
Empir Software Eng (2016) 21:337–367
DOI 10.1007/s10664-014-9333-9

Improving bug management using correlations in crash
reports

Shaohua Wang ·Foutse Khomh ·Ying Zou

Published online: 10 October 2014
© Springer Science+Business Media New York 2014

Abstract Nowadays, many software organizations rely on automatic problem reporting
tools to collect crash reports directly from users’ environments. These crash reports are later
grouped together into crash types. Usually, developers prioritize crash types based on the
number of crash reports and file bug reports for the top crash types. Because a bug can
trigger a crash in different usage scenarios, different crash types are sometimes related to
the same bug. Two bugs are correlated when the occurrence of one bug causes the other bug
to occur. We refer to a group of crash types related to identical or correlated bug reports, as
a crash correlation group. In this paper, we propose five rules to identify correlated crash
types automatically. We propose an algorithm to locate and rank buggy files using crash
correlation groups. We also propose a method to identify duplicate and related bug reports.
Through an empirical study on Firefox and Eclipse, we show that the first three rules can
identify crash correlation groups using stack trace information, with a precision of 91 % and
a recall of 87 % for Firefox and a precision of 76 % and a recall of 61 % for Eclipse. On the
top three buggy file candidates, the proposed bug localization algorithm achieves a recall
of 62 % and a precision of 42 % for Firefox, and a recall of 52 % and a precision of 50 %
for Eclipse. On the top 10 buggy file candidates, the recall increases to 92 % for Firefox
and 90 % for Eclipse. The proposed duplicate bug report identification method achieves a
recall of 50 % and a precision of 55 % on Firefox, and a recall of 47 % and a precision of
35 % on Eclipse. Developers can combine the proposed crash correlation rules with the new
bug localization algorithm to identify and fix correlated crash types all together. Triagers
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can use the duplicate bug report identification method to reduce their workload by filtering
duplicate bug reports automatically.

Keywords Crashes · Crash reports · Stack traces · Bug localization · Bug duplication

1 Introduction

Nowadays, many big software organizations such as Microsoft1 and Mozilla2 embed auto-
matic problem reporting tools in their software systems. Whenever the software crashes
(i.e., terminates unexpectedly) in a user’s environment, the automatic problem reporting tool
collects information about the crash and sends a detailed crash report to the software ven-
dor. A crash report usually contains the stack trace of the failing thread and other runtime
information. A stack trace is an ordered set of frames; each frame referring to a method sig-
nature. Crash reports are used by several stakeholders such as developers fixing crashes and
product managers allocating development resources. Using crash reports, Microsoft devel-
opers were able to fix 29 % of the bugs found in Windows XP SP1, and more than 50 %
of the Office XP SP2 bugs (Connecting with customers 2012). The automatic collection of
crash reports helped Mozilla developers to improve the reliability of Firefox by 40 % from
November 2009 to March 2010 (Firefox Stability Improvement 2012).

Built-in automatic crash reporting tools often collect a large amount of crash reports. For
example, Mozilla Firefox receives 2.5 million crash reports every day (Socorro: Mozilla’s
Crash Reporting Server 2012). To reduce the amount of crash reports to handle, similar
crash reports are identified and grouped together based on the similarity of their stack traces.
We refer to a group of similar crash reports as a crash type. The signature of a crash type is
usually the top method signature of the stack traces. The crash types are sorted based on the
number of crash reports and developers usually file bug reports for the top crash types, i.e.,
crash types with high numbers of crash reports. Later, stack traces from the failing threads,
contained in crash reports, are used by developers to diagnose and fix the bugs.

A bug can frequently trigger crashes in different usage scenarios, causing different crash
types to be linked to the same bug. A crash type can be linked to multiple duplicate or
correlated bug reports. A duplicate bug report describes a problem already filed. Two bug
reports are considered to be correlated if the occurrence of one bug in one bug report causes
the bug in the other report to occur. We refer to a group of crash types related to identical or
correlated bug reports, as a crash correlation group (CCG). A crash type can belong to one
or several crash correlation groups. For example, if a crash type CT1 shares a bug report
with a crash type CT2 and another bug report with a crash type CT3. CT1 belongs to two
crash correlation groups, i.e., {CT1, CT2} and {CT1, CT3}.

The identification of crash correlation groups can help developers identify correlated
crash types and fix bugs more efficiently; crash types in a crash correlation group should be
analyzed together when fixing bugs. Crash correlation groups provide a diversity of crashing
scenarios that could help developers identify the root cause of the bugs more efficiently.

Many studies have been performed on the use of stack traces in crash reports to locate and
fix bugs. Schröter et al. (2010) examined stack traces in bug reports and found that bugs are
fixed faster when their reports contain at least one stack trace. Brodie et al. (2005) proposed

1http://www.microsoft.com/en-ca/default.aspx
2http://www.mozilla.org/en-US/

http://www.microsoft.com/en-ca/default.aspx
http://www.mozilla.org/en-US/
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a method based on a comparison of stack traces to identify similar bugs using historical
information on known bugs. Dhaliwal et al. (2011) examined the use of stack traces for
bug fixing and identified some limitations in the crash grouping process of Mozilla Firefox.
They proposed a grouping approach for crash reports, based on a comparison of failing
stack traces using the Levenshtein distance (Kruskal 1983), and build sub-groups of crash
reports of a crash type. Their sub-grouping strategy can improve the existing Mozilla crash
reporting system and this improvement can help to reduce the bug fixing time by more than
5 % based on their empirical study.

In our previous work published at the 10th Working Conference on Mining Software
Repositories (Wang et al. 2013), we propose three rules to identify correlated crash types
automatically, using structural information about the crash types (i.e., the crash signatures
and stack traces).

In this paper, in addition to using structural information, we investigate the possibility
to identify correlated crash types using temporal and semantic information. The temporal
information is related to the co-occurrence time of crash types and the semantic infor-
mation is related to the textual similarity between user comments provided for the crash
types. Moreover, we also explore the possibility of using crash correlation groups to help
development teams fix bugs and identify duplicate bug reports.

We conduct our study using Firefox crash reports and Eclipse bug reports. We address
the following five research questions:

RQ1. Can we identify correlated crash types using crash type signature and stack traces?
We strive to propose simple rules for the identification of crash correlation groups

(i.e. correlated crash types) using the structural information of crash types. First, we
examine the signatures of crash types and generate a rule to automatically identify crash
correlation groups. The rule does not require a detailed analysis of failing stack traces
and can identify crash correlation groups with a precision of 100 % and a recall of 68 %
for Firefox. On Eclipse, the rule achieves a precision of 69 % and a recall of 46 %. To
improve on the results, we examine failing stack traces and propose two additional rules
to detect correlated crash types automatically. When executed together, our three rules
identify crash correlation groups in Firefox with an average precision of 91 % and an
average recall of 87 %. On Eclipse, the three rules achieve an average precision of 76 %
and an average recall of 61 %. The average execution time of the three rules is in the
order of 128 seconds. The scalability is preserved.

RQ2. Can we identify correlated crash types using the occurrence times of crash events?
A group of crash types reported by the same users frequently, within a short time

period, can be correlated. We examine the co-occurrences of crash types and propose one
additional rule to detect correlated crash types automatically. This rule can identify crash
correlation groups in Firefox with an average precision of 52 % and an average recall of
58 %. The highest recall it can achieve is 84 %. This rule is not applicable to Eclipse,
since the time of user comments being posted in Eclipse bugzilla is not the actual time of
the occurrence of exceptions.

RQ3. Can we identify correlated crash types using the textual similarity between users
comments about the crash events?
The user comments describe the crashing scenarios of crash types. Correlated crash

types could have similar user comments, therefore we examine the similarity between
text mined from user comments of crash types and propose one additional rule to detect
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correlated crash types automatically. This rule identifies crash correlation groups in Fire-
fox with an average precision of 54 % and an average recall of 46 %. On Eclipse, the rule
achieves an average precision of 42 % and an average recall of 30 %.

RQ4. Can the correlated crash types help identify buggy files?
We propose an algorithm, using our proposed crash correlation group identification

rules, to locate and rank suspicious files using the stack traces of correlated crash types.
When considering only the top three buggy file candidates, our algorithm achieves a
recall of 62 % and a precision of 42 % on Firefox; and a recall of 52 % and a precision
of 50 % on Eclipse. The top ten candidate files reported by our algorithm can recover up
to 92 % of buggy files in Firefox and up to 90 % of buggy files in Eclipse.

RQ5. Can the correlated crash types help identify duplicate bug reports?
We investigate the possibility of using the correlated crash types to identify duplicate

or related bug reports. Our proposed approach, using the relations among crash correla-
tion groups for duplicate bug reports identification, can achieve a precision of 55 % and
a recall of 50 % on Firefox, and a precision of 38 % and a recall of 47 % on Eclipse.
This confirms that using correlations between crash types can help identify duplicate bug
reports.

This paper is an extended version of our earlier work (Wang et al. 2013). The original
work:

– proposes one rule based on the comparison of crash type signatures of crash types and
two rules based on stack traces to group correlated crash types;

– conducts an empirical study of the effectiveness of the three rules on stack traces from
Firefox crash reports and Eclipse bug reports;

– proposes an approach, using the correlations between crash types within a crash
correlation group, to help development teams locate buggy files.

– conducts an empirical study of the effectiveness of our approach for locating buggy
files on Firefox and Eclipse.

We extend the earlier work in the following aspects:

1. We build two more additional rules: One rule is based on the co-occurrence time of
crash types; the other one is based on the textual similarity between crash types.

2. We conduct an empirical study on Firefox and Eclipse to verify the effectiveness of the
two rules identifying correlated crash types.

3. We propose an approach using the relations between crash correlation groups to identify
duplicate and related bugs.

4. We conduct an empirical study of the effectiveness of our approach for identifying
duplicate and related bug reports on Firefox and Eclipse.

The rest of this paper is organized as follows. Section 2 explains the process of crash
reporting and introduces stack traces and crash types. Section 3 introduces the experimental
setup. Section 4 presents the research questions of our study; for each research question,
we present the motivation, introduce the analysis approach and discuss the results of our
study. Section 5 discusses threats to the validity. Section 6 summarizes the related literature.
Finally, Section 7 concludes the paper and outlines some avenues for future work.
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2 Background

2.1 Crash Reporting

Many software organizations use a bug tracking system (e.g., Eclipse’s Bugzilla) to store
and track bugs. When a crash occurs on a user’s machine, the software generates a fail-
ing stack trace that developers can use to fix bugs related to the crash. Users usually file
bug reports in bug tracking systems to report crashes and include failing stack traces in
comments made on the crashes. The other users can also share their failing stack traces by
making comments on the filed bug reports including the crashes. The failing stack traces
in the comments of bug reports as well as other information in the bug reports can help
developers to reproduce and fix the bugs.

However, not all users file bug reports or report failing stack traces. To ensure that devel-
opers get the necessary information to fix bugs, more software organizations now ship their
product to users with an embedded problem reporting tool that can collect failing stack
traces automatically (e.g., the Mozilla Crash Reporter embedded in the Firefox browser).
When a crash occurs, the failing stack trace is automatically collected by the problem report-
ing tool and a crash report containing information related to the crash is sent to a crash
report repository (e.g., the Mozilla Socorro crash report server as illustrated in Fig. 1) main-
tained by the software organization. A crash report usually contains a signature, the stack
trace of the failing thread, some runtime information such as the crash time, and informa-
tion about the user environment, e.g., the operating system, the version, and the install time.
Some crash reports contain comments discussing the crashes in the reports from users. Crash
reports are grouped into crash types and ranked based on their frequency of occurrence. We
discuss the grouping of crash reports in Section 2.2. For the top crash types, bug reports are
created in a bug tracking system and linked to their corresponding crash types. Multiple bug
reports can be filed for a single crash type and multiple crash types can be associated with

Fig. 1 Mozilla crash report system
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Fig. 2 Example of stack trace from firefox

the same bug report. A bug report contains detailed semantic information about a bug, such
as the bug open date and the bug status. Moreover, users can make comments on a bug in the
filed bug reports and some comments also contain stack traces (e.g., Eclipse’s bug reports).
Bug reports are triaged and assigned to developers for fixing.

2.2 Stack Traces, Crash Reports and Crash Types

A stack trace is an ordered set of frames 〈 F1, F2, . . . , Fn〉. Each frame Fi is composed of
a method signature which we denote by methSign and a fully qualified file name which we
denote by qfileName. Fi = methSigni |qf ileNamei , where i ∈ {1. . .n} is the position of
the frame Fi in the stack trace, and n is the total number of frames in the stack trace. F1 is
the top frame of the stack trace. Figure 2 presents an example of stack trace extracted from
a crash report of Firefox.

Each crash report contains a failing crash stack trace. On the Mozilla Socorro server,
crash reports are grouped into crash types based on the similarity of the top frames (i.e., F1)
of their stack traces (Dhaliwal et al. 2011). The crash time of a crash type is the time of its
first crash report received by Socorro server. Usually, the top frames of all the stack traces
in a crash type are identical. The method signature (i.e., methSign) from the common top
frame is used as the crash type signature of the crash type, for example in Fig. 2, the method
signature OnWriteSegmentt of frame F1 is used as a crash type signature. In the following,
we refer to the top frame common to all the stack traces of a crash type as the top frame
of the crash type. However, the subsequent frames in a stack trace might be different for
different crash reports in a crash type.

A crash type signature S can be represented in the following structure: S = P1|P2|. . .|Pn,
where each element Pi is composed of 〈File〉〈Op〉〈Method〉〈Parameter〉
〈Memory Location〉. File, Op, Method , and Parameter are respectively the name of a
file or class name, an operator or a separator, a method, and a parameter.

In a crash type signature, at least one Pi should be �= NULL. In a Pi , the attributes File,
Op, Method , and Parameter can be NULL. However, a Pi cannot be formed using only

Fig. 3 Example crash type signature from the Mozilla Socorro server
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Fig. 4 Example of a stack trace from eclipse

the name of an operator (i.e., Op). The value of Op depends on the programming language
and the approach of composing a signature, e.g., the Firefox Browser written in C++, Op

is generally either the scope operator “::” or a separator “ ”. Figure 3 shows an example
crash type signature from the Mozilla Socorro server. This signature is composed of two
elements. The first element P1 contains File and MemoryLocation. The Op, Method ,
and Parameter are NULL. In the second element P2, the memory location is NULL.

The format used in Eclipse’s stack traces is different from the format used in Firefox’s
stack traces. Figure 4 presents an example of a stack trace extracted from Eclipse’s bug
reports and Fig. 5 shows the structure of a Frame in Eclipse stack traces.

In Fig. 5, Exception is the name of a Java exception (e.g., org.eclipse.core.commands.
ExecutionException as shown in the Frame 1 in Fig. 4), Message is the description of
the exception (e.g., While undoing the operation, an exception occurred), qfilePath is the
path in the file directory structure, of the Method in which the exception was raised (e.g.,
org.eclipse.jface.text.projection.internalAdd as shown in Fig. 4), File is the name of the file
that caused the exception (e.g., ProjectionDocument.java), and Line is the exact location in
File where the exception was triggered. A stack trace from Eclipse is mapped to the for-
mat of Firefox’s stack traces as follows: methSign = 〈Exception|Message|Method〉 and
qf ileName = 〈qf ilePath|File〉. If Exception = NULL, then methSign = Method .

We regroup Eclipse stack traces with similar top frames into crash types using the con-
catenation 〈File|Method〉 from their common top frame. This approach is similar to the
grouping of Firefox’s crash reports in the Mozilla Socorro server.

3 Experimental Setup

This section discusses our data collection and processing.

3.1 Data Collection

We conduct our study on two software systems: Firefox (written mainly in C/C++) and
Eclipse (written in Java). Firefox is an open-source Web browser developed by the Mozilla
Corporation. It is currently the third most widely used browser, with approximately 24 %

Fig. 5 Structure of a frame used in an eclipse stack trace
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Table 1 Descriptive statistics of our data set on firefox

Version 4.0b1 4.0b2 4.0b3 4.0b4 4.0b5 4.0b6 4.0b7

# of Crash reports 237,923 74,650 128,899 231,403 199,946 299,994 149,570

Total number of crash reports studied: l,322,385

usage share worldwide (Web browsers ). Eclipse is an open-source integrated development
environment. It is a platform used both in the open-source community and the industry.

We analyze 7 beta versions of Firefox, i.e., Firefox-4.0b1 to Firefox-4.0b7. For each beta
version, we download the summaries of all related crash types stored in Socorro server. We
select the crash types for which at least one bug report is filed. For each selected crash type,
we download the Firefox crash reports, based on their crashing time from latest to earliest,
from Socorro server. Table 1 reports the descriptive statistics of our dataset. In total, we
obtained 1,256 crash types. For all the bug reports filed for our selected crash types, we
retrieve the bug reports from Bugzilla. We download the Firefox change logs to extract a
list of files changed to fix a bug.

To the best of our knowledge, only the Mozilla Foundation has opened the crash reports
of its products to the public. To verify the replicability of our study on other systems, we
downloaded the MSR Mining Challenge 20083 data set containing 213,000 Eclipse bug
reports filed between October 2001 and December 2007.

3.2 Data Processing

Figure 6 shows an overview of our data processing approach. First, we process Firefox crash
reports to extract failing stack traces, user comments, user environment information, e.g.,
crash time and operating system, and IDs of bugs filed for the crashes. Second, we parse
Eclipse bug reports to extract failing stack traces and their descriptions from user comments,
and the IDs of bugs filed for the crashes. Third, we identify crash correlation groups (CCGs)
defined by developers for the validation of our approach. Fourth, we use user environment
information to identify users who report crashes. Then, we conduct word normalization on
the user comments of crashes. Next, we parse Firefox and Eclipse change logs to identify
bug fixes locations and, we map these bug fixes locations to the stack traces.

The remainder of this section elaborates on each of these steps.

3.2.1 Data Extraction from Firefox and Eclipse

We now discuss in details the data extraction for Firefox and Eclipse.

Firefox For each crash type selected in our study, we extract the list of crash reports of
the crash type and the failing stack traces contained in the crash reports by parsing HTML
pages. We extract the possible user comments in the crash reports of each selected crash
type and maintain a mapping between a crash type and its user comments used as the tex-
tual description of the crash type. We further extract user environment information such as
operating system and crash time and maintain a mapping between user environment infor-
mation and each crash report. We also extract the IDs of all the bugs filed for the crash

3http://msr.uwaterloo.ca/msr2008/challenge/

http://msr.uwaterloo.ca/msr2008/challenge/


Empir Software Eng (2016) 21:337–367 345

Crash 
Repository

Bug 
Reports

Mapping: Crash 
Type to List of 

Stack traces and 
List of Bug IDs

Change 
logs/CVS 

Identify 
Bug Fixes 
Locations

Mapping: Bug ID 
to List of Changed 

Files

Data 
Extraction 

&Processing 

Data
Extraction

&Processing 

Mapping: User to 
List of Crash 

Types

Mapping: Crash 
Type to User 
Comments

Duplicate & 
Related Bugs

Analyze RQ3

Analyze RQ1

Analyze RQ2

Analyze RQ3

Analyze RQ5

Mapping: Crash 
Type to User 
Comments

RQ4

RQ5

Analyze RQ4

Fig. 6 Overview of our approach to study correlations between crash types

types. We obtain a mapping linking each crash type to the list of its crash reports and the list
of bug IDs filed against the crash type. Furthermore, we download the bug reports using the
extracted IDs of the bugs filed for the crash types, and mine groups of duplicate and related
bug reports.

Eclipse We parse the 213,000 bug reports contained in the 2008 MSR Mining Challenge
data set and extract all of the comments posted by users (e.g., developers) for each bug.
Unlike Firefox, the Eclipse stack traces are embedded in the comments of Eclipse bug
reports. We process the comments using regular expressions to extract the failing stack
traces of the bug reports in a similar way as Betttenburg et al. (2008). We obtain 22,379
bug reports having comments which contain at least one stack trace. We obtain 29,874 stack
traces that we link to their corresponding bug report IDs. A bug report ID is linked with a
set of stack traces. We cleanse and verify all of the extracted stack traces manually to ensure
that there is no chaos (e.g., English words describing the crash scenario) in the extracted
stack traces. In addition, we mine duplicate bug report relations among bug reports. After
the stack traces extracted from the comments of a bug report, we keep the remaining words
in the comments as textual description for the stack traces. We group the extracted stack
traces into crash types using the approach in Section 2.2 and maintain a mapping between a
crash type (i.e., a set of stack traces) and its textual description.
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3.2.2 Identification of Developers-defined Crash Correlation Groups

To validate our proposed rules for identifying correlated crash types, we build a gold
standard by mining Developer-defined Crash Correlation Groups from our dataset. More
specifically, we identify Developer-defined Crash Correlation Groups (CCGs) by grouping
together crash types that are linked to the same bugs. We create groups containing at least
two crash types. The links between crash types and bugs are established by developers dur-
ing the triaging and debugging of crash types. These links are updated during the bug fixing
process, therefore we are confident that the crash types collectively linked together to a bug
are correlated.

Overall we obtain 144 Developer-defined CCGs containing a total of 792 crash types
from the Firefox dataset and 1306 Developer-defined CCGs containing 2837 crash types
from the Eclipse dataset. In this study, we use Developer-defined CCGs as our gold stan-
dard to evaluate the performance of our crash type correlation identification rules. For each
Developer-defined CCG, we maintain the list of bugs filed for the group.

3.2.3 Identification of Users

The Firefox crash reports do not contain personal information to identify unique users
reporting the crashes due to privacy concerns. To identify users reporting crashes, we have
to use heuristics and adopt the approach in Khomh et al. (2011). When we process the
Firefox crash reports, we extract the following available information on the crash events:

– the install age (in seconds) since the installation or the last update of the user’s system;
– the date at which the crash was processed on the server;
– the crash time on the user’s operating system when the crash occurred (this time can

shift around with clock resets);
– the uptime (in seconds) since the user’s operating system was launched;
– the last crash of the user;
– the other user’s environment information: operating system name, operating system

version, architecture (e.g., ×86) and CPU family model and stepping.

For each crash report, we use crash time to subtract the “install age” to obtain the instal-
lation time when the user, who reports the crash, installed Firefox. We use the installation
time, other user’s environment information and the last crash times to build a vector of
unique profiles; each profile represents a user. We associate each unique profile with the
list of crash types for which crash reports contain information corresponding to the profile.
In this way, we obtain a mapping between each user and his corresponding crash reports.
We sort the crash types from each user based on their crash times from newest to oldest. In
total, we identify 1,048,576 users (i.e., groups of crash types) from 1,322,385 crash reports.

3.2.4 Identification of Bug Fix Locations

We parse Firefox and Eclipse change logs and apply the heuristics by Śliwerski et al. (2005)
to identify bug fix locations. Precisely, we parse commit log messages using a Perl script
and extract bug IDs and specific keywords, such as “fixed” or “bug” to identify bug fixing
commits. For each bug fixing commit, we extract the list of files that were changed to fix
the bug. In the following, we use the two lists of files obtained for Firefox and Eclipse as
our gold standard to evaluate the performance of our bug localization algorithm and refer to
them as Bug Fixing Location Mapping.
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4 Research Questions

This section presents and discusses each research question. For each research question, we
present the motivation behind the question, the analysis approach and a discussion of our
findings.

RQ1. Can we identify correlated crash types using crash type signature and stack
traces?

Motivation Schröter et al. (2010) observed that when multiple failing stack traces are avail-
able, developers fix the bugs quickly. Therefore, the identification of crash correlation
groups (i.e. correlated crash types) early in the debugging process will not only help devel-
opers fix groups of correlated crash types all together, but it will also help them fix the
bugs faster. The identification of crash correlation groups can also help development teams
to better manage their resources, for example, by assigning correlated bugs to experienced
developers and increasing their priority. Crashes are reported continuously by users until
they are fixed. Therefore, by fixing groups of correlated crash types early, development
teams can reduce the amount of incoming crash reports.

In this research question, we aim to provide developers with simple rules that can be
used to identify crash correlation groups automatically. First, we strive for building a rule
requiring only an analysis of crash type signatures. In this way, development teams would
be able to process large amounts of crash types efficiently since no deep analysis of the
content of crash reports will be required. Second, we investigate if a detailed analysis of
stack traces can improve the identification of crash correlation groups.

A higher recall will enable the discovery of more crash correlation groups, resulting in
further improvement of the bug fixing process and the management of resources.

Analysis Approach To answer RQ1, we introduce the following three rules for the
identification of crash correlation groups.

These rules were derived from a manual analysis of 40 of Firefox crash types selected
randomly.

We define a contains relation between crash type signature elements as follows. Given
a crash type signature S = P1|P2|. . .|Pn, for two elements Pi = 〈f ilei〉〈opi〉〈methi〉
〈parami〉〈memloci〉 and Pj = 〈f ilej 〉〈opj 〉〈methj 〉〈paramj 〉〈memlocj 〉 of S, if
(f ilei = f ilej ) ∧ {opi, methi, parami} ⊆ {opj ,methj , paramj } then Pj contains Pi .

We define a binary relation ⊂ on the set of all crash type signatures S.
Let SA and SB be two crash type signatures where, SA = P A

1 |P A
2 |. . .|P A

n and
SB = P B

1 |P B
2 |. . .|P B

m , with P A
i = 〈f ileA

i 〉〈opA
i 〉〈methA

i 〉〈paramA
i 〉〈memlocA

i 〉, P B
j =

〈f ileB
j 〉〈opB

j 〉〈methB
j 〉〈paramB

j 〉〈memlocB
j 〉, i ∈ {1. . .n}, j ∈ {1. . .m}, and m ≥ n.

SA ⊂ SB if ∀P A
i , i ∈ {1. . .n}, ∃j ∈ {1. . .m}|P B

j contains P A
i . Table 2 presents some

examples of comparison of crash type signatures using ⊂.
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Table 2 Example of the
comparison of crash type
signatures

nsContentUtils::CanCallerAccess

⊂ nsContentUtils::CanCallerAccess(nsPIDOMWindow*)

nsStyleContext::Release()

⊂ nsStyleContext:: nsStyleContext

nvumdshim.dll@0×1845c

⊂ nvumdshim.dll@0×1b115

nsDiskCacheStreamIO::FlushBufferToFile()

⊂ strstr — nsDiskCacheStreamIO::FlushBufferToFile()

Rule 1 identifies similarities between the signatures of correlated crash types. More
specifically, it compares the strings of the signatures of two crash types and uses the contains
relation to decide if they are correlated.

To investigate if a detailed analysis of stack traces can improve the identification of
crash correlation groups, we manually analyzed 400 stack traces extracted from 400 of
Firefox crash reports. The crash reports were selected randomly from our 40 randomly
selected crash types. From this analysis, we derived the following two additional rules for
the identification of crash correlation groups.

Rule 2 can be applied on the following example from Firefox 4.0b1. The top frames
of the crash types js GetGCThingTraceKind and js IsAboutToBeFinalized are respec-
tively js GetGCT hingT raceKind|js/src/jsgc.h and js I sAboutT oBeF inalized|
js/src/jsgc.cpp. These two crash types are correlated and linked to the bug 514819. As
illustrated by the above example, Rule 2 compares the fully qualified file names of the top
frames of two crash types to verify if the crash types are correlated. When two crash types
have the same fully qualified file name in their top frame, the two crash types are correlated.

We also analyze the other subsequent frames in the stack traces of a crash type to further
improve the identification of crash types correlations. We introduce the concept of closed
ordered sub-sets of frames for crash types.

Lets ST be a set of stack traces {T1, T2, . . . , Tp}, where p is the number of stack traces in
the set, Ti = 〈F i

1, F
i
2, . . ., F

i
ni

〉, F i
j = methSigni

j |qf ileNamei
j , j ∈ {1, . . . , ni}, ni is the

number of frames in Ti , and i ∈ {1, . . . , p}.
Figure 2 shows an example of stack trace. Each frame in the stack trace has a

method signature (e.g., OnWriteSegment for F1) and a fully qualified file name (e.g.,
http/nsHttpConnection.cpp for F1).

Given an ordered set of frames SubF = 〈G1, . . ., Gm〉, For each Ti , i ∈ {1, . . . , p}, if
∃k, l, with 1 < k ≤ l ≤ ni | (G1 = qf ileNamei

k) ∧. . .∧(Gm = qf ileNamei
l ), then SubF
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is an ordered sub-set of frames of Ti . The value of each frame in SubF is a Fully Qualified
File Name.

Whenever ∃i ∈ {1, . . . , p}|SubF is an ordered sub-set of frames of Ti , we denote SubF

as an ordered sub-set of frames of ST. SubF is a closed ordered sub-set of frames of ST if
there is no other ordered sub-set of frames of ST containing SubF .

The absolute support of SubF is the number of i ∈ {1, . . . , p}|SubF is an ordered
sub-set of frames of Ti . The relative support of SubF is the absolute support/p. This
relative support is the frequency of SubF in ST. We consider an ordered sub-set of frames
as frequent if its relative support > 0.5.

We mine all the stack traces of each crash type and extract frequent closed ordered sub-
sets of frames (FCSF), using the BI-Directional Extension based frequent closed sequence
mining (BIDE) pattern mining algorithm proposed by Wang and Han (2004). We chose the
BIDE algorithm because it scales very well in the number of frequent closed patterns. In
fact, BIDE does not require the maintenance of a set of candidate closed patterns. BIDE
performs a strict depth first search and can output frequent closed patterns on the fly.

Rule 3 examines the FCSFs of two crash types. If two crash types have a common FCSF,
they are correlated. For example, there are two crash types from Firefox 4.0b7: RtlInte-
gerToUnicodeString and SEH prolog. The Rule 3 mines the stack traces of both crash types
to identify whether these two crash types share common closed ordered sub-sets of frames.
The closed ordered sub-set of frames is identified as illustrated in Table 3. The frequency of
this sub-set of frames is 0.96 in RtlIntegerToUnicodeString and 0.90 in SEH prolog. Both
RtlIntegerToUnicodeString and SEH prolog are correlated and linked to the bug report
whose id is 591599.

To assess the performance of Rule1, Rule 2 and Rule 3, we proceed as follows: First,
we filter out from our data set, all the 40 crash types that were used to discover the rules.
Second, we rank the remaining Eclipse and Firefox crash types based on their creation date
to mimic the current practice. The creation date of a crash type from Firefox is the date on
which the first crash report was received. For Eclipse crash types it is the date on which the
oldest stack trace in the crash type was reported in a bug report. Next, we apply successively
Rule 1, Rule 2 and Rule 3 to the crash types one by one to identify crash correlation groups.
Older crash types are processed first. Every crash type is tested against all the other crash

Table 3 A frequent closed
ordered sub-sets of frames
common to
RtlIntegerToUnicodeString
and SEH prolog

gfx/src/thebes/nsThebesDeviceContext.cpp

gfx/src/thebes/nsThebesGfxFactory.cpp

obj-firefox/xpcom/build/GenericFactory.cpp

xpcom/components/nsComponentManager.cpp

obj-firefox/xpcom/build/nsComponentManagerUtils.cpp
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types to verify its membership of crash correlation groups. When three rules are combined
together, two crash types are in a crash correlation group as long as they satisfy one of three
rules.

We compare the obtained crash correlation groups to Developer-defined CCGs and com-
pute the precision and the recall of the rule using respectively (1) and (2). The precision
value measures the fraction of retrieved crash correlation groups that are correct, while the
recall value measures the fraction of correct crash correlation groups that are retrieved.

precision = |{correct CCGs} ⋂{retrieved CCGs}|
|{retrieved CCGs}| (1)

recall = |{correct CCGs} ⋂{retrieved CCGs}|
|{correct CCGs}| (2)

Rule 3 is dependent on the threshold 0.5 that is used during the identification of frequent
closed ordered sub-sets of frames. Therefore we perform a sensitivity analysis to measure
the impact of threshold selection on the results. Precisely, we repeat the evaluation of Rule
3 using thresholds 0.1 to 1 by step 0.1 and 30 first crash reports in each crash type. Rule 3
is also dependent on the number of stack traces that are processed for each crash type. We
repeat the evaluation of Rule 3 using 10, 20, 30, 40, 50, and 100 first crash reports in each
crash type and the threshold 0.5.

Findings We obtain a precision of 100 % and a recall of 68 % for Firefox using Rule 1. All
the crash correlation groups of Firefox retrieved using Rule 1 are correct. For Eclipse, Rule
1 achieved a precision of 69 % and a recall of 46 %. We attribute the low recall observed for
Eclipse to missing information in crash type signatures; indeed Eclipse crash type signatures
contain neither parameters nor memory location information. However, achieving a 69 %
precision with a simple rule like Rule 1 is already a good result. Moreover, Rule 1 identifies
crash type correlation groups very efficiently. We were able to process 752 Firefox crash
types in 4.53 seconds and 2797 Eclipse crash types in 22.32 seconds on a Lenovo Thinkpad
laptop with an Intel Core i7-2620M CPU 2.7GHz processor and 8GB RAM.

We obtain a precision of 45 % and a recall of 48 % for Firefox using Rule 2, and a
precision of 40 % and a recall of 52 % for Eclipse. When we apply Rule 1 and Rule 2

Table 4 Precision and recall of
using Rule 1, Rule 2 and Rule 3
together for different thresholds

Rule 1 + Rule 2 + Rule 3

Firefox Eclipse

Threshold Precision (%) Recall (%) Precision (%) Recall (%)

0.1 78 84 70 58

0.2 83 84 70 58

0.3 85 85 75 63

0.4 92 87 79 65

0.5 94 90 79 65

0.6 90 85 79 65

0.7 88 84 77 62

0.8 84 83 77 62

0.9 75 83 75 58

1 70 83 75 58
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Table 5 Precision and recall of
using Rule 1, Rule 2 and Rule 3
together for different number of
crash reports. NCR stands for
number of crash reports

Rule 1 + Rule 2 + Rule 3

Firefox Eclipse

NCR Precision (%) Recall (%) Precision (%) Recall (%)

10 89 85 75 58

20 91 88 77 62

30 94 90 79 65

40 94 90 77 62

50 90 87 74 59

100 88 83 72 55

together, we obtain a precision of 89 % and a recall of 83 % on Firefox, and a precision of
75 % and a recall of 58 % on Eclipse. The results indicate that Rule 2 increase the recall
obtained with Rule 1 by 15 % on Firefox and 12 % on Eclipse.

Table 4 shows that when the threshold of relative support used to identify frequent closed
ordered sub-sets of frames is ≥ 0.5, Rule 2 and Rule 3 increase the recall obtained with
Rule 1 without decreasing the precision. For both Firefox and Eclipse, the best precision
and recall are obtained with a threshold value of 0.5.

Table 5 shows that our three rules do not require the analysis of a large number of crash
reports. High precision and recall (i.e., ≥ 0.65) are achieved with as little as 10 stack traces
per crash types on both Firefox and Eclipse stack traces. This result is particularly important
since software organizations receive millions of incoming crash reports every day. Using
our rules, they can identify crash correlation groups efficiently by analyzing only the first
10 incoming crash reports of every crash types.

Table 6 summarizes the results obtained by using different sets of rules. Rule 2 improves
the recall of Rule 1 on Firefox and Eclipse. However Rule 2 decreases the precision of Rule
1 on Firefox by 11 % and increases the precision of Rule 1 on Eclipse by 6 %. Based on the
results in Tables 4 and 5, when the threshold values of relative support and number of crash
reports are set to be 0.5 and 30 respectively for Rule 3, Rule 3 improves the precision and
recall obtained by using Rule 1 and Rule 2 together.

RQ2. Can we identify correlated crash types using the occurrence times of crash
events?

Motivation Two crash types that co-occur frequently within a short time period and from the
same user’s machine are likely to be correlated. Besides studying the structural information

Table 6 Summarized results of using Rule 1, Rule 2 and Rule 3. The value in parentheses shows the percent
difference in results caused by using one more rule on correlation group identification

Firefox Eclipse

Rules Precision (%) Recall (%) Precision (%) Recall (%)

Rule 1 100 68 69 46

Rule 1+ Rule 2 89 (−11) 83 (+15) 75 (+6) 58 (+12)

Rule 1+ Rule 2+ Rule 3 94 (+5) 90 (+7) 79 (+4) 65 (+7)
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(i.e., crash signatures and stack traces) of crash types in RQ1, in this research question,
we investigate the possibility of using the occurrence time of crash events (i.e., temporal
information of crash types) to identify crash correlation groups. Specifically, we search for
any set of crash types that frequently co-occur together within a time period (e.g., one day,
three days, one week and two weeks) and that originate from the same users’ machines. The
shorter the time period is, the sooner the crash types can be linked and processed together
for bug fixing.

Analysis Approach To achieve the goal set in this research question, we introduce a rule to
identify crash correlation groups using frequent patterns of co-occurrences of crash types
on users’ machines.

Let U be a set of users {U1, U2, . . . , Un}, where n is the number of users who reported a
crash. For each user Ui , the group of crash types reported by Ui is 〈Ci

1, C
i
2, . . ., C

i
ni

〉, where
ni is the number of crash types reported by the user Ui , Ci

j is the jth crash type reported by
the user Ui , j ∈ {1, . . . , ni}, i ∈ {1, . . . , n}.

Given a set of crash types SubC = 〈C1, . . ., Cm〉, where m ≥ 2, for each user Ui ,
i ∈ {1, . . . , n}, if ∃k, l, with 1 < k ≤ l ≤ ni | (C1 = Ci

k)∧ . . . ∧(Cm = Ci
l ), then SubC is a

sub-set of crash types of Ui .
The absolute support of SubC is the number of i ∈ {1, . . . , n}|SubC is a sub-set of crash

types of Ui . We mine all the groups of crash types of users and extract frequent sub-sets
of crash types, using AprioriTID (Agrawal and Srikant 1994), an algorithm for discovering
frequent item-sets (groups of crash types appearing frequently) among users. To be able
to capture more sub-sets of crash types, we set the absolute support threshold value of the
algorithm to 2, i.e., as long as a sub-set appears twice among users and it contains at least
two crash types, we consider it as frequent.

Once the sets of frequent sub-sets of crash types are identified, we use the crash times of
crash types to validate these frequent sub-sets. Given a time window (e.g., one day or one
week), if all crash types of a sub-set occur within the time window, we keep this sub-set as
valid.

To assess the performance of Rule 4, similar to RQ1, we rank the Firefox crash types
based on their creation date and apply Rule 4 to the crash types one by one to mimic the cur-
rent practice. Older crash types are processed first. We test a crash type against all the other
crash types to identify its crash correlation group. The obtained crash correlation groups
are compared to Developer-defined CCGs and precision and recall are computed using (1)
and (2). Since Eclipse’s stack traces are mined from comments contained in bug reports and
because the occurrence time of these stack traces (i.e., the crash events) is not the same as
the time at which the stack traces were posted on bug reports, we cannot apply Rule 4 on
Eclipse data. Rule 4 requires the exact occurrence time of crash events. We also apply suc-
cessively Rule 1, Rule 2, Rule 3 and Rule 4 on crash types one by one to identify crash
correlation groups. Based on the results in RQ1, the threshold values of relative support
and the number of crash reports are set to be 0.5 and 30 respectively for Rule 3. When four
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Table 7 Precision and recall of
Rule 4 for different length of
time windows on firefox

Length of time window Precision (%) Recall (%)

One day 52 58

Three days 45 62

One week 42 80

Two weeks 40 84

rules are combined together, two crash types are in a crash correlation group as long as they
satisfy one of four rules.

Also, Rule 4 is dependent on the threshold value of the time window used during the
validation of frequent sub-sets of crash types. To measure the impact of threshold selection
on our results, we perform a sensitivity analysis. Precisely, we repeat the evaluation of Rule
4 using time windows of one day, three days, one week and two weeks.

Findings Table 7 shows that the length of the time window affects the precision and recall
of Rule 4. With the decrease of the length of the time window, the precision increases.
However, the recall decreases as more false positives are also introduced. This result
was expected since a wider time window retains more frequent sub-sets of crash reports.
Although the result indicates that the precision improves as the time window gets smaller,
we could not test Rule 4 with a time window smaller than 1 day, such as 1 hour or 10
hours, due to the size of our dataset. When the time window is set to be smaller than 1 day,
very few sub-sets of crash reports are returned. Table 8 shows that the Rule 4 improves the
recall obtained with Rule 1, Rule 2 and Rule 3, but it decreases the precision as more false
positives are introduced.

RQ3. Can we identify correlated crash types using the textual similarity between
users comments about the crash events?

Motivation Comments posted for a crash report or a bug report from users provide valuable
information about the description of crashes and the varied scenarios in which they occurred.
In this research question, we investigate the possibility of using textual similarity between
user comments of crash types to identify crash correlation groups.

Analysis Approach To answer this research question, we introduce a rule to identify crash
correlation groups using the textual similarity between comments provided by users about
the crash types.

Each crash type has its textual description which is a set of user comments. We merge
the set of user comments into a single document. Each document has a set of terms

Table 8 Precision and recall of
using Rule 1, Rule 2, Rule 3 and
Rule 4 together for different
length of time windows on firefox

Length of Rule 1 + Rule 2 + Rule 3 + Rule 4

Time Window Precision (%) Recall (%)

One day 88 87

Three days 84 87

One week 82 87

Two weeks 79 92
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{
T Mi

1, T Mi
2, . . . , T Mi

m

}
; m is the total number of terms in the textual description. We have

a mapping between a crash type and a set of terms.
We use vector space model (Raghavan and Wong 1986), a widely used technique in

traditional information retrieval, to calculate the textual similarity between crash types. In
the vector space model, each document (i.e., a crash type in our case) is represented as an N-
dimensional vector, where N is the number of unique terms appearing in all the documents
and Wi , where 1 < i ≤ N , is the weight of the ith term in the vector 〈 W1, . . ., WN 〉 and
defined by (3).

Wi = T Fi × IDFi (3)

In (3), TF is the Term Frequency value and IDF is the Inverse Document Frequency
value. The Term Frequency is the frequency of a term appearing in a document. The Inverse
Document Frequency diminishes the weight of terms that occur very frequently in the whole
corpus and increases the weight of terms that occur rarely. We calculate the T Fi as shown
in (4) and the IDFi as shown in (5) for each term.

T Fi = |{occurrences of ith term in the document}|
|{total terms in the document}| (4)

IDFi = log

( |{total documents in the corpus}|
|{documents having the ith term}|

)

(5)

After the vectors are created for each document (i.e., a crash type in our case), we can
calculate the similarity of a pair of documents through a formula defining the similarity of
two vectors. Typically, for two vectors V1 = 〈W11, W12 . . ., W1N〉 and V2 = 〈W21, W22
. . ., W2N〉, the similarity of V1 and V2 equals the value of the Cosine similarity (Cosine
Similarity 2013), defined in (6), of V1 and V2.

Sim =

n∑

i=1

W1i × W2i

√
n∑

i=1
(W1i)2 ×

√
n∑

i=1
(W2i)2

(6)

To assess the performance of Rule 5, we process all the Firefox crash reports and Eclipse
bug reports for each crash type and rule out any crash types without user comments. Second,
we construct a user comment document CM of a crash type by merging user comments
from each crash report. Third, we turn user comment documents into vectors and compute
the similarity value for every pair of crash types.

To reduce the effect of word inflection on the textual similarity calculation of user com-
ments of crash types, we conduct word normalization on the user comments from Firefox
crash reports and Eclipse bug reports. More specifically, we conduct word tokenization to
parse user comments into word tokens by splitting them using delimiters like space, punc-
tuation mark, etc. Second, we remove non-English words using Wordnet4, a large lexical

4http://wordnet.princeton.edu/

http://wordnet.princeton.edu/
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Table 9 Precision and recall of Rule 5 for different similarity values when all the crash reports of a crash
type are processed (to extract user comments). SV stands for similarity value

SV Firefox Eclipse

Precision(%) Recall(%) Precision(%) Recall(%)

0.7 42 57 38 34

0.75 52 55 40 32

0.8 54 48 40 32

0.85 55 45 45 28

0.9 60 40 45 28

0.95 62 32 46 26

database for English. Finally, we remove stop words and use the Morpha Stemmer5 to stem
the words to their root form.

Finally, we test each crash type against all the other crash types to identify crash cor-
relation groups. We also apply successively Rule 1, Rule 2, Rule 3, Rule 4 and Rule 5 on
Firefox crash types, and Rule 1, Rule 2, Rule 3 and Rule 5 on Eclipse crash types, one by
one to identify crash correlation groups. When the rules are combined together, two crash
types are in a crash correlation group as long as they satisfy one of the rules. We compare the
obtained crash correlation groups to Developer-defined CCGs and compute the precision
and the recall of the rule using respectively (1) and (2).

Similar to Rule 3 and Rule 4, Rule 5 is dependent on a threshold value. Therefore we
perform a sensitivity analysis to measure the impact of threshold selection on the results.
Precisely, we repeat the evaluation of Rule 5 using similarity threshold values of: 0.7, 0.75,
0.8, 0.85, 0.9, 0.95.

Rule 5 is also dependent on the number of crash reports of each crash type that are pro-
cessed to extract users comments. A higher number of crash reports is likely to produce more
users comments, which in turn will probably produce more meaningful terms. Therefore,
we perform another sensitivity analysis to measure the impact of the number of processed
crash reports on the results of Rule 5. Precisely, we repeat the evaluation of Rule 5 using
30, 50, 100 and all crash reports respectively.

Findings Table 9 shows that precision increases and recall decreases when the threshold
similarity value is increased. This is an expected result frequently observed in Information
Retrieval (IR) studies. A high similarity threshold value generally reduces the rate of false
positives but increases the number of false negative.

Table 10 shows that the number of crash reports, that are processed to extract users
comments, affects the performance of Rule 5. The more a crash type is commented, the
higher will be the number of terms in the user comment document of this crash type, which
in turn increases the odds of identifying a similar crash type using Rule 5.

Table 11 shows that using Rule 5 cannot improve the results obtained by using others
rules, because all the correct Crash Correlation Groups identified by Rule 5 can also be
identified by using other rules together (i.e., Rule 1 + Rule 2 + Rule 3 on Eclipse). However,
when we combine Rule 1 and Rule 5 together, we obtain a precision of 80 % and a recall of

5http://mvnrepository.com/artifact/edu.washington.cs.knowitall/morpha-stemmer

http://mvnrepository.com/artifact/edu.washington.cs.knowitall/morpha-stemmer
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Table 10 Precision and recall of Rule 5 for different number of crash reports when the similarity threshold
is 0.75. NCR stands for number of crash reports. All means all the crash reports of a crash type in our corpus

NCR Firefox Eclipse

Precision(%) Recall(%) Precision(%) Recall(%)

30 32 38 24 18

50 36 42 30 22

100 46 50 36 30

All 52 55 40 32

74 % on Firefox, and a precision of 79 % and a recall of 68 % on Eclipse, when the similarity
value is 0.95 and 50 crash reports of each crash type used for mining user comments. Rule
5 can improve the results obtained with Rule 1.

Based on the results in RQ1, RQ2 and RQ3, the combination of Rule 1, Rule 2 and Rule
3 is the best combination. When the threshold values of Rule 3 are set to be 0.5 for relative
support and 30 for the number of crash reports, the combination achieves a precision of
94 % and a recall of 90 %.

RQ4. Can the correlated crash types help identify buggy files?

Motivation With the growing complexity of software systems, the demand for effi-
cient techniques to identify suspicious source code fragments that may contain bugs has
increased. However, locating bugs in software systems is not an easily automatable process.
Although many bug localization techniques have been proposed in the literature, there is
no particular technique that is suitable for every software system (Eric Wong and Debroy
2009). Moreover, most techniques require both failing and successful test cases to be effec-
tive. Consequently, when only failing stack traces are available, developers usually apply
only intuitive techniques, such as the inspection of the top 10 frames of failing stack traces.
Previous work (Schröter et al. 2010) has shown that buggy files are often in the top 10
frames of failing stack traces.

In this research question, we explore the possibility of using correlated crash types for
localizing buggy files. We aim to propose a technique to automatically locate buggy files

Table 11 Precision and recall of using Rule 1, Rule 2, Rule 3, Rule 4 and Rule 5 together for different
similarity values when all the crash reports of a crash type are processed (to extract user comments). SV
stands for similarity value

SV First three Rules+Rule 4+Rule 5 firefox First three Rules+Rule 5 eclipse

Precision(%) Recall(%) Precision(%) Recall(%)

0.7 65 92 57 65

0.75 67 92 60 65

0.8 70 92 60 65

0.85 72 92 62 65

0.9 75 92 62 65

0.95 77 92 64 65
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Fig. 7 Overview of the steps of BFFinder; CCG stands for Crash Correlation Group

that need to be corrected to fix bugs. We intend to build a technique that can rank suspicious
buggy files effectively, reducing the effort required to examine the files. The proposed tech-
nique should also leverage knowledge of crash correlation groups in order to help debugging
teams fix correlated crash types all together.

Analysis Approach To answer this question, we randomly sampled 40 Firefox crash types
with a resolved fix. For each Firefox crash type we randomly selected 10 crash reports and
extracted the contained stack traces. In total, we obtained 400 stack traces. We manually
examined these stack traces and derived the bug localization method Buggy Files Finder
(BFFinder) presented below. BFFinder analyzes correlations between crash types and builds
a Bayesian Belief Network (BBN) (Michie et al. 1994) to compute the probability that a
file appearing in a failing stack trace is buggy. We apply BFFinder on Firefox and Eclipse
separately. Figure 7 depicts the steps of BFFinder. In the following, we elaborate more on
these steps.

Step 1. Extraction of frequent closed ordered sub-sets of frames. The BIDE pattern
mining algorithm is applied on each crash type to extract its set of frequent closed ordered
sub-sets of frames.

Step 2. Identification of crash correlation groups. In this paper, we propose five rules
to identify crash correlation groups. More specifically, Rule 1, Rule 2, and Rule 3 are
applied on the signatures of the crash types and their stack traces to identify crash correla-
tion groups, Rule 4 is applied on the co-occurrences of crash types and Rule 5 is applied
on the user comments of crash types. In this step, we apply Rule 1, Rule 2 and Rule 3
together to identify crash correlation groups, due to the promising results of using them
together.

Step 3. Extraction of frequently failing files. For each crash correlation group, the list
of files appearing in all the failing stack traces of the crash correlation group is created. In
case of crash types not involved in any correlation group, the list of files appearing in all
the failing stack traces of the crash type is created instead. We refer to this list as the list of
frequently failing files.

Step 4. Construction of vectors of characteristics for files. Each file appearing in a
failing stack trace is mapped into a feature vector of four dimensions.

– The first dimension captures the event of the file appearing in a frequent closed ordered
sub-sets of frames, i.e., it counts the number of times that the file appeared in a FCSF.

– The second dimension captures the event of the file appearing in a closed ordered sub-
sets of frames common to all the stack traces of crash types in a crash correlation group,
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Precision on Firefox Recall on Firefox

a b

Fig. 8 Precision and Recall of Top 3, Top 4, Top 5 and Top 10 frames candidate reported by BFFinder for
different training corpora on firefox

i.e., it counts the number of times that the file appeared in a FCSF common to all the
stack traces in a crash correlation group. If a file is not involved in a crash correlation
group, this dimension captures the appearance of the file in a FCSF that is common to
all the stack traces of its crash type.

– The third dimension captures the failure frequency of the file, i.e., the number of
appearance of the file in a list of frequently failing files.

– The fourth dimension captures the number of times that the file appeared in the top ten
frames of a stack trace.

Step 5. Creation of a corpus to train the BBN. The vectors of characteristics of Firefox
files extracted from the 400 Firefox stack traces examined manually are used to calibrate
the BBN; we have knowledge of buggy files for these stack traces. Given the vector of
characteristics of any other file, the trained BBN is executed to compute the probability that
the file is buggy.

Step 6. Construction of a Bayesian Belief Network to rank files. The vector of char-
acteristics obtained in Step 4 are used to structure a BBN. The input nodes of this BBN

Precision on Eclipse Recall on Eclipse

a b

Fig. 9 Precision and recall of Top 3, Top 4, Top 5 and Top 10 frames candidate reported by BFFinder for
different training corpora on eclipse
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Table 12 Precision and recall of duplicate bugs and related bugs identification using Developer-defined
crash correlation groups

Firefox Eclipse

Precision(%) Recall(%) Precision(%) Recall(%)

Duplicate bugs identification 55 50 38 47

Related bugs identification 32 55 52 48

correspond to the four dimensions of a vector of characteristics, while the output node is the
probability of a file being buggy. This probability is used to rank the files.

Step 7. Ranking of file Based on the probability of containing a bug. For each crash
correlation group, the files extracted from all the stack traces are ranked based on the
probability that they contain a bug. High rankings are assigned to files with high probabil-
ities. Files appearing on the stack traces of crash types that are not involved in any crash
correlation group are ranked using the same criteria.

The construction of BFFinder is guided by the following observations made during the
manual examination of the Firefox sample of 40 crash types with 400 stack traces:

– Observation 1. 75 % of Firefox files changed to fix bugs related to a crash type
(respectively a crash correlation group) appear in all the stack traces of the crash type
(respectively the crash correlation group), i.e., they are frequently failing files.

– Observation 2.Whenever there are FCSFs for a crash type, 80 % of files changed to fix
bugs related to this crash type appear among the frames of a FCSF.

– Observation 3. As reported by previous studies (e.g., on Eclipse stack traces (Schröter
et al. 2010)) , we found that approximately 65 % of bugs in our Firefox sample were
located in the files from the top 10 frames of the failing stack traces.

To assess the performance of BFFinder, we proceed as follows: First, we filter out from
our data set, all the 40 Firefox crash types that were used to derive BFFinder. We also
remove crash types that are associated with unfixed bugs. Then, we randomly selected 40
Eclipse crash types to train BFFinder for Eclipse stack traces. Next, we execute Step [1–
4] of BFFinder to build the vector of characteristics of all the files that appeared in a stack
trace of the remaining crash types; In Step 2, we apply Rule 1, Rule 2 and Rule 3 together
to identify crash correlation groups, due to the promising results of using them together.
For each obtained vector, we run the BBN of BFFinder to compute the probability that the
corresponding file is buggy. We apply Step 7 to rank Eclipse and Firefox files in our data
set. Using the two lists of buggy files (from Eclipse and Firefox) extracted from change logs
as our gold standard (i.e., see Section 3.2.4), we compute the k-precision and the k-recall of

Table 13 Precision and recall of duplicate and related bug report identification using crash correlation
groups generated by our rules: Rule 1+ Rule 2 + Rule 3

Firefox Eclipse

Precision(%) Recall(%) Precision(%) Recall(%)

Duplicate bugs identification 51 45 30 34

Related bugs identification 26 50 45 37
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BFFinder following (7) and (8).

k − precision = # of buggy f iles in top k results

k
(7)

k − recall = # of buggy f iles in top k results

|{buggy f iles}| (8)

Because the performance of machine learners, such as BBNs, is generally impacted by
the quality of the training corpus, we perform a further evaluation to measure the impact
of the size of our training corpus on the performance of BFFinder. Precisely, for each sys-
tem (i.e., Eclipse and Firefox), we create different training corpus containing respectively
50 %, 60 %, 70 % and 80 % of all crash types from the systems and compute different
k-precisions and k-recalls. We use our Bug Fixing Location Mapping (see Section 3.2.4) to
identify buggy files in the different training corpus and to evaluate the results of BFFinder.

Findings On average, BFFinder achieves a recall of 72 % for Firefox and 84 % for Eclipse
on the top 10 files reported as buggy. These high recall values suggest that BFFinder can be
used efficiently with a short history of past bug locations, since the BBN was trained using
only 40 Firefox crash types for Firefox and 40 Eclipse crash types for Eclipse. When the
training corpus is increased to 80 % of all crash types for each system, BFFinder achieves
a recall of 92 % for Firefox and a recall of 90 % for Eclipse on average, on the top 10
files reported as buggy. These top 10 files represent only 5.5 % of Firefox files and 3.8 %
of Eclipse files contained in the failing stack traces. Therefore, using BFFinder, debugging
teams can recover respectively 92 % and 90 % of Firefox and Eclipse buggy files by exam-
ining only 5.5 % of potential buggy candidates in Firefox and 3.8 % of potential buggy
candidates in Eclipse.

Figures 8 and 9 shows results of precision and recall for top 3, top 4, top 5 and top 10
frames respectively, using different training corpora. These results show that precision and
recall increases with the size of the training corpus, meaning that when more information
about the location of past bugs is available, the precision and recall of BFFinder can be
improved. When looking at precision and recall on the top 3 files, we observe that BFFinder
can achieve a recall of 62 % for Firefox and 52 % for Eclipse. Hence, by only looking at 3
files reported by BFFinder as buggy, debugging teams can recover 62 % of Firefox bugs and
52 % of Eclipse bugs. Moreover, BFFinder allows them to fix correlated bugs all together.

RQ5. Can the correlated crash types help identify duplicate bug reports?

Motivation Due to the large number of existing bug reports, it is challenging for triaging
teams to examine all of the existing bug reports to detect duplications of bug reports or
related bug reports (i.e., bug reports having “blocks” or “depend on” relationships6 among
them). An efficient approach of detecting duplicate or related bug reports can reduce both
the workload of triagers and the possibility of passing duplicate bug reports onto bug fixers.
In this research question, we explore the possibility of using the correlations between crash
types (i.e., crash correlation groups) to help identify duplicate bug reports.

Analysis Approach To answer this question, we introduce the following two relations on
crash correlation groups.

6http://eigen.tuxfamily.org/index.php?title=Bugzilla

http://eigen.tuxfamily.org/index.php?title=Bugzilla
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Same group relation. If a set of bug reports is assigned to a crash correlation group, we
consider these bug reports are duplicate or related.

Contain relation. Given two crash correlation groups
CCG1= {CT 1

1 , CT 1
2 , . . . , CT 1

m} and CCG2={CT 2
1 , CT 2

2 , . . . , CT 2
n }, where m is the num-

ber of crash types in CCG1 and n is the number of crash types in CCG2, if ∃k, l, with 1 <

k ≤ n, 1 < l ≤ m, and (CT 1
1 =CT 2

k or CT 1
1 ⊂ CT 2

k or CT 2
k ⊂ CT 1

1 ) ∧ . . . ∧ (CT 1
m = CT 2

l

or CT 1
m ⊂ CT 2

l or CT 2
l ⊂ CT 1

m), we consider CCG2 contains CCG1 and the bug reports
associated with them are duplicated or related, where⊂ (i.e. contains relation between crash
type signatures) is defined in Rule 1.

For example, we have two crash correlation groups:
CCG1= {nsQueryInterface::operator(), nsContentUtils::CanCallerAccess, nsContentU-
tils::CanCallerAccess(nsPIDOMWindow*)}, and its bug report id 612383. CCG2=
{nsQueryInterface::operator(), nsContentUtils::CanCallerAccess, nsDOMConstructor::-
Create(unsigned short const* nsDOMClassInfoData const* nsGlobalNameStruct const*
nsPIDOMWindow* nsDOMConstructor**)}, and its bug report id 606421.

Since nsContentUtils::CanCallerAccess (from CCG2) ⊂ nsContentUtils::CanCallerAc-
cess(nsPIDOMWindow*)( from CCG1), so the above two groups have a Contain Relation
(i.e. CCG2 contains CCG1), and their assigned bug reports are duplicated.

To assess the performance of using these two relations to identify duplicate bug reports
and related bug reports, we perform two experienments:

Experienment 1: We identify these two relations from Developer-defined Crash Corre-
lation Groups (CCGs) and use these relations to predict pairs of duplicate bug reports and
pairs of related bug reports.

Experienment 2:We use Rule 1, Rule 2 and Rule 3 together to identify crash correlation
groups, because the combination of Rule 1, Rule 2 and Rule 3 can identify more correct
crash correlation groups than other combinations of rules do. Based on the results in RQ1,
the combination of three rules can identify 90% of Developer-defined Crash Correlation
Groups. We then identify the two relations between crash correlation groups to predict pairs
of duplicate bug reports and pairs of related bug reports.

The obtained pairs of duplicate bug reports and related bug reports are compared with
the ones mined from Firefox crash reports and Eclipse bug reports separately. The precision
and recall are computed using (9) and (10).

precision = |{correct pairs} ⋂{retrieved pairs}|
|{retrieved pairs}| (9)

recall = |{correct pairs} ⋂{retrieved pairs}|
|{correct pairs}| (10)

Findings Table 12 shows the results of identifying bug report duplication and related bug
reports using Developer-defined crash groups (i.e. our gold standard for validation our
approach). It confirms that using crash correlation groups can help identify bug report dupli-
cation and related bug reports. Our method for bug report duplication identification has a
better precision and recall on Firefox than Eclipse.

Table 13 presents the results of identifying bug duplication and related bugs using the
crash correlation groups generated by our proposed rules Rule 1, Rule 2 and Rule 3 together.
The results are lower than ones in Table 12, because the identified crash correlation groups
using Rule 1, Rule 2 and Rule 3 together contain false groups compared with Developer-
defined crash groups, which confirms that the number of crash correlation groups affect the
results of our approach for identifying duplicate and related bugs.
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5 Threats to Validity

This section discusses the threats to validity of our study following the guidelines for case
study research (Yin 2002).

Construct validity threats concern the relation between theory and observation. In this
work, the construct validity threats are mainly due to measurement errors. We extract stack
traces by parsing the HTML Firefox crash reports and analyzing the comments section of
Eclipse bug reports. To identify bug fix locations, we mine Mercurial logs and CVS logs,
and apply the heuristics by Śliwerski et al. (2005). We map bug fix locations to stack traces
using string matching. Although this technique may not be a hundred percent accurate, it has
been used satisfactorily in many previous studies, e.g., (Schröter et al. 2010; Dhaliwal et al.
2011; Śliwerski et al. 2005). We use a heuristic (Khomh et al. 2011) based on “install age”,
“crash times”, configuration and architecture of crashing systems to identify the unique
users of our studied versions of Firefox. The rule 4 of our study critically relies on the
identification of users reporting the crash types. In (Khomh et al. 2011), the heuristic has
been validated, but more validations are needed to strengthen the findings.

Threats to internal validity concern our selection of subject systems, tools, and analysis
method. We use the stack traces posted by users in Eclipse bug reports and form Eclipse
crash signatures following the same approach as the Mozilla Firefox team. The stack traces
may not be complete and the relationship between Eclipse crash types may not be complete.

Reliability validity threats concern the possibility of replicating this study. We attempt to
provide all the necessary details to replicate our study. The Mercurial repository of Firefox
is publicly available to obtain commit logs. The Socorro crash server is also available pub-
licly (Mozilla Crash Reporting Server 2012), to obtain the same data for the same releases.
Eclipse bug reports from the 2008 MSR Mining Challenge are also publicly available.

6 Related Work

In this section, we summarize the related work on field crash reports, bug correlation and
duplication, and analysis of stack traces.

6.1 Analysis of Field Crash Reports

Many techniques have been proposed to prioritize groups of similar crash reports dur-
ing debugging activities. Podgurski et al. (2003) introduced a failure clustering approach
to group similar crash reports together in order to fix the larger groups. Kim et al.
(2011) introduced a machine learning technique to predict crash reports that will become
top crashers and which they claim should be fixed in priority. Khomh et al. (2011)
analyzed the entropy of field crashes and proposed an entropy based approach for the
triaging of field crash reports. The approach assigns high priorities to crashes with high
entropies and high frequencies, i.e., crashes affecting a large number of users frequently.
All of the above approaches focus on grouping field crash reports and prioritize the
groups of crash reports for bug fixing. However, our approach of this paper is to iden-
tify relations among crash types (i.e., a group of simialr crash reports is considered as
a crash type) for bug fixing and bug report duplication identification. Furthermore, the
bug localization method presented in this paper (i.e., BFFinder) can be combined with
the aforementioned techniques to help development teams to correct high priority bugs
efficiently.
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6.2 Bug Correlation, Duplication and Localization

Bug correlation and bug localization have been researched extensively. Le and Soffa (2010)
proposed a bug correlation algorithm to identify causal relationships among bugs in a soft-
ware system. Liblit et al. (2005) studied predicate patterns in correct and incorrect execution
traces and proposed an algorithm to identify the predictors of a bug. They claim that their
proposed algorithm can be used to detect a variety of both anticipated and unanticipated
causes of failures. Ball et al. (2003) developed a localization technique for error traces from
a model checker. This technique identifies transitions that only appear in failing traces (but
not in correct traces). Jones et al. (2002) and Jones and Harrold (2005) proposed a visualiza-
tion based technique named Tarantula to aid developers to locate errors and bugs in software
systems by diagnosing the execution traces of successful and failing test cases. Nessa et al.
(2008) developed a fault localization algorithm based on N-gram analysis, to rank the exe-
cutable statements of a software system by their level of suspicion. The above techniques
emphasize the importance of crashing threads for bug localization. However, these tech-
niques rely highly on source code instrumentation, predicates, and coverage reports, or
successful traces, which limits their applicability of only analyzing crashing threads from
crash reports for bug localization. In this paper, our apporach only analyzes crashing threads
and do not require source code analysis.

Bug report duplication has been researched extensively. Wang et al. (2008) used both
information retrieval techniques and execution traces to detect duplicate reports. however
due to the difficulty of obtaining execution traces for existing reports, Sun et al. (2010)
proposed to use a discriminative approach comparing textual similarity descriptions of the
bug reports. Sun et al. (2011) used not only text but also other features that are available
in BugZilla, e.g., version of the product or the priority of the report, to identify duplicate
bug reports, and they extended one of the latest textual similarity measures in informa-
tion retrieval for retrieving structured documents namely BM25F. Similar to our study, they
all applied text mining techniques to measure text similarities, however, in our study, we
explore the possibility of using correlations between crash types to help identify duplicate
bug reports and related bug reports.

6.3 Analysis of Stack Traces

The use of stack traces by developers during bug fixing activities has been investigated
to a great extent. Schröter et al. (2010) examined bug fixing activities in Eclipse and
observed that when failing stack traces are available, developers fix the bugs faster. More-
over, the bugs are fixed in files from the top 10 frames of the failing stack traces.
Dhaliwal et al. (2011) analyzed the use of stack traces by Firefox developers and out-
line some limitations in the crash grouping process of Mozilla. They proposed a crash
report grouping approach based on failing stack traces comparisons using the Leven-
shtein distance (Kruskal 1983) within a crash type. Brodie et al. (2005) proposed an
approach to identify similar bugs using stack trace comparisons and historical data of pre-
vious bugs. Glerum et al. (2009) introduced the Windows Error Reporting (WER) system
which groups detailed crash reports using a bucketing algorithm. The bucketing algo-
rithm uses multiple heuristics specific to the application supported by WER and updated
by developers manually. Dang et al. (2012) propose ReBucket which is a method for
clustering crash reports based on call stack similarities to improve the accuracy of buck-
eting. Some visualization techniques have also been proposed by Chan et al. (2009) and
Kim et al. (2011) to assist development teams in the identification of relations between
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crashes. Although many of these approaches have investigated similarities between stack
traces, none has attempted to identify crash correlation groups for crash types. In this
paper we propose five rules to identify crash groups using an analysis of failing stack
traces.

7 Conclusion and Future Work

The analysis of crash reports for bug fixing is a very challenging task that requires a large
amount of manual work from developers. In this study, we investigate three crash type
properties: stack traces, time and text to derive rules to identify correlated crash types
automatically. We propose five rules: Crash Type Signature Comparison (i.e., Rule 1),
Top Frame Comparison (i.e., Rule 2), Frequent Closed Ordered Sub-Set Comparison (i.e.,
Rule 3), Time-based Co-occurrence of Crash Types Comparison (i.e., Rule 4) and Textual
Similarity of Crash Types Comparison (i.e., Rule 5).

We also propose a bug localization method called Buggy Files Finder (BFFinder) to
locate and rank buggy files from the stack traces in crash reports. BFFinder uses our rules to
identify correlated crash types. Using a Bayesian Belief Network, BFFinder computes and
ranks files from stack traces based on their probability to be buggy. Furthermore, we apply
the relations between crash correlation groups to identify duplicate bugs and related bugs.

We conducted a case study using Firefox and Eclipse to verify our proposed rules and
methods for localizing bugs and identifying duplicate bugs. We found that when applied
together, the first three rules achieve a precision of 91 % and a recall of 87 % for Fire-
fox, and a precision of 76 % and a recall of 61 % for Eclipse. The first three rules do not
require the analysis of a large number of crash reports. High precision and recall is achieved
with as little as 10 crash reports per crash type. The fourth rule, identifying frequent sub-
sets of crash types reported by users, can achieve a high recall (i.e., 84 %) when the crash
times of these crash types are within a two week time window. The fifth rule investigates
the possibility of using textual similarity of crash types to group them. The highest preci-
sion it can obtain is 62 % when the threshold value of the clustering algorithm is set to
0.95.

Our case study also shows that with a training corpus containing only 40 Firefox crash
types, BFFinder achieves a recall of 72% on the top 10 files reported as buggy.When trained
on 80 % of the corpus, the recall of BFFinder are 92 % for Firefox and 90 % for Eclipse,
on the top 10 files reported as buggy. These results suggest that BFFinder can be used
efficiently with little information about the location of past bugs. When more information
on the location of past bugs is available, the precision and recall of BFFinder is improved.
Using BFFinder, debugging teams can recover 92 % of buggy files by examining only 5.5 %
of all the files contained in Firefox’s stack traces and 90 % of buggy files by examining only
3.8 % of all the files contained in Eclipse’s stack traces. BFFinder allows debugging teams
to locate and fix correlated bugs all together. Moreover, our method for identifying duplicate
bugs can achieve a precision of 55 % and a recall of 50 % on Firefox and a precision of
35 % and a recall of 47 % on Eclipse.

In future work, we plan to implement our proposed rules and our bug localization method
BFFinder into a tool to assist development teams during the triaging of crash reports and
the fixing of bugs.
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