spaces problem, Wang and Japkowicz (Wang and
Japkowicz 2009) proposed a support vector machine with the asymmetric misclassification
cost. Their proposed approach named Boosting-SVM combined the modification of the data
distribution with the modification of the classifier. They attempted to solve the class imbalance
problem by exploiting the property of soft margins. Any bias introduced by applying soft
margins was mitigated with a boosting method. The geometric mean (G-mean) was used as a
performance measure for medical datasets.

In our study, we adopted the Boosting-SVM and resampling techniques. Boosting-SVM is
employed since the asymmetric misclassification cost of the training instances can be seam-
lessly related to the similarity weight of the training instances based on the test instances.
Resampling methods guided by the asymmetric misclassification cost and the similarity weight
are used to balance the distributions. Details of the proposed algorithm will be described in the
next section.

4 Value-Cognitive Boosting with Support Vector Machine (VCB-SVM) Approach

We propose a value-cognitive boosting with SVM approach, which is a prediction
modeling method that exploits the similarity weight drawn from distributional char-
acteristics and the asymmetric misclassification cost. It is called VCB-SVM since
similarity weight values of the training instances are used in a mechanism to balance
the imbalanced distributions.

The overall defect prediction process based on the value-cognitive boosting ap-
proach is shown in Fig. 1. First, to prepare the dataset for training, it is necessary to
assign labels to the training and test datasets before computing the similarity weight.
A Java class, i.e., an instance of data, is marked as buggy if there is one or more
bugs in the Java class. Otherwise, it is marked as clean. Second, the similarity
weights of the training data are computed based on the test data. In this step, without
labels, only the input features of the training set and the test set are used for the
computation. Third, we build a prediction model using the boosting method with
SVM. In this study, we adopt Boosting-SVM (Wang and Japkowicz 2009) and
resampling techniques to address the class imbalance problem. Fourth, classifications
are predicted using a boosted ensemble classifier. Finally, a performance evaluation of
prediction results is performed.
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4.1 Label Assignment

Software metrics data cannot be used directly as the inputs for training. During this step, buggy
or clean labeling is conducted using previous defect information. If bugs exist, they are marked
as buggy.

4.2 Similarity Weight Computation without Labels

To measure the similarity between a source project and a target project, the dataset
characteristic vector (DCV) was proposed in a previous study (Nam et al. 2013). The
elements of the DCV include the mean, median, minimum, maximum, and standard
deviation of the attribute. The attribute indicates the input feature not including labels.
Ma et al. (Ma et al. 2012) computed the similarity by counting the number of similar
attributes. The range between the maximum value and the minimum value of the
attribute is used to check the similarity. Then, a data gravitation method is used to
compute the weights of training instances.

In our approach, we compute the number of similar attributes in a similar manner to a
previous method (Ma et al. 2012), i.e., we compute the similarity weight by dividing it by the
total number of attribute.

Given a sequence xi = {ai1, ai2, …, aik}, aij is the jth attribute of xi. The maximum
value and minimum value of jth attribute in the test set are calculated:

maxj ¼ max a1 j; a2 j; …; amj

� �
; min j ¼ min a1 j; a2 j; …; am j

� �

where j=1, 2, …, k, k is the number of attributes and m is the number of test data.
The following two vectors have the maximum and the minimum value of the attribute
on the test set. Max={max1, max2, …, maxk}, Min={min1, min2, …, mink}. Next,
we compute the similarity weight of each training instance using the following
formula:

Si ¼
X
j¼1

k

h ai j
� �

=k

where h ai j
� � ¼ 1 if min j≤ai j≤maxj

�
0 otherwise , aij is the jth attribute of instance xi.

Fig. 1 Overall defect prediction process with the VCB-SVM approach
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4.3 VCB-SVM Prediction Model Construction

4.3.1 VCB-SVM

We propose a VCB-SVM considering data imbalance for CPDP. Algorithm 1 shows the details
of our boosting algorithm. In this algorithm, transfer learning and class imbalance learning
techniques are closely related together. The instances of a validation set are selected based on
their similarity weights. This means that the distribution of the validation set will become
similar to the distribution of the test set.

Algorithm 1. VCB-SVM algorithm
Input parameters

X: input sequence
SW: similarity weight
M: the maximum number of iterations
λ: parameter of the penalty scale for each iteration (0 < λ ≤ 1)

Local variables
Xtrain: training set of input sequence
Xvalidation: validation set of input sequence
N: the number of training examples in Xtrain

tn: binary target variable of Xtrain where tn ∈ {−1,1} and n =1, …,
N.

ρ: a value of AUC or H-measure
T: selected running iterations

Function calls:
w: the weighting coefficient
Resampling(X, SW, w): resample X based on SW and w
h: base learner
SVMTrain(X): train a base learner h using SVM
SVMClassify(X,h): classify X by the learner h
I: an indicator function where I(false) =0, I(true) =1
V: ensemble learner
F(X,V): obtain the AUC or H-measure from V using X

1. Select instances for validation
Xvalidation: instances of X with high SW
Xtrain = {X - Xvalidation}

2. Initialize
wn =1 for n =1, …, N.
ρbest =0
T = 1

3. For m =1, 2, …, M:
Xtrain ← Resampling(Xtrain, SWn, tn, wn) where m >1
Xtrain(x) ← Xtrain(x) using weights wn
hm ← SVMTrain(Xtrain)

εm ¼ ∑N
n¼1wnI SVMClassify Xtrain;hmð Þ≠tnð Þ

∑N
n¼1wn

αm ¼ λln 1−εm
εm

n o
wn ← wn exp{αm(SVMClassify(Xtrain,hm)≠tn)}
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ρm = F(Xvalidation,Vm), where Vm ¼ sign ∑
j¼1

m

α jh j

" #

If ρm ≥ ρbest
Then T = m and ρbest = ρm

Else return VT
X is given as the sequence of a dataset to produce a final ensemble classifier. X is divided

into two datasets: a training set and a validation set for the algorithm. N is the number of
training examples in a training set. The initial weights of the training instances is set as 1. M is
the maximum number of iterations. ρ is the value of the AUC or H-measure. The AUC and H-
measure were selected because they are effective performance measures for the class imbal-
ance problem. T is the running iteration. Based on the termination criteria in the main loop, T
becomes optimal for a validation set. V is the final ensemble learner built by the algorithm,
which is used to predict the classification of the test dataset.

In the first step, the validation set and training set are divided based on their similarity
weight. We used a stratified sampling method for all training and validation sets. In this way,
the ratio of negative to positive examples would be same for each of them. Figure 2 shows the
validation set selection process. (1) Input set is randomly split in 50:50. (2) The half of the
input set is ordered based on the similarity weights in descending order and the validation sets
are selected based on the high similarity weights. Then, 2/5 of them are selected for the
validation sets. As a result, 1/5 of the total input set are used as the validation set. This ratio of
the validation set is commonly used (as a pareto principle). The remaining instances are
selected as the training set. The validation set is very important for the algorithm because it
determines the termination of the main loop. Thus, to increase the effectiveness of the
prediction of the test dataset, the validation dataset should be similar to the test dataset in
terms of its feature distributions.

In the second step, the initial weights for the SVM are set. This weight for each instance xi
affects the soft margin parameter Ci assigned to each instance xi. If Ci increases, the classifi-
cation of the SVM for xi becomes strict.

In the third step, if the value of the AUC or H-measure cannot be increased for the
validation set Xvalidation, the boosting algorithm is applied to the training dataset Xtrain.
Resampling technique commonly used to balance the class distribution is employed based
on the similarity weight and the weighting coefficient. In the case of m=1, all the weighting
coefficient equals to one. Such a case is ruled out. Algorithm 2 shows the resampling
algorithm. In this algorithm, we firstly divide the training instances into the instances with
the similar distribution (XS) and the instances with the different distribution (XD) based on the
similarity weight. The similarity weight of each training instance indicates how much each
training instance is similar to the test dataset via the distributional characteristics. If SWequals
to one, all the attributes are similar to the test dataset. Then, each group is subdivided into the
minority and the majority classes. Finally, we resample instances of each group based on the

Fig. 2 Validation set selection
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similarity weight and the weighting coefficient. Basically, the instances of the minority class
are over-sampled and the instances of the majority class are under-sampled. Higher weighting
coefficient of an instance indicates that it is misclassified continually. Lower weighting
coefficient of an instance means that it is correctly classified. We focus on the misclassified
instances of the similar distribution while disregarding the misclassified instances of the
different distribution. To this end, we applied the following sampling policy.

& The minority class with the high weighting coefficient of the similar distribution is over-
sampled. Thus, the misclassified instances will be focused.

& The majority class with the low weighting coefficient of the similar distribution is under-
sampled. Thus, the correctly classified instances will be disregarded.

& The minority class with the low weighting coefficient of the different distribution is over-
sampled. Thus, the correctly classified instances will be focused.

& The majority class with the high weighting coefficient of the different distribution is under-
sampled. Thus, the misclassified instances will be disregarded.

The number of samples for each over-/under-sampling is typically designed as the number
of the minority class (Garcia 2009). Since we divided the training dataset into the similar and
the different datasets, 1/2 of the total number of the minority class is resampled for each over-/
under-sampling case. h(x), the base classifier, uses the weighting coefficients wn for training.
In successive iterations, the weighting coefficients wn are increased for misclassified instances
in the dataset and decreased for correctly classified instances in the dataset. Thus, subsequent
classifiers focus on the instances misclassified by previous classifiers. If instances are
misclassified continually by subsequent classifiers, they will receive increasingly higher
weight. The quantities εm indicate the weighted measures of the error rates for each base
classifier. The weighting coefficient αj gives higher weight to more accurate classifiers when
computing Vm = sign[∑m

j¼1α jh j ]. The final ensemble classifier is produced by a weighted

majority vote based on the AUC or H-measure value.
Algorithm 2. Resampling algorithm
Input parameters

X: input sequence
SW: similarity weight
t: binary target variable of X
w: the weighting coefficient

Output: resampled instances of X
1. Divide into two groups based on the similarity weight

XS ← X where SW =1
XD ← X where SW ≠ 1

2. Divide into the minority class and the majority class
XSmin ← XS where t =1
XSmaj ← XS where t = −1
XDmin ← XD where t = 1
XDmaj ← XD where t = −1

3. Resample instances of each group based on the similarity weight
and the weighting coefficient

Over-sample Xi with high w where Xi ∈ XSmin
Under-sample Xi with low w where Xi ∈ XSmaj
Over-sample Xi with low w where Xi ∈ XDmin

Under-sample Xi with high w where Xi ∈ XDmaj
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4.4 Classification Prediction

Using the final ensemble classifier, classification prediction is the phase where the classifier
predicts whether the unseen data in a target domain is defective. In within-project defect
prediction (WPDP), the training and test sets contain instances from the same project. It means
that they exist in the same feature space and the same feature distribution. In contrast to WPDP,
the training and the test sets come from different projects in CPDP. The instances in the
training and test sets should have the same features. In other words, the data points exist in the
same feature space for cross-project settings. However, there are different feature distributions
in the source and target domains.

4.5 Performance Evaluation

To measure the learner built on software defect data sets having the imbalanced nature, the
performance on the buggy class and the overall performance are typically both evaluated. To
measure the performance on the buggy class, the probability of detection (PD) and the
probability of a false alarm (PF) are commonly utilized. The evaluation of the overall
performance aims at measuring how well the learner can balance the performance between
the buggy and the clean classes. AUC (Bradley 1997) and H-measure (Hand 2009) can be
employed for this purpose.

Table 1 shows the confusion matrix for the performance evaluation. True positive (TP) is
the number of buggy modules predicted as buggy. False positive (FP) is the number of clean
modules predicted as buggy. False negative (FN) is the number of buggy modules predicted as
clean. True negative (TN) is the number of clean modules predicted as clean. PD indicates the
proportion of appropriate instances retrieved, which is also known as the recall, and it was
computed by: TP/(TP + FN). PF is also called the false positive rate, and it was calculated by:
FP/(FP + TN). In contrast to PD, the performance of PF is better when its value is lower.

AUC indicates the probability that a learner will rank a randomly chosen example of the
positive class higher than a randomly chosen example of the negative class. As an alternative
to the AUC, H-measure can be used for evaluating classification performance (Hand 2009). A
better learner should produce a higher AUC and H-measure. In our study, PD, PF, AUC, and
H-measure are used to evaluate the performance.

5 Experimental Setup

With the two research questions mentioned earlier, we carried out experiments. To check if the
VCB-SVM provides higher prediction performance than the CPDP techniques not prepared
for the class imbalance (RQ1), performance estimators effective for the class imbalance
problems should be selected. AUC, H-measure, G-mean are usually used for that purpose

Table 1 Confusion matrix

Predicted class

Buggy Clean

Actual class Buggy TP (true positive) FN (false negative)

Clean FP (false positive) TN (true negative)
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since they are related to the values of both PD and PF. The H-measure and G-mean have not
been used in any previous study of CPDP. In terms of AUC, we compared our approach with
Transfer Naïve Bayes (TNB) (Ma et al. 2012). The NASA and SOFTLAB datasets used by
Ma et al. are employed to compare the performance of our approach in cross-project environ-
ments. To check if the VCB-SVM provide higher prediction performance than the class
imbalance techniques not prepared for the cross-project learning (RQ2), we compared our
approach with Boosting-SVM (Wang and Japkowicz 2009).

There is a trade-off between the overall performance (e.g., AUC and H-measure) and the
defect detection rate (PD) (Wang and Yao 2013). Consequently, it is important to obtain a
learner providing high accuracy for the minority class without severely lowering the accuracy
of the majority class. Menzies et al. (Menzies et al. 2007) also indicated that PD measure is
practically useful.

To answer the RQ1 and RQ2, the following hypotheses are formalized.

& If two classifiers produce the overall performance (e.g., AUC and H-measure) equivalent-
ly, a classifier producing higher PD values is better than the other.

& If two classifiers produce the PD performance equivalently, a classifier producing higher
overall performance values is better than the other.

5.1 Data Collection

The NASA datasets were extracted from seven NASA subsystems. The SOFTLAB datasets
were three systems related to an embedded controller from a Turkish software company
(SOFTLAB). Two datasets are obtained from PROMISE repository (Shepperd 2011;
Menzies et al. 2012). The characteristics of each dataset are described in Tables 2 and 3,
respectively.

The official PROMISE repository (Menzies et al. 2012) has been up-to-dated
continuously. Several of the latest datasets have different numbers of instances when
comparing with datasets used in a previous study (Ma et al. 2012). Therefore, we
used previous versions of the dataset maintained by the PROMISE repository, which
had the same number of instances of datasets used in the previous study. However,
the PROMISE repository site no longer maintains the kc1 dataset. We found a
different version of the kc1 dataset with different numbers of instances (Shepperd
2011). We used this dataset because we could not find the kc1 dataset described in
the previous study (Ma et al. 2012). In Table 2, the values in parentheses are from the

Table 2 Projects in the NASA dataset (PROMISE)

Project Instances % Buggy Description

pc1 1109 6.94 Flight software

kc1 1183 (1212) 24.85 (26.00) Storage management

kc2 522 20.49 Storage management

kc3 458 9.38 Storage management

cm1 498 9.83 Spacecraft instrument

mw1 403 7.69 A zero gravity experiment

mc2 161 32.30 Video guidance system
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kc1 dataset used in a previous study. The NASA and SOFTLAB datasets have
different features and thus only the common features were used in our experiments.
All features in each of the NASA and SOFTLAB datasets are listed in the Appendix.
The common features of the NASA and SOFTLAB datasets are shown in Table 4.

5.2 NASA and SOFTLAB Datasets

Two types of experiments were performed in our study, which were the same to the
previous study of Ma et al. First, all of the NASA datasets were used as training
dataset. Each SOFTLAB dataset was used as a test dataset. Second, each NASA
dataset was selected as a test dataset and the remaining NASA datasets were used as
a training dataset.

5.2.1 NASA to SOFTLAB

All of the NASA datasets were used as training dataset and each SOFTLAB dataset
was used as a test dataset. We performed the test with 30 iterations commonly used to
analyze and compare randomized algorithms (Arcuri and Briand 2011). For each
iteration, the training set was randomized. The similarity weights of the NASA data
instances were computed based on each SOFTLAB dataset. Z-score normalization was
applied to the training and test datasets. A boosted classifier was constructed using
Algorithm 1. Classifications were predicted using the test dataset and the AUC values
were computed for the evaluation.

5.2.2 NASA to NASA

In this setting, only the NASA datasets were used for training and test datasets. Each
NASA dataset was chosen as a test dataset and the other NASA datasets were utilized
as a training dataset. The test was iteratively performed 30 times. For each iteration,
the training set was randomized before building the classification model.

Table 3 Projects in the SOFTLAB dataset

Project Instances % Buggy Description

ar3 63 12.7 Embedded controller

ar4 107 18.69 Embedded controller

ar5 36 22.22 Embedded controller

Table 4 Shared features of the NASA and SOFTLAB datasets

Type Features

McCabe Cyclomatic complexity, design complexity

LOC Code and comment loc, comment loc, executable loc, total loc

Halstead Halstead difficulty, Halstead effort, Halstead error, Halstead length,
Halstead time, Halstead volume, unique operands, unique operators,
total operands, total operators

Other Branch count
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5.3 Learning Algorithms

SVMwas employed as a base learner for the boosting approach and we used LIBSVM (Chang
and Lin 2013). We only used the simple linear kernel option to execute LIBSVM. In this way,
we can minimize the effect of kernel function and focus on the effect of the proposed
algorithm. Based on the published guidelines for support vector classification (Gray et al.
2009; Hsu et al. 2010), z-score normalization was applied to all of the training and test
datasets. We compared our proposed method with other learning algorithms, i.e., Naïve
Bayes (NB), logistic regression (LR), PART, J48, random forest (RF), IBk, and multi-layer
perceptrons (MLP) from the WEKA machine learning toolkit (Hall et al. 2009) as well as
Boosting-SVM (Wang and Japkowicz 2009) and TNB (Ma et al. 2012). As a classification
model, NB applies Bayes’ theorem and assumes strong independence. LR is a classification
model, i.e., it makes predictions when the dependent variable has two classes. PART generates
a decision list. A rule is generated after constructing a partial C4.5 decision tree. J48 builds
pruned or unpruned C4.5 decision trees. RF builds a forest of random trees. As an ensemble
learner, decision trees are used iteratively to form a strong learner. IBk is a k-nearest neighbor
classifier, which makes predictions based on the closest training instances. MLP is an artificial
neural network model, which maps input datasets into relevant output datasets. Similar to
SVM, we applied z-score normalization to all of training and test datasets before running those
algorithms.

5.4 Parameter Configurations

To calculate the AUC, H-measure, PD and PF as the final performance measures, we used
AUC as the validation criterion of the VCB-SVM and Boosting-SVM. AUC is used since it
reflects the overall performance effectively. AUC and G-mean are frequently used to evaluate
the overall performance in the imbalance context since they are related to the values of both
PD and PF (Wang and Yao 2013). In the VCB-SVM algorithm, lambda (λ) is an empirical
user-defined parameter for the penalty magnitude during each iteration. We set λ as 1.0 to
simplify the usage of our algorithm and Boosting-SVM. M is the maximum number of
iterations in the algorithm. It is set as 30. If it is too large, over-fitting problem can occur. If
it is too small, the best performance of boosting cannot be attained.

Since the performance of the classification model is sensitive to the parameters of a model
(Arcuri and Fraser 2011; Song et al. 2013), we performed the parameter tuning for each learner
of the WEKA. We used the CVParameterSelection to determine parameter values for the
learners. It is a meta-classifier in the WEKA toolkit. The details of parameter values are
described in the Appendix.

6 Experimental Results

6.1 Comparisons by Performance Measures

In this section, we show the performance results of Boosting-SVM (B-SVM) from Wang and
Japkowicz (Wang and Japkowicz 2009), TNB from Ma et al. (Ma et al. 2012), selected binary
classifiers from WEKA, and VCB-SVM. The performance results of MLP and SVM are
omitted since their results were meaninglessly low.

At first, we show the average performance values of AUC, PD, PF and H-measure over the
ten data sets of each method. Then, we summarize the results of carrying out the effect size A-
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statistics (Vargha and Delaney 2000) to evaluate the magnitude of the improvement. The
details of the effect size test over each data set are shown in the Appendix. We use Wilcoxon
rank-sum test (Wilcoxon 1945) at a confidence level of 95 % for the statistical significance
test. This non-parametric test is recommended for comparison of two classifiers (Arcuri and
Briand 2011).

In Fig. 3, the overall performance of each prediction model is shown. In case of AUC and
H-measure, all the classifiers show the similar performance. However, in case of PD and PF,
VCB-SVM shows different results compared to the other models. Even though VCB-SVM
shows the worst performance in case of PF, it shows the best performance in case of PD.

We performed the effect size A-statistics test which is recommended for evaluating randomized
algorithms in software engineering (Arcuri and Briand 2011). In the A-statistics, the probability of
algorithmXproducing higherMvalues compared to another algorithmYis computedwhereM is a
performance measure. A=0.6 means that X can produce higher results 60 % of the time.

Based on the guidelines (Vargha and Delaney 2000), if A > 0.64, X is better than Y having
a medium size difference. If A < = 0.64, X is not better than Y.

Figure 4 shows the summary of the effect size A-statistics test over ten data sets. By using
A-statistics test, VCB-SVM and each classifier is compared over each data set. The number of
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Fig. 3 Bar plots of average AUC, PD, PF, and H-measure over the ten data sets of the classifiers

Fig. 4 Summary of the effect size A-statistics test over ten data sets
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each case, (i.e., A > 0.64 and A < = 0.64) is counted over ten data sets. In terms of AUC, PD,
and H-measure, A > 0.64 indicates that VCB-SVM is better than another model. In terms of
PF, A > 0.64 means that VCB-SVM is worse than another model. The summary shows that
VCB-SVM shows worse performance in case of PF. However, in terms of AUC, PD, and H-
measure, VCB-SVM shows better performance in more data sets except for LR. Even though
LR outperforms VCB-SVM in terms of AUC, PF, and H-measure, it is worse than VCB-SVM
in case of PD over all data sets. It indicates that LR is not practically effective for finding
defects compared to VCB-SVM.

Tables 5, 6, 7 and 8 show the mean of AUC, PD, PF, and H-measure values respectively. In
Tables, NASA to SOFTLAB indicates that NASA data were used as the training dataset and
SOFTLAB data were used as the test dataset. NASA to NASA indicates that the NASA data
were used as both the training and test datasets. The line w/t/l indicates that the results of
comparing VCB-SVM with another algorithm based on Wilcoxon rank-sum test. w/t/l indi-
cates the number of data sets VCB-SVM wins/ties/loses, compared to the classifier at the
corresponding column. Values in boldface indicates the best performers over each case.

In Table 5, AUC is used as a performance measure. VCB-SVM outperforms other models
except for LR. VCB-SVM wins 4 data sets, ties 4 data sets, and loses 2 data sets, compared to
B-SVM. VCB-SVM wins 7 data sets, ties 2 data sets, and loses 1 data set, compared with
TNB. Table 6 shows the classification results in terms of PD. In this case, VCB-SVM
outperforms all the other models. VCB-SVM is better than NB over 8 data sets while it is
worse than NB over 2 data sets. When comparing with B-SVM, VCB-SVM shows better
performance over all data sets. Table 7 shows the PF values of each classifier on the datasets.
VCB-SVM shows worse performance than all the other models. In Table 8, the classification
results based on H-measure are shown. LR shows the best performance. VCB-SVM outper-
forms PART, J48, RF, and IBk. It shows similar performance to NB and B-SVM.

The results can be analyzed based on the two research questions.
RQ1: Does the VCB-SVM provide higher prediction performance than the CPDP tech-

niques not prepared for the class imbalance?
To answer this question, we compare VCB-SVM with TNB. In Tables 5, 6 and 7, TNB

outperforms VCB-SVM in terms of PF. The defect detection performance of VCB-SVM and

Table 5 Comparison of the cross-project predictions when the AUC was used as the performance measure

Source ⇒ Target NB LR PART J48 RF IBk B-SVM TNB VCB-SVM

NASA to SOFTLAB

NASA ⇒ ar3 0.814 0.841 0.682 0.769 0.745 0.700 0.831 0.714 0.837

NASA ⇒ ar4 0.827 0.839 0.805 0.706 0.782 0.816 0.835 0.692 0.838

NASA ⇒ ar5 0.900 0.938 0.770 0.886 0.826 0.810 0.929 0.827 0.942

NASA to NASA

NASA ⇒ kc1 0.636 0.690 0.623 0.586 0.627 0.631 0.620 0.624 0.616

NASA ⇒ mc2 0.674 0.581 0.656 0.533 0.686 0.620 0.527 0.625 0.578

NASA ⇒ kc3 0.776 0.817 0.748 0.668 0.771 0.657 0.816 0.738 0.812

NASA ⇒ mw1 0.768 0.799 0.720 0.690 0.690 0.726 0.801 0.678 0.797

NASA ⇒ kc2 0.810 0.846 0.790 0.634 0.765 0.788 0.811 0.779 0.805

NASA ⇒ pc1 0.717 0.692 0.634 0.609 0.618 0.627 0.495 0.580 0.541

NASA ⇒ cm1 0.767 0.793 0.757 0.504 0.787 0.695 0.774 0.659 0.763

w/t/l 7/1/2 2/3/5 7/1/2 9/0/1 6/2/2 7/1/2 4/4/2 7/2/1
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TNB are statistically same. However, the overall performance (AUC) of VCB-SVM is better.
VCB-SVM wins 7 data sets, ties 2 data sets, and loses 1 data set.

RQ2: Does the VCB-SVM provide higher prediction performance than the class imbalance
techniques not prepared for the cross-project learning?

To answer this question, we compare VCB-SVMwith B-SVM. B-SVM outperforms VCB-
SVM over all data sets in terms of PF. The overall performance (AUC and H-measure) of
VCB-SVM and B-SVM are not statistically different. However, in terms of the defect
detection performance, VCB-SVM outperforms B-SVM over all data sets. In software defect
prediction, the most important issue is to detect the defects correctly. It means that the defect
detection performance (PD) is considered far more important than the false alarm rate (PF).

NB showed a good performance in both the overall performance (AUC and H-measure) and the
defect detection performance (PD). In cases of LR, PART, J48, RF, and IBk, the overall

Table 6 Comparison of the cross-project predictions when the PD was used as the performance measure

Source ⇒ Target NB LR PART J48 RF IBk B-SVM TNB VCB-SVM

NASA to SOFTLAB

NASA ⇒ ar3 0.750 0.750 0.000 0.625 0.625 0.500 0.745 0.875 0.887

NASA ⇒ ar4 0.600 0.800 0.050 0.350 0.550 0.350 0.751 0.830 0.853

NASA ⇒ ar5 0.875 0.875 0.000 0.625 0.500 0.375 0.812 1.000 0.966

NASA to NASA

NASA ⇒ kc1 0.109 0.126 0.099 0.197 0.218 0.231 0.125 0.266

NASA ⇒ mc2 0.365 0.019 0.154 0.288 0.038 0.019 0.003 0.173

NASA ⇒ kc3 0.372 0.000 0.116 0.140 0.093 0.047 0.008 0.492

NASA ⇒ mw1 0.323 0.161 0.065 0.355 0.194 0.065 0.070 0.713

NASA ⇒ kc2 0.346 0.252 0.093 0.280 0.280 0.196 0.257 0.445

NASA ⇒ pc1 0.662 0.065 0.195 0.273 0.169 0.208 0.145 0.350

NASA ⇒ cm1 0.367 0.592 0.408 0.020 0.469 0.163 0.455 0.660

w/t/l 8/0/2 9/1/0 9/1/0 7/2/1 9/1/0 8/2/0 10/0/0 1/2/0

Table 7 Comparison of the cross-project predictions when the PF was used as the performance measure

Source ⇒ Target NB LR PART J48 RF IBk B-SVM TNB VCB-SVM

NASA to SOFTLAB

NASA ⇒ ar3 0.309 0.436 0.018 0.236 0.182 0.218 0.317 0.447 0.575

NASA ⇒ ar4 0.126 0.287 0.011 0.172 0.092 0.069 0.204 0.446 0.538

NASA ⇒ ar5 0.179 0.250 0.000 0.071 0.107 0.107 0.146 0.346 0.526

NASA to NASA

NASA ⇒ kc1 0.034 0.038 0.029 0.101 0.118 0.102 0.039 0.137

NASA ⇒ mc2 0.147 0.009 0.028 0.128 0.037 0.009 0.009 0.119

NASA ⇒ kc3 0.077 0.000 0.007 0.014 0.010 0.010 0.001 0.142

NASA ⇒ mw1 0.059 0.016 0.016 0.046 0.081 0.013 0.009 0.340

NASA ⇒ kc2 0.024 0.027 0.014 0.060 0.072 0.055 0.030 0.106

NASA ⇒ pc1 0.270 0.009 0.029 0.079 0.073 0.084 0.046 0.231

NASA ⇒ cm1 0.134 0.205 0.089 0.013 0.169 0.080 0.146 0.347

w/t/l 0/1/9 0/0/10 0/0/10 0/4/6 0/3/7 0/3/7 0/0/10 0/0/3

Empir Software Eng (2016) 21:43–71 59



performances are competitive while PD is not. Boosting-SVMproduced good overall performance,
but its PD is low. On the contrary, TNB showed high PD values but low overall performance.
Although VCB-SVM showed relatively high PF values, its overall performance and PD values are
better than those of other classifiers. The classifiers which do not explicitly consider both the
difference of feature distributions and the class imbalance nature showed either poor overall
performance or poor PD performance. However, NB showed good performance as comparable
to the VCB-SVM. It would be another research subject why NB showed good performance for
CPDP. In terms of VCB-SVM, it is necessary to lower false alarms while retaining high probability
of defect detection.

We tested how the performance of VCB-SVM can be influenced by the difference
in the distribution between the training and the test data. The KL-divergence
(Kullback and Leibler 1951) can be used to measure the difference between two
probability distributions. We calculated the KL-divergence for each classification case.
Figure 5 shows that the data sets have been sorted by KL-divergence in ascending
order from left to right. The performance of VCB-SVM based on the distribution

Table 8 Comparison of the cross-project predictions when the H-measure was used as the performance measure

Source ⇒ Target NB LR PART J48 RF IBk B-SVM VCB-SVM

NASA to SOFTLAB

NASA ⇒ ar3 0.495 0.605 0.168 0.426 0.398 0.178 0.543 0.543

NASA ⇒ ar4 0.434 0.497 0.321 0.294 0.378 0.390 0.494 0.491

NASA ⇒ ar5 0.603 0.728 0.360 0.608 0.482 0.341 0.687 0.726

NASA to NASA

NASA ⇒ kc1 0.126 0.140 0.076 0.059 0.076 0.073 0.095 0.091

NASA ⇒ mc2 0.161 0.071 0.151 0.049 0.147 0.074 0.037 0.060

NASA ⇒ kc3 0.311 0.329 0.243 0.197 0.243 0.161 0.329 0.329

NASA ⇒ mw1 0.285 0.369 0.202 0.243 0.130 0.167 0.381 0.342

NASA ⇒ kc2 0.438 0.432 0.348 0.261 0.245 0.270 0.397 0.391

NASA ⇒ pc1 0.202 0.155 0.145 0.123 0.085 0.071 0.088 0.115

NASA ⇒ cm1 0.254 0.288 0.230 0.005 0.253 0.145 0.272 0.263

w/t/l 6/0/4 2/0/8 8/0/2 9/1/0 9/0/1 9/0/1 3/6/1
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Fig. 5 Performance of VCB-SVM sorted by KL-divergence in ascending order
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distance appears irregular. We would try to find the relation between the distribution
distance and the performance of VCB-SVM as a future work.

7 Threats to Validity

Our experimental results might be affected by some threats to validity.

7.1 Construct Validity

To address the distributional difference between the training set and the test set, the similarity
weight values are calculated by using the minimum and the maximum values of each attribute.
They may not be sufficient information to obtain the similarity between source and target
projects. In addition to the two characteristics, there are a variety of characteristics including
the median, mean, and variance. They might better reflect the distributional characteristics and
thus produce better performance in different cross-project learning cases.

We used SVM as a base classifier in our boosting approach. We employed a simple linear
kernel. This indicates that our experiments are valid only when using a linear kernel. Using
other kernels might lead to better or worse prediction performances.

The VCB-SVM algorithm has several configurations, i.e., the maximum number of
iteration (M), the penalty magnitude during each iteration (lambda), the ratio of validation
set, and the number of samples for each over-/under-sampling. Our experimental results are
based on single choice of values for M and lambda, the ratio of validation set, and the number
of samples for each over-/under-sampling. Different conclusions may be reached when using
other values.

We performed parameter tuning for the WEKA learners used in our experiments. The
parameter values are obtained based on the training set with labels. However, under the CPDP
setting, the test set has different distributional characteristics from the training set. Since the
parameters optimal for the training set might not be optimal for the test set, the results of the
WEKA learners might be worse than those of the WEKA learners without parameter tuning.

7.2 Internal Validity

We divided the training instances into the instances with the similar distribution and
the instances with the different distribution based on the similarity weight. Then, we
focused on the misclassified instances of the similar distribution while disregarding
the misclassified instances of the different distribution. We assumed all the
misclassified instances of the similar distribution will have positive effects in defect
prediction when they are classified correctly. In addition, we assumed all the
misclassified instances of the different distribution will have negative effects in defect
prediction when they are classified correctly. Such assumptions may not properly
reflect the characteristics of software defect datasets. Some of the misclassified
instances may have either positive or negative effect in both cases.

7.3 External Validity

We validated the proposed method using open source and commercial software project
data with different characteristics. However, various types of software projects have
their own properties, so the results might not be generalizable to other closed projects.

Empir Software Eng (2016) 21:43–71 61



7.4 Statistical Conclusion Validity

To evaluate the magnitude of the improvement, we performed the nonparametric effect size A-
statistics test. Its use in software engineering is very rare, but recommended by Arcuri and
Briand (Arcuri and Briand 2011).

We carried out Wilcoxon rank-sum test to determine if there is statistically signif-
icant difference between the two classifiers. The test was applied at a 5 % signifi-
cance level. Unlike the commonly used t-test, since Wilcoxon rank-sum test does not
make assumption on the data distribution, it is generally recommended (Arcuri and
Briand 2011).

8 Conclusion and Future Work

Cross-project defect prediction (CPDP) plays an important role in improving software quality
in case of projects without sufficient historical data. For the success of CPDP, dataset
characteristics are employed to measure the similarity between a source project and a target
project.

Software defect datasets have the class imbalanced nature. Previous researches (Arisholm
et al. 2010; Hall et al. 2012; GRBAC and GORAN 2013) assert that the imbalanced
distribution can cause poor prediction performance of specific models. In addition, the
performance measures chosen can hide the impact of imbalanced data on the real performance
of classifiers. To address the class imbalance problem, data sampling, threshold moving, and
ensemble methods are commonly used.

Until now there is no previous CPDP approaches considering the class imbalance
problem. In this study, we investigate the applicability of the class imbalance learning
for CPDP with our proposed method called the value-cognitive boosting with support
vector machine (VCB-SVM). The asymmetric misclassification cost designed by the
Boosting-SVM (Wang and Japkowicz 2009) and the similarity weights obtained from
the distributional characteristics are seamlessly related to guide the appropriate resam-
pling mechanism.

Through the effect size A-statistics test and Wilcoxon rank-sum test, we show our proposed
method can better identify defects correctly compared to the existing CPDP methods not
prepared for the class imbalance and the class imbalance method not prepared for the cross-
project learning. Our proposed approach will help to design an effective prediction model for
CPDP. The improved defect prediction performance with our method could help to allocate
limited human and time resources more effectively to software quality assurance activities.
Thus, the cost of software quality assurance control could be reduced using our proposed
approach.

The proposed approach could be enhanced in several areas. First, we could use other
classifiers instead of SVM as a base learner for the boosting method. Second, we may consider
other transfer learning techniques, which might be more optimal for VCB-SVM. Third, we
will further investigate whether other sophisticated class imbalance learning techniques instead
of re-sampling methods are better related with the distributional difference between a source
project and a target project. Fourth, we may apply our approach to more datasets to validate
our findings.
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Appendix

Table 9 shows all features in each of the NASA and SOFTLAB datasets obtained from
PROMISE repository (Shepperd 2011; Menzies et al. 2012).

Table 10 shows the parameter values used for tuning them. For SVM, Radial Basis
Function (RBF) kernel is employed since it is widely used.

Table 11 shows the selected parameter values for each learner according to each dataset.
Figures 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 shows the result of the effect size A-statistics test

betweenVCB-SVMand each classifier in terms of AUC, PD, PF, andH-measure over each test set.
Figure 6 shows the effect size test result of AUC, PD, PF andH-measure when ar3 dataset is used as
a test set. VCB-SVM is worse than other models in terms of PF. However, it is better than other
models in terms of PD. The overall performance (AUC andH-measure) ofVCB-SVM is better than
those of other models except for LR. Similar results can be found over the other data sets.

Table 9 Features of the NASA and SOFTLAB datasets

NASA SOFTLAB

Metrics pc1 kc1 kc2 kc3 cm1 mw1 mc2 ar3 ar4 ar5

McCabe

Cyclomatic_Complexity • • • • • • • • • •

Cyclomatic_Density • • • • • •

Decision_Density • • • • • •

Design_Complexity • • • • • • • • • •

Design_Density • • • • • •

Essential_Complexity • • • • • • •

Essential_Density • • •

Global_Data_Complexity • •

Global_Data_Density • •

Norm_Cyclomatic_Compl • • • • • •

Maintenance_Severity • • •

LOC

LOC_Total • • • • • • • • • •

LOC_Blank • • • • • •

LOC_Executable • • • • • • • • • •

LOC_Comments • • • • • • • • • •

LOC_Code_and_Comment • • • • • • • • • •

Number_of_Lines • • •

Percent_Comments • • •

Halstead

Num_Operators • • • • • • • • • •

Num_Operands • • • • • • • • • •

Num_Uniq_Operators • • • • • • • • • •

Num_Uniq_Operands • • • • • • • • • •

Length • • • • • • • • • •

Difficulty • • • • • • • • • •
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Table 9 (continued)

NASA SOFTLAB

Metrics pc1 kc1 kc2 kc3 cm1 mw1 mc2 ar3 ar4 ar5

Level • • • • • •

Volume • • • • • • • • • •

Programming_Effort • • • • • • • • • •

Programming_Time • • • • • • • • • •

Error_Estimate • • • • • • • • • •

Content • • • • • •

Other

Branch_Count • • • • • • • • • •

Call_Pairs • • • • • •

Condition_Count • • • • • •

Decision_Count • • • • • •

Edge_Count • • •

Node_Count • • •

Parameter_Count • • • • • •

Multiple_Condition_Count • • • • • •

Modified_Condition_Count • • •

Table 10 Parameter values

Learner Parameters

NB No parameter

LR R(ridge value) = {1.0E-10, 1.0E-9, 1.0E-8, 1.0E-7, 1.0E-6}

PART C(confidence) = {0.1, 0.2, 0.3, 0.4, 0.5}

J48 C(confidence) = {0.1, 0.2, 0.3, 0.4, 0.5}

RF I(# trees) = {5, 10, 15, 20, 25}

Ibk K(# neighbhors) = {1, 3, 5, 7, 9}

MLP L(learning rate) = {0.1, 0.2, 0.3, 0.4, 0.5}
M(momentum) = {0.1, 0.2, 0.3, 0.4, 0.5}
N(# epochs) = {100, 500, 900}
H(# hidden nodes) = {1, 3, 5, 7, 9}

SVM C(cost) = {2−5, 2−3, 2−1, 21, 23}
G(gamma) = {2−5, 2−3, 2−1, 21, 23}
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Table 11 Parameter values for NASA dataset

NB LR PART J48 RF Ibk MLP SVM

R C C I K L M N H C G

All NA 1.0E-10 0.1 0.1 20 9 0.5 0.2 900 5 2 2

w/o cm1 NA 1.0E-10 0.2 0.1 25 9 0.1 0.1 900 7 2 2

w/o kc1 NA 1.0E-10 0.2 0.1 10 7 0.5 0.3 500 5 2 2

w/o kc2 NA 1.0E-10 0.1 0.1 20 9 0.5 0.1 900 7 2 2

w/o kc3 NA 1.0E-10 0.1 0.1 20 9 0.2 0.2 100 7 2 2

w/o mc2 NA 1.0E-10 0.1 0.1 20 9 0.3 0.1 500 9 2 2

w/o mw1 NA 1.0E-10 0.1 0.1 20 9 0.1 0.3 900 3 2 2

w/o pc1 NA 1.0E-10 0.2 0.1 25 9 0.3 0.1 500 9 2 2
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Fig. 6 Effect size test result of AUC, PD, PF and H-measure when ar3 dataset is used as a test set
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Fig. 7 Effect size test result of AUC, PD, PF and H-measure when ar4 dataset is used as a test set
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Fig. 8 Effect size test result of AUC, PD, PF and H-measure when ar5 dataset is used as a test set
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Fig. 9 Effect size test result of AUC, PD, PF and H-measure when kc1 dataset is used as a test set
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Fig. 10 Effect size test result of AUC, PD, PF and H-measure when mc2 dataset is used as a test set
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Fig. 11 Effect size test result of AUC, PD, PF and H-measure when kc3 dataset is used as a test set
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Fig. 12 Effect size test result of AUC, PD, PF and H-measure when mw1 dataset is used as a test set
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Fig. 13 Effect size test result of AUC, PD, PF and H-measure when kc2 dataset is used as a test set
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