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Abstract Although bug reports are frequently consulted project assets, they are communi-
cation logs, by-products of bug resolution, and not artifacts created with the intent of being
easy to follow. To facilitate bug report digestion, we propose a new, unsupervised, bug
report summarization approach that estimates the attention a user would hypothetically give
to different sentences in a bug report, when pressed with time. We pose three hypotheses
on what makes a sentence relevant: discussing frequently discussed topics, being evaluated
or assessed by other sentences, and keeping focused on the bug report’s title and descrip-
tion. Our results suggest that our hypotheses are valid, since the summaries have as much
as 12 % improvement in standard summarization evaluation metrics compared to the pre-
vious approach. Our evaluation also asks developers to assess the quality and usefulness of
the summaries created for bug reports they have worked on. Feedback from developers not
only shows the summaries are useful, but also points out important requirements for this,
and any bug summarization approach, and indicates directions for future work.

Keywords Bug reports · Summarization · Natural language processing · Empirical
study · Productivity

1 Introduction

Bug reports are valuable assets in software development projects. They serve not only as
a communication medium for bug resolution—an activity that accounts for as much as
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40 % of software development efforts (Boehm and Basili 2001)—but they are also often
consulted, even after the bug has been resolved, by many different parties. A random sam-
ple of 200 bug reports we drew from Mozilla, for example, has 275 references to other
bugs, indicating the extent to which developers need to refer to other bug reports. Upstream
bugs, which are caused by bugs found in software components from different projects or
branches, are another common reason for developers to consult bug reports. Since Webkit
is the HTML rendering engine adopted by Chrome, many of the bugs from the Chrome
project, for example, refer to Webkit bugs. The same is valid for software components that
have been repackaged and ported to Debian, Ubuntu, or other operating systems. Dupli-
cate bug report detection is another reason for developers to consult extraneous bug reports,
and at least one in five bug reports from the Mozilla, Launchpad and Chrome bug tracking
systems are duplicates (Lotufo et al. 2012b).

We argue, therefore, that it is important for bug reports to be easily digestible: readers
consulting bug reports should easily be able to find the information they seek for. Bug
reports, however, are not created with such intent in mind. Collaboration in bug reports
develops as a conversation, similar to email threads: participants post messages—commonly
referred to as comments—as their contributions. A bug report is, therefore, the result of
the communication that took place in order to address a bug. Unlike a wiki page, it is not
collaboratively constructed with the intention of being easy to read and comprehend. Since
comments have a context set by their previous comments and useful information is spread
out throughout the thread, to comprehend a bug report, it is often necessary to read almost
the entire conversation. This problem is compounded in open source projects, in which
bug reports receive input from many contributors. The Debian community, for example,
recognizes the problem and allows users to set a summary of the bug. They claim: “This is
useful in cases where . . . the bug has many comments which make it difficult to identify the
actual problem”.1

Rastkar et al. (2010) recognized the similarity between bug report messages and email
threads and used a preexisting summarization technique created to summarize email threads
and conversations (Murray 2008). The approach creates an extractive summary, which is
built by selecting a set of sentences from the original bug report to compose an informa-
tive and cohesive summary. The approach uses a logistic regression classifier that is trained
on a corpus of manually created reference bug report summaries, also known as golden
summaries. The results presented by Rastkar et al., however, show that the quality of the
generated summaries is sensitive to the training corpus, suggesting that the approach is
mostly applicable when trained on a corpus of golden summaries from the target bug track-
ing system and that the training corpus should be adjusted to reflect the types and nature
of bugs as a project evolves. Since creating golden summaries requires significant man-
ual effort and should be done by experts, creating a reasonably-sized training set of golden
summaries could be considered as an impediment for the use of such technique.

The objective of this work is, therefore, to i) develop a deeper understanding of the
information exchanged in bug reports and to use this knowledge to create a general
purpose, unsupervised, summarization approach that should be readily applicable to

1http://www.debian.org/Bugs/server-control#summary

http://www.debian.org/Bugs/server-control#summary
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virtually any bug tracking system without need for configuration nor of a corpus of manu-
ally created golden summaries and ii) generate summaries at least as good as the previous
approach, which, from now on, we shall refer to as email summarizer.

The summarization approach we propose is based on a hypothetical model of how some-
one would read a bug report when pressed with time, assuming the reader will have to
overlook many sentences and focus on the ones he finds most important. We use the findings
of a qualitative grounded theory (Strauss and Corbin 2008) investigation on bug reports, to
pose three hypotheses on what kinds of sentences a reader would find relevant: sentences
that discuss frequently discussed topics, sentences that are evaluated or assessed by other
sentences, and sentences that focus on the topics in the bug report’s title and description
(Section 2). We use this model to rank sentences by their probability of being read and
compose the summary with the sentences with the highest probabilities (Section 3).

We create 4 different summarizers, one to test each of our three hypotheses, and one
that combines all three summarization hypotheses. We test these summarizers (Section 4)
by generating summaries for the same 36 bug reports used by Rastkar et al. (2010) and
comparing them with the summaries generated by the email summarizer, which we have
also implemented. By comparing standard summary evaluation measures, our results show
that the summarizers for each of the hypotheses create competitive or improved summaries,
while the combination of these hypotheses creates summaries with as much as 12 % higher
evaluation measures.

We also generate summaries for a random selection of bug reports from four different
bug tracking systems and conduct a survey asking the developers who worked on these
bug reports to assess the quality and usefulness of the summaries (Section 4). Our study
attracts the participation of 58 open source developers, who not only validate the quality and
usefulness of the summaries, but also point out the most important use cases for bug report
summaries and the improvements that our approach and bug report summarizers in general
should focus on.

Finally, we present two heuristics to facilitate the use of our summarizers, helping users
define the appropriate summary length that will create good quality summaries (Section 5).
The first heuristic eliminates the need for the user to specify the desired summary length
by creating an alternative input parameter that should better suit users with specific quality
constraints. The second approach is able to suggest either a short or a long summary and
performs as much as 80 % better than a random predictor.

This work provides five main contributions: (i) a deeper understanding of the informa-
tion exchanged in bug reports (Section 2.1); (ii) a novel, unsupervised, approach for creating
general purpose bug report summaries, that should be readily applicable for any bug track-
ing system (Section 2.2); (iii) techniques to identify the most important information in bug
reports (Section 3); (iv) a survey with 58 open source developers highlighting the use cases
for which bug report summaries are most useful for (Section 4); and (v) four directions for
future work motivated by our findings: improving the calculation of a sentence’s relevance,
moving past extractive summaries, creating personalized summaries, and designing inter-
faces to facilitate bug report navigation based on a summary (Section 6). An earlier version
of this work has appeared in Lotufo et al. (2012a). In this version, we broaden the scope of
our study and investigate how the summarizers perform when varying the mandatory length
input parameter (Section 4.3.1). To facilitate the choice of such input parameter, we pro-
pose an alternative parameter that should be more intuitive for some users (Section 5.1) and
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propose a heuristic to choose a parameter value that will optimize the summary’s quality
(Section 5.2).

2 Modelling the Bug Report Reading Process

As with most extractive summarization approaches, we want to rank sentences by relevance
and select the n most relevant sentences to compose the summary. For our summarization
approach, we estimate the relevance of a sentence based on the probability of a reader
focusing his attention on that sentence, if the reader were only allowed to focus his attention
on a limited number of sentences while skimming through the bug report and still wanted
to maximize his knowledge about the bug.

We consider this should resemble, in fact, how users would read a bug report when in a
hurry: they would have to skip less important portions of the bug report, moving back and
forth to portions that will complement their current understanding, following a single topic
or moving their attention to different topics, until they are satisfied with the knowledge they
have acquired.

We can model this process with a Markov chain. A Markov chain is a directed graph
where nodes represent states, and edges between the nodes model the transition probability
between the states. To model the hurried bug report reading process, we can represent each
sentence in a bug report as a node in a Markov chain M where each edge mi,j represents
the probability of transitioning from sentence si to sentence sj . Thus, each sentence i will
have outgoing edges to all other sentences j , weighted by the probability of sentence j

being the next sentence to be read. The relevance of a sentence can then be approximated by
calculating the probability distribution of each state in the Markov chain, i.e., the probability
of a reader reaching a state if transitioning through the chain according to the transition
probabilities of each edge.

As with most models, the Markov chain is only an approximation of our hypothetical
bug report reading process. The approximation is given by the fact that, while intuitively the
probability of the next sentence does depend on all the previous sentences that were read,
Markov chains are memoryless: the probability of the next sentence to be selected will be
given only by the current sentence and will not consider the other sentences that have been
read.

To complete this model, however, we must estimate the transition probabilities from one
sentence to another. Estimating such probabilities requires us to understand what sentences
users find important to read, based on the sentence they have just read, i.e., the links users
are likely to follow from one sentence to another.

2.1 How Knowledge Evolves in Bug Reports

As most problem-solving tasks, bug resolution is a process of reducing the uncertainty about
a software issue, until the knowledge that has been gathered is enough to resolve the issue.
Comments are used, therefore, to share information that could be used to improve the current
knowledge about a bug. Thus, for readers to understand a bug report, it is important that
they are able to follow the threads of evolving knowledge.

To gain an insight into how a user might read a bug report and follow the threads
of evolving knowledge, we perform a qualitative investigation of the comments in bug
reports using grounded theory, as proposed by Strauss and Corbin (2008). The ques-
tion we ask for this investigation is: “How does knowledge evolve in bug reports?”.
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We start by investigating a random sample of 40 bug reports, with at least 10 comments
each, from the Chrome, Launchpad, Mozilla, and Debian bug tracking systems. After going
through this random sample, we move to a theoretical sampling approach, as recommended
by Strauss and Corbin, and stop sampling when new samples do not deepen the understand-
ing of the problem, but fit into our current theory. The final sample of bugs we have used for
this study was 15 from Chrome, 13 from Launchpad, 16 from Mozilla, and 11 from Debian.

We find that a bug report serves as a dump of data for an ad hoc problem-resolution
process. Such data varies from well formatted and comprehensible text and discourse, such
as a detailed description of a scenario; to informal conversations, opinions, and ramblings;
to the very technical dumps, stack traces or patches that are pasted into bug reports.

In general, we find that comments revolve around three types of information about a bug:
claims, hypotheses, and proposals. A claim is a general affirmation made by a participant,
such as “I can reproduce this on 4.11”, or “The function returns -1 for me”. Participants post
hypotheses about, for example, the cause of the bug or a possible solution: “since I cannot
reproduce this on Wheezy, the problem might be caused by the render screen function” or “I
think that removing that call should fix the crash”. As for proposals, they are generally used
when discussing different approaches to resolve an issue: “How about using json instead of
xml?”.

The information introduced by claims, hypotheses, and proposals evolve over time. Par-
ticipants frequently post evaluation comments that confirm or dispute previous claims,
support or reject previous hypotheses, and evaluate previous proposals. Readers, therefore,
need to keep track of each of these threads of context. It is only from understanding these
threads that a reader will be able to understand, for example, what the outstanding issues
preventing a bug’s resolution are; what the different verified solutions or workarounds are;
and which environments each of these solutions and workarounds are suited for. Lotufo
et al. (2012b), in previous quantitative analysis, found that at least 27 % of comments in
bug reports result from the evaluation of other comments. This finding is also supported by
Breu et al. (2010). Gasser and Ripoche (2003) performed a related study on bug reports and
also found that the bug resolution process is much about the ‘stabilization’ of the knowl-
edge about a bug, which can only be achieved through the evaluation of claims, hypotheses,
and proposals.

For bug reports with more than three contributors (which amount to over 46 % of bug
reports, with an average of 13 comments each, in a random set of 10000 bug reports from
the Mozilla bug tracking systems), in addition to the previous findings, the topic of com-
ments often changes frequently, since each contributor has a different perspective about the
bug or purpose for contributing: some contributors might be concerned about convincing
others that the priority of the bug is low, for example; others might be trying to present evi-
dence that the issue also occurs in other environments than those already known; and yet
other contributors might be trying to coordinate who will be responsible for resolving the
bug. As a result, the more contributors discussing a bug report, the more the conversation
becomes interwoven and multi-threaded, demanding readers to keep track of multiple con-
texts and increasing the difficulty of keeping track of the evolving knowledge about the
bug.

Thus, these findings from our qualitative investigation suggest that, in order to under-
stand a bug report, users should follow three general heuristics:

(i) users should follow the threads of conversation containing the topics they are inter-
ested in, from start to finish, to minimize the probability of missing important
information;
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Fig. 1 Bug report for running example

(ii) users should give particular attention to sentences that have been evaluated by other
sentences, since they set the context for much of the following comments;

(iii) for users with limited time, in order to focus on the most important points of
the bug, users should focus their attention mostly on comments that discuss
the problem that was introduced in the bug’s title and description and should
not follow into parallel topics—a bug’s description is commonly shown as the
first comment in a bug report and is the bug reporter’s characterization of the
problem.

2.2 Modelling the Heuristics

We now present how we propose to model each of these heuristics using a Markov chain.
Figure 1 presents an example of a bug report that we will use to explain the approach. The

Fig. 2 Graph showing �tp (grey), �ev (black), and �df (dashed) links for the bug report from the running
example
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figure shows the bug report title followed by the sentences si,j in the bug report, where i is
the index of the sentence in the bug report and j is the index of the comment the sentence
belongs to, considering the bug description as the comment 0. Figure 2 presents the Markov
chain for our running example. In the following sections, we will explain the edges shown
in the Markov chain.

2.2.1 Topic Similarity

The first heuristic, which assumes that users should follow important threads of conversation
from start to finish, implies that after reading a sentence, the most relevant sentences to read
next are the sentences that talk about the similar topics as the previous sentence. This can be
easily modeled in a Markov chain: the transition probabilities between sentences that talk
about the similar topics should be higher than the probability transitions of sentences that do
not talk about similar topics. Let us assume that �tp(si , sj ) measures how much sentences
si and sj talk about the same topics, where i and j are the index of the sentences in the bug
report. For now, we consider �tp to be binary: it will return 1 if the two sentences share some
topic and 0 otherwise:

�tp(si , sj ) =
{
1 if topic-sim(si , sj ) > τ ∧ i �= j ,

0 otherwise,
(1)

From the running example, s0,0 and s4,2 have similar topics, since they talk about updating
versions, hence �tp(s0,0, s4,2) = 1. In Fig. 2, gray edges represent the symmetric �tp link
between two sentences, so we can see a bidirectional edge between sentences s0,0 and s4,2.
Similarly, sentences s1,0, s2,1, and s5,2 all talk about the application crashing when opening
the preview window, even if s2,1 states that it does not crash when opening the preview
window. Therefore, Fig. 2 shows gray bidirectional edges between these sentences.

2.2.2 Evaluation Sentences

The second heuristic suggests that users should pay attention to sentences that have been
evaluated by other sentences. For our Markov chain, this means that the transition from a
sentence that evaluates another should be higher than from other sentences. Let �ev(si , sj )

be a function that indicates if sentence si evaluates sentence sj :

�ev(si , sj ) =
{

�tp(si , sj ) if si evaluates sj ,

0 otherwise.
(2)

As it can be seen, we have defined �ev dependent on �tp: if two sentences do not talk about
similar topics, one will never evaluate the other. For our example, sentence s2,1 and sentence
s5,2 are evaluation sentences: sentence s2,1 evaluates sentence s1,0, since the user says that
he could not reproduce the bug described in s1,0; therefore, �ev(s2,1, s1,0) = 1. In Fig. 2,
thick black edges represent the �ev relationship, so we can see one of these edges from
sentence s2,1 to s1,0. Similarly, sentence s5,2 evaluates sentence s2,1, since it disagrees with
the statement in s2,1 that the bug cannot be reproduced; and evaluates sentence s1,0, since it
agrees with the statement in s1,0 that the bug occurs when opening the preview window. As
it can be noted from the definition of �tp and Fig. 2, the �tp link is symmetric. Link �ev, on
the other hand, is unidirectional: from the evaluator sentence to the evaluated sentence in a
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previous comment. Thus, although s4,2 and s5,2 share a same topic and s5,2 is an evaluation
sentence, �ev(s4,2, s5,2) = 0, since they are in the same comment.

2.2.3 Similarity to Title and Description

In essence we thought that adding the title and removing it later would be as adhoc as
the other solution. In addition, we intentionally wanted a strong influence of the title in
weighing the other sentences.

Yes, the heuristic we use definitely produces a different result than if we added the title
to graph and then removed it at the end. But there are two reasons why we decided on
implementing it this way: i)

The final heuristic suggests users to focus on sentences that discuss the problem that
was initially reported in the bug title and description. To boost the relevance of sentences
with similar topics to the bug description, we can add a link from each sentence in the
description to itself. There should be two effects of adding self links to the description:
first, the relevance of sentences in the description will be increased; second, as a result of
sentences in the description being increased, the relevance of sentences with similar topics
to the bug description will also increase. As can be seen in Fig. 2, the two sentences in the
description for our example, s0,0 and s1,0 have edges, of weight 1, to themselves.

We also want to boost the relevance of sentences with similar topics to the bug report
title, since previous work has shown that the title can be a very good summary of a bug
report (Weiss et al. 2007). To this end, we can artificially include the title as a node in our
graph, and add edges from the title t to all sentences s for which �tp(t, s) > τ , for some
τ > 0. Figure 2 shows links from the title to sentences s0,0, s1,0, s2,1, and s5,2 since they all
share some topic with the bug title.

The bug report title is not, however, one of the sentences we are trying to rank. An
candidate alternative to workaround this issue would be to include the title as a sentence
when computing page rank and then remove the title after computation. Removing the title
from the graph after computing page rank, however, would not produce a valid Markov
chain, since the sum of the probabilities for each node would not be 1.0. Thus, to add more
weight to sentences similar to the bug report’s title, instead of adding the title as a node
in the Markov chain, we add a link from every sentence si to every other sentence sj that
shares topics with the bug report title, such that i �= j .

As a result, to measure the similarity to title and description, we define �df as in (3),
where SD is the set of sentences within the bug description, and t is the bug report title.

�df(si , sj ) =
{
1 if i = j ∧ si ∈ SD ,

�tp(t, sj ) otherwise,
(3)

2.2.4 Combining Heuristics

Each of our links target different characteristics of sentences in bug reports. Thus, if these
heuristics are valid, we hypothesize that the combination of these links should at least
produce similar results to the best heuristic and hopefully improve the results of the best
heuristic.

Figure 2 shows that we can easily combine �tp, �ev, and �df to rank sentences by sum-
ming each of the weights. Since our main interest is to verify if a combination of the
links does indeed improve the results of the individual links, we combine them in the most
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straight-forward way: a self vote of value 1.0 for sentences in the bug report description and
a linear combination of the �tp, �ev, and �df for other pairs of sentences:

�all(si , sj ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if i = j ∧ si ∈ D,[
α�tp(si , sj )

+β�ev(si , sj )

+γ �tp(t, sj )
] 1

(α+β+γ )
otherwise.

(4)

Since we want to verify if each of these heuristics are valid and if their combination is
also valid, we use the most straightforward parameters for each of the coefficients: 1. We
leave the work of optimizing the weights of these parameters for the future. We note that,
since our previous definition of �df only depends on the �tp function, which we have already
defined, there is no need to redefine it.

2.2.5 Hypotheses

To evaluate if the proposed heuristics are suitable for summarizing bugs reports, we
formulate three hypotheses, one for each heuristic.

From Fig. 2, due to the nature of Markov chains, the relevance of each sentence—the
probability of a reader reaching each sentence—will be greater the higher the transition
probabilities from other sentences to that sentence weighed by the probabilities of each
one of those sentences. For example, a sentence si that has only one topic in common with
another sentence sj , that has a low probability of being read, will also have low probability,
since it can only be reached from sj , even if the probability of transitioning from sj to si is
high.

We can now pose the following hypotheses for how to rank sentences by relevance for
an extractive summary:

Hypothesis 1 the relevance of a sentence is higher the more topics it shares with other
relevant sentences;

Hypothesis 2 the relevance of a sentence is higher the more it is evaluated by other relevant
sentences;

Hypothesis 3 the relevance of a sentence is higher the more topics it shares with the bug
title and description.

2.3 Calculating Probability Distribution

The graph in Fig. 2 is not yet a Markov chain, since until now, the weights for the edges
are not probabilities, but simple weights measured by the link functions �tp, �ev, and �df. To
transform the graph into a proper Markov chain, we must calculate the transition probability
for each edge. From the weights for the links �(si, sj ) between the sentences, calculating
the transition probability is trivial: for every outgoing edge in a node, we divide its weight
by the sum of the weights for all outgoing edges for that same node, as shown in (5). As a
result, the sum of the weights (probabilities) for the outgoing edges of each node will be 1.

mi,j = �(i, j)∑
∀k �(i, k)

(5)
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Thus, considering only the �tp links, the adjacency matrix for a graph G for the running
example, and the resulting Markov chainM would be the following:

G =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 1 0
0 0 1 0 0 1
0 1 0 0 0 1
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 0 1 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

M =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 1 0
0 0 0.5 0 0 0.5
0 0.5 0 0 0 0.5
0 0 0 0 0 0
0.5 0 0 0 0 0.5
0 0.33 0.33 0 0.33 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6)

where the order of nodes in the matrix are given by the index of the sentence in the bug
report. Elements g4,0 and g0,4 have value 1, for example, since they represent the �tp links
between sentences s0,0 to s4,2.

2.3.1 Using PageRank to Calculate Sentence Relevance

Brin and Page (1998) developed PageRank to rank web pages by relevance using a very sim-
ilar model. They estimated the relevance of a web page as the probability of a user reaching
that page for a user who surfs the web randomly following hyperlinks from one web page
to another, like a random surfer. PageRank takes as input a graph G, where web pages are
nodes and a link from page i to page j is modeled as a directed edge from i to j with weight
l(i, j) = 1. PageRank then calculates the Markov chain M for the random surfer model
using (5) and outputs a probability distribution R, where each ri is the probability of a user
eventually reaching web page i after a large number of clicks.

Given the Markov chain M, the probability distribution R for the elements in M is
its principal eigenvector, such that R = MR. By the Perron-Frobenius theorem, if M
is an irreducible and aperiodic stochastic matrix, we can use the iterative power method
to compute R, since the Markov chain is guaranteed to converge to a unique stationary
distribution.

An irreducible Markov chain is one in which all states are reachable from any other
states, e.g., all states have at least one transition to it with probability > 0. An aperiodic
Markov chain is one in which all states are aperiodic: the minimum common divisor of the
number of transitions required to return to any state is 1.

We cannot guarantee, however, that the Markov chain for the web is irreducible and
aperiodic. In fact, it is known that it is not: there are many web pages that are not linked
to from any other web pages. Similarly for sentences in a bug report, we cannot guarantee
there will not be any sentence that does not share any topic with any other sentence.

To transform M into an irreducible and aperiodic Markov chain M̂, Brin and Page
consider that with probability δ a user will not follow any hyperlink but will randomly go to
any web page in the Internet. Since any web page is now reachable by any other web page
in one transition with probability δ, the chain is now irreducible and aperiodic. The formula
for PageRank, in matrix form, is shown below, where Un×n is a square matrix of ones, and
M is the Markov matrix.

R =
[
1 − δ

n
U + δM

]
R = M̂R (7)

Now that M̂ is aperiodic and irreducible and the convergence of R is guaranteed, we
use the iterative power method to calculate the principal eigenvector of M̂. The power
method calculates R starting as a uniform distribution R = 1

n
1, and updates R at each step
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as R′ = M̂R. The algorithm stops when |R−R′| < ε, which, for aperiodic and irreducible
stochastic matrices, is guaranteed to occur for ε > 0.

Given the similarity of the random surfer model and the bug report reading model that we
have proposed in Section 2, applying PageRank to calculate the probabilities of sentences
being read requires only that we identify the links, i.e, the transitions, between sentences in
a bug report. We can then derive the Markov chainM using (5) and calculate the probability
distribution R, just as in PageRank.

The only change our original model suffers when using PageRank is that now we must
consider that, with probability δ, a user might jump to any sentence in a bug report without
following our links—we use δ = 0.85 just as recommended by Brin and Page in PageRank.
We can use (5) directly to calculate the Markov chain, which is applicable even if �(si, sj )

returns values different from 0 and 1 and instead returns any value ≥ 0 as the weight of
links. This will be the case when we rank sentences considering both Hypotheses 1 and 2,
for example, by combining �tp and �ev as �(si, sj ) = �tp(si , sj ) + �ev(si , sj ) and when �tp
and �ev measure the strength of these links.

For the running example, considering only the �tp links, transforming G into the stochas-
tic matrix M by dividing each row by the sum of the row, as shown in (5), results in (6).
After making it irreducible and aperiodic by multiplying δ and then adding 1−δ

n
U, as shown

in (7), and solving forR using the iterative power method, we get the following probabilities
for the sentences in our example: [0.11, 0.18, 0.18, 0.02, 0.20, 0.27], effectively ranking
sentences as [s5,2, s4,2, s1,0, s2,1, s0,0, s3,2].

3 Estimating Transition Probabilities Between Sentences

We have shown how to model the hurried bug report reading process and estimate sentence
relevance using a Markov chain, assuming we can measure �tp, �ev, and �df. The following
sections details how we use natural language processing to measure how much two sen-
tences talk about the same topics and to identify sentences that evaluate other sentences and
quantify the weights for links �tp, �ev, and �df.

3.1 Measuring �tp

There exists much work on measuring how much two documents discuss the same topics.
Most of these, first identify the topics contained within documents and then measure topic
similarity by considering how much topic overlap there exists between the documents. Sun
et al. (2007), for example, measured the changes in mutual information from one chunk of
a document to another to detect topics. Latent Dirichlet Allocation (LDA) (Blei et al. 2003)
and Probabilistic Latent Semantic Analysis (PLSA) (Hofmann 1999), on the other hand,
identify topics using word co-occurrence knowledge extracted from documents.

While arguably these approaches are state-of-the-art in identifying topics, they are not
lightweight and generally require the tuning of several different parameters, most impor-
tantly, the number of topics to be identified. Since we aim for a solution that does not need
such parametrization, we choose a more direct and lightweight approach to measure topic
similarity: we will consider that sentences that talk about similar topics should have many
common words. We will approximate, therefore, topic similarity by lexical similarity.

While there are many textual similarity metrics, such as Levenstein edit distance and
Euclidean distance, the cosine similarity function is one that has shown consistent results
in measuring the similarity of content, and is used, for example, to classify and cluster
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documents by author, topics, and writing style (Büttcher et al. 2010). The cosine similarity
is defined as below, where x and y are the vectors of term frequency for a sentence.

cosine − sim(x, y) = x · y

|x|.|y| (8)

As is commonly done when measuring textual similarity, we scale the term frequency (tf)
by the inverse document frequency (idf) of the term, diminishing the importance of terms
that occur in most documents, since they do not help in differentiating two documents. The
term frequencies in the vector for each sentence, scaled by the inverse document frequency
is calculated as shown below, where nt,s is the number of times term t occurs in s, N is the
total number of sentences, and nt is the number of sentences that contain term t .

tf − idf(t, s) = nt,s log
N

nt

(9)

Before building the vectors for the sentences using tf − idf, we must first tokenize the text
into its terms. Based on our previous experience with tokenizing text from bug reports, we
tokenize the sentences using the following regular expression: ‘[\w-]+(\.[\w-]+)*’,
which should correctly identify words, while preserving most function and variable names,
urls, and software version numbers. After tokenization, we move all characters to lowercase
and stem the tokens using the standard Porter stemmer (Porter and et al 1980). We can now
redefine �tp as:

�tp(si , sj ) =
{
cosine − sim(si , sj ) if i �= j ,

0 otherwise.
(10)

3.2 Measuring �ev

The relations of evaluation between sentences we are interested in are those where a sen-
tence evaluates or verifies the validity of the content of another sentence. From our example,
s2,1 fits this relation, as it suggests that the content of s1,0 is not valid, since its author could
not reproduce the crash. Similarly, s5,2 evaluates both s1,0 and s2,1, since it says that the bug
is reproducible, confirming the content of s1,0 and disconfirms the content of s2,1.

Although we are not aware of prior work that tries to identify evaluation relations
between sentences in a bug report, polarity detection through sentiment analysis might be
a good approximation of this relation. Polarity detection has previously been used to detect
the polarity of reviews of movies (Beineke et al. 2004), of products, politicians, and almost
anything (Tang et al. 2009). We consider polarity detection might be a reasonable approx-
imation, since, in general, it first filters evaluation sentences, and then tries to detect if the
evaluation is positive or negative. For our purposes, we consider a sentence is an evaluation
sentence if its polarity is different from neutral.

The best results for polarity detection have been achieved using classifiers such as sup-
port vector machines that are trained on a corpus of texts that have had its polarity previously
annotated. Since we are looking for an approach that is completely unsupervised, however,
having to manually classify the polarity of sentences of a bug report would not suit here. We
use, therefore, the same approach as Go and Bhayani (2009) who created a large training
corpus of sentences for polarity prediction by using the emoticons present in Twitter mes-
sages to automatically infer the polarity of each sentence. We use a training set composed of
800,000 Twitter messages with positive polarity, 800,000 with neutral polarity, and 800,000
with negative polarity and use the resulting classifier to predict the polarity of sentences in
bug reports—we include into the training set sentences with neutral polarity, since we also
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need to identify the sentences that are not evaluation sentences. This classifier uses a linear
support vector machine in which the feature vector for a sentence represents the presence or
absence of a word in the comment. We leave the reader to consult Go and Bhayani (2009)
report for further details on this approach.

Simply identifying evaluation sentences is not enough, however, since we want to iden-
tify an evaluation link from one sentence to another. Our definition of the evaluation link
from Section 2.2.2, however, hints to a solution to identify such relation: the evaluation link
requires first that two sentences have similar topics. As such, just as how cosine − sim mea-
sures not if, but how much, two sentences share a topic, here we also propose to quantify the
strength of the evaluation link between two sentences. Furthermore, sentences in comment
i can only be evaluated by sentences from comments posted after comment i.

We measure the strength of the evaluation link from si to sj as the strength of the �tp link
between the two sentences if si is an evaluative sentence or is a sentence within a comment
that contains an evaluative sentence. We can now redefine �ev as:

�ev(si , sj ) =
⎧⎨
⎩ �tp(si , sj )

(
pS (si )+pC(si )

)
2 if c(si) > c(sj ),

0 otherwise,
(11)

where pS(s) returns 1 if s has polarity and 0 otherwise, pC(s) returns 1 if s is contained in
a comment that contains a sentence that has polarity and zero otherwise, and c(s) returns
the index of the comment that contains sentence s.

3.3 Chunking Comments into Sentences

Our extractive summarization approach works with sentences as the minimal chunks of text
to be extracted into a summary. Bug reports, however, are not segmented into sentences. In
fact, segmenting comments into sentences is a challenging problem itself, since text in bug
reports is very informal and often contains source code, stack traces, logs, and enumerations.
Using a traditional sentence chunker that uses a ‘.’ character to identify sentence boundaries
does not produce good results. While Bettenburg et al. (2008b) parsed bug report comments
to collect structured information, such as stack traces and patches, they did not work on
sentence chunking, but acknowledged that it is a non-trivial problem.

We chunk comments into sentences using the following heuristics: (i) each item from an
enumeration is a sentence; (ii) we use ‘.’, ‘;’, ‘?’, ‘!’ as sentence delimiters, except when ‘.’
is used in version strings, URLs, code snippets, and abbreviations; (iii) if a line of text has a
line break before 80 characters, we consider that the line break ends a sentence. As a result
of these heuristics, since generally each line in a stack trace or source code snippet has less
than 80 characters, each line in a stack trace or source code is often a sentence itself.

4 Evaluation

4.1 Methodology

Our evaluation has two parts. For the first part, we implement three different summarizers,
one for each link function �tp, �ev, and �df, to evaluate each one of our hypotheses. We
will consider our hypotheses to be valid if our summarizers produce summaries that have
competitive or improved evaluation measures compared to the summaries created by the
email summarizer (Rastkar et al. 2010), which we have implemented to the best of our
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knowledge. We also test a summarizer using �all to assess if the combination of the links
yields improved summaries.

The corpus we use for this evaluation is the corpus created by Rastkar et al. (2010),
which consists of 36 bug reports, from four different open-source projects: Eclipse, Gnome,
Mozilla, and KDE, each with three reference golden summaries created by humans. We use
these reference summaries to compare against the generated summaries. For this evaluation,
and as was done by Rastkar et al., we generate summaries by selecting sentences until the
summary reaches a predefined percentage of the original bug report’s length, in number of
words. For completeness, we evaluate the performance of the summarizers when generating
summaries of different lengths, from 15 to 70 % of the length of original bug report in
number of words.

The bugs chosen for annotation by Rastkar et al. have mostly conversational content. The
authors intentionally avoided bug reports containing structured technical data, such as stack
traces and code, since they claim that this content is not typically read by developers. For
the second part of our evaluation, however, we do not restrict our tests to bug reports with
conversational content, and have selected bug reports randomly selected from four other
open-source projects: Debian, Launchpad, Mozilla, and Chrome.

For this second part of our evaluation, we use the �all summarizer to generate summaries
of length 25 % of the original bug report for a random set of bug reports from the four
open-source projects above and invite the developers who contributed to these bug reports
to assess the quality and usefulness of the summaries. From the 250 invitations we sent
out, we received a response from 58 developers, each one evaluating a different bug report:
22 from Debian, 14 from Mozilla, 13 from Ubuntu, and 9 from Chrome. We present the
developers with each summary in two formats: condensed and interlaced. Figures 3 and 4
show samples of the interlaced and condensed summaries for the bug report in the running
example. The interlaced format presents the complete bug report content, with the extracted
sentences shown highlighted out from the other sentences. The condensed format shows
only the extracted sentences. We ask the developers to: (i) assess the quality of the summary
by indicating the mistakes made by the summarizer, i.e., the sentences that should have
been extracted but were not and the sentences that were extracted but are not so relevant;
(ii) explain if they preferred the condensed or interlaced format for reading a bug report
summary; (iii) explain what are the most important types of information that a summary
should contain; and (iv) indicate, using a Likert scale, what are the most important use cases
for such summaries.

4.2 Evaluation Metrics

To assess our hypotheses, we use the following established metrics for evaluating
summaries:

Precision and Recall We measure precision and recall for the summaries, considering a
master golden summary G∗ composed of the sentences that are present in the majority of
the golden summaries. For the corpus created by Rastkar, the master golden summary is
composed of the sentences that are present in at least two out of three golden summaries.

precision(S) = |{S ∩ G∗}|
|S| recall(S) = |{S ∩ G∗}|

|G∗| (12)

f − score(S) = 2 ∗ precision(S) ∗ recall(S)

precision(S) + recall(S)
(13)
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Fig. 3 Interlaced summary view for the running example

Precision then measures the percentage of sentences in a summary that is also present in
G∗, while recall measures the percentage of sentences in G∗ that are present in the summary
being evaluated. The f-score is the harmonic mean of the precision and recall rates, given
by (13), which, differently from the arithmetic mean, will give a higher weight to the lower
values.

Precision and recall, however, measure the quality of a summary against a master golden
summary which is artificially composed by the sentences present in at least half of the
golden summaries. Thus, it does not mean that such a master golden summary is necessarily
a good one, since different golden summaries can provide all the relevant information with
different extracted sentences (Nenkova et al. 2007).

Pyramid Score To circumvent the issues of recall and precision, Nenkova et al. (2007) pro-
posed the pyramid score, an evaluation metric that should better measure the quality of an
extractive summary based on a set of golden summaries created by several annotators. When
evaluating a summary composed of n sentences, pyramid score is the sum of the number of
golden summaries that contain each of the n sentences from the evaluated summary, divided

Fig. 4 Condensed summary view for the running example
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by the sum of the number of golden summaries that contain the n sentences that are present
in the highest number of the golden summaries. Pyramid score is, therefore, a recall-related
evaluation metric for a summary, that measures the quality of a summary against the best
summary of the same length.

The formula for the calculation of pyramid score is shown below, where S is a summary,
s ∈ S are the sentences in summary S, G is the set of all golden summaries G, and Gtop

|S| is
the set of size |S| of sentences that are present in highest number of the golden summaries:

pyramid(S) =
∑

s∈S

∣∣{G ∈ G : s ∈ G}∣∣∑
s∈Gtop

|S|

∣∣{G ∈ G : s ∈ G}∣∣ (14)

Nenkova also defines pyramid precision and pyramid recall. Pyramid precision calculates
the percentage of sentences in a summary that are present in at least one golden summary.
Pyramid recall calculates the percentage of sentences present in any one of the golden sum-
maries that are present in the summary being evaluated. In effect, these are the precision
and recall as defined in (12), with G∗ being composed of sentences that are present in any
of the golden summaries.

4.3 Hypotheses Tests

To test our hypotheses, we generate summaries for the bug reports in the Rastkar corpus and
compare their quality with the summaries generated by the email summarizer. Like Rastkar,
we start by generating summaries of 25 % of the length of original bug report in number of
words. Figure 5 presents, for each evaluation metric, the averages weighed by the number
of sentences in a bug report. For each of the five summarizers we evaluate: �tp summarizer,
�ev summarizer, �df summarizer, �all summarizer, and email summarizer. In the spider chart,
the maximum value in each of the evaluation metrics’ axes is the maximum for that metric,
for all of the summarizers and each tick in the axis corresponds to a difference of 0.05.
While the spider chart facilitates viewing the differences between the metrics between the

Fig. 5 Evaluation measures for �tp, �ev, �df, �all, and email summarizers for summaries of length 25 %. The
maximum value for each axis is the maximum for each metric while each tick in the axis corresponds to 0.05
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Table 1 Comparison of evaluation measures for �tp, �ev, �df, �all, and email summarizers for summaries of
length 25 %

�tp �ev �df �all email

Precision 0.65 0.58 0.63 0.71 0.58

Recall 0.23 0.28 0.29 0.30 0.27

F-Score 0.33 0.36 0.37 0.41 0.36

Pyramid Precision 0.88 0.82 0.87 0.90 0.82

Pyramid Recall 0.18 0.22 0.23 0.23 0.23

Pyramid Score 0.66 0.62 0.66 0.71 0.63

summarizers, we present in Table 1 the same information in tabular format, showing exact
values for each of the metrics.

The results show that �tp summarizer has a slightly higher precision and pyramid preci-
sion than the email summarizer, but has less recall and pyramid recall. The non-parametric
Mann-Whitney U test supports that these distributions are indeed different, with p-value <

0.05 for precision and recall, and p-value < 0.01 for pyramid precision and recall. The
chart also shows that the �ev summarizer has similar evaluation results compared to the
email summarizer, for summaries of length 25 %. For �df, the chart shows that it has slightly
better values for all evaluation metrics compared to the email summarizer, except for pyra-
mid recall. The Mann-Whitney U test, however, supports that, for �df, only the pyramid
precision measure is better than email summarizer, with p-value < 0.01.

We can also use Fig. 5 to compare each of our three individual summarizers—�tp, �ev, and
�df—amongst themselves. This comparison shows that �tp has significantly less recall than
the other summarizers, while �ev has significantly less precision than the others. We find
that �tp has such low recall because �tp prefers longer sentences than the other summarizers.
Thus, since we take sentences until we reach 25 % of the number of words in the original
bug report, it extracts less sentences than the other summarizers.

The results we have presented show that all of our individual summarizers are at least
competitive with the email summarizer. Furthermore, their combination as �all, has an
improvement of 12 % in precision, 8 % in pyramid precision, and 8 % in pyramid score,
confirmed by the Mann-Whitney U test with p-value < 0.01. These results indicate that
Hypotheses 1, 2, and 3 have a high likelihood to be valid: relevant sentences for a bug report
summary are those that discuss topics that are frequently discussed; those that are evaluated
by other sentences; and those that do not deviate from the problems as described in the bug
report title and description.

It is important to note that all of the summarizers we evaluate here have reasonable
precision but quite low recall. One of the main causes of the low recall is that most of expert
summaries for the Rastkar corpus are larger than 25 % of the original bug report length. We
will discuss how the summarizers perform for different summary lengths next and elaborate
on how to aid the user in deciding on a target summary length in Section 5.

4.3.1 Varying Summary Target Length

For most summarization approaches, the length of the resulting summaries are decided
beforehand, by the user, usually through an input parameter, either in number or per-
centage of characters, words, sentences, or paragraphs (Lloret and Palomar 2012).
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Rastkar et al. (2010), for example, ranked sentences by their scores and includes the highest
scoring sentences until the summary reaches 25 % the original bug report length in words.

We have shown in the previous section that �tp, �ev, �df, and �all produce good qual-
ity summaries of length 25 % of the original bug report and that �all produces significant
improvements over the email summarization approach. For a more complete evaluation, we
now present the accuracy of these summarizers when generating summaries of different
lengths.

Figure 6 presents the precision, recall, f-score, pyramid precision, pyramid recall, and
pyramid score for �tp, �ev, �df, �all, and the email summarizer, for lengths varying from
15 to 70 % of the original bug reports. Similar to Fig. results-radar, for all metrics, except
recall and pyramid recall, the �all summarizer has clearly better values than all other sum-
marizers, for all summary lengths. For recall and pyramid recall, however, the figure shows

Fig. 6 Evaluation measures for �tp, �ev, �df, �all, and the email summarizer for summary lengths varying
from 15 to 70 % of original bug report word count
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that �all has similar values to the other summarizers for shorter summary lengths, but the
values decrease, compared to the other summarizers, excluding �tp, as the summary length
increases. The reason why �all and �tp have lower recall even while having higher precision
over the other summarizers is because these two summarizers select longer sentences than
the other summarizers. Since we stop including sentences when we reach a predetermined
word count, a summarizer that prefers longer sentences will have included fewer sentences
than summarizers that prefer shorter sentences.

Figure 6 also shows that, overall, summary quality does not decay as we include more
sentences. Although precision and pyramid precision does decrease consistently, the pyra-
mid score remains almost constant and the f-score increases, indicating that the recall and
pyramid recall increases at a higher rate than the decrease in precision.

4.4 Evaluation with Developers

The evaluation with the developers from the Debian, Launchpad, Mozilla, and Chrome bug
tracking systems, in which we presented developers with a summary of length 25 %, in
number of words, of a bug report they had previously work on, was very insightful. From
the passion of the responses we received from developers, they seemed genuinely interested
in bug report summaries. This feeling is corroborated by the results of our survey, in which
more than 80 % of developers stated that bug report summaries would be at least very
useful—out of a scale of not useful, somewhat useful, useful, very useful, and extremely
useful—when (i) looking for a solution or workaround for a bug; (ii) searching for similar
or duplicate bugs; (iii) trying to understand the status of the bug and its open issues; and
(iv) when consulting bugs for prioritization, triaging, or closing out old bugs.

When asked about the most important kind of information that needs to be present in a
bug report summary, developers repeatedly affirmed that summaries should focus on show-
ing information (i) about the current status and the reason for such state; (ii) about solutions
or workarounds to the bug and the environments each remedy is applicable to; and (iii) about
the consensus on diagnostic information, such as the agreed steps and environment settings
to reproduce the bug. Developers also stressed the importance of being able to recognize
the different types of structured information in bug reports: stack traces, code snippets,
commands and their results, and enumerations such as steps to reproduce. A qualitative
analysis of the mistakes made by summarizer and pointed out by the developers, indicates
that sentences, as chunked by the procedure explained in Section 3.3, might not be the most
appropriate way to chunk content in bug reports, since the resulting summaries often con-
tain, for example, only some of the items of an enumeration and the result of a command
but not the command itself.

When evaluating the quality of the summaries presented to the developers, we asked them
to mark the mistakes made by the summarizer: sentences that were included in the sum-
mary but should not have been (false positives) and sentences that were not included in the
summary but should have been (false negatives)—the sentences that were selected by the
summarizer to be included in the summary and were not marked by the developers were con-
sidered true positives; the sentences that the summarizer did not select to be in the summary
and were not marked by the developers were considered to be true negatives. Such marking
made by the developers allows us to quantify the quality of the summaries by calculating
precision and recall. Since these bug reports only have one reference golden summary, pyra-
mid score is not applicable and the precision and recall, and pyramid precision and pyramid
recall will have the same values. The results for the 58 bug reports assessed by develop-
ers, shown in Table 2, indicate that, in average, the summaries include half of the relevant
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information, with 60 % of the sentences in the summaries being relevant ones. These results
are promising, since they are substantially better than the results for the Rastkar corpus,
showing an improvement 20 % in recall with a decrease in precision of only 10 %. This indi-
cates that the �tp, �ev, �df, and �all summarizers have not been tailored to a particular subset
of bug reports and are pretty general, achieving our objective of creating an unsupervised
bug report summarization approach that is readily applicable to any bug tracking system.

When developers were asked if they preferred the condensed or interlaced summary
formats, responses were mixed: 56 % preferred condensed, while 46 % preferred interlaced,
a non-significant difference. We did, however, find a consensus on the advantages of each
one, which can be summarized by the two following responses:

“I would never trust an automated summary, and would always need to refer to the
original. By highlighting the important sentences, it allows me to ‘speed read’ a long
report with many comments and status updates.”

“Interlaced works when there aren’t pages of irrelevant data. For a bug with *lots* of
comments, a condensed view would help. Personally, I use a greasemonkey script that
highlights comments from people that are likely to be providing useful information.”

Users were, thus, generally skeptical that an automated system would generate a perfect
summary, and would need to be able to refer to the non-relevant sentences when needed. An
optimal user interface for speed-reading a bug report would be one that would allow users
to easily skip irrelevant comments but at the same time be able to quickly scan them looking
for relevant sentences that the summarizer missed.

5 What Length Should my Summary be?

Our evaluation has shown how precision and recall vary for different target summary
lengths. In practice, however, this and most summarization mechanisms require the user to
select the desired target summary length (Lloret and Palomar 2012) as an input parameter.
Unfortunately, it might not always be clear what a good target summary length should be
for a particular bug report. Should one consider that 25 % of the length of the original bug
report is a good summary length for all bugs?

The summaries created by experts for the bug reports in Rastkar’s corpus, for exam-
ple, have a wide variety of lengths, ranging from 18 to 69 %, with a mean and median of
approximately 47 %. It seems, therefore, safe to assume that different bugs, with different

Table 2 Precision and recall for developer evaluation

Debian Mozilla Launchpad Chrome All

�all email �all email �all email �all email �all email

Precision 0.49 0.41 0.77 0.58 0.56 0.62 0.69 0.62 0.59 0.52

Recall 0.45 0.40 0.60 0.34 0.47 0.46 0.61 0.53 0.51 0.42

F-score 0.44 0.34 0.62 0.39 0.50 0.51 0.59 0.50 0.52 0.41

The high quality of summaries for this corpus suggests that the summarizers we propose are able to produce
quality summaries for bug reports in any bug tracking system
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informational content, density and different flow of threads and topics will probably have
different optimal summary lengths. The question we now pose is: how can we assist the
user in choosing the length of the target summary when using our summarizers?

For this part of the work, we focus mainly on the �all summarizer, as we did in our devel-
oper evaluation, since this is the best summarizer of all, as our evaluation has shown. We
will present, nevertheless, details about summary lengths for the remaining summarizers,
mostly for the purpose of understanding how each part of the �all summarizer works, and
how each different heuristic contributes to its final result. We hope this will help others in
improving each of the heuristics.

5.1 Sentence Relevance Threshold vs. Maximum Length

One way to facilitate the use of the summarizers is to substitute the target summary length
parameter with an alternative parameter that would be easier for users to decide on a
value for. An alternative parameter to maximum summary length is the minimum relevance
threshold. Instead of including the top ranking sentences until a certain summary length is
achieved, one could include into the summary only the sentences that cross a certain rel-
evance threshold. The length of the summary would be determined solely by how many
sentences are found to be relevant, thus allowing different bug reports to have different
lengths for the same value of minimum relevance threshold. Creating a summary with only
the sentences above a certain relevance threshold is straightforward. Since the sum of the
sentence probabilities resulting from PageRank have sum of 1, we normalize the probabil-
ities by dividing the probability of each sentence by the maximum sentence probability in
the bug report. Such normalization would transform all sentence relevance scores in val-
ues from 0 to 1, now allowing us to specify that we want to include in the summary only
sentences with relevance at least τ% of the maximum relevance.

When using such scheme, increasing the threshold τ will produce shorter summaries,
while decreasing the threshold will produce longer summaries. Figure 7 shows how the dis-
tribution of resulting summary lengths per bug report changes as we vary the minimum
relevance threshold, for each of the different summarizers for the Rastkar bug corpus as
well as the developer bug corpus. What is notable from the figure is that, while there is
a large variation in summary lengths for the same relevance threshold, each summariza-
tion approach has a characteristic curve for how summary length varies as we increase the
relevance threshold. For the �df and �all summarizers, the curve shows a steep decrease
in summary lengths for low values of the threshold, whereas the �tp summarizer has a
quasi-linear decay in summary length as the threshold increases. This means that the �tp
summarizer produces something close to a uniform probability distribution, while the �df
and �all summarizers produce a distribution where there are only a few high relevance
sentences and a majority of low relevance sentences—it seems likely that the minority of
high relevance sentences are the sentences in the bug description and sentences with high
similarity to them.

Figure 8 presents the receiver operating characteristic (ROC) curve for both maximum
length and minimum relevance selectors, presenting the false positive rates (1-recall) in the
x-axis and the true positive rate (precision) on the y-axis. Since the ROC curve effectively
shows the trade-off in increasing recall at the expense of decreasing precision, the curve
is often used to compare different information retrieval approaches by measuring the Area
Under the Curve (AUC). The curve generally starts of at (1,1), where there are few posi-
tives, recall is very low and precision high, and progresses to (0,0) where there are many
positives, recall is very high but precision is low. As a result, the closer the curve comes to
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Fig. 7 Boxplots showing how the final summary length decreases as we increase the minimum relevance
threshold values and that each summarizer has a characeteristic curve shape

(0,1)—high recall and precision—the higher the AUC. Thus, Fig. 8 shows that, first of all,
the AUC for minimum relevance is slightly greater than the AUC for maximum length, for
all summarizers. More importantly, particularly for high relevance scores, the minimum rel-
evance selector produces significantly higher precision than maximum length selector for
the �all summarizer. Thus, although the user would not be able to predetermine the length of
the resulting summaries, it effectively allows the user to better control the precision of the
resulting summary.

Although the minimal relevance threshold parameter eliminates the need for users to
input the desired summary length, it does require users to input the desired minimum sen-
tence relevance. This is beneficial when the user does not know the desired summary length
but has a low tolerance for false-positives—irrelevant sentences included in the summary—
and only wants the most relevant sentences. Thus, if users have a priori knowledge or
constraints on the summary lengths, they should use the maximum summary length param-
eter; otherwise, if they have constraints on the false-positive rates for the summary, the
minimum relevance threshold parameter would be more appropriate.
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Fig. 8 The ROC curves for the �all summarizer for both the Rastkar and the developer bug corpus shows
that the relevance threshold selector has a higher AUC than the maximum length selector, allowing the user
to better control the precision of the resulting summary

5.2 Suggesting Summary Length that Optimizes Quality

While we have presented an alternative to the target summary length parameter, we still have
not presented a tool to aid the choice of neither parameters. Without such aid, using a target
summary length that is shorter than the expert summary length would produce a summary
with low recall and using a target summary length that is larger than the expert summary
length would produce a summary with low precision, regardless of how well a summarizer
performs.

Unfortunately, there are few studies investigating the optimal length for summaries
(Lloret and Palomar 2012). We could easily suggest small summary target lengths, 25 % of
the original size, for example, for all bug reports. This would lead to summaries with high
precision, but low recall. On the other hand, we could suggest large summary target lengths,
say 70 % of the original size, leading to lower precision but higher recall rates, or medium-
sized summary lengths for a balanced precision and recall. Optimally, we would like to be
able to suggest an appropriately-sized summary that balances well precision and recall to
the needs of the user.

If we could predict how well a summarizer would perform when summarizing each bug
report, then we could aid the choice of the input parameter, suggesting short lengths or high
relevance threshold for cases in which the summarizer performed poorly, or long lengths or
lower relevance for cases in which the summarizer performed well. We will use the ROC
curve, introduced previously, to illustrate this. Since recall and precision are higher the
closer a point is to (0,1), the input parameters responsible for the points in the curve that are
closest to (0,1) would be good choices. Figure 9 shows the ROC curve for four bug reports
in the Rastkar corpus for the �all summarizer, while varying the target length parameter. The
curve starts close to (1,1), where low target lengths produce low recall, but generally high
precision summaries. The curve then progresses towards (0,0), where high target lengths
produce high recall, but low precision summaries.
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Fig. 9 ROC curve for bugs 8, 24, 35, and 36 in the Rastkar corpus for the �all summarizer

The figure shows, however, that the path from one extreme to the other is different for
each of the bug reports. The curves for bugs 24 and 36, for instance, present a sharp decrease
in precision while recall varies from 0 to 30 %; for bugs 8 and 35, on the other hand,
precision remains constant as the recall increases up to 75 %. It seems, therefore, for bugs
8 and 35, which have high AUC, we could recommend longer summaries, since the result
would be high recall with still relatively high precision; for bugs 24 and 36, which have
lower AUC, on the other hand, it seems it would be best to recommend shorter summaries
so that precision is not diminished at the expense of higher recall. One could, in fact, for
bugs 24 and 36, present to the user the choice of a longer summary with high recall and low
precision or a shorter summary with low recall but high precision.

It seems, therefore, that we would be able to suggest good summary lengths if we were
able to predict the AUC for each bug report, i.e., the difficulty the �all summarizer had when
summarizing each bug report. Nenkova and Louis (2008) found that the difficulty of sum-
marizing a text, for humans or machines, can be predicted by the textual Shannon entropy
(15), word count, and vocabulary size. Particularly, they suggest that low entropy values for
a text generally indicates that the text is more cohesive and, thus, easier to summarize.

entropy(B) = −
∑

x∈vocab(B)

PB(x) ∗ log(PB(x)) (15)

PB(x) = # occurences of x in B

wordcount(B)
(16)

With the insight from Nenkova, we use the Rastkar corpus as a training set and find that
φ, defined in (17), a relation between the three measurable properties of texts identified by
Nenkova—entropy, word count, and vocabulary size—has a small, but significant correla-
tion with the AUC for each bug in the Rastkar corpus—Spearman rank correlation of 0.20
and p-value < 0.03.

φ(B) = entropy(B) ÷ wordcount(B) ÷ |vocab(B)| (17)

To evaluate if φ can be used to suggest appropriate summary lengths for bug reports when
using the �all summarizer, we use φ̄, the mean of φ, as a threshold to decide between two
predefined summary lengths: a short summary if φ > φ̄ or a long summary otherwise. We
then measure the recall/precision ratio for the summaries for which the predictor decided
for a longer summary, effectively measuring how much recall we can gain by every afforded
1 % precision. Finally, we compare the recall/precision ratio resulting from using φ as a
predictor for summary lengths to the recall/precision rates resulting from using a random
predictor—we repeat the random experiment 100 times and take the average precision and
recall.
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Figure 10 shows the difference between the recall/precision ratio in percentage points,
when using 25 % as the short summary length and varying the long summary lengths from
30 to 70 %, with increases of 5 %. This allows us to note the difference in recall/precision
ratio when increasing the summary length from 25 to 30 %, from 25 to 35 %, etc. The
figure shows that, for the Rastkar corpus, when choosing between a 25 % and a 30 % long
summary, the φ predictor creates summaries with 110 % better recall/precision ratio than
when randomly choosing between a 25 or 30 % long summary. When deciding between a
25 and a 50 % long summary, the φ predictor creates summaries with 25 % improvement
over the random predictor. As can be seen, although the improvements for the developer
corpus are not as large as for the Rastkar corpus when the long summary varies from 30 to
40 %, it does produce improvements of at least 8 % over the random predictor, effectively
showing that the φ predictor, which was originally tailored to the Rastkar corpus, is more
general and can be applicable to other corpora when using the �all summarizer.

6 Future Directions

The results of our work indicate three important future directions, which we discuss in the
following sections.

6.1 Improving Sentence Relevance Estimates

Improving the estimates on sentence relevance should significantly improve summary qual-
ity, and involves improving the techniques to estimate �tp and �ev. To improve �tp, one
could study the use of LDA, PLSA, or other natural language processing technique in which
similarity is measured using topics. Quan et al. (2009), for example, showed a promising

0

25

50

75

100

125

0.3 0.4 0.5 0.6 0.7

Maximum length for long summary

%
 R

ec
al

l/P
re

ci
si

on
 Im

pr
ov

em
en

t

Corpus Rastkar Dev

Fig. 10 Precision/recall improvement over random predictor when using φ to suggest a shorter or longer
summary. The chart shows that φ is a good predictor for the difficulty of summarizing a bug report
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approach to use topic models to estimate the similarity of very short texts. Additionally,
once topics are identified, it might be relevant to give topics different weights: the topic
of solutions to a bug, as stated by developers, could be considered more relevant than the
topic of who is fixing the bug, for example. To improve �ev, the use of a corpus trained on
sentences from bug reports should be promising, and could use the characteristics of com-
munication in bug reports, beyond emoticons, to automatically annotate sentence polarity.
Another line of investigation should look for other characteristics in bug report comments
that increase the relevance of a sentence. Contributors who are well-known to post impor-
tant information, for example, could be one such characteristic. Feedback from developers
also indicate the need to improve the recognition and handling of structured information,
such as code snippets, diagnostic information, and enumerations.

6.2 Moving Past Extractive Summaries

Once one has a better understanding of the topics being discussed in bug reports, one can
not only give different weights to these topics, as explained in the previous section, but
also move past summaries that are composed solely of extractive sentences. Such a sum-
mary could also restructure the information in different ways, as indicated by our developer
evaluation, moving all the information on solutions to a particular section and provide infor-
mation such as the number of users for which the solution was applicable for, to indicate if
there is consensus.

6.3 Creating Personalized Summaries

Our summarization approach generates a general purpose bug report summary. Our heuris-
tics do not take into account the specific objective of a developer or user when reading a bug
report. It is quite reasonable that a developer triaging a bug report has different information
needs than a developer seeking a workaround for a bug, or a developer looking for dupli-
cate bug reports. An important future direction to improve bug report summaries would be
to first understand the tasks that such a general purpose summary is most helpful for and to
adapt the summarization approach to create personalized summaries suited to task at hand
and to the reading preferences of the reader.

The proposed approach could be extended to support personalized summaries. First one
would need to determine what are the topics or terms that are most relevant for a user’s
particular purpose. One option for determining relevant terms is to allow users to explicitly
input the terms they are interested in. Another option would be to find the most relevant
terms for specific tasks. Given these relevant terms, we need to simply boost relevance for
the sentences in the Markov chain that contain them.

6.4 Creating Interfaces to Support Bug Report Navigation

Designing optimal interfaces to facilitate bug report navigation based on summaries and the
links we have identified is another important direction of work. Results from our developer
evaluation indicate that condensed and interlaced views have their own advantages and are
suitable for different scenarios and user preferences. This suggests, for example, that users
should be able to switch between the two formats. Additionally, a dynamic version of the
interlaced format could highlight the links from the current sentence to the sentences it has
stronger links with, as the user navigates through the bug report and focuses on different
sentences.
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7 Related Work

7.1 Textual Summarization

There is a large body of research on textual summarization (Lloret and Palomar 2012).
While the approach we use is based on graph theory, there are summarizers that are based
on statistical reasoning, others that are topic-based and identify relevant sentences from
words that are likely to indicate importance, and others that are discourse-based and iden-
tify relevant sentences based on discourse relations. Edmundson (1969), for example, in a
topic-based summarization approach, determined the relevance of a sentence by means of
the phrases or words it contained. They considered, for example, that sentences contain-
ing words like “in conclusion” or “the aim of this paper” might contain relevant topics.
Mann and Thompson (1988), in a discourse-based summarization approach, used Rhetori-
cal Structure Theory (RST) to structure the discourse into nucleus and satellite relations and
determine the most important textual units in a document.

The graph-based summarization approach that we use has been previously used to
summarize text. TextRank (Mihalcea and Textrank 2004) and Lexrank (Radev 2004) also
calculate sentence probability using textual similarity. Lexrank adds a post-processing step
after sentence ranking to avoid redundancy by excluding sentences that subsume other
sentences. We are the first, however, to propose the use of PageRank for bug report summa-
rization and to adapt it to the bug report domain, considering the importance of evaluation
links and the similarity of sentences to the bug’s title and description.

7.2 Summarizing Bug Reports

There have been a couple of works on summarizing bug reports. Rastkar et al. (2010) sum-
marized bug reports using a summarization approach for email threads. The bug reports
they tested their approach on were manually selected to resemble email messages, since
they exclude bug reports with stack traces, logs, and patches and preferred bug reports with
conversational content. Although we also used this corpus for evaluation, we additionally
sampled bug reports from the wild: our only restriction is that a bug report has at least 10
comments. To evaluate their summaries, Rastkar et al. asked graduate students to evaluate
the summaries they created. Alternatively, we asked the developers who actually worked on
the bugs to evaluate the summaries.

A second attempt at summarizing bug reports was performed by Mani et al. (2012).
To overcome the difficulties of using the supervised summarization approach proposed by
Rastkar et al. (2010) and eliminate the overhead of creating a supervised predictor, they
evaluated the quality of summaries generated by four well-known general purpose unsuper-
vised textual summarizers. They found, however, that these approaches only converge after
removing noise from bug reports. They propose a heuristic-based noise reduction approach
that tries to automatically classify sentences as either being a question, an investigative sen-
tence, or a code snippet. Anything that is not one of these is discarded. When using this
noise reduction heuristic they found that each of the four well-known textual summarizers
produced a summary of at least equal quality compared to the supervised approach.

Other work aimed at facilitating bug report digestion comes fromAnkolekar et al. (2006),
who identified and automatically linked bug reports to important information about bugs.
Such links, they claimed, should answer questions of ‘what’, ‘why’, and ‘who’, such as
who created a function and what the function is for. Dit and Marcus (2008) proposed a
recommendation engine to find the comments that a comment is related to, to improve the
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readability of bug reports. They do not implement such a system, only acknowledging that
detecting these links is a difficult problem.

Bettenburg et al. (2008a) performed a survey with developers from Apache, Mozilla, and
Eclipse, asking them what information is important in a bug report description, and what
information is frequently absent from bug reports. Developers agreed that the description of
the steps to reproduce the bug and stack traces are the most important information.

7.3 Other Applications of Summarization for SE

Sridhara et al. (2010) generated textual summaries to describe Java methods. They used a
number of heuristics on a method’s signature and a method’s code to find the main intent
of the code. The heuristics work on breaking the source code down into smaller units, e.g.
statements, and then on selecting the most relevant units to base the summary on. After
selecting the units, they used natural language generation techniques to convert each unit
into a natural language phrase. Developers who judged the quality of the summaries found
them to be accurate, concise, and complete. Haiduc et al. (2010), with the same objectives,
used well-known information retrieval methods to generate term-based summaries of meth-
ods and classes. These term-based summaries do not compose a grammatically valid phrase,
but are intended to be the set of most relevant terms that together should describe an entity.
The proposed approach first creates a corpus, by breaking down the source code tokens into
terms; finally they used information retrieval methods to select the most relevant terms to
describe the class or method. They experimented with a number of techniques for corpus
creation and term selection and found that a particular combination of techniques identifies
the intent of methods and classes more accurately than other previous approaches.

Hamou-Lhadj and Lethbridge (2006) summarized large execution traces to make it easier
for software engineers to understand a programs behavior. Their approach assumed that
developers, when trying to understand the content of large traces, will not be interested in
calls to utility routines. They defined a metric to estimate the utility of a routine, based
on the number of other routines that call the routine and on the number of routines that
the routine calls. The metric assumes that utility routines are called by a large number of
unrelated routines and will be largely self-contained, i.e., will not call out to a large number
of other routines. The evaluation showed that this approach can be used to create adequate
summaries of execution traces with over 100,000 method calls.

7.4 Using Bug Report Content to Automate SE Tasks

There have been many approaches of using textual analysis on bug report content to auto-
mate software engineering tasks. Wang et al. (2008), for example, presented the current,
most effective, approach to identify duplicate bug reports. They built on the previous dupli-
cate bug report detection attempts that used only the textual bug description (Runeson et al.
2007; Hiew 2006) to disambiguate bugs and instead used both textual descriptions and bug
execution traces to disambiguate bug reports. The approach is reported to detect as much as
90 % of duplicate bug reports.

Automated textual analysis in bug reports has also been used to estimate how long it will
take to fix a bug (Weiss et al. 2007), which developer has the most experience to fix a partic-
ular bug report (Anvik et al. 2006), and predicting the severity and category of bug reports
(Tian et al. 2012; Menzies and Marcus 2008; Thung et al. 2012). All these approaches used
very similar textual analysis techniques to the ones we have used, representing bug reports
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as a vector where features are the number of occurrences of each word, using cosine sim-
ilarity to measure the similarity of bug reports and to group similar bug reports, and using
support vector machines for machine learning.

8 Threats to Validity

8.1 Internal

Although Strauss and Corbin (2008) suggest the use of more than one data source for
grounded theory, our investigation in Section 2.1 does not triangulate bug reports with devel-
oper interviews or other sources of data. We do, however, compare bug reports from four
distinct bug tracking systems and, since we use this investigation to pose hypotheses that
were later tested in two distinct ways, we consider the methodology for the investigation
appropriate.

To test the three hypotheses presented in Section 2.2.5, we use a comparison of the
evaluation metrics with the summaries created by the email summarizer. We consider this is
a reasonable first test, since Rastkar et al. claim the email summarizer produces good-quality
summaries. To mitigate this threat, we also ask expert developers to assess our summaries
and find that they consider our summaries useful.

We consider that the threats to replicate the results of the first evaluation, which com-
pares the quality metrics between the proposed summarizers and the email summarizer
are considerably low. Since the algorithm for implementing the email summarizer and the
three summarizers we propose have been precisely explained, a well-developed implemen-
tation of these summarizers should reliably reproduce our results. While our own tests
for assuring that our implementation of the email summarizer did not compare individual
summaries with the summaries created by Rastkar’s own implementation, we compared it
with Rastkar’s reported average pyramid score, precision, recall, and f-score using the non-
parametric Mann-Whitney U test, but found no significant difference (p-value > 0.01).
Another replication threat comes from the polarity detection mechanism. Different imple-
mentations of the �ev summarizer might produce slightly different results when training
the sentiment analysis classifier with different samples from Twitter. Since we have taken
a random sample of 2,400,000 messages from, we consider this threat should not be
significant.

Our evaluation of the two input parameters we propose (summary percentage length
and minimum relevance threshold) is significantly limited. Although we present the quality
metrics (precision and recall) for summaries of all 94 bug reports (36 from Rastkar corpus
and 58 from our developer corpus) for a wide range of both input parameters, we do not
provide an evaluation showing how users would choose such input parameters and for which
tasks they would find each input parameter most suitable for. Similarly, we do not provide
an evaluation showing how users would use the tool suggesting an optimal summary length
and if they would find such a tool indeed helpful.

8.2 External

We claim our summarizer should be widely applicable to any bug tracking system. We
consider this is a reasonable claim, since we pose our hypotheses from an analysis of a set of
bug tracking systems, but test our hypotheses on a different set of bug tracking systems, the
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ones from the corpus created by Rastkar et al. Furthermore, the risk of our summarization
approach being over-fitted is small, since we do not use machine learning, but heuristics
that should be valid in most bug tracking systems.

Our evaluation with open source developers, however, has more significant threats due to
difficulty of obtaining a larger number of participants. Although we consider 58 developers
to be a good number of participants, and that we invited a random set of developers to par-
ticipate in the study, it is possible that the sample of developers who participated is biased,
i.e, only the developers who already were interested in bug report summaries participated
in our evaluation. Since ultimately developers have a choice to participate or not, this is a
threat that is difficult to avoid. As an attempt to overcome this threat, we invited 3 develop-
ers to work on each bug report. Unfortunately, we could not attract the participation of more
than one developer per bug report for the majority of bug reports. Another bias factor for the
developers’ responses arises from the fact that we did not collect the task or responsibility
of the developer that worked with each bug report. It is possible that developers performing
triaging are more inclined to favor bug report summaries than developers who have actively
worked on fixing the bug and accessed it on a daily basis.

The evaluation of the two proposed input parameters and the tool to suggest an opti-
mal summary length have similar threats to generalizability. Although all our tests were
validated on 94 bug reports, the potential of a biased sample set might influence our results.

9 Conclusion

We have created an automatic, unsupervised, bug report summarization approach that
should be widely applicable to different bug tracking systems. The summarization approach
we propose models how a user, with limited time, would read a bug report. We hypothe-
size that such a reader would navigate through a bug report following sentences that talk
about the same topics, that have been evaluated by other sentences, and that are close to the
bug report title and description. Our evaluation, performed by comparing evaluation metrics
against a previous summarization approach and by a quality assessment made by develop-
ers, shows not only that this summarization approach produces good quality summaries, but
also validates the importance of solving such a problem for developers.

The summarizer requires, as input, only the bug report to be summarized and a parameter
specifying the target summary length for the original bug report. We propose, nevertheless,
an alternative input parameter that allows the user to better control the quality of the result-
ing summary. We consider that the two input parameters might be valuable to facilitate
generating summaries that meet a user’s quality expectation.

Still with the objective of facilitating the choice of the input parameter, we use the
entropy of the bug report to calculate φ, an estimate of the difficulty that the summarizer
will have in summarizing a bug report. We show that φ can be used to suggest a target sum-
mary length for a particular bug report to optimize the precision of a bug report summary,
given a particular expectation of recall: if φ is greater than a certain threshold, we can safely
ask for a longer summary and produce a summary with higher recall and precision; if φ is
lower than the threshold, we suggest the use of a shorter summary, reducing the recall but
maintaining a higher precision.

Finally, our work suggests four future directions of work: improving the estimation on
sentence relevance, moving past extractive summaries, creating personalized summaries,
and creating interfaces to support navigation based on summaries.



546 Empir Software Eng (2015) 20:516–548

References

Ankolekar A, Sycara K, Herbsleb J, Kraut R, Welty C (2006) Supporting online problem-solving communi-
ties with the semantic web. WWW

Anvik J, Hiew L, C Murphy G (2006) Who should fix this bug? In: Proceedings of the 28th international
conference on software engineering. ACM

Beineke P, Hastie T, Manning C (2004) Exploring sentiment summarization. AAAI
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