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Abstract Program comprehension is an important human factor in software engineering. To
measure and evaluate program comprehension, researchers typically conduct experiments.
However, designing experiments requires considerable effort, because confounding parameters
need to be controlled for. Our aim is to support researchers in identifying relevant confounding
parameters and select appropriate techniques to control their influence. To this end, we
conducted a literature survey of 13 journals and conferences over a time span of 10 years.
As result, we created a catalog of 39 confounding parameters, including an overview of
measurement and control techniques. With the catalog, we give experimenters a tool to design
reliable and valid experiments.

Keywords Programcomprehension .Empirical research .Controlledexperiment .Confounding
parameters

1 Introduction

Since the development of the first programmable computers around 1945 (Neumann 1945),
many languages, tools, and processes were developed to improve program comprehension
(Feigenspan 2009). Program comprehension, which describes the process of how developers
comprehend source code, is an important human factor in software engineering: Prior studies
found that maintenance developers spend the majority of their time with understanding source
code (von Mayrhauser et al. 1997; Standish 1984; Tiarks 2011). Furthermore, maintenance
costs are the main cost factor for the development of a software system (Boehm 1981). Hence,
if we can improve the comprehensibility of source code, we can reduce time and cost of the
entire software life cycle.
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The first step in improving program comprehension is to measure it reliably.
However, program comprehension is a complex internal cognitive process: There are
several models that describe program comprehension, such as top-down or bottom-up
models. Top-down models describe that developers build a general hypothesis of a
program’s purpose and refine this hypothesis by looking at source code, using
beacons (i.e., information in source code that give hint about a program’s purpose)
(Brooks 1978; Shaft and Vessey 1995; Soloway and Ehrlich 1984). Bottom-up models
describe that developers look at source code statement by statement and group
statements to semantic chunks. These chunks are combined further, until developers
can state hypotheses about the purpose of a program (Pennington 1987; Shneiderman
and Mayer 1979). Typically, developers switch between top-down and bottom-up
comprehension (von Mayrhauser et al. 1997; von Mayrhauser and Vans 1995). They
use top-down comprehension where possible, because it is faster and requires fewer
cognitive resources (Shaft and Vessey 1995). Developers use bottom-up comprehen-
sion only when necessary (i.e., when they have no knowledge of a program’s
domain). Thus, program comprehension is a complex internal cognitive process, and
to reliably measure it, researchers typically conduct controlled experiments
(Feigenspan et al. 2011).

The problem with controlled experiments is that confounding parameters may bias the
outcome (in our case, observed program comprehension) (Goodwin 1999). For example,
program comprehension is influenced by the experience participants have, such that more
experienced participants understand source code differently than novice programmers. If
researchers do not take into account the difference in experience, they cannot be sure what
they measure. Thus, it is important to control the influence of confounding parameters.
Furthermore, to interpret the results of a controlled experiment, it is important to know how
researchers managed a confounding parameter. For example, if an experiment was conducted
with undergraduate students, the results of this experiment may not be valid for programming
experts. Without knowing these details, experiments are difficult to interpret and replicate—we
might even observe contradicting results.

With this paper, we support researchers in producing valid, reliable, and interpretable
results. The contributions of this paper are twofold:

& A catalog of confounding parameters for program comprehension.
& An overview how confounding parameters are measured and controlled for.

First, with an extensive catalog of confounding parameters, researchers do not have to
identify confounding parameters, but can consult the catalog and decide for each parameter
whether it has an important influence or not (see Table 12). Hence, this catalog serves as aide
not to overlook potentially relevant parameters.

Second, with an overview of well-established measurement and control techniques based
on literature, we support researchers in selecting appropriate techniques for their studies (see
Tables 10 and 11). In this way, the catalog of confounding parameters goes beyond well-
known books on experimentation in software engineering (e.g., Wohlin et al. 2000; Juristo and
Moreno 2001), with a more specific focus on comprehension and more hands-on information
regarding measurement and control techniques, based on what other researchers did. Thus, our
work complements standard books on empirical research.

With this paper, we do not address only those researchers who are experienced with
empirical studies, but also software engineers who did not get in touch with controlled
experiments and want to evaluate how a new tool or language construct affects the targeted
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developers. Thus, we include also an overview of common control techniques, as well as
parameters that are not specific to comprehension experiments, but typical for all experiments
with human participants (such as motivation, selection, and learning effects).

To fulfill our goals, we conducted a literature survey of papers published between 2001 and
2010 in the following journals and conferences:

& Empirical Software Engineering (ESE),
& Journal of Software: Evolution and Process (JSEP),
& Transactions on Software Engineering and Methodology (TOSEM),
& Transactions on Software Engineering (TSE),
& International Conference on Program Comprehension (ICPC),1

& International Conference on Software Engineering (ICSE),
& International Conference on Software Maintenance (ICSM),
& International Symposium on Empirical Software Engineering and Measurement (ESEM),2

& Symposium on the Foundations of Software Engineering (FSE),
& Symposium on Visual Languages and Human-Centric Computing (VLHCC),3

& Conference on Human Factors in Computing Systems (CHI),
& Cooperative and Human Aspects of Software Engineering (CHASE),4 and
& Working Conference on Reverse Engineering (WCRE).

We selected these journal and conferences, because they are the leading platforms to
publish results regarding (empirical) software engineering and program comprehension. We
included 872 (of 4,935) papers in our initial selection and extracted 39 confounding param-
eters, such as programming experience, intelligence, and ordering effects.

We found that there is only little agreement on how to manage confounding parameters.
Instead, the discussion of confounding parameters often appears to be haphazard. This makes
interpreting results of experiments difficult, because it is not clear whether and how all relevant
confounding parameters were considered and controlled for.

The remainder of this paper is structured as follows:

& Section 2: Process of selection of papers and extraction of confounding parameters.
& Section 3: Overview of how confounding parameters are currently managed in literature.
& Section 4: Introduction to common control techniques for confounding parameters.
& Section 5: Detailed description of all extracted confounding parameters and how they are

measured and controlled for in literature.
& Section 6: Threats to validity of our survey.
& Section 7: Recommendations on how to manage confounding parameters in program-

comprehension experiments.
& Section 8: Related work.
& Section 9: Conclusion and future work.

1 ICPC was a workshop until 2005.
2 ESEM originated 2007 from merging the International Symposium on Empirical Software Engineering
(ISESE) and International Software Metrics Symposium (METRICS)
3 VLHCC was called Human-Centric Computing Languages and Environments until 2003.
4 CHASE first took place in 2008.
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2 Methodology

In this section, we discuss the selection of journals and conferences, the selection of papers,
and the extraction of confounding parameters. This way, we enable other researchers to extend
our data with other journals, conferences, and issues.

To collect confounding parameters, we need a representative selection of papers. To this
end, we chose different journals and conferences. We selected ESE as leading platform for
empirical research in the field of software engineering. We consider JSEP, TOSEM, and TSE
as leading journals in software engineering. ICPC is the leading conference for program-
comprehension research. ICSE and FSE are the leading conferences on software engineering.
ICSM is the leading conference regarding software maintenance. We chose ESEM as platform
in the empirical-software-engineering domain. Furthermore, CHI and VLHCC are the leading
conferences regarding human-computer interaction, and CHASE is a recently established
workshop in the context of human factors. Finally, WCRE is one of the leading conferences
regarding reverse engineering. From each journal and conference, we considered all papers
published between 2001 and 2010. Hence, we have a representative set of journals and
conferences.

Since not all kinds of experiments are relevant for our survey, we give a short overview of
different types of experiments (see, e.g., Sjøberg et al. 2005) and outline which types are
relevant. In general, a setting in which a treatmentis deliberately applied to a group of
participants is called experiment, with the following different characteristics:

& randomized experiment,
& quasi experiment,
& correlational study, and
& case study.

First, if participants are randomly assigned to treatment and control condition(s), an
experiment is referred to as randomized experiment. Second, in a quasi experiment, partici-
pants are not assigned randomly to conditions, for example, when groups are already present
(which is often the case in studies conducted in companies). Third, in a correlational study,
size and direction of relationships among variables are observed. Fourth, in case studies, only
one or few participants are observed and the outcome has a qualitative nature.

For our survey, we include all types of experiments except for correlational studies
that observe only existing data, because no human participants were observed. For
example, Bettenburg and others analyzed the commit data of an Eclipse version
6 month before and after its release to identify how commit comments help to predict
bugs (Bettenburg and Hassan 2010). Since this experiment was not conducted with
human participants, we excluded it.

We also included experiments with a qualitative focus (including case studies and quasi
experiments), although confounding parameters play a minor role in these studies. For
example, Ko and others conducted an exploratory study to find out how developers seek
and use relevant information (Ko et al. 2006). In this study, the goal was to generate
hypotheses, so authors measured confounding parameters to get a more holistic view of
developers’ behavior, but did not control for all confounding parameters. Thus, in qualitative
studies, relevant confounding parameters also have to be considered and reported, although
controlling for them is not the primary concern.

To extract relevant papers from the selected journals and conferences, we started with
reading the abstract of a paper. If the abstract described an experiment with human participants,
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we added the paper to our initial selection; if not, we discarded it. If the abstract was
inconclusive, we skimmed through the paper for any information that indicates the conduct
of an experiment. Furthermore, we searched the paper with a fixed set of keywords:
(programming) experience, expert, expertise, professional, subject, and participant. Those
keywords are typical for comprehension experiments with human participants. Based on
skimming and the search result, we either added a paper to our initial selection or discarded
it. To have a better understanding of ourapproach, we visualize it in Fig. 1. As result of this
selection process, we have an initial set of 842 papers.

As next step, we read each paper of our initial selection completely. During that process, we
discarded some papers, because the described experiment was too far away from program
comprehension. Before discarding a paper, we (the authors) discussed whether it is relevant
until we reached inter-personal consensus. When in doubt, we included a paper to avoid
omitting potentially relevant parameters. We excluded 457 papers, so we have 385 papers in
the final selection. On the project’s website,5 we have a catalog of all extracted papers,
including the ones we discarded. In Table 1, we show how many papers we selected for the
initial and final set.

As last step, we extracted confounding parameters. To this end, we included
variables that authors categorized as confounding (or extraneous) variables (for exam-
ple, some authors listed these variables in a table or stated Our confounding param-
eters are…). Furthermore, we included variables that followed terms like To control
for, To avoid bias due to, or A threat to validity was caused by, because such a
variable was treated as confounding variable.

We used an initial set of confounding parameters defined in the first authors master’s thesis
(Feigenspan 2009), also based on literature. Every time we encountered a new confounding
parameter, we revisited already analyzed papers.

The selection and extraction process was done by the two authors of this paper
and a research assistant. The second author and the assistant selected the papers
from disjoint sets of venues; the first author checked on random samples of selected
and not selected papers the correctness of the selection process. We discussed
disagreements until reaching interpersonal consensus. The first author extracted
confounding parameters, and the second author checked the correctness of the
extraction on random samples. We discuss the validity of this approach in more
detail in Section 6.

Next, we present an overview of how confounding parameters are currently managed.

Read
abstract

Experiment with
participants?

Add to
initial set

DiscardNo

Skim complete
paper & search for

keywords

Experiment with
participants?

No

YesInconclusive

Yes

4460 842

Fig. 1 Approach to select papers that describe experiments with subjects. Numbers denote the number of papers
in the according step

5 url http://www.infosun.fim.uni-passau.de/spl/janet/confounding/index.php
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Table 1 Overview of all, included, and extracted papers by year and venue

Source 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Sum

ESE All 24 18 15 15 19 21 24 26 24 16 202

Extr. 2 9 5 8 10 7 7 4 7 3 62

Final 1 5 1 4 3 3 3 2 5 2 29

JSEP All 19 21 18 17 15 18 17 18 15 29 187

Extr. 4 4 3 5 1 2 2 3 1 5 30

Final 1 2 0 2 1 1 2 1 0 0 10

TOSEM All 11 15 13 10 12 12 15 21 13 13 135

Extr. 0 0 0 0 1 0 3 0 0 3 7

Final 0 0 0 0 0 0 2 0 0 0 2

TSE All 66 73 88 72 68 61 55 53 50 48 634

Extr. 5 6 6 5 5 3 2 5 3 5 45

Final 4 4 5 3 3 3 1 5 2 3 33

ICPC All 28 24 22 21 24 23 22 21 22 16 223

Extr. 2 3 3 8 8 3 4 5 4 3 43

Final 2 2 3 3 7 3 4 5 4 3 36

ICSE All 47 48 42 58 44 36 49 56 20 52 482

Extr. 8 10 8 1 11 12 9 8 9 12 88

Final 0 3 3 4 3 4 1 3 4 5 30

ICSM All 67 60 41 38 55 42 46 40 34 50 473

Extr. 7 10 4 5 8 11 9 4 5 5 68

Final 1 1 0 2 0 3 2 2 4 2 17

ESEM All – – – – – – 45 29 44 30 148

Extr. – – – – – – 12 3 11 8 34

Final – – – – – – 6 5 1 7 19

FSE All 29 17 42 25 32 25 63 31 39 34 337

Extr. 0 1 0 0 1 2 3 3 1 1 12

Final 0 1 0 0 0 2 2 3 1 0 9

VLHCC All 47 17 21 21 28 19 18 24 21 27 240

Extr. 11 11 6 11 9 10 8 7 9 12 94

Final 6 9 6 8 6 6 7 4 6 5 63

CHI All 69 61 75 93 93 119 144 158 204 230 1,246

Extr. 17 16 16 19 22 24 22 35 52 47 270

Final 16 8 8 9 11 12 8 14 13 21 120

CHASE All – – – – – – – 28 22 18 68

Extr. – – – – – – – 11 9 8 28

Final – – – – – – – 2 1 3 6

WCRE All 24 33 35 28 22 24 27 32 31 29 285

Extr. 4 6 6 7 3 6 9 4 5 11 61

Final 0 1 1 2 1 1 1 0 1 3 11

All: all papers of the source in the according year, Extr.: extracted papers in our initial selection, Final: papers in
the final selection (after discarding non-relevant papers)
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3 State of the Art

In this section, we present insights of how confounding parameters are managed in literature.
The main findings are:

& Only a fraction of identified confounding parameters are mentioned in each paper.
& Most confounding parameters are reported in one location.
& Researchers use different ways to control for the same confounding parameter.

We discuss each of the findings in detail.

3.1 Number of Confounding Parameters

To give a fair impression of how many confounding parameters are described, we distinguish
the experiments in qualitative and quantitative experiments. Qualitative experiments typically
observe few participants, but collect and analyze detailed information, such as think-aloud data
or (screen-capture) videos. In qualitative studies, controlling for confounding parameters is not
the primary concern, but rather getting a detailed insight in what participants did.

Quantitative experiments recruit a larger number of participants and are interested in
quantitative information, such as response time, correctness, or efficiency. In quantitative
studies, controlling for confounding parameters is more important than in qualitative, and,
thus, typically more confounding parameters are taken into account. Consequently, making
statements about how many confounding parameters are described independent of the kind of
study would bias the presentation of results.

In Fig. 2, we give an overview of how many papers mentioned how many parameters,
separated by the kind of study. For example, of the qualitative studies, 17 papers did not report
any confounding parameter. For both qualitative and quantitative studies, only a fraction of
confounding parameters is mentioned in each paper. For qualitative experiments, the fraction
of parameters is lower as for quantitative experiments. This is not surprising, because
qualitative experiments are less concerned with controlling for confounding parameters.

However, most authors may have considered more parameters than they actually described,
but that space restrictions prohibit mentioning each parameter and how it was controlled for.
This raises the question that, if not all controlled parameters are mentioned in literature, a
literature survey is the right instrument to extract confounding parameters. We discuss this in
Section 6.

3.2 Reporting Confounding Parameters

We found that most confounding parameters are described at a distinct location in the papers.
Typically, experiment descriptions consist of the following parts (Jedlitschka et al. 2008):

& experimental design,
& analysis,
& interpretation, and
& threats to validity.

In experimental design, authors describe the setting of an experiment, including material,
participants, and means to control for confounding parameters. In the analysis, the authors
present the data analysis, for example, means, standard deviations, and statistical tests. After
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the analysis, the results of the experiment are interpreted, such that the results are set in relation
to the research questions or hypotheses. Finally, authors discuss the validity of the
experiments.

In Table 2, we give an overview in which parts a parameter was mentioned first, separately
for qualitative and quantitative experiments. N denotes the total amount of how often
parameters were mentioned in each section; the mean denotes the average relative amount
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Fig. 2 Number of parameters mentioned per paper
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of parameters of all papers mentioned in the according section. For both qualitative and
quantitative experiments, most parameters were discussed during the experimental design,
the stage in which means to manage confounding parameters are typically defined.

For qualitative experiments, only a small fraction of the parameters are mentioned in the
other parts of the experiment descriptions. For quantitative experiments, about 17 % of the
confounding parameters are described in threats to validity. Inthis part, authors mostly describe
confounding parameters, how they could have threatened the validity of the experiments, and
how they controlled a parameter so that the threat to validity is minimized.

Thus, the major part of confounding parameters is described in the experimental design.
Nevertheless, there is still room for improvement, such that all parameters are reported in the
experimental design, supporting the readers of according papers in getting a quick overview of
relevant confounding parameters.

Furthermore, there is no systematic way to describe confounding parameters. Although we
often found terms likeOur confounding parameters are… or To control for, they were not used
consistently. For example, authors described that theymeasured programming experience or
that they trained participants to use a tool, but did not describe why they did it or what control
technique they applied. Experienced researchers can recognize this implicit mentioning of a
confounding parameter, but researchers or students who are unfamiliar with empirical research
might overlook it. Additionally, such implicit mentioning makes it difficult to get a quick
overview of an experimental design.

3.3 Controlling for Confounding Parameters

There are various ways to control the influence of a confounding parameter.6 For example, to
control for programming experience, authors kept the level of programming experience
constant by recruiting only students or created two groups with comparable level of program-
ming experience. To create comparable groups, researchers had to measure programming
experience, which they realized (among others) by using the years a participant has been
programming, a participant’s level of education (e.g., undergraduate vs. graduate level), self

Table 2 Overview of how often a parameter was mentioned first in a part of the experiment description

Part N Mean

Qualitative experiments

Experimental design 471 90.9 %

Analysis 12 2.3 %

Interpretation 15 2.9 %

Threats to validity 20 3.9 %

Total 518 100 %

Quantitative experiments

Experimental design 975 77.6 %

Analysis 42 3.3 %

Interpretation 28 2.2 %

Threats to validity 211 16.8 %

Total 1,256 100 %

6 In Section 5, we discuss techniques and parameters in detail. Here, we give only an overview.
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estimation, or supervisor estimation. In some cases, authors wrote that they controlled for a
parameter, but did not specify how.

The different means of controlling for confounding parameters can make the comparison of
different experiments difficult. For example, when comparing programming experience based
on years a participant has been programming, and based on the level of education, it is likely
that both measure different things; an undergraduate student may have been programming for
20 years, whereas a graduate student may have started programming when starting to study.
This gets worse when we do not know how a parameter was managed. Thus, researchers might
not be able to fully understand and replicate an experiment.

To summarize, there is effort to control for confounding parameters and to describe them
consistently. However, reporting this effort is too unsystematic, so it is difficult to evaluate the
soundness of an experimental design. To address the identified problems, we give
recommendations in Section 7.

4 Techniques to Control for Confounding Parameters

In this section, we present common techniques to control for confounding parameters. This
section is aimed at researchers who are inexperienced with conducting experiments. Readers
familiar with controlling for confounding parameters may skip this section.

Experimentation in psychology has a long history (Wundt 1874). Hence, all control
techniques are based on psychological research and have proved useful in countless experi-
ments. There are five typical ways to control for confounding parameters, which we present in
detail in this section:

1. randomization,
2. matching,
3. keep confounding parameter constant,
4. use confounding parameter as independent variable, and
5. analyze the influence of confounding parameters on results.

For better illustration, we describe the control techniques with the confounding parameter
programming experience as example. It describes how familiar participants are with
implementing source code (we go into more detail in Section 2).

4.1 Randomization

Using randomization, a confounding parameter is randomly assigned to experimental groups,
for example, by tossing a coin or rolling a dice. This way, the influence of confounding
parameters is assumed to spread evenly across experimental groups, such thatthe influence is
comparable in all groups (Goodwin 1999). For example, a sample of students should be split
into two comparable groups regarding programming experience. To this end, researchers toss a
coin to assign all participants to two groups. Since participants are randomly assigned to
groups, there is no systematic bias. That is, the coin toss does not assign more experienced
participants to one group and less experienced participants to another group. Hence, both
groups should be comparable, or homogeneous, regarding programming experience.

For randomization to be effective, the sample size needs to be large enough, so that
statistical errors can even out (Anderson and Finn 1996). Unfortunately, large cannot be
defined as a fixed number. Assigning 30 participants to two experimental groups seems

1168 Empir Software Eng (2015) 20:1159–1192



reasonably large for creating two comparable groups, but assigning 30 participants to six
experimental groups may be too small to ensure six homogeneous groups. Thus, the more
experimental groups there are, the more participants we need. In personal correspondence with
other researchers, we found that five participants per group are too few, but ten seem to be
sufficient.

Randomization is the most convenient way to control for a confounding parameter, because
it does not require measuring a parameter. However, one disadvantage is that researchers
cannot draw any conclusions about the effect of a confounding parameter on program
comprehension. For that, it needs to measured, which is required by the remaining control
techniques.

4.2 Matching

If the sample size is too small, researchers can apply matching or balancing (Goodwin 1999).
In this case, researchers measure a confounding parameter and assign participants to experi-
mental groups, such that both groups have about the same size and same level of a confound-
ing parameter. To illustrate matching, we show fictional values for programming experience of
participants in Table 3. The participants are ordered according to the quantified programming-
experience value. Now, we assign Participant 5 to Group A, Participant 7 to Group B,
Participant 1 to Group B, and Participant 10 to Group A. We repeat this process until all
participants are assigned to groups.

Matching ensures homogeneous groups according to a parameter. However, as a drawback,
researchers have to measure a confounding parameter. For example, for programming expe-
rience, researchers can ask participants to estimate their experience or to implement a simple
task and use the performance as indicator for programming experience. But it is not clear how
well this captures true programming experience. Thus, requires a valid and reliable way to
measure a parameter.

4.3 Keep Confounding Parameter Constant

When keeping a confounding parameter constant, there is exactly one level of this parameter in
an experimental design (Feigenspan 2009). For example, to keep programming experience
constant, researchers can measure programming experience and recruit participants only with a
certain value. Alternatively, researchers can recruit participants from a population of which

Table 3 Fictional programming-
experience values and according
group assignments

Participant Value Group

5 67 A

7 63 B

1 62 B

10 59 A

8 57 A

6 57 B

3 53 B

2 50 A

9 45 A

4 43 B

Empir Software Eng (2015) 20:1159–1192 1169



they know that a parameter has only one level. For instance, freshmen typically have one low,
comparable programming-experience level. Students who started programming before they
enrolled can be excluded. This way, researchers can minimize the effort of measuring a
parameter. However, the generalizability reduces, because the results are only applicable to
the selected level of programming experience. Next, we present a technique that allows
researchers to maintain generalizability.

4.4 Use Confounding Parameter as Independent Variable

A confounding parameter can be included as independent variable in an experimental
design (Feigenspan 2009). This way, researchers can manipulate it and control its
influence. For example, researchers can recruit participants with high and low pro-
gramming experience, such that the results are applicable to people with high and low
experience. However, the experimental design becomes more complex, because now
there is one more independent variable; if the initial independent variable has two
levels, and programming experience, also with two levels, is included, there are four
different experimental groups. Additionally, there may be an interaction between both
factors.

In addition to a more complex design, researchers also need to extend the research
hypotheses to include the confounding parameter. Furthermore, with increasing number of
experimental groups, more participants are necessary. As a benefit, internal validity can be
increased without decreasing external validity at the same time.

4.5 Analyze the Influence of Confounding Parameter on Result

When participants cannot be assigned to experimental groups, researchers can analyze the
influence of a confounding parameter afterwards (Shadish et al. 2002). In this case, researchers
can measure a parameter and analyze its influence on the result after conducting the experi-
ment. This is often necessary when researchers recruit participants from companies, because
they cannot assign participants to different companies. This technique is similar to using a
parameter as independent variable, but it allows researchers to also analyze confounds that
emanated during the experiment (e.g., a system crash). To this end, there are different
techniques, for example, an ANOVA to evaluate whether the comprehension of participants
depends on the employing company, in addition to or in interaction with the independent
variable(s) (Anderson and Finn 1996). However, an ANOVA assumes that the data are
normally distributed—otherwise, researchers need to apply a non-parametric test, such as
the Friedman test (if the experimental design is perfectly balanced and if there are repeated
measures) (Friedman 1937) or a permutation test (Anderson 2001).

These five techniques are the most common control techniques. There are also other
techniques that are specific for a confounding parameter. We describe these techniques when
we explain a corresponding parameter.

In Table 4, we summarize the control techniques and their benefits and drawbacks.
For example, randomization requires a relatively large sample size, does not require
measuring a parameter, the effort is low, and the generalizability depends on the
selected sample; if it consists only of students, the results are only applicable for
students, but if researchers include several levels of experience, the results also apply
to more experienced programmers. Note that the benefits and drawbacks also depend
on how a technique is applied and circumstances of experiments, so the benefits and
drawbacks are only an approximation.
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5 Confounding Parameters

In this section, we present the confounding parameters we extracted. For a better overview, we
divide confounding parameters into two categories: individual and experimental parameters.
Individual parameters are related to the person of the participants, such as programming
experience or intelligence. Experimental parameters are related to the experimental setting,
such as tasks or source code.

We found 16 individual and 23 experimental parameters, which we discuss in detail.

5.1 Individual Parameters

In Table 5, we summarize how often individual confounding parameters on program
comprehension are considered. We found 16 individual parameters that are mentioned
in literature. To have an understanding of the role of the parameters, we describe each
parameter, including how it influences the result, and give an overview of how it can
be measured and controlled for, which is all based on the literature survey. Some
parameters are specifically important for program comprehension, which we explicitly
discuss for according parameters. In the appendix (Table 10), we present a summary
of the measurement of confounding parameters.

For a better overview, we present a summary of how each parameter was controlled for in
Table 6 and divide individual parameters into the categories individual background, individual
knowledge, and individual circumstances.

5.1.1 Individual Background

Individual background describes parameters that have a fixed value for a participant, that is,
with which participants are born and that hardly change during life time.

Color blindness describes the limited perception of certain colors, for example, red and
green (Goldstein 2002). When colors play a role in an experiment, for example, when
participants see source code with syntax highlighting or when the effectiveness of background
colors is analyzed, color-blind participants might respond slower than other participants or be
unable to solve a task if they cannot distinguish colors.

Color blindness was considered in four experiments. Jablonksi and Hou (2010) described
the color-blindness of one participant as threat to validity. In other experiments, it was kept
constant by including only participants with normal color vision. None of the authors
mentioned how they determined color-blind participants. To measure color blindness, the
Ishihara test was developed (Ishihara 1972). When controlling for color blindness, researchers

Table 4 Benefits and drawbacks of control techniques

Technique Sample size Requires measurement Effort Generalizability

Randomization Large No Low Depends on sample

Matching Any Yes Depends on parameter Limited

Constant Any Depends on parameter Depends on whether
measurement is needed

Limited

Independent Large Depends on parameter High Good

Analyzed afterwards Any Yes Depends on parameter Depends on parameter
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need to keep in mind that only a small fraction of people are color blind (Goldstein 2002).
Thus, randomization may not be suitable, because from 20 participants, the one or two
potentially color blind might easily be assigned to the same group.

Culture refers to the origin of participants. This can affect the outcome, because different
cultures (especially Western compared to Asian cultures) often have different ways to solve a
problem (e.g., Hu et al. 2010). Consequently, some participants may be slower, but more
thorough when completing a task or hide their real opinion to not annoy experimenters.

In seven of the reviewed papers, culture was mentioned. Some mentioned that by recruiting
participants from the same company or class, culture was kept constant. However, this
assumption holds only partially, because often, students have different background. Another
way was to include a representative set of different cultural backgrounds to avoid the influence
of culture on results, or to measure culture of participants (McQuiggan et al. 2008). To avoid
discriminating against participants by excluding them, researchers can also let a participant
complete the experiment and then exclude the data set from the analysis.

Gender of participants might influence program comprehension, as several studies show.
For example, Beckwith and others found that females are reluctant (compared to males) to
accept new debugging features when working with spreadsheets (Beckwith et al. 2005), but
that proper tutorials can help females to accept new features (Grigoreanu et al. 2008). In
another study, Sharafi and others found that female participants are more careful when
selecting and ruling out wrong identifiers (Sharafi et al. 2012). Thus, gender can influence
how participants perform in comprehension experiments.

Gender was mentioned in numerous papers in literature. On one occasion, authors used
randomization (Vitharana and Ramamurthy 2003). Often, authors balanced gender among

Table 6 Control techniques for individual confounding parameters

Parameter Ran. Mat. Con. Ind. Ana. Dis. Not sp. Other

Individual background (Section 1)

Color blindness 0 0 3 0 0 1 0 0

Culture 0 0 2 0 0 3 0 3

Gender 1 6 5 5 12 5 0 34

Intelligence 0 0 4 0 1 0 1 2

Individual knowledge (Section 2)

Ability 9 11 8 6 18 4 7 7

Domain knowledge 1 1 22 3 4 8 3 2

Education 0 3 27 2 5 6 4 12

Familiarity with study object 2 6 123 2 12 6 11 20

Familiarity with tools 2 0 132 0 6 4 3 9

Programming experience 10 13 40 19 9 19 37 22

Reading time 0 0 1 0 2 1 0 0

Individual circumstances (Section 3)

Fatigue 1 8 1 0 2 3 0 17

Motivation 3 1 23 0 5 5 4 7

Treatment preference 0 2 3 0 1 3 0 1

Ran.: randomization; Mat: matching; Con: kept constant; Ind: used as independent variable; Ana: analyzed
afterwards;Dis: a parameter was discussed; Not sp: a parameter was not specified;Other: other control technique
than mentioned
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groups, included it as independent variable, or analyzed it afterwards. As with culture,
researchers have to be careful not to discriminate against participants.

Intelligence7 has long tradition in psychology and many different definitions and views
exist. Unfortunately, generations of researchers did not come to an agreement about one
definition of intelligence. It can be defined as the ability to solve problems, memorize material
(e.g., using working-memory capacity), recognize complex relationships, or combinations
thereof (Jäger et al. 1997; Raven 1936; Wechsler 1950). Intelligence can influence program
comprehension, because higher problem-solving skills and/or memory skills can enable
participants to faster understand source code.

In our literature review, authors rarely considered intelligence. When authors did take it into
account, they often focused on one facet of intelligence. Most often, this facet was working
memory. To keep it constant, such that the working-memory capacitywas not exceeded,
material was either presented on paper to participants (so they can look it up any time and
do not need to keep it in working memory), or the number of items (such as elements in UML
diagrams) was in the range 7±2, which is the average8 working-memory capacity (Miller
1956). However, authors rarely applied a test to confirm that the working-memory capacity of
participants was not exceeded. If working memory plays a crucial role, researchers can also
apply tests to measure it (Oberauer et al. 2000). In two papers, intelligence was specified not as
working memory: Ko and Uttl applied a verbal intelligence test as indicator for general
intelligence (Ko and Uttl 2003), and Corbett and Anderson used the math score of the SAT
as indicator (Corbett and Anderson 2001). Thus, intelligence has many facets.

5.1.2 Individual Knowledge

Individual knowledge describes parameters that are influenced by learning and experience.
These parameters change, but rather slowly over a period of weeks, months, or years.

Ability as a general term describes skills or competence of participants. The more and
higher ability participants have (e.g., regarding implementing code or using language con-
structs), the better they may comprehend source code. Unfortunately, authors rarely specified
what they mean with ability. Based on the descriptions in the papers, ability can be summa-
rized as the skill level of participants regarding the study object, such as writing code or UML
modeling. Since we intend to have a broad overview of confounding parameters, we keep this
parameter without specifying it further.

Measuring ability often includes a further test or task in the experiment (e.g., a short
programming task), which increases the experiment time. One often applied way was to use
the grade of participants. Another way was to let superiors estimate participants’ ability, or to
let participants estimate their own ability. There are also tests to measure ability in terms of
programming skills (Bergersen and Gustafsson 2011), but none of the papers mentioned such a
test.

Domain knowledge describes how familiar participants are with the domain of the study
object, for example, databases. It influences whether they use top-down or bottom-up com-
prehension. Usually, top-down comprehension is faster than bottom-up comprehension, be-
cause developers can compare source code with what is in their memory (Shaft and Vessey
1995), and familiar identifier names give hints about the purpose of a method or variable

7 There are voices that say intelligence is rather something learned than something inborn. Thus, we could also
classify it as individual knowledge. However, since our classification aims at a better overview, we do not step
into this discussion.
8 There are controversial discussion about the magical number seven (Baddeley 2001).
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(Brooks 1978). With bottom-up comprehension, a developer has to analyze each statement,
which inherently takes more time.

Domain knowledge was considered in 43 papers. To measure it, authors either asked
participants or assumed familiarity based on the courses participants were enrolled in or
already completed. In some cases, authors selected uncommon domains, such as hydrology,
and assumed that participants had no knowledge about it. Domain knowledge has a strong
influence on the comprehension process (fast top down vs. slow bottom-up comprehension),
so assessing it can reduce bias to the results.

Education describes the topics participants learned during their studies. It does not capture
the status of participants’ studies (e.g., freshman, sophomore, graduate student). If students
visited mostly programming courses, their skills are different from students who mostly visited
database or graphical-user-interface courses, in which programming is not the primary
content.9

Authors often considered the education of participants. In most cases, authors kept it
constant by recruiting participants of the same course. In some other cases, authors asked
participants the courses they completed. Based on the courses, authors assumed that partici-
pants learned specific topics. Education can directly affect domain knowledge, because
participants obtained knowledge through the courses they completed. Thus, assessing relevant
topics of participants’ education can help to better understand the results of an experiment.

Familiarity with study object/tools refers to how experienced participants are with the
evaluated concepts or tools, such as Oracle database or Eclipse. Familiarity with the study
object appears to be the same as domain knowledge. However, looking closer, they slightly
differ: Domain knowledge describes the domain of a study object (e.g., databases), familiarity
with the study object the object itself (e.g., Oracle database as one concrete database system).
If participants are familiar with the study object or tools, they do not need as much cognitive
resources as unfamiliar participants, because learning something new requires an initial
cognitive effort that decreases with increasing familiarity (Schlaug 2001). Thus, participants
who are familiar with the study object or the tool might perform better. We summarize
familiarity with the study object and tools, because they are closely related.

Both parameters were often considered in our review. In most cases, authors kept the
influence constant. To assure a comparable level of familiarity, participants were often trained
or required to be familiar with a tool. To measure familiarity, authors asked participants how
familiar they are or conducted a pretest. Familiarity with the study object/tools can influence
results, because familiar participants use certain features of a tool that makes a task easier (e.g.,
using the feature Call Hierarchy of an IDE to see the call graph of a variable). There are
different options of controlling both parameters, for example, recruiting only unfamiliar
participants, train all participants, or deactivate features that make tasks easier.

Programming experience describes the experience participants had so far with writing and
understanding source code. The more source code participants have seen and implemented, the
better they can adapt to comprehending source code, and thehigher the chance is that they will
be more efficient in comprehension experiments (Sackman et al. 1968; McConnell 2011).

Programming experience is the major confounding parameter in program-comprehension
experiments: The longer a participant has been programming, the more insignificant other
influences (e.g., intelligence, education, or ability) become. Not surprisingly, it was considered
most often in our review (209 times). However, researchers often used their own definition of
programming experience, such as the years a participants has been programming, the educa-
tion level, self estimation, the size of completed projects, supervisor estimation, or a pretest.

9 The specific contents of courses depend on the country and specific university.
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Beyond that, many researchers did not specify how they defined and measured programming
experience, or did not control for it. To reliably control its influence, researchers can use a
validated instrument (e.g., Feigenspan et al. 2012), instead of using an ad hoc definition that
differs between different experiments and researcher groups.

Reading time refers to how fast participants can read. The faster they are, the more they can
read in a given time interval. Consequently, they may be faster in understanding source code.

However, reading source code is only one part in the comprehension process.
Consequently, it was not often considered. In all cases where reading time was considered,
researchers used an eye tracker to measure it. Another way is to let participants simply read a
text and stop the time. There may be special settings where reading time is relevant, for
example, when numerous comments are involved in the study, or when the readability of a
new programming language should be assessed.

5.1.3 Individual Circumstances

Parameters in this category describe how participants feel at the time of the experiment. These
parameters can change rapidly (i.e., within minutes).

Fatigue describes that participants get tired and lose concentration. This occurs especially
in long experiments, because humans can work concentrated for about 90 min (Jensen 1998).
After that, attention decreases, which could affect performance of participants, such that the
error rate increases toward the end of the experiment.

To avoid the influence of fatigue, researchers often had a short enough session. In some
studies, authors asked their participants afterwards whether they felt fatigue with ongoing time,
or assessed whether performance dropped toward the end of a session. With different task
orders, influence of fatigue can also be reduced.

Motivation refers to how motivated participants are to take part in the experiment. If
participants are not motivated, it may affect their performance negatively (Mook 1996).

Most often, motivation was kept constant. To this end, most participants took part volun-
tarily (in contrast to making participation mandatory to successfully complete a course).
Additionally, we found that authors rewarded the best-performing participant(s). In one study,
authors included the performance in the experiment as part of a participant’s grade for a course
to ensure high motivation (Sharif and Maletic 2009). To measure motivation, authors asked
participants to estimate their motivation.

Treatment preference refers to whether participants prefer a certain treatment, such as a new
tool. This can affect performance, because participants might need more time or are not willing
to work with a tool if they do not like it.

Treatment preference was not considered very often, and it does not appear very relevant
for program-comprehension experiments. However, if a new tool or technique is part of the
evaluation, treatment preference should at least be measured, because participant might like or
dislike a tool or technique just because it is new. To measure treatment preference, researchers
can ask participants afterwards about their opinion.

5.2 Experimental Parameters

Experimental parameters are related to the experiment and its setting. We found 23 parameters,
which we summarize in Table 7. We describe each parameter, explain how it can influence the
result, present how it was measured and controlled for in literature (summarized in Table 11 in
the appendix). If a parameter is specifically important for program-comprehension experi-
ments, we discuss this explicitly. In Table 8, we give a summary of how each parameter was
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controlled for. For a better overview, we divide experimental parameters into four categories:
subject-related, technical, context-related, and study-object-related.

5.2.1 Subject-Related Parameters

Subject-related parameters are caused by participants and only emerge because participants
take part in an experiment. In this way, they differ from individual parameters, which are
always present.

Evaluation apprehension refers to the fear of being evaluated. This may bias responses of
participants toward what they perceive as better. For example, participants could judge tasks
easier than they actually think to hide from the experimenter that they had difficulties. Another
problem might be that participants cannot show their best performance, because they feel
frightened (which decreases their performance).

Table 8 Control techniques for experimental confounding parameters

Parameter Ran. Mat. Con. Ind. Ana. Dis. Not sp. Other

Subject related (Section 1)

Evaluation apprehension 0 0 0 0 0 0 0 3

Hawthorne effect 0 0 1 0 0 8 0 25

Process conformance 0 3 5 0 10 8 0 29

Study-object coverage 0 0 5 1 1 1 0 2

Ties to persistent memory 0 0 0 1 0 0 0 0

Time pressure 0 1 9 0 4 5 0 7

Visual effort 0 0 0 1 0 0 0 0

Technical (Section 2)

Data consistency 0 0 0 0 0 1 0 2

Instrumentation 0 0 5 0 2 15 0 4

Mono-method bias 0 0 0 0 0 0 0 3

Mono-operation bias 0 0 0 0 0 1 0 2

Technical problems 0 0 5 0 0 0 0 3

Context related (Section 3)

Learning effects 10 29 6 1 19 11 2 15

Mortality 0 0 0 0 0 5 0 0

Operationalization of study object 0 0 0 0 0 1 0 0

Ordering 19 56 4 0 5 5 0 3

Rosenthal 0 0 0 0 0 9 0 29

Selection 5 4 1 0 2 13 1 3

Study-object related (Section 4)

Content of study object 2 2 8 0 3 6 0 9

Language 2 0 81 1 3 9 6 11

Layout of study object 1 7 9 8 3 8 1 7

Size of study object 1 4 6 1 4 5 2 78

Tasks 2 20 3 2 6 11 2 14

Ran.: randomization; Mat: matching; Con: kept constant; Ind: used as independent variable; Ana: analyzed
afterwards;Dis: a parameter was discussed; Not sp: a parameter was not specified;Other: other control technique
than mentioned
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Evaluation apprehension was only rarely considered. To avoid its influence, researchers
assured anonymity for participants or ensured participants that their performance does not
affect the grade for a course. Another way is to encourage participants to answer honestly by
clarifying that only honest answers are of value.

The Hawthorne effect is closely related to evaluation apprehension. It describes that
participants behave differently in experiments, because they are being observed
(Roethlisberger 1939). Like evaluation apprehension, we may observe different behavior than
we would have if we observed participants in a realistic environment.

In most cases, authors avoided the Hawthorne effect by not revealing their hypotheses to
participants. Going one step farther, it is also possible not let participants know that they take
part in an experiment. However, both often conflict with an informed consent that participants
give before the experiment. An ethics committee helps to ensure fair treatment of all partic-
ipants. In one experiment, authors measured the Hawthorne effect by comparing the perfor-
mance in a context-neutral task to performance in treatment tasks (Ellis et al. 2007).

Process conformance means how well participants followed their instructions. If partici-
pants deviate from their instructions, for example, searching the internet for solutions or given
subsequent participants information about the experiment, the results may be biased.

We found different ways to ensure process conformance. Most often, participants were
observed to assure process conformance. In one experiment with several sessions, participants
were not allowed to take any material home (Briand et al. 2005), and in another experiment,
data of participants who deviated from the protocol were deleted (Fry andWeimer 2010). In an
experiment with children, parents were allowed to watch, but not to interfere (Druin et al.
2010). Furthermore, three experiments used different tasks for participants seated next to each
other. In some experiments, it might be useful to allow participants to work at home. However,
in this case, researchers cannot monitor participants’ process conformance. In such settings, it
can help to encourage participants to follow the instructions (e.g., by stating that data are only
useful when the protocol was followed), to ask participants how well they followed the
protocol, and/or to analyze the effect of deviations afterwards.

Study-object coverage describes how much of the study object was covered by participants.
If a participant solved half as much tasks as another participant, it could bias the results, such
that the slower participant was more thorough.

Often, authors controlled for study-object coverage by excluding data of participants who
did not complete all tasks. In one experiment, authors compared how the difference between
groups changed (based on confidence intervals) when participants who did not finish the task
were excluded (Oezbek and Prechelt 2007).

Ties to persistent memory refers to links of the experimental material to persistent (or long-
term) memory of participants. If source code has no ties to persistent memory and working
memory becomes flooded (e.g., because of long variable names or long method calls),
comprehension may be impaired.

Ties to persistent memory was relevant in only one study (Binkley et al. 2008). It was
measured in terms of the usage of identifiers: Identifiers often used in packages were assumed
to have ties to persistent memory, whereas program or domain identifiers have no ties to
persistent memory.

Time pressure means that participants feel they have to hurry to complete the experiment in
a given time interval. This can bias the performance, such that participants make more errors
when time is running out.

To avoid the influence of time pressure, authors often did not set a time limit for a task.
However, there are often time constraints, for example, when an experiment replaces a regular
lecture or exercise session or when an experiment mimics time pressure of realistic industrial

Empir Software Eng (2015) 20:1159–1192 1179



settings. In these cases, authors analyzed the influence of time pressure afterwards or designed
the experimental tasks such that participants can comfortably solve them within the time limit.
To measure time pressure, authors often asked after the experiment whether participants
experienced time pressure.

Visual effort describes the number and length of eye movements to find a correct answer.
The more effort a task has, the longer it takes to find the correct answer.

Visual effort was relevant in only one experiment (Sharif and Maletic 2010). It was
controlled for by analyzing the eye movements of participants with an eye tracker.

5.2.2 Technical Parameters

Technical parameters are related to the experimental set up, such as the tools that are used.
Data consistency refers to how consistent data of the experiment are. For example, when

paper-based answers of participants are digitalized, answers can be forgotten or transferred
wrongly. Inconsistent data can bias the results, because researchers might analyze something
different than they measured.

In our review, three papers controlled for data consistency. For example, Biffl and others
checked data digitalized from paper with two independent reviewers (Biffl and Halling 2003).
Especially when transcribing paper-based data to a digital form, data consistency may be
compromised. In pilot studies, researchers can test whether there are any systematic threats to
data consistency.

Instrumentation refers to instruments used in the experiment, such as questionnaires, tasks,
or eye trackers. The use of instruments can influence the result, especially when instruments
are not carefully designed or are unusual for participants.

To avoid instrumentation effects, we found several ways: Authors conducted pilot studies
(Güleşir et al. 2009), evaluated the instruments based on design principles (Dzidek et al. 2008),
or avoided the influence of instrumentation by using standard instruments, for example, to
present speech (Gong and Lai 2001). Thus, to control for instrumentation effects, researchers
can use validated instruments, or, if there are none, carefully design their own by consulting
literature and/or experts.

Mono-method bias means that only one measure is used to measure a variable, for
example, only response time of programming tasks to measure program comprehen-
sion. If that measure is badly chosen, the results may be biased. For example, when
participants wanted to finish a task independent of correctness, response time is not a
good indicator.

In three papers, we found that authors controlled for mono-method bias by using different
measures for comprehension. For example, to measure program comprehension, researchers
used correctness and response time of tasks, and/or an efficiency measure as combination of
both.

Mono-operation bias is related to mono-method bias; it refers to an underrepresentation of
the evaluated construct, for example, when researchers use only one task to measure compre-
hension. If that task is not representative, the results might be biased. For example, a task can
be designed such that it confirms a hypothesis.

In our review, authors controlled for mono-operation bias by using different tasks
(Torchiano 2004) or representative tasks. To ensure representativeness, we researchers consult
literature and/or domain experts.

Technical problems can occur during any experiment, for example, a computer crash or
missing questionnaires for participants. This may bias the results, because participants have to
repeat a task on a computer or that answers of a participants get lost.
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In literature, the most common technical problem was a system crash, and authors avoided
its influence by excluding data of according participants.

5.2.3 Context-Related Parameters

Context-related parameters are typical problems of experiments, such as participants who drop
out or learn from experimental tasks.

Learning effects mean how participants learn during the session of an experiment. This is
especially problematic in within-subject designs, in which participants experience more than
one treatment level.

Authors considered learning effects very often. In most cases, authors used a counter-
balanced or between-subjects design, so that learning effects are avoided or can be measured.
Additionally, authors conducted a training before the experiment, so participants learned
mostly during the training, not during the experiment. Furthermore, to analyze afterwards
how learning affected the results, authors compared the performance of participants in
subsequent tasks.

Mortality occurs when participants do not complete all tasks. This is especially a problem in
multi-session experiments, where participants have to return for sessions. Mortality may
influence the results, because participants may not drop out randomly, but, for example, only
low-skilled participants because of frustration caused by the perceived difficulty of the
experiment.

Only five papers discussed the effect of mortality on their result, but we also found only few
papers with multi-session experiments. If researchers need multiple sessions, they can encour-
age participants to return, for example, by giving participants a reward in each session or in the
last session if all other sessions have been attended.

Operationalization of study object describes how the measurement of the study object is
defined. For example, to measure program comprehension, researchers can use the correctness
of solutions to tasks. An example for an inappropriate measure is the number of files
participants looked at. If the operationalization is inappropriate, then not the study object,
but something else is measured, leading to biased results.

In our review, we found that the operationalization of study object was discussed a few
times. However, authors typically carefully operationalized the study object without explicitly
discussing whether their operationalization was suitable. To this end, authors often used the
literature and/or experts.

Ordering describes the influence of the order in which tasks or experimental treatments are
applied. If the solution of one task automatically leads to the solution of subsequent tasks, but
not the other way around, a different order of these tasks leads to different results.

Most authors chose an appropriate experimental design (e.g., counter-balanced, between-
subjects) to avoid or measure the effect of ordering afterwards. Another way was to randomize
the order of tasks, so that, with a large enough sample, ordering effects should be ruled out.

The Rosenthal effect occurs when experimenters influence consciously or subconsciously
the behavior of participants (Rosenthal and Jacobson 1966). This can influence the result,
especially when researchers assess participants’ opinion about a new technique or tool, such
that participants rate it more positive.

In nearly all studies in which the Rosenthal effect was considered, authors avoided its
influence. To this end, authors were careful not to bias participants, were objective (i.e., they
did not develop the technique under evaluation), used standardized instructions (i.e., defined
the specific wording of what experimenters say to participants), left the experimenters blind
regarding hypotheses or experimental group of participants, or let several reviewers evaluate
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the objectivity of material. Since it is difficult to measure whether and how experimenters
influenced participants, researchers can use means to avoid the Rosenthal effect, for example,
by using standardized sets of instructions.

Selection refers to how the participants for an experiment are selected. If the sample is not
representative, the conclusions are not applicable to the intended population. For example, if
researchers select students as participants, they cannot apply the results to programming
experts.

To control for selection bias, researchers have to ensure selecting a representative sample,
for example, by randomly recruiting participants from the intended population. However, this
is not feasible in most cases (e.g., we cannot recruit all students who start to learn Java from all
over the world). Typically, authors recruited participants from one university or company (i.e.,
convenient sampling), but took care to randomly select participants or to create a representative
sample. Additionally, authors communicated the selection of participants as threat to validity.

5.2.4 Study-Object-Related Parameters

Study-object-related parameters describe properties of the study object, such as its size.
Content of study object describes what source code or models are about. If the content

between two groups is different, it may bias the results, because one study object is more
difficult to comprehend. For example, when comparing the comprehensibility of object-
oriented with imperative programming based on two programs, researchers need to make sure
that both programs differ only in the paradigm, not the language or the functionality they are
implementing.

In most cases, authors used the same or comparable content of study object to avoid its
influence. Furthermore, authors selected realistic task settings. Since the influence of content
of study object is difficult to measure directly, authors relied on their own or expert estimation
regarding comparability of content. Another way is to use standardized material if possible.

Language refers to the underlying programming language of the experiment. We could also
summarize language under familiarity with the study object or content of study object, but
decided to keep it separate, because for program comprehension, the underlying programming
language has an important influence. If participants work with an unfamiliar programming
language, their performance is different compared to when they work with a familiar language,
because they need additional cognitive resources for understanding the unfamiliar language
(which also counts for familiarity with study object/tools, cf. Section 2).

The influence of language is especially important for program-comprehension experiments.
Consequently, many authors considered it. Most often, they kept the influence of language
constant by recruiting participants with a specified skill level (e.g., at least three years of Java
experience). In some cases, authors used a short pretest to determine the language skill level. If
uncommon features of a language are relevant for the experiment, researchers can explicitly
assess whether participants are familiar with them.

Layout of study object describes how participants see the study object, such as source code
or a UML model. For example, source code can be formatted according to different guidelines
or not formatted consistently, or different UML models can have different layouts. This
may influence the comprehension of participants, because they have to get used to the
layouts.

For layout of study object, the same counts as for content of study object: It is difficult to
measure, so most authors avoided its influence by choosing comparable layouts or selecting
realistic layouts (e.g., standard formatting styles). Several papers also included the layout as
independent variable, so that authors could determine its influence on the result.
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Size of study object refers to how large an object is, for example, the number of lines of
source code or the number of elements in a UML model. The larger an object is, the more time
participants need to work with it. If treatment and control object differ in their size, the results
of the experiment are also influenced by different sizes, not only different treatments.

As for content and layout of study object, size should be comparable across different
treatments. To measure size, authors used lines of code, number of files/classes, or number of
elements in a UML model. However, many authors only measured the size of study object, but
did not describe whether and how they controlled its influence. If researchers already deter-
mined the size of study object, they can also analyze afterwards whether it influenced the
results.

Task describes how tasks can differ, for example, in difficulty or complexity. If the difficulty
of tasks for different treatments is not the same, then the difficulty would also have an effect on
the outcome, besides the independent variable.

To avoid the influence due to different tasks, authors often used matching by choosing
standardized or comparable tasks. If standardized tasks are available, researchers should use
them, because they have already proven useful in several experiments, and they increase
comparability across different experiments. Otherwise, consulting the literature and/or experts
to create tasks also helps to avoid its influence.

5.3 Concluding Remarks About Confounding Parameters

To summarize, there are numerous confounding parameters for program comprehension.
There are no general measurement and control techniques for all parameters, but depending
on the circumstances of the experiment, the most suitable techniques need to be chosen. To
support researchers in this decision, we gave an overview of measurement and control
techniques based on comprehension experiments that we encountered in our literature review.

The categorization we used here serves as an overview and should not be seen as absolute.
For example, intelligence can be defined as something that is learned rather than inborn.
However, since the goal of the categories is to have a better overview, we do not step into this
discussion.

Furthermore, it might seem unsettling that some parameters, such as mono-operation bias or
operationalization of study object, are considered in only few studies. However, authors may
have controlled parameters more often than we found in our review, but space restrictions may
have prohibited authors to mention all considered parameters. Thus, the actual number of how
often confounding parameters are controlled may be higher than we found.

Additionally, some parameters appear very similar. For example, domain knowledge and
familiarity the with study object seem to be the same at first glance. However, looking closer,
they slightly differ, such that domain knowledge describes the domain oaf study object (e.g.,
databases), and familiarity with the study object the object itself (e.g., Oracle database as one
concrete database system). To have a broad overview and enable experimenters to look at
parameters from different points of view, we kept the parameters separate. This way, we hope
that experiments can better decide whether and how a parameter is relevant.

6 Threats to Validity

Like for every literature survey, the selection of journals, conferences, and articles as well as
the data extraction may be biased. First, we selected four journals, one workshop, and eight
conferences that are the leading publication platform in their field. However, we could easily
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select more relevant venues. To reduce this threat, we selected a broad spectrum and also
included more general sources in the area of software engineering, not only venues for
empirical research. Additionally, we could have considered a larger time span, but 10 years
is sufficiently large to get a solid starting point for an exhaustive catalog of confounding
parameters. In future work, we and others can consider papers of additional venues and years
to extend our catalog.

Second, the selection of articles and extraction of parameters may be biased. In our
survey, we had two reviewers selecting the papers (of disjoint sets of venues), and
one reviewer extracting the confounding parameters. Due to resource constraints, we
could not apply standard techniques, such as grounded theory, card sorting, or having
at least two reviewers evaluate the complete selection and extraction process. To
minimize bias, we checked the selection and extraction of the other reviewer nonran-
dom samples. That is, the reviewers who selected the papers checked the extraction
process, and the reviewer who extracted the parameters checked the selection process.
When we found a different decision about the inclusion of a paper or parameter, we
discussed it until reaching interpersonal consensus. In future work, we and others can
increase the validity by letting independent reviewers conduct the selection and
extraction process and compute agreement measures, such as Cohen’s Kappa (Cohen
1960).

Third, the list of keywords ((programming) experience, expert, expertise, professional,
subject, participant) may lead to incorrectly excluding a paper. However, based on our
expertise, these keywords are typical for experiments. Additionally, we used these keywords
in conjunction with skimming the paper to minimize the number of falsely discarding a paper.
Furthermore, we excluded several papers of our initial selection, so we do not have irrelevant
papers in our final selection. Thus, we minimized the threat caused by the selection of
keywords.

Fourth, it is unlikely that we have extracted all confounding parameters that might
influence the results of program-comprehension experiments. Although we had a
broad selection of papers of 10 years from different journals and conferences, there
might be parameters missing. For example, the size of the monitor on which the study
object is presented might influence the result, or the operating system, because a
participant is used to a different one than what is used in the experiment. Thus, our
catalog can be extended. To minimize the number of missed parameters, we set the
selection and extraction criteria for papers and confounding parameters as broad as
possible. Thus, our catalog provides a good foundation for creating sound experimen-
tal designs. Nevertheless, in future work, we and others can further reduce this threat
by conducting a survey with experienced empirical researchers about confounding
parameters (mentioned and not mentioned in this paper) as well as their relevance.

7 Recommendations

In this section, we give recommendations on how to manage confounding parameters, which
count for both, qualitative and quantitative studies:

& Decide whether a confounding parameter is relevant for an experiment and use appropriate
measurement and control techniques.

& Describe all confounding parameters explicitly in the design part of a report.
& Report whether and how confounding parameters are measured and controlled for.
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First, researchers have to decide whether a confounding parameter is relevant and choose
appropriate measurement and control techniques. To this end, researchers can consult the
catalog, including measurement techniques (cf. Tables 10 and 11 in the appendix), and decide
for each parameter whether it is relevant or not and how it can be controlled for. Discussing the
relevance of a parameter and according measurement and control techniques in a group of
researchers can further reduce the risk of neglecting relevant parameters or choosing inappro-
priate measurement or control techniques.

Having decided on each relevant parameter and according measurement and control
techniques, there is still a chance of missing something. For example, if researchers keep the
language constant by recruiting participants with Java experience, some tasks might still
require knowledge of specific Java syntax (e.g., adding a leading zero to an int treats the
number as octal). In such a case, applying additional qualitative methods, such as a think-aloud
protocol (Ericsson and Simon 1980), helps experimenters to better understand what is going
on with participants.

Second, we suggest to describe all confounding parameters in the design part of a report
and explicitly defining it as confounding parameter. For example, Jedlitschka and others
suggest reporting hypotheses and variables in one section as part of the experiment planning
(Jedlitschka et al. 2008). We recommend listing confounding parameters also in this section.
This way, other researchers can easily perceive which confounding parameters were consid-
ered as relevant.

Third, to describe whether and how researchers controlled for a confounding
parameter, we suggest a pattern similar to the one described in Table 9. We illustrate
this pattern with the parameters programming experience, the Rosenthal effect, and
ties to persistent memory.10 We mention each parameter, provide an abbreviation to
reduce the space we need to refer to it, describe the control technique(s) and why we
applied it, and describe how we measured it and why we measure it that way or
ensured that it does not bias our results. This way, other researchers can see at first
glance how and why a confounding parameter was measured and controlled for. This
way, replicability of experiments can be improved, because all relevant information
for confounding parameters is mentioned at one defined location.

We are aware that most reports on experiments have space restrictions. To avoid
incomplete descriptions of confounding parameters, a short description of the most
important parameters can be given in the report, and the complete catalog of param-
eters and according measurement and control techniques can be provided at a website
or a technical report. This way, reports do not become bloated, but all relevant
information is available. We hope that this way, a more standard way to manage
confounding parameters will emerge, and we would be happy to learn about the
experience of empirical researchers who follow these recommendations.

8 Related Work

Based on work in psychology, Wohlin and others provide a checklist of confounding
parameters for software-engineering experiments, which contains general confounding

10 For examples of all identified parameters for specific experiments, see the first author’s PhD thesis (Siegmund
2012).
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parameters for experiments in software engineering (Wohlin et al. 2000). This is a
good starting point for experiments, and also helps researchers to not forget possibly
relevant parameters. In contrast to our work, the catalog is not based on a literature
survey of comprehension experiments, but on standard psychological literature (Cook
and Campbell 1979). Thus, this checklist applies for experiments in software engi-
neering in general, whereas our catalog is tailored to comprehension experiments and
complements the catalog of Wohlin and others.

There is a lot of work on surveys about experiments in software engineering. For
example, Sjøberg and others conducted a survey about the amount of empirical
research in software engineering (Sjøberg et al. 2005). They found that only a fraction
of the analyzed papers report on controlled experiments. Furthermore, the reporting of
threats to validity (which are caused by confounding parameters) is often vague and
unsystematic. Dybå and others found that the statistical power in software-engineering
experiments is rather low and suggested, among others, to improve validity, which in
turn increases statistical power (Dybå et al. 2006). Kampenes and others analyzed the
conduct of quasi experiments and found that their design, analysis as well as reporting
can be improved (Kampenes et al. 2009). Similar to our work, all studies showed that
there is room for improvement when conducting and reporting controlled experiments
in software engineering. In contrast to these studies, we focus on the aspect of
confounding parameters, such that we support researchers in managing them. In the
long run, design and reporting of empirical studies can be improved.

9 Conclusion

Experiments in software engineering become more and more important. However,
designing experiments is tedious, because confounding parameters need to be iden-
tified, measured, and controlled for, independent of the kind of study. In this paper,
we present a catalog of confounding parameters for comprehension experiments
based on a literature survey, including applied measurement and control techniques.
So far, we identified 39 confounding parameters that should be considered in
comprehension experiments. With this catalog, we give researchers a tool that helps
them to create sound experimental designs, which is necessary to obtain valid and
reliable results.

Table 9 Pattern to describe confounding parameters

Parameter Abbr. Control technique Measured/Ensured

How? Why? How? Why?

Programming
experience

PE Matching PE major confound Education level Undergraduates
have less experience
than graduates

Rosenthal effect RE Standardized
instructions

Avoid it Not measured Standardized instructions
to avoid it

Ties to persistent
memory

Ties None Not relevant – –

Abbr.: abbreviation for parameter
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In future work, there are several options to continue our work. First, our catalog
can be extended by considering other years and venues, not necessarily restricted to
the computer-science domain, but including other domains that use empirical research.
Second, since our catalog of confounding parameters is not complete, we can conduct
explorative studies to discover more relevant confounding parameters. Additionally,
we can ask experts in empirical research about their opinion of relevant confounding
parameters. This could also be combined with a rating of the importance of each
confounding parameter, so that researchers can better decide whether a parameter may
be relevant or not.
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Appendix

In Tables 10 and 11, we give a summary of how each parameter was measured in
literature.

The checklist in Table 12 can help researchers to control the influence of con-
founding parameters. Researchers can document how they measured and controlled for
a parameter.

Table 10 Measurement techniques of individual confounding parameters

Parameter Measurement

Individual background (Section 1)

Color blindness Ishihara test (Ishihara 1972); ask participants

Culture Ask participants (avoid discriminating against anyone)

Gender Ask participants (avoid discriminating against anyone)

Intelligence Intelligence tests, e.g., BIS (Jäger et al. 1997), CFT
(Raven 1936), WMC test (Oberauer et al. 2000)

Individual knowledge (Section 2)

Ability Grades of courses; supervisor estimation; pretest

Domain knowledge Ask participants; assume knowledge based on courses, pretest

Education Ask participants; assume knowledge based on courses

Familiarity with study object Ask participants; pretest

Familiarity with tools Ask participants; pretest

Programming experience Questionnaire, e.g., as is currently developed by us
(Feigenspan et al. 2012)

Reading time Eyetracker; measure time participants need to read a text

Individual circumstances (Section 3)

Fatigue Self estimation; performance (decreasing performance may be
indicator for fatigue)

Motivation Self estimation; performance with ongoing experiment time

Treatment preference Self estimation
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Table 11 Measurement techniques of experimental confounding parameters

Parameter Measurement

Subject related (Section 1)

Evaluation apprehension Ask participants; better: avoid it

Hawthorne effect Almost impossible; better: avoid it

Process conformance Ask participants; better: observe participants to ensure it

Study-object coverage Ask participants; look at answer and log data of participants

Ties to persistent memory Ask participants; categorize material accordingly
(e.g., based on participants’ domain knowledge)

Time pressure Ask participants

Visual effort Eye tracker

Technical (Section 2)

Data consistency Check data

Instrumentation Avoid by carefully choosing instruments (best: validated)

Mono-method bias Avoid by using at least two measures

Mono-operation bias Avoid by using different operations (e.g., more than one task)

Technical problems Avoid by pilot tests; evaluate data of according participants

Context related (Section 3)

Learning effects Counter-balanced design allows looking for them

Mortality Evaluate whether drop outs differ from other participants

Operationalization of study object Consult experts on study object

Ordering Different orders allow measurement

Rosenthal Almost impossible to measure; better: avoid it with
standardized instructions

Selection Almost impossible to measure; better: avoid it by randomly
drawing participants from population

Study-object related (Section 4)

Content of study object Ask independent reviewers to ensure comparable and
suitable content

Language Ask participants; pretest

Layout of study object Ask independent reviewers to ensure comparable and suitable
layout; use standardized layout

Size of study object Ask independent reviewers to ensure comparable and suitable size

Tasks Ask independent reviewers to ensure comparable and suitable;
use standardized tasks

Table 12 Checklist of confounding parameters

Parameter Abbr. Control technique Measured/Ensured

How? Why? How? Why?

Individual background

Color blindness

Culture

Gender

Intelligence

Individual knowledge
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