
Empir Software Eng (2015) 20:928–967
DOI 10.1007/s10664-014-9304-1

Fault density, fault types, and spectra-based fault
localization

Nicholas DiGiuseppe · James A. Jones

Published online: 18 March 2014
© Springer Science+Business Media New York 2014

Abstract This paper presents multiple empirical experiments that investigate the impact of
fault quantity and fault type on statistical, coverage-based fault localization techniques and
fault-localization interference. Fault-localization interference is a phenomenon revealed in
earlier studies of coverage-based fault localization that causes faults to obstruct, or interfere,
with other faults’ ability to be localized. Previously, it had been asserted that a fault-
localization technique’s effectiveness was negatively correlated to the quantity of faults in
the program. To investigate these beliefs, we conducted an experiment on six programs con-
sisting of more than 72,000 multiple-fault versions. Our data suggests that the impact of
multiple faults exerts a significant, but slight influence on fault-localization effectiveness.
In addition, faults were categorized according to four existing fault-taxonomies and found
no correlation between fault type and fault-localization interference. In general, even in the
presence of many faults, at least one fault was found by fault localization with similar effec-
tiveness. Additionally, our data exhibits that fault-localization interference is prevalent and
exerts a meaningful influence that may cause a fault’s localizability to vary greatly. Because
almost all real-world software contains multiple faults, these results affect the practical use
and understanding of statistical fault-localization techniques.

Keywords Debugging · Fault localization · Fault behavior

1 Introduction

As can be observed by inspecting almost any public bug-reporting system, nearly every soft-
ware project contains multiple active faults. Unfortunately debugging is often an arduous

Communicated by: James Miller

N. DiGiuseppe (�) · J. A. Jones
University of California, Irvine, USA
e-mail: nicholas.digiuseppe@uci.edu

J. A. Jones
e-mail: jajones@uci.edu

mailto:nicholas.digiuseppe@uci.edu
mailto:jajones@uci.edu

Empir Software Eng (2015) 20:928–967 929

and time consuming task, requiring that before faults can be fixed, they first must be located,
i.e., fault localization. Research suggests that of all debugging tasks, fault localization is
the most time consuming and requires the most expertise (Vessey 1985). To help reduce
these costs, researchers developed automated fault-localization techniques. This work ana-
lyzes a subset of fault-localization techniques that utilize execution-based, statistical data
(e.g., Jones et al. 2002; Liblit et al. 2005; Abreu et al. 2007; Liu et al. 2005) — coverage-
based fault localization (CFL). We target the scope of these studies to specifically CFL
techniques due to the research community’s recent emphasis on this area. For example, a
fault-localization literature survey by Wong and Debroy discusses 19 separate articles that
explicitly address specialized CFL techniques (Wong and Debroy 2009), and many of the
earlier CFL techniques are cited several hundreds of times by other scholarly work that
extends the techniques (e.g., Jones et al. 2002; Liblit et al. 2005). Such statistics are pre-
sented as indications of the need for such study and for the utility of such scoping. We
do not attempt to generalize such findings to other, non-CFL, fault-localization techniques,
such as Delta Debugging (Zeller 2002) — to generalize such results to other types of tech-
niques, further study would be needed. Such CFL techniques attempt to identify correlations
between software failure and program locations.

Notwithstanding years of steady improvements to CFL techniques, much of our under-
standing regarding their utilization remains elementary. Although CFL research has
explored many possible alternatives to improve automation and detection techniques, little
research has been done to improve understanding of CFL effectiveness or utility. Numer-
ous studies compare different CFL techniques, but relatively little research has been done
to investigate factors that influence CFL results, such as fault quantity in a program or fault
type.

Previous research claims that CFL loses almost all effectiveness in the presence of mul-
tiple faults (discussed in more detail in Section 2). Unfortunately almost all real-world
programs contain multiple faults. Yet CFL techniques can only be beneficial for real-world
debugging if they are effective in the presence of multiple faults, or can be assisted with
additional techniques. This work empirically investigates and evaluates how fault quantity
and fault type influence CFL techniques.

Further, although there has been work done to classify different fault types, to
the authors’ knowledge, no studies have been done to determine the impact of these
fault types upon fault localization techniques or fault interaction. This work empiri-
cally investigates and evaluates how different fault types impact a fault’s ability to
be localized, and whether a fault experiences more or less fault-localization interfer-
ence.

Fault-localization interference (FLI) — a phenomenon identified during this
experiment — occurs when a fault’s ability to be localized decreases due to the presence
of other faults. To better understand the FLI phenomenon, this work empirically analyzes
its frequency and magnitude in real software, along with its correlation to fault type. Our
results suggest that FLI has a significant impact on CFL results and is prevalent in software
containing multiple faults. Notwithstanding FLI prevalence and impact, our evaluation indi-
cates that CFL remains effective for at least one fault, where effectiveness is measured by
having a low expense score.

Our study demonstrates that for our subjects, the effectiveness of CFL techqniques
reduced only slightly as the quantity of faults increased substantially, which largely contra-
dicts the community’s prior assumptions of substantial effectiveness losses. This work is an
extension of our earlier studies (DiGiuseppe and Jones 2011b) through an addition of more

930 Empir Software Eng (2015) 20:928–967

generalizable experiment designs, a deeper investigation into the earlier findings, and two
additional, new studies.

The main contributions of this paper are:

1. An empirical analysis of coverage-based fault localization (CFL) techniques that: (1)
challenges and in many cases refutes commonly held beliefs regarding CFL effective-
ness, and (2) finds evidence of the factors that caused researchers to believe otherwise.
Our results demonstrate that CFL techniques degrade roughly 2 % in effectiveness
at high fault quantities. Additionally, our results provide developers with accurate
information about the practicality of utilizing CFL techniques.

2. An investigation of fault-localization interference (FLI): when one fault interferes with
another fault’s localizability. A presentation of empirical data to help characterize FLI
in addition to measuring its prevalence and magnitude. Additionally this work presents
an investigation into correlations between fault type and FLI behavior. Our results
demonstrate that fault-localization interference is: (1) prevalent, (2) has a significant
impact upon CFL results, and (3) rarely has the effect of impairing a CFL technique’s
ability to localize at least one fault.

3. Analyses explaining the impact of fault type upon fault-localization techniques and
interference. All studied faults are categorized according to four previously pub-
lished fault taxonomies to perform an investigation into the correlations that may exist
between fault type and a fault’s ability to be localized. Our results demonstrate that
these fault types have no significant correlation to a fault’s ability to be localized, to
cause interference on other faults, or to be affected by interference from other faults.

4. An analysis of our results that has implications for the practical applica-
bility of CFL approaches. These implications inform decisions about which
automated techniques are needed in an organization, while considering their
trade-offs.

In the next section we present a thorough background which motivates these studies.
Then, in Section 3 we explain our experiment’s design. Next, in Section 4 we analyze those
results and their implications. Then, in Section 5 we identify the threats to validity of this
work. Finally, in Section 6, we conclude.

2 Background and Motivation

To provide the necessary background that motivates this work we: enumerate how this
work extends our previous research (Section 2.1), discuss four general fault-taxonomies
(Section 2.2), overview CFL techniques (Section 2.3), summarize current perceptions of
CFL techniques in the presence of multiple faults (Section 2.4), provide an example that
demonstrates the assumptions for these perceptions (Section 2.5), define the interaction of
multiple faults with regard to CFL (Section 2.6), and describe the need for further study on
this topic (Section 2.7).

2.1 Previous Work

This paper expands earlier work presented by the authors at ISSTA 2011 (DiGiuseppe and
Jones 2011b). Although both bodies of research address similar questions, this work is
substantially different in four ways.

Empir Software Eng (2015) 20:928–967 931

First, this paper presents a more generalizable and mature experiment. This work uses
twice the number of subjects, and more than four times the number of faulty versions as
the previous work, and additionally, expands the maximum fault quantity for all subjects
by 70 % (resulting in the execution of more than an order of magnitude more test cases —
more than 1.6 billion). These additional subjects, versions, executions and maximum fault
quantity magnify the maturity and generalizability of the earlier work and provide a more
thorough understanding of the research questions addressed.

Second, this work presents an entirely new facet in this study— an investigation of fault-
type correlation with CFL and FLI. Four fault taxonomies are utilized with our subjects to
evaluate how fault-type influences CFL expense, FLI frequency, and FLI magnitude (i.e.,
the fault with the highest fault-correlation score, the likelihood of a fault experiencing FLI,
and the degree of change in fault-correlation score for a fault experiencing FLI).

Third, another entirely new study — an investigation into FLI magnitude. Although our
previous research examined the occurrence rate of FLI against fault quantity, the degree
of FLI’s impact on CFL was unexplored. This experiment investigates FLI magnitude by
calculating the expected range of FLI against fault quantity.

Fourth, a deeper and more thorough investigation of earlier findings — an investigation
of the expense range for the prominent fault (i.e., the fault with the highest fault-correlation
score. The previous paper only discussed the mean for the prominent fault, establishing
a pattern of expected behavior. This experiment expands our previous research by inves-
tigating the statistical changes that occur as fault densities change, providing a deeper
understanding of fault density’s impact upon CFL expense.

2.2 Fault Taxonomies

To classify each fault type, four fault taxonomies are used which are taken from Smith
and Robson (1992), Kung et al. (1998), Hayes (1994), and Hayes et al. (2011). Hereafter
these taxonomies are referred to as Smith92, Firesmith92, Hayes94, and Hayes11
respectively. These taxonomies were selected because they are all for general faults (as
opposed to specific faults like security, or network) and have a different emphases. Each of
these four taxonomies is designed to represent any fault, regardless of domain, though this
comes with a comparatively smaller degree of specificity. Each of these taxonomies high-
lights a different type of program behavior: Smith92 emphasizes the difference between
conceptual inaccuracies, and implemented inaccuracies; Firesmith92 emphasizes con-
sistency among visibility, components, and use of resources; Hayes94 utilizes general
categories of software quality (e.g., abstraction, encapsulation); and Hayes11 proposes
a detailed hierarchy of faults based upon location, usage and intention. For transparency,
Appendix A presents a more detailed look at how these taxonomies classify faults.

2.3 Coverage-based Fault Localization

For elucidation of discussion we introduce the terms of fault execution, infection, propa-
gation, and failure (i.e., the “PIE model”) as introduced by Voas (1992) and later further
interpreted by Zeller (2009); the reader is referred to these works for a more formal treat-
ment. A fault is the line(s) of code that contains statements that are inconsistent with
developer intent. Infection is the initial state that is caused by executing the fault that is
inconsistent with developer intent (e.g., variables contain incorrect values or an incorrect
control path is executed). Propagation is the effect of subsequent incorrect states caused

932 Empir Software Eng (2015) 20:928–967

by the initial infection. Finally, failure is the propagation of incorrect state that becomes
manifest in externally observable ways.

Jones et al. proposed a fault-localization technique, TARANTULA (Jones et al. 2002;
Jones and Harrold 2005; Jones 2008), which utilizes whole test suites (or any subset
thereof) to infer likely locations for faults based upon the relative participation of the
passing and failing test cases with run-time events (i.e., observable or recordable actions
during a program’s execution, such as instruction execution or dynamic dataflows). Vari-
ant implementations of TARANTULA have been created to target multiple run-time events,
such as instruction execution (e.g., Jones et al. 2002; Jones and Harrold 2005), data-
flows (Santelices et al. 2009), and database interactions Clark et al. (2011); and variants
use different underlying metrics (e.g., Jones and Harrold 2005; Yu et al. 2008). Liblit
et al. proposed Statistical Bug Isolation, which monitors and utilizes randomly sam-
pled subsets of coverage to reduce runtime overhead (Liblit et al. 2005). Additionally,
Liblit et al. analyze the statistical-likelihood that a predicate that evaluates to “True”
is correlated with failure by identifying the context and the general failure correlation
for that predicate. By capturing both values, Liblit et al. calculate the increase of a
predicate, i.e., the likelihood that a predicate evaluating to “True” causes a failure. Liu
et al. proposed SOBER, a technique that expands upon Liblit’s work to localize the
same faults while requiring less code (Liu et al. 2005). SOBER extends the probabil-
ity model introduced Liblit et al., which analyzes the context of a predicate across all
runs, by analyzing the context of a predicate within a single run. All of these tech-
niques require some level of instrumentation on the code in order to derive runtime
statistics.

The main insight shared by these CFL techniques is that, execution events that correlate
with failures are more likely to be the cause (i.e., fault or bug) of those failures. Said differ-
ently, execution events that occur mostly in failing test cases, but rarely in passing test cases,
are more suspicious of being the fault. CFL analyzes dynamic correlations between instruc-
tions and the passing or failing of test cases. This correlation approximates the likelihood
that an instruction causes failure.

However, in a program containing multiple faults, the intersection of instructions exe-
cuted by multiple failures that are caused by different faults might not correspond to any
fault. These instructions may correspond to non-fault-relevant code, and thus, may mislead
the inferencing technique and user. Due to the possibility of this misleading inferenc-
ing, the next section presents the observations from researchers in the fault localization
community.

2.4 Assumptions of CFL for Multiple Faults

This sections presents the observations and accepted conclusions regarding multi-fault
programs and misleading inferencing. Jones et al. reported that the “effectiveness of the
technique declines on all faults as the number of faults increases” (they also note that these
results may be misleading and require further study) (Jones et al. 2002). Later, Jones et al.
investigated the use of failure clustering to remove “noise” caused by one fault inhibiting
the localization of another (Jones et al. 2007).

Other researchers have made similar claims. For instance, Denmat et al. state that the
TARANTULA technique (and thus other similar CFL techniques), makes implicit hypotheses
requiring independence of multiple faults — every failure is caused exclusively by a sin-
gle fault — and when these hypotheses do not hold, the technique does not provide “good

Empir Software Eng (2015) 20:928–967 933

results” (Denmat et al. 2005). Zheng et al. developed specialized techniques targeting pro-
grams containing multiple faults because, in the presence of multiple faults, traditional CFL
techniques “cannot distinguish between useful bug predictors and predicates that are sec-
ondary manifestations of bugs,” such as fault infection and propagation that does not lead to
failure (Zheng et al. 2006). Referring to coverage-based fault-localization techniques, Sri-
vastav et al. stated that “multiple faults in a software many times prevent debuggers from
efficiently localizing a fault” (Srivastav et al. 2010). Further, Debroy and Wong state that
“incorrect matching of failed test to fault, . . . may in turn result in poor fault localiza-
tion” (Debroy and Wong 2009). Thus, programs that contain multiple faults, which past
studies suggest results in increased difficulty for failed-test-to-fault matching may in turn
face poor localization (DiGiuseppe and Jones 2011a, 2012b).

Drawing such conclusions is not unreasonable or unfounded. Indeed, studies (e.g., Jones
et al. 2002, 2007; Zheng et al. 2006; Jones 2008) have shown that for specific faults, the pres-
ence of other faults may impair the ability of CFL techniques to properly localize them. Said
differently, these studies conclude that CFL performed poorly if, in a multi-fault program, it
was unable to localize some specific fault (i.e., an a-priori, preselected fault from those exist-
ing within the application). This presumed poor localization has led to one motivation for
failure clustering — localizing multiple specific faults (e.g., Jones et al. 2007; Zheng et al.
2006; Liu and Han 2006; Podgurski et al. 2003).

To help localize a specifically chosen fault, one approach has been to utilize a tech-
nique called failure clustering (e.g., Dickinson et al. 2001a, b; Liu and Han 2006; Podgurski
et al. 2003; DiGiuseppe and Jones 2012a; Zheng et al. 2006; Jones et al. 2007). Failure clus-
tering attempts to group together test cases that fail due to the same fault(s). Indeed, failure
clustering can be an effective precursor to CFL techniques, as evidenced by earlier stud-
ies (e.g., Jones et al. 2007; Zheng et al. 2006). Such clustering techniques can minimize,
although not eliminate, some fault-localization interference. In theory, the effectiveness of
the subsequent CFL technique may benefit from less “noise” in localizing the most prevalent
fault for each cluster.

Unfortunately, failure clustering adds a level of computational cost and an additional
imposition of tool support and development-practice changes. In many circumstances devel-
opers are not looking for a specific fault, but instead would be satisfied to fix any fault.
Consider the following scenario. During a verification stage prior to software release,
developers seek to ensure the software meets minimum requirements by enabling it to suc-
cessfully run a test suite. In these circumstances, developers seek to fix all faults causing
incorrect functionality or failure. Further, in the agile development model, after adding any
functionality, developers cannot “move on” without ensuring that all test cases pass.

However, regardless of the applicability of failure clustering to assist with CFL effective-
ness in the presence of multiple faults, we seek to better understand how such effectiveness
is influenced by such multiple faults. Our experiments in this paper seek to provide such
findings, and may be useful in helping to determine the issues and trade-offs involved in
deciding whether to employ other techniques, such as failure clustering.

The following section provides an example that demonstrates the concern of these pre-
vious researchers — how multi-fault programs could mislead localization techniques to
reduce their effectiveness.

2.5 Example

Consider, the code (displayed in the first column) presented in Fig. 1. The program snippet
listed in the first column contains two faults, labeled “bug1;” and “bug2;”. In Fig. 1, the

934 Empir Software Eng (2015) 20:928–967

Fig. 1 Example code snippet
containing two faults. This
example demonstrates the
possibility of multiple faults
creating noise that interferes with
fault localization effectiveness

if (b) {
 bug 1;
} else {
 bug 2;
}

t1 t2 t3 t4

pass/fail? P P F F

su
sp

ic
io
us

ne
ss

(t
1,
t2
,t3

,t4
)

70
70
70
70
70

su
sp

ic
io
us

ne
ss

(t
1,
t2
,t4

)
su

sp
ic
io
us

ne
ss

(t
1,
t2
,t3

)

60
0

70
70
60

60
70

0
0

60

four columns to the right of the code list the test cases: t1 and t2 are passing test cases, and
t3 and t4 are failing test cases. Test cases t3 and t4 fail due to different faults, bug1 and
bug2, respectively. The next three columns lists the suspiciousness scores, differing only
by the subset of the test suite used to generate them; the test cases used are listed in the first
row.

The suspiciousness score is calculated with the Ochiai metric, which originated in the
molecular biology domain and was proposed by Abreu et al. to enhance the TARANTULA

technique (Abreu et al. 2007). The equation for Ochiai is

suspiciousness(i) = 100

(
failed(i)√

totalfailed(failed(i) + passed(i))

)
(1)

where passed(i) is the number of passed test cases in which instruction i is executed,
failed(i) is the number of failed test cases in which instruction i is executed, totalfailed is
the number of failed test cases in the test suite, and suspiciousness(i) is the approximation
that instruction i is the fault, ranging from 0 to 1, where 1 is the most suspected instruction,
and 0 is the least.

Thus, a developer is expected to first inspect the instruction with the highest suspicious-
ness score, and, upon not finding the fault, inspect the instruction with the next highest
score, and so forth until the fault is found. By following this ranked list of instructions, CFL
techniques attempt to reduce the number of instructions, (i.e., the search space), a developer
must examine to find the fault.

The first column in Fig. 1 shows the suspiciousness scores when considering all test
cases in the test suite. When utilizing all test cases, the suspiciousness of all five instruc-
tions is 70 %. Because all instructions are equally suspicious, the technique is ineffective
at localizing either fault — in other words, it did not reduce the search space to find either
fault.

However, if test case t3 is excluded from the test suite and suspiciousness calculation
(represented by the middle suspiciousness column), the technique successfully localizes
bug2. In this case, bug2 contains the highest suspiciousness score, and is thus, successfully
localized. Likewise, if test case t4 is excluded from the test suite and suspiciousness calcula-
tion (represented by the right suspiciousness column), the technique successfully localizes
bug1. In this case, bug1 contains the highest suspiciousness score, and is thus, success-
fully localized. This example demonstrates the potential ineffectiveness of CFL because of
multiple faults leading to poor inferencing.

This example was constructed to depict the scenarios envisioned that caused the
assumptions of CFL ineffectiveness in the presence of multiple faults.

Empir Software Eng (2015) 20:928–967 935

2.6 Fault-localization Interference

The example in Fig. 1 demonstrates how the presence of one fault can interfere with the
localization of another. Fault-localization interference (FLI) is denoted as any decrease in
fault-localization effectiveness (due to the presence of another fault). More formally:

Definition 1 (Fault-Localization Interference (FLI)) For a program P , the rank of fault fx

is defined as the position in a sorted list of all faults in the program when sorted accord-
ing to a fault-localization metric, such as suspiciousness, and is denoted as rP (fx). In such
a ranking, the rank of 1 is the most localizable fault, and a rank of n is the least local-
izable fault in a program containing n faults. Fault-localization interference (FLI) is the
phenomenon in which the rank of any fault fi is increased due to the introduction of another
fault fj . Let program PF contain the set of faults F , where F = {f1, . . . , fn}, and where
fault fi ∈ F and fault fj /∈ F . Similarly, let the set of faults F ′ = F ∪ {fj }. Fault-
localization interference occurs if for any fault fi ∈ F the introduction of fault fj causes
rPF

(fi) < rPF ′ (fi).

Note that this increase of a fault’s position in the ranking can be due to a decrease in the
suspiciousness score of the faulty instruction, or the increase of the suspiciousness scores of
other instructions rendering them more suspicious than the faulty instruction. Additionally,
we say that a fault experiencing FLI becomes obfuscated.

In Fig. 1, if either bug1 or bug2 were effectively removed, which is simulated by not
executing the test case which covers it, the remaining fault could be localized more effec-
tively. An example of this can be seen by using only a subset of the test suite (i.e., the
two far right columns) such that the subset only covers a single fault. If t3 were removed
(which covers bug 1), the ability to localize bug 2 increases, and vice-versa if t4 is removed.
Although testing does not involve the removal of test cases, this example is designed to
demonstrate that test cases covering multiple faults introduce the potential for degradation in
CFL results. In this example, each fault caused fault-localization interference for the other,
however it is unclear whether this type of interference (i.e., all faults become obfuscated) is
common in actual software.

2.7 Motivation for Further Study

Although the previous example exhibited that in the presence of multiple faults none are
localizable, the results of a case study presented by Jones et al. show that often, interfer-
ence causes some faults to be obfuscated — that is, made less localizable with the CFL
technique — while others (usually the faults causing the interference) remain highly local-
izable (Jones et al. 2002). One goal of this study is to determine the prevalence and nature of
fault-localization interference. In other words, how often does fault-localization interference
occur, and when it does, how often does it take the form that causes ineffective localization
for all faults?

This question of FLI type is vital because, if a CFL technique effectively localizes at
least one fault even in the presence FLI, then it could be useful. Past studies examined the
localizability of all faults and used poor localization of any one individual fault as evidence
that fault localization decreases in effectiveness for multi-fault programs.

Existing studies examine the localizability of specific, individual faults; although in prac-
tice, developers many times aren’t aware of the quantity or identity of the specific faults
causing failures. In such situations, the localizability of any fault can enable a debugging
process that can lead to a fault-free program. Indeed, because past work only analyzes CFL

936 Empir Software Eng (2015) 20:928–967

in the context of specific faults, little is known about whether CFL can be effective in prac-
tice. Due to the popularity of CFL research, it is essential to know whether these techniques
can be implemented in practice, and the limitations that exist upon their practicality.

3 Experiment

To understand the impact of fault quantity and fault type on CFL techniques and FLI, we
conducted multiple empirical evaluations. Our experiment design was chosen to answer
seven research questions (see Table 1) that highlight the impact of fault quantity and fault
type on CFL and FLI. The seven research questions elucidate CFL’s potential for use in
practice. Each question examines a different aspect of CFL practicality as follows: RQ1–2
evaluate how CFL effectiveness is altered by multiple faults, RQ3 analyzes correlations
between CFL effectiveness and fault type, RQ4 produces an in-depth awareness of some
of the functional challenges of CFL as faults are added or removed, RQ5–6 investigate the
frequency and impact of FLI occurrence, and RQ7 analyzes the correlation between FLI
and fault type. Considering these questions as a whole, they approximate when, how, and
with what limitations CFL can be practically implemented.

3.1 Variables, Measures and Definitions

This work’s primary objective is to investigate the impact fault quantity and fault type have
on CFL techniques and fault-localization interference. This experiment manipulates two
independent variables: the quantity of faults in a program and the fault type. We alter the
quantity of faults to range between one and seventeen, and classify existing faults once for
each taxonomy: Smith92, Firesmith92, Hayes94, and Hayes11 (see Section 3.2
for more details on the faults within our subjects). This maximum fault quantity was cho-
sen because combinations with more faults drastically reduce the number of combinations
that are possible among the total 20 faults, which would reduce the ability to generalize
experimental findings.

Because our goal is to investigate a fault’s ability to be localized, this experiment utilizes
three dependent variables: (1) suspiciousness, (2) expense, and (3) interference. Suspicious-
ness captures the failure-correlation value assigned to instructions by the Ochiai metric.
Expense captures the percentage of the program a developer must examine (measured in
normalized lines of code) to find the fault if examining the program in decreasing order
of suspiciousness, or more simply, the failure-correlation value assigned to an instruction
in relation to all other instructions. Interference captures the increase in expense due to the
presence of another fault.

Table 1 Research questions addressed in this experiment

RQ1: What is the impact of fault quantity on CFL expense scores?

RQ2: What is the impact of fault quantity on CFL suspiciousness scores?

RQ3: Is fault type a predictor of CFL effectiveness?

RQ4: What are the practical ramifications of FLI on CFL?

RQ5: How often does fault-localization interference occur?

RQ6: What is the typical magnitude of fault-localization interference?

RQ7: Does fault type affect the likelihood of causing interference or being subject to interference?

Empir Software Eng (2015) 20:928–967 937

Our experiment utilizes the expense metric originally presented by Renieres and Reiss
(2003) and used by many other researchers (e.g., Cleve and Zeller 2005; Jones and Harrold
2005; Liu et al. 2005). This metric represents expense as a percentage of lines that a devel-
oper needs to examine before finding the fault as defined by Eq. 2 where r(f) is the rank
of the faulty statement f in a sorted list L of all executed statements S, where L is sorted
according to a suspiciousness metric in decreasing order.

expense(f) = 100 · r(f)

|S| (2)

When a fault is composed of multiple instructions, the expense is calculated as the first
faulty instruction found when sorted by decreasing suspiciousness.

We define S as the set of all executed statements in the program to allow us to study
the reduction in the search space in the program’s statements brought by such automation.
Although other definitions of the denominator (such as the union of the set of statements
executed by all failing test cases) could be used, for the purposes of studying the effects of
fault interaction and interference, such alterations from the traditional metric target separate
issues from those studied in this paper. Moreover, the defined expense metric is used for
every fault in every faulty version, and is more importantly used for comparison between
versions of the program.

To enable the presentation of our experimental protocols and their motivations, we pro-
vide the following definitions. Because the goal of this work is to study the effects imposed
by the presence and quantity of faults in a program on CFL effectiveness, we define fault
density in terms of the number of faults in the program and the size of the program.

Definition 2 (Fault Density) The ratio of faults in a program to the size of a program
(expressed as the number of statements, i.e., the lines of code, in the program). More for-
mally, it can be represented by |F |

|S| where F is the set of faults in the program and S is the
set of statements in the program.

Note that fault density is directly related to the quantity of faults, so each can be thusly
considered in the context of the other in the ensuing discussion. Hence, as a program con-
tains more faults, its fault density increases, in other words, an execution is more likely to
encounter at least one fault (because more lines of the program are faulty). In addition, when
referring to these faults, we define twomore terms, prominent fault and non-prominent faults.

Definition 3 (Prominent Fault) Program P , composed of the set of instructions I , contains
the set of faults F = {f1, . . . , fn}. Each fault fx is composed of discrete sets of instructions
Ix ⊂ I , where for any x and y such that x �= y, Ix∩Iy = ∅. Suspiciousness metric S(i) gives
a heuristic measurement of fault-proneness for instruction i. Fault fpro ∈ F is composed
of instructions Ipro ⊂ I , and all other faults Fnon = F − {fpro} are each composed of
instructions Inonf

. Fault fpro is called the “prominent fault” if S(i) > S(j) | ∃i ∈ Ipro,∀j ∈
f ∈Fnon⋃

Inonf
.

Consequently, all other faults than the prominent fault may be considered “non-
prominent faults.”

Definition 4 (Non-Prominent Fault) Each fault fj ∈ Fnon, defined in Definition 3 is called
a “non-prominent fault.”

938 Empir Software Eng (2015) 20:928–967

In order to determine the extent to which faulty instructions can be distinguished
from non-faulty instructions with the fault-localization technique, we define “latent sus-
piciousness” as the mean suspiciousness of the instructions in the program that are not
faulty.

Definition 5 (Latent Suspiciousness) For program P , composed of the set of instructions
I = Ifaulty∪Inonfaulty, and suspiciousness metric S(i), the “latent suspiciousness” is defined
as the arithmetic mean of S(i ∈ Inonfaulty).

In order to determine the prevalence of fault-localization interference, we define “fault-
localization interference frequency” as the ratio (or percentage) of occurrences in which the
introduction of a fault caused a substantial drop in the localizability of at least one of the
existing faults.

Definition 6 (Fault-Localization Interference Frequency) For a program P that contains
the set of faults F = {f1 . . . fn}, we compute the expense eP (fi) for each such fault in F .
A new version of the program P ′ is created by introducing a new fault fnew into P . With
P ′ we again compute the expense eP ′(fi) | fi ∈ F . An interference is noted when a fault
exhibits an increase of expense: ∃fi ∈ F | eP ′(fi)) > eP (fi). However, we denote a “sub-
stantial” interference when at least one fault exhibits an increase of expense by at least an
order of magnitude: ∃fi ∈ F | eP ′(fi)) > 10eP (fi). The fault-localization interference fre-
quency is the ratio of the number of new-fault-introduction versions that caused substantial
interference to any fault existing prior to the new fault introduction, to the total number of
new-fault-introduction versions.

In order to determine the extent to which interference is imposed, we define the con-
cept of fault-localization magnitude. For each fault that experiences FLI, the difference in
expense between the single fault version and the multi-fault version at varying levels of fault
density is measured. In other words, to calculate the expense increase, we leverage the ver-
sion containing only the fault in question, and another containing multiple faults (including
the fault in question) and compare the increase in expense for each individual fault against all
multiple fault version. More formally, we define Fault-Localization Magnitude as follows.

Definition 7 (Fault-Localization Magnitude) For a program P that contains the set of faults
F = {f1 . . . fn}, we compute the expense eP (fi) for each such fault in F . A new version
of the program P ′ is created by introducing a new fault fnew into P . With P ′ we again
compute the expense eP ′(fi) | fi ∈ F . An interference is observed (utilizing either the strict
definition for interference or the definition for substantial interference) such that: ∃fi ∈
F | eP ′(fi) = eP (fi) + m | m > 0. Here, m is the magnitude for said fault localization
interference.

3.2 Objects for Analysis

To determine the effectiveness of CFL techniques in the presence of multiple faults,
this study leverages six C-language programs that are popular in CFL research: Flex
(version 2.5.4) Gzip (version 1.0.7), Replace, Schedule, Sed(version 3.02) and Space

Empir Software Eng (2015) 20:928–967 939

(Jones et al. 2002, 2007; Abreu et al. 2007; Liu et al. 2005; Cleve and Zeller 2005; Jones
and Harrold 2005; Renieres and Reiss 2003; DiGiuseppe and Jones 2011a, b). These pro-
grams vary in size as follows: Flex has 14273 lines of code (LoC), Gzip has 7928 LoC,
Replace has 563 LoC, Schedule has 509 LoC, Sed has 10154 LoC, and Space has 6445
LoC. Each was obtained from the “Subject-artifact Infrastructure Repository” (SIR) along
with its faults, and test cases (Do et al. 2005).

Flex is a GNU utility that generates a lexical analyzer. Gzip is another GNU utility that
performs compression and decompression. Replace and Schedule are both toy-sized pro-
grams from the so-called “Siemens suite” provided by the SIR; Replace performs textual
matching and replacing and schedule prioritizes events based upon their score. Sed is a Unix
utility stream editor. Space is an interpreter for an array definition language created by the
European Space Agency.

As in prior work, faulty versions that exhibit no test-case failures are excluded from
our experiment (e.g., Jones et al. 2002; Zheng et al. 2006; Arumuga Nainar and Liblit
2010; Jones and Harrold 2005; Liu et al. 2005; DiGiuseppe and Jones 2011a, b). When
these omissions caused our program to have less than 20 faulty versions, or in cases where
the number of faults provided by SIR was less than 20, additional faults were added through
random mutation as defined by Offutt et al. (1996). Offutt’s approach attempts to create a
representative set of mutants using randomized line-selection, randomized mutant-operator-
selection, and a pre-defined set of operators described for mutant insertion (Offutt et al.
1996). Additionally, the the reference version was altered in such a way that each fault can
be activated or deactivated at compile-time, to enable multiple faults to be simultaneously
present. Although mutants are faults that did not arise due to original developer mistakes,
recent work by Ali et al. found that, “single-mutant-line mutants...behaved very similarly
to the real faults...with respect to Tarantula,” and that their results, “showed no reason to
believe that mutants are unsuitable as candidates for faulty versions for the purpose of
studying FL [fault localization] algorithms,” (Ali et al. 2009).

3.3 Experimental Setup

This experiment captures the coverage of each test case with the instrumenter included in the
Gnu C compiler (gcc) and its corresponding gcov utility. For each test case, the executed
instructions and the pass/fail status are used as input for our CFL technique — the ver-
sion of the TARANTULA fault-localization tool, with the Ochiai suspiciousness metric (see
reference Jones and Harrold (2005) for more specifics on this version of TARANTULA). The
Ochiai metric is used because a study by Abreu et al. found it to be the most effective metric
for CFL inferencing (Abreu et al. 2007).

The output from each faulty version is then compared with output from a fault-free,
oracle version provided by SIR. When the output of the faulty version and the oracle version
differ, the test case is marked as a failure; otherwise, it is marked as a pass.

To create faulty versions, the following process is implemented: randomly choose a
single fault, then iteratively add another randomly-chosen fault without replacement until
seventeen faults are reached (saving each version whenever another fault is introduced). For
example, first evaluate a version containing only fault 7, followed by a version containing
faults 7 and 14, followed by a version containing faults 7, 10, and 14, . . . , until seven-
teen faults are reached. For each version, the test suite is executed, and the CFL technique
is utilized. By following such additive sequences of faults, expense, suspiciousness, and
interference can be captured, evaluated, and analyzed as the fault density is increased.

940 Empir Software Eng (2015) 20:928–967

To determine a stopping point, each program ran for a fixed amount of time. Thus, larger,
more complex programs, or programs with larger test suites have fewer faulty versions. The
exact number of faulty versions generated for each subject, along with the corresponding
quantity of faults is shown in Table 2. For example, Gzip contains 20 single-fault versions,
and by generating unique combinations of two faults, 180 two-fault versions were produced
(e.g., a two-fault version may contain faults 4 and 17). Similarly, n-fault versions were
generated by randomly choosing unique combinations of the n individual faults.

In all, these experiments generated 72,017 faulty versions from all six programs and
executed the test suite for each faulty version, resulting in the execution of over 1.6 billion
test cases.

3.4 Formal Analysis Methodology

To elucidate understanding regarding the method of analysis used for our results, we briefly
discuss the statistical methodology used to evaluate the results in this study, the justification
for these methods, and the significance threshold at which we reject the null hypothesis.

For all our tests we choose an alpha of 0.05 to compare against our p-values. This value
is chosen because of its common acceptance as a standard measure to calculate significance
within the software engineering field.

Regarding our statistical tests, first, to determine whether our data is normal, we imple-
ment the Shapiro-Wilk test. For this test, if the p-value is less than a chosen alpha, then

Table 2 Number of versions, size of test suite, and number of executions for each of our six subject programs

Flex Gzip Replace Schedule Sed Space Total

of 1-Fault Versions 21 20 25 20 20 33 139

of 2-Fault Versions 189 182 185 165 188 175 1184

of 3-Fault Versions 502 505 598 500 660 550 3315

of 4-Fault Versions 1000 1000 700 500 950 670 4820

of 5-Fault Versions 1000 1000 700 500 950 670 4820

of 6-Fault Versions 1000 1000 700 500 950 670 4820

of 7-Fault Versions 1000 1000 700 500 950 670 4820

of 8-Fault Versions 1000 1000 700 500 950 670 4820

of 9-Fault Versions 1000 1000 700 500 950 670 4820

of 10-Fault Versions 1000 1000 700 500 950 670 4820

of 11-Fault Versions 1000 1000 700 500 950 670 4820

of 12-Fault Versions 1000 1000 700 500 950 670 4820

of 13-Fault Versions 1000 1000 700 500 950 670 4820

of 14-Fault Versions 1000 1000 700 500 950 670 4820

of 15-Fault Versions 1000 1000 700 500 950 670 4820

of 16-Fault Versions 1000 1000 700 500 950 670 4820

of 17-Fault Versions 1000 1000 700 500 950 670 4820

Total # Versions 14,714 14,707 10,608 7,684 14,168 10,138 72,017

Size of Test Suite 527 214 5,542 2,560 363 13,527 22,733

Number of Executions

(in Millions) 7.7 3.1 58.7 19.6 5.1 137.1 1,637.1

Empir Software Eng (2015) 20:928–967 941

the null hypothesis is rejected, meaning that the data is not from a normally distributed
population.

To test the whether the difference within the results from our experiments are signif-
icant, we utilize the Mann-Whitney U test. This test is used to test two populations to
determine whether they are likly drawn from the same population. The motivation to use
this test comes in part from the fact that, as will be discussed in Section 4, our results
are not normal. The Mann-Whitney U test is specifically designed for non-parametric
(or non-normal) data. The necessary assumptions for this test are that the observations
are independent, the responses are ordinal, and the distributions of both groups are equal
under the null hypothesis. Our data satisfies these criteria, and thus when a p-value is less
than our alpha (0.05), we conclude that the populations are statistically distinct from one
another.

Lastly, to formally test correlation, we perform the Kendall Tau test. This test measures
the association between two measured quantities, and produces a score between negative
one and one. A score close to one indicates a strong agreement between the values (i.e., pos-
itive correlation), a score close to negative one indicates a strong disagreement between the
values (i.e., a negative correlation), and a score near zero indicates no relationship between
the data (i.e., no correlation). This test is a non-parametric test, meaning it does not make
assumptions about the data being normal, and under the null hypothesis wherein the two
data samples are independent, the result should be zero.

4 Experimental Results

Each research question is answered and exhibited within its own section. As such, the fol-
lowing seven subsections each describe one of our seven research questions. It is of note that
these results are all described using the median scores due to the non-normality of the dis-
tribution of data. A Shapiro-Wilk test rejected the null-hypothesis (i.e., confirming the data
was not drawn from a normal distribution) for each of our subjects for all our dependent
variables.

4.1 Research Question 1: What is the impact of fault quantity on CFL expense?

This experiment investigates the impact of fault density on CFL expense by measuring
three data-types against fault quantity: (1) the prominent fault’s expense, (2) the variation
in the the prominent fault’s expense, and (3) all faults’ expense. In this way the results
approximate CFL effectiveness by performing an analysis on the prominent fault’s expense,
the effect of the number of faults on all fault’s localization, and how many faults can
be identified simultaneously (which can improve efficiency through an increase in the
parallelization of debugging).

4.1.1 Prominent Fault’s Expense

Figure 2 exhibits the median expense results for the prominent fault in each subject at each
fault quantity. The horizontal axis represents the program’s fault quantity, and the verti-
cal axis represents the median expense to find the prominent fault. Each separate line is a
median expense (across all n-fault versions) for a particular program’s prominent fault (at a
given fault quantity), whereas the median (across all n-fault versions) of the mean expense
(across all subject programs) is presented as the dotted line. Note that, although the results

942 Empir Software Eng (2015) 20:928–967

Fig. 2 The aggregate, least
expense fault for all six subjects
as the quantity of faults increases
from one to seventeen. The inset
plot presents a magnified view

5 10 15

Quantity of Faults

0

20

40

60

80

100

E
xp

en
se

Flex

Gzip
Replace

Schedule

Sed

Space
Mean

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

are discrete for quantity of faults, the figure connects associated points with lines for com-
prehensibility of the trends imposed upon expense by the fault quantity. The plot displays
a scale of 0 % to 100 % — to represent the full possible range — and a magnified scale
in the inset plot to more precisely demonstrate our program’s behavior. Although a random
guess would on average result in an expense of 50 %, this study reports the full expense
range returned by the CFL technique — we do this because the goal of this study is to study
the effect of fault quantity on effectiveness and that effect may cause worse-than-50 %
effectiveness.

For example, with the program Replace, the median expense for the prominent fault in
versions containing a single fault is 4 %, and the median for two-fault versions is 3 %.
Somewhat surprisingly, with one of the six subjects (Schedule), the prominent fault is equal
or easier to find (i.e., has a lower rank) half the time when the program contains multiple
faults. For the remaining five programs (Flex, Gzip, Replace, Sed, and Space) the prominent
fault always has a higher expense when the program contains multiple faults.

The results show that mean expense across all subjects has an overall increase of 2 %
between one and seventeen faults. A two-tailed t-test for increasing quantities of faults is
displayed if Table 3.

Table 3 demonstrates that when considering our subjects as a whole, that any different
quantity of faults is statistically likely to perform differently than the same program contain-
ing only a single fault, as all p-values are less than 0.05. Hence, when comparing the samples
from a single-fault version to a multi-fault version with any quantity greater than one, we
must reject the null hypothesis that they can be derived from the same sample. Figure 2
highlights that when considering our subjects as a whole, the difference in median increases
from roughly 4 % to 6 %, and the statistical tests show that that increase is significant.

Table 3 P-values testing the
statistical significance of expence
results drawn from the single-
fault version and an n-fault
version for the prominent fault

Starting quantity Ending quantity P-value

1 2 0.001

1 3 p<0.0001

1 4 p<0.0001

1 5 p<0.0001

1 6 p<0.0001

1 7 p<0.0001

1

Empir Software Eng (2015) 20:928–967 943

However, existing assumptions (see Section 2.4) were that CFL techniques “prevented”
localization (Srivastav et al. 2010) or “cannot distinguish” faults (Zheng et al. 2006) in the
presence of multiple faults. Despite modest, but significant, increases in effectiveness as the
number of faults increases beyond four faults, the prominent fault was still found in less than
6 % of the program, which does not fully confer with prevailing community assumptions.
This data contradicts the intuition-based assumption that CFL results are unusable in the
presence of multiple faults and instead suggests that a high-fault density has only modest
effect upon CFL expense to localize at least one fault (i.e., the prominent fault).

4.1.2 Range of Expense for the Prominent Fault

To gain a deeper understanding of the prominent fault, Fig. 3 presents a box plot exhibiting
expense values for the prominent fault at each fault quantity. The horizontal axis is the
quantity of faults, and the vertical axis is the range of expense. Each box shows the median
(the center line, colored red) and the first and third quartile (the box), and the min and max
values (the dotted lines) of the expense observed from each version’s prominent fault.

Due to the large quantity of figures for this data type, only Flex’s expense data is shown in
this figure, which is a sample from our six subjects and enables a more thorough analysis of
the pattern displayed by the majority of subjects. It should be noted however that a statistical
test revealed that each subject’s results at each quantity of faults was different (i.e., that each
subject’s range of expense for the prominent fault is statistically independent from each
of our other subjects with p-values less than 0.05). For completeness, the remaining five
expense boxplots (corresponding to the remaining five subjects) can be found in the (see
Appendix A) as Fig. 11.

Figure 3 demonstrates a general negative correlation between the variance of expense
and the quantity of faults; more simply, the variance of expense shrinks as the quantity of
faults increases. For example, the expense range for the prominent fault when Flex contains
a single fault is roughly 1–22 %, however when Flex contains seventeen faults, it is roughly
12–12.5 % (a Kendall Tau test produces a score of −0.97).

This same pattern is demonstrated by the subjects Replace, Sed, and Schedule. This
figure demonstrates two significant trends: first, the expense variance decreases at higher
fault densities, and second, the expense range at the highest quantity of faults (14–17 for
Flex, 11–16 for Replace, 9–17 for Schedule, and 11–15 for Sed) is statistically shrinking
(with a Kendall Tau test returning a scores below -0.8 for each subject).

Fig. 3 Range of expense for the
prominent fault at each fault
quantity for Flex, the other
subjects results are presented in
the (see Appendix A)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity of Faults

0

20

40

60

80

100

R
an

ge
of

E
xp

en
se

Flex

944 Empir Software Eng (2015) 20:928–967

Our data also suggests that the relatively constant expense median is also due to FLI.
Indeed, when more faults are executed, there is an increased probability that at least one
fault causes FLI, and faults that cause FLI tend to be localized first (DiGiuseppe and Jones
2011b). This rationale — FLI causing faults are found first — explains the fairly consistent
expense median: these faults are never obfuscated, so regardless of fault quantity they are
localized with similar expense values. The lack of influence on expense range at higher fault
quantities suggests that CFL techniques eventually reach a saturation level such that their
expense for locating a fault neither can increase nor decrease until some faults are removed.
This suggests that although CFL results initially decrease in effectiveness with more faults
(as demonstrated previously), this decrease is halted at higher fault quantities. However, the
exact specification of “higher” seems to be somewhat program-specific, as Flex reaches this
state at 14 faults, Replace, and Sed reach this point at 11 faults, Schedule reaches this point
at 9 faults, and neither Gzip or Space reached this point by 17 faults.

This pattern of expense-range shrinking, is in contrast to that which is exhibited by the
subjects Gzip and Space. When considering the variance of the subject Space at various fault
quantities, we find statistically different values between each fault quantity between one and
nine faults (a p-value less than 0.008), and between each fault quantity thereafter we cannot
reject the null hypothesis (p-values greater than 0.05), meaning that current data cannot val-
idate that these samples are from different populations Further, we see that at between one
through nine faults, Space’s expense range increases (with a higher median, first quartile,
and max). Similarly, for Gzip’s variance between fault densities one through six we can-
not reject the null hypothesis (p-value greater than 0.05) and thus cannot validate that these
samples come from different populations. However, Gzip demonstrates a statistically dif-
ferent value at higher fault densities at faults 11–17, (with a p-value less than 0.05). Further,
when conducting a Kendall Tau correlation test, we find that between a single-fault version,
and a sixteen-fault version, Gzip has a score of 0.66 and Space has a score of 0.99 (indi-
cating an increasing range as the quantity of faults increases). Thus, these programs exhibit
opposite behavior: Space has a constant range at high quantities of faults (quantity greater
than nine), and Gzip has a constant range at low fault quantities (quantities less than eight).

We speculate that Space’s behavior is actually similar to that of our other four subjects.
Although its range is much larger, the range stabilizes similar to that of Flex, Replace, Sed,
and Schedule. This is likely due to a FLI (as mentioned above). However, it suggests that the
potential range of expense is somewhat program specific (e.g., Schedule has a larger range
than Replace).

As for Gzip, an anecdotal investigation into this behavior suggested that it may be differ-
ent due to the nature of its functionality. Gzip only performs two main functions, compress-
ing or decompressing. If either of these functionalities contain a fault, the process almost
always fails; however, having multiple faults within the same functionality does not cause
new failures (as all test cases that executed that process failed at smaller fault quantities).
This means that CFL has a difficult time in distinguishing non-faulty, but always executed
code, with faulty, but always executed code. This would explain the relative stability.

4.1.3 All Faults’ Expense

Figure 4 presents the expense of all faults, including those that do not have the low-
est expense score (i.e., all faults which are not localized first) in Fig. 4. This figure
presents all the faults’ expense values for every fault in Sed; note that the remain-
ing five figures for the other subjects can be found in the in (Appendix A) labeled as
Fig. 12.

Empir Software Eng (2015) 20:928–967 945

Fig. 4 Aggregated expense for
each fault in Sed. The lowest plot
line represents the fault with the
least expense, and thus is
localized first. Each of the other,
higher lines represent next found
faults. The other subject’s results
appear in the (see Appendix A)

0 2 4 6 8 10 12 14 16 18

Quantity of Faults

0

20

40

60

80

100

E
xp

en
se

Sed

In Fig. 4, the horizontal axis represents the fault quantity within the program, and the
vertical axis represents expense. Plot points correspond with the median for all n-fault ver-
sions — (e.g., at the “1” position on the horizontal axis, the plot point represents the median
expense for all 1-fault versions). Furthermore, at the “1” position on the horizontal axis,
only a single point is drawn because (by definition), there can be only one fault to localize.
For example, the two-fault plot line has no value at the “1” position on the horizontal axis
— each line makes its introduction at one point further along the horizontal axis. All plot
points correspond with multiple different faults — points are classified by their position in
the sorted expense measure, not by a fault identifier. Finally, in interpreting this graph, when
using a find-fix-rerun process only the lowest plot line is of interest (i.e., this line should
be followed to the left) and when using a find-fix-find-fix-repeat (without rerunning CFL)
process jump up between lines.

All our subjects exhibit that the prominent fault has a statistically lower expense than
even the second-most prominent fault (a p-value less than 0.001 for all subjects at all quanti-
ties of faults). A deeper investigation into the data used to construct this graph revealed that
the prominent fault was often different at each quantity of faults. In other words, the faults
creating the lowest expense were often different at each fault quantity. This difference of
prominent fault at each quantity suggests the importance of understanding fault interaction,
or how multiple faults interact to change the behavior of other faults (see DiGiuseppe and
Jones (2011a) for a more thorough treatment). This is a somewhat surprising result as the
expense at each quantity of faults is somewhat stable for the prominent fault. Indeed, this
means that even though the fault(s) responsible for the failure are unique at each quantity of
faults, they manage to score similarly in the context of being localized.

When examining the non-prominent faults (those which would not be localized first), in
most cases, they contain values that suggest localization will be difficult. For example, at
seventeen faults, the fourth-easiest-to-find fault has an expense that is more than five times
that of the first-localized fault. Thus, it would likely be faster to fix a single fault, rerun the
CFL technique, get new results, and find the next fault, than it would be to try and fix the
second or third prominent fault. Another feature of interest is that the non-prominent faults
change dramatically in expense at different quantities of faults. This is surprising given
that the prominent fault is somewhat stable. An anecdotal investigation into this behavior
suggests that fault localization is only able to isolate a single infection behavior at a time. In
other words, the fault(s) causing failure mask the infections from the remaining faults such
that the spectra of non-prominent faults are obfuscated. We speculate that utilizing different

946 Empir Software Eng (2015) 20:928–967

spectra may be able to identify different fault(s) simultaneously or at least lower the expense
for some of the non prominent faults.

The data points from these three sub-questions provide a few key insights:

(1) the fault that is localizable may be unique to the combination of faults,
(2) it is unlikely that more than a single fault can be localized at once, and
(3) CFL best supports an iterative debugging approach targeting the prominent fault.

For RQ1: When considering the prominent fault, fault density has sig-
nificant but modest impact of increasing CFL expense (2%), and for
the majority of our subjects will narrow the expense variance at higher
densities. When considering the non-prominent faults, fault density has
a significant impact that makes most faults unlocalizable due to an in-
creased expense.

4.2 Research Question 2: What is the impact of fault quantity on CFL suspiciousness
scores?

RQ2 is motived by the important relationship between the suspiciousness of the the mean
line of code, and the suspiciousness of the fault. A suspiciousness value that is too close to
the mean suspiciousness will result in a technique that provides no meaningful assistance,
even if the expense would otherwise be acceptable.

To answer RQ2, two data-types are investigated: the actual suspiciousness values of the
most easily localized fault, which provides insights on expected values across different
programs, and the relationship between non-faulty code and faulty code’s suspiciousness
values, which improves understanding regarding the simultaneous identification of mul-
tiple faults. Note that hereafter references to all-non-faulty code and the latent-code are
interchangeable. Further, by examining the code’s latent suspiciousness score, concerns
presented by previous researchers can be investigated (e.g., multiple faults increase the
suspiciousness of all instructions).

4.2.1 Non-Fault and Fault Code Suspiciousness

Figure 5 displays this data for Sed, which is a sample from our six subjects that allows for
a more thorough discussion of the patterns observed. For completeness, the remaining five

Fig. 5 Mean suspiciousness
values for each fault of Sed,
evaluated with a ranked list. The
dotted line represents the mean
latent suspiciousness

0 2 4 6 8 10 12 14 16 18

Quantity of Faults

0

20

40

60

80

100

S
us

pi
ci

ou
sn

es
s

Sed

Empir Software Eng (2015) 20:928–967 947

suspiciousness figures (corresponding to the remaining five subjects) can be found in the
(see Appendix A) as Fig. 13.

The horizontal axis represents the quantity of faults in the program and the vertical axis
represents the Suspiciousness (as a percentage). The points connected by solid lines rep-
resent the median suspiciousness value assigned to the n-th placed fault in a sorted list of
instructions, from most suspicious to least, while the dotted line represents the latent sus-
piciousness for a given quantity of faults. The top-most plot line represents the prominent
fault, and thus the most suspicious; the second plot line from the top represents the second
fault to be found by the technique, and so forth. However, there can only be a second fault
when there are two faults in the program, meaning the second-highest plot line has no value
at 1-fault on the horizontal axis — each line makes its introduction at one point further
along this axis. The median, latent suspiciousness value assigned to all instructions in the
program (faulty and non-faulty) is represented by the dotted line. Lastly, all plot points cor-
respond with multiple different faults — points are classified by their position in the sorted
suspiciousness measure, not by a fault identifier.

Figure 5 suggests a few common trends: (1) the latent suspiciousness initially increases,
and then slows its rate of increase with six or more faults, (2) fault suspiciousness is posi-
tively correlated with fault quantity, and (3) a majority of faults are less suspicious than the
latent suspiciousness. The interest of these trends will each be discussed in turn.

For half of our subjects, the latent suspiciousness spikes early and then has a very
small rate of increase. Although the spike is non-trivial (a 10–25 % jump between quan-
tity of faults 1 and 4), the latent suspiciousness only changes 4 % between 9 and 18 on the
horizontal axis. For the remainder of our subjects, the latent suspiciousness changes dra-
matically, with Replace and Space experiencing more than a three times increase in latent
suspiciousness, and Schedule experiencing an increase than decrease in suspiciousness.

For all our subjects but Schedule, all prominent faults, many non-prominent faults,
and the latent code continues to increase in suspiciousness as the quantity of faults
increases.

The relationship between fault suspiciousness and latent suspiciousness is important.
When a fault’s suspiciousness score is below the latent suspiciousness, it becomes indistin-
guishable (from a CFL user’s perspective) from non-faulty code. Even faults with a similar
suspiciousness to the latent are likely to be ignored by a CFL user. Consider fault-quantity
9 where the latent suspiciousness is 48 %, and the third prominent fault is 53 %. This fault’s
suspiciousness is so similar to the general code-base that it is likely to be ignored. Only
scores that differ substantially from the latent are likely to stand out or be inspected. Thus,
although the prominent fault often scores at least 30 % higher than the latent suspiciousness,
Fig. 5 exhibits that at the majority of fault quantities, all but a few faults are less suspicious
than the latent code.

These results suggest that the increase of latent-code suspiciousness is somewhat
program-specific. Although almost all our subjects experience an increase, the rate of
increase appears to be different for different programs. Although some programs may have
latent suspiciousness so high that intuition is that CFL techniques provide ineffective results,
even for our subjects with this behavior (e.g., Replace) the prominent fault is statistically
different (p-value less than 0.05) than the non-prominent faults, with a difference of their
medians of roughly 5 %.

One other important observation is that for all our subjects, at least two faults were more
suspicious than the latent code (a p-value less than 0.05), and close in their suspiciousness.
This result suggests that CFL techniques may be able to identify at least two faults simul-
taneously. We speculate that as the fault density increases, it is increasingly likely that two

948 Empir Software Eng (2015) 20:928–967

faults that are related in terms of infection implications contribute to the failure, allowing
CFL techniques to identify them both as a single entity that is responsible for the failure.
However, the vast majority of faults are far less suspicious than the latent code, meaning
that some manner of iterative debugging is likely required for CFL users.

These results suggest that CFL techniques are not limited in their useful by fault quantity.
In other words, although an increase in the suspiciousness value of the latent code should
be expected, this increase will likely remain below that of the prominent fault by enough of
a margin to enable the localization of at least one, potentially two faults.

For RQ2: The prominent fault’s suspiciousness (and most of the non-
prominent faults) increase as fault quantity increases until they near
100% and stabilizes. The latent suspiciousness also tends to increase,
after an initial spike. Lastly, at high fault densities the majority of faults
exhibit a lower suspiciousness than the latent suspiciousness, making
them indistinguishable from normal code.

4.3 Research Question 3: Is fault type a predictor of CFL effectiveness?

To investigate whether fault type is an accurate predictor of CFL effectiveness, this exper-
iment evaluates fault type against expense. This evaluation measures fault-type correlation
with expense; signifying a predictability between type and CFL behavior. This experi-
ment used four taxonomies in this experiment as described in Section 2.2: Smith92,
Firesmith92, Hayes94 and Hayes11.

Figure 6 characterizes each fault, and displays the expense for the Sed program. Note
that due to the long descriptions of each fault type, numerical values are used to represent
them — the index relating numerical value to fault-type description is given in the (see
Appendix A). Only Sed’s figure is displayed in this section (which sufficiently represents
all our subjects), but the remaining five fault-type figures (corresponding to the remaining
five subjects) can be found in the (see Appendix A) as Fig. 14.

Note that each of these four subfigures represents Sed and contains the same val-
ues (i.e., the same boxes), but they are ordered and labeled differently based upon the
four taxonomies. The horizontal axis enumerates the fault identifiers, labeled according to
each taxonomy (in other words, each horizontal point represents a different fault) grouped
according to fault type. The vertical axis represents expense. Each box represents the
expense range of a particular fault for all versions of the program and fault quantities. Each
box is generated using all instances of expense for a particular fault across all versions. Like
our previous box plot, the center red line represents the median, the box represents the first
and third quartiles, and the “whiskers” represent the min and the max values. Note that in
circumstances where there appears to be no box, the entire box is a single value at 100 %.

Each subfigure demonstrates that fault types appear to share no significant correlation
within a fault type. In other words, this figure demonstrates that these samples cannot reject
the null hypothesis, meaning that, statistically speaking, we cannot validate that these sam-
ples are from different populations. We confirmed this by performing a Kendall Tau test for
each program, across each fault taxonomy, and found that in all cases, there was no statis-
tical correlation between the expense range of any fault types for any of our six subjects
(every result was near 0). 4b) Further, we performed a Mann Whitney U test and found that
the results could not reject the null hypothesis (i.e. p-values greater than 0.05).

Empir Software Eng (2015) 20:928–967 949

Fig. 6 The range of expense for every fault across each taxonomy with the Sed subject

In an effort to better classify faults that have similar expense, we performed a correla-
tion analysis of fault type to expense; unfortunately, no substantial commonalities within
faults types were found. In addition, across subjects no meaningful correlations were found
between fault types and expense. For example, when considering Smith92, we compared
all bug ranges from classification 1, with those from classification 2, 3 and 4. In this way,
each classification receives its own group of data.

Consider our fault types when categorized according to Smith92, which results in
four identified fault types; some have large variances with high means, and others have
low variances with low means. Additionally, faults with similar expense values are spread
throughout different fault types. For example, types 1, 2 and 4 all have faults with low vari-
ance and low medians, and other faults completely at 100 %. This behavior demonstrates a
lack of consistency within a specific fault type, and in many cases, more similarity between
different fault types. This behavior also exists between programs. All four taxonomies
demonstrate that no single fault type has a representative expense.

Additionally, each fault across all six subjects was examined by hand for any qualitative
similarities among the faults. Our analysis consistently revealed no qualitative similari-
ties; fault-type similarities were a poor indicator of additional similarities. This anecdotal
analysis revealed no patterns among fault types, or consistency within a fault type.

Our quantitative results and our qualitative investigation suggest that fault type has lit-
tle to no correlation with expense values, and that expense is more influenced by nuanced

950 Empir Software Eng (2015) 20:928–967

circumstances (e.g., the exact variable in question, the method calling the faulty code, the
fault’s location during execution).

Unfortunately, these results indicate that these type of general taxonomies are insuf-
ficient to identify the way a fault might behave. This suggests the need for either,
more domain/language-specific fault taxonomies or for different, more context-sensitive
identifiers to enable the automatic classification of fault behaviors.

For RQ3: Usage of these taxonomies suggests that these fault types have
little to no correlation with CFL expense, and that these fault types are
not a determining factor in localizability.

4.4 Research Question 4: What are the practical ramifications of fault-localization
interference on CFL?

To illustrate the practical ramifications of fault localization interference on CFL, this section
illustrates with an example from the Gzip. This example allows a more fine-grained under-
standing of how FLI impacts a system, and how CFL results can change as more faults are
introduced.

Results presented thus far have been aggregated across many versions — up to 1000
for every fault quantity of each subject. To facilitate a more complete understanding of the
practical impact of FLI, Fig. 7 presents a unique sequence of faults from the Gzip program
as the fault quantity is altered. More simply, this section presents a small, focused study
from real software to illustrate the functional challenges imposed by FLI. The vertical axis
represents expense while the horizontal axis is the quantity of faults in the program. Each
line represents a unique fault in the program and because faults are introduced one-at-a-
time, a new line is added at each horizontal point. For the sake of replication, the sequence of
faults used, in the order of introduction are 〈19,3,20,8,10,5,12,1,13,15,4,16,11,17,9,14,18〉.

With only a single fault the expense is 11 %. Upon the introduction of the fourth fault, the
expense for the second introduced fault jumps to 100 %.When the eighth fault is introduced,
two of the existing faults’ expenses jump drastically from roughly 10 % to above 20 % and
two drop drastically from around 30 % to near 5 %.

In these cases, additional faults interfere with the localizability of previous faults — that
is, the presence of one fault limits or heightens the ability of CFL to effectively localize the
other faults (i.e., FLI). One of the most pronounced examples of FLI is observed when one

Fig. 7 The expense for
individual faults following a
particular sequence of 1–17
faults in Gzip. The expense for a
particular fault can drastically
change as a new fault is
introduced or removed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity of Faults

0

20

40

60

80

100

E
xp

en
se

Empir Software Eng (2015) 20:928–967 951

fault causes another fault’s expense to reach 100 % — this occurs twice, first at five faults,
and again at fourteen faults. In these cases, obscured faults are no longer executed by any
failing test cases due to control flow changes.

This study presents results for a particular 1–17 sequence of fault introductions. This
particular scenario gives the reader a “microscopic” view of the effects that were observable
throughout nearly all of the inspected versions — these effects cannot be adequately pre-
sented in all other “macroscopic” plots that aggregate results from over 70, 000 multi-fault
versions. However, in our anecdotal experience, these interference effects are typical across
the other versions.

One insight here is that a single introduction or removal of a fault can drastically alter
which faults are currently visible. This suggests that developers ought to be thorough and
repetitive about running their test suites after changes are made or faults are fixed. Indeed,
this example clearly demonstrates the need for efficient and thorough regression testing, as
the removal of a single fault may enable the identification of others that were previously
concealed.

An additional insight, is that it is currently unclear which faults tend to cause FLI and
which are interfered with. In other words, this example highlights that some faults when
interfered with are completely obfuscated, resulting in an expense of 100 %, whereas others
are only slightly impacted raising their expense by 10 %. Additional investigations should
investigate whether there is some correlation between those faults which are completely
obfuscated, and those which are only slightly affected.

For RQ4: FLI can cause faults to become unlocalizable, only slightly
obscure them, or improve their ability to be localized. In other words,
the impact of multiple faults on a specific fault’s localizability is unpre-
dictable in occurrence and intensity.

4.5 Research Question 5: How often does fault-localization interference occur?

First, recall that FLI is defined as occurring when a fault’s expense increases (i.e., the fault
becomes more difficult to localize) due to the presence of at least one other fault. Also,
recall that to discuss how often FLI occurs at varying fault densities the term FLI frequency
means the rate at which FLI occurs over a given sample.

The FLI frequency is displayed as a percentage on the vertical axis of Fig. 8, and the
horizontal axis represents the quantity of faults. Note that for this evaluation, only instances
of interference are measured: if one fault experiences 80 % interference and another fault
experiences 13 %, both are categorized as experiencing interference. Additionally, lines
are only drawn to highlight the trends of each subject, there are no actual values between
discrete points.

For this evaluation, FLI is classified as an expense increase of at least an order
of magnitude. In other words, if any fault in a version has an expense increase of
at least an order of magnitude, then it is classified as experiencing FLI. An order
of magnitude is used because it represents a substantial and likely noticeable loss of
effectiveness.

By six faults, all subjects experience interference at least 80 % of the time. Figure 8
demonstrates a positive correlation between fault density and frequency of interfer-
ence. To confirm this, we performed a Kendall Tau test between adjacent x-coordinates

952 Empir Software Eng (2015) 20:928–967

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity of Faults

0

20

40

60

80

100

F
LI

 F
re

qu
en

cy

Flex

Gzip
Replace

Schedule

Sed

Space

6 8 10 12 14 16

86

88

90

92

94

96

98

100

Fig. 8 The frequency of FLI occurrences as the quantity of faults increases. All subjects quickly rise to and
then slowly approach 100 %

(e.g., quantity of faults 1,2; 5,6; 11,12...) and found that in each case, the values was
greater than 0.93, indicating a strong positive correlation between quantity of faults, and
frequency of FLI occurance. By 15 faults, 100 % of versions in 100 % of our sub-
jects experience FLI. These results demonstrate that interference among faults occurs
frequently.

Additionally, by ten faults, when performing a Mann Whitney considering the FLI fre-
quency experienced by all subjects, we were unable to reject the null hypothesis (i.e.
p-values were greater than 0.05) meaning we cannot draw statistical conclusions regarding
these populations. This means that regardless of subject, after ten faults, the frequency of
FLI experienced will be identical for all subjects.

These results suggest potential impact on developers looking for a specific fault. Due to
the high level of interference, if the fault does not cause the failure, it will be obfuscated,
meaning that CFL might be unable to locate the fault a developer is looking for. We spec-
ulate that without techniques that enable the separation of these failure causes (e.g., failure
clustering) or improvements to CFL, existing techniques will be unreliably successful at
identifying any arbitrary specific fault.

Additionally, these results suggest the importance of understanding fault interaction.
This figure clarifies that at larger quantities of faults, the interaction causes obfuscation
among a majority of faults. Although there is some existing work that examines this type
of interaction explicitly (e.g., Debroy and Wong 2009; DiGiuseppe and Jones 2011a), these
are not sufficient to completely explain this type of behavior. Indeed, this result highlights
the needs for further studies that examine the potential and realized complexities that exist
when multiple faults interact to change program behavior, and the spectra by which it can
be analyzed.

For RQ5: FLI is prevalent, occurring in over 80% of all multi-fault ver-
sions containing at least six faults. Further, by ten faults, our programs
were not statistically different in terms of the frequency in which FLI
was experienced.

Empir Software Eng (2015) 20:928–967 953

4.6 Research Question 6: What is the typical magnitude of fault-localization interference?

Although research question RQ5 addresses how often FLI occurs, research question RQ6
addresses the impact of an FLI occurrence on CFL. In other words, the evaluation of magni-
tude is used as an approximation of FLI’s influence on debugging. In this discussion, recall
that magnitude is defined in Section 3.1.

To investigate the magnitude of FLI, this experiment measures the expense increase
against fault quantity. For each fault that experiences FLI, the difference in expense between
the single-fault version and the multi-fault version at varying levels of fault density is mea-
sured. In other words, to calculate the expense increase, we leverage the version containing
only the fault in question, and another containing multiple faults (including the fault in ques-
tion) and compare the increase in expense for each individual fault against all multiple fault
version.

Figure 9 displays the magnitude of FLI on fault expense as fault density increases. The
vertical axis represents the expense increase due to FLI, and the horizontal axis represents
the fault quantity. Like the previous box plots, the red line is the median, the box is the first
and third quartile, and the “whiskers” are the max and min.

There is an initial increase in the median, the first and third quartile. Along with the initial
jump, there is a monotonic increase in the third quartile and the median as they approach
100 % interference (N.B., at 100 %, faults are no longer executed): the third quartile reaches
100 % at seven faults and the median reaches it at 15 faults. The third quartile and median
increase are contrasted by the first quartile that remains mostly constant after six faults.

This graph illustrates that if a fault experiences interference when there are at least 15
faults in the program, it will likely be entirely obfuscated and unlocalizable by CFL tech-
niques — in fact, it is not even executed. Additionally, if a fault experiences FLI at lower
fault quantities, its localizability will still be reduced enough to make it likely unlocalizable
(as other faults will be found first). This is substantial impairment — significant enough
to make CFL results unusable for developers attempting to localize the specific obfuscated
fault (i.e., a developer specifically targeting a fault that is experiencing interference); how-
ever, note that in such a case, such fault is not causing any failures and thus not likely to be
even attempted to be debugged.

These interference patterns suggest that as fault quantity increases, the maximum impact
increases (towards 100 %) while the minimum remains unchanged (around 0.5 %). Further,
a Mann Whitney U test found that each adjacent quantity of faults (e.g., 1,2; 5,6; 11,12...)

Fig. 9 The percentage of
interference that an individual
fault experiences as the quantity
of faults increases. There is a
monotonic increase of the median
and the third quartile until 100 %
interference is reached

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

20

40

60

80

100
Magnitude of Interference

Fault Quantity

In
te

rf
er

en
ce

954 Empir Software Eng (2015) 20:928–967

was statistically different from one another (with p-values < 0.05). Also, we performed a
Kendall Tau test for each adjacent pairwise quantity of faults and found that each value was
above 0.75 (with most being above 0.9).

One insight from these results is that debugging is likely to be an iterative process. Con-
sider that at higher fault quantities, if a fault experiences FLI (which RQ5 found to be over
80 %), on average that fault will be completely obfuscated, meaning that it is not even exe-
cuted. Thus, even if a developer were to fix every fault that caused a failure and that is
localizable (expense less than 100 %), they would be required to rerun their tests again to
identify the obfuscated faults.

Further, this presents complications for regression testing, wherein developers might
become confused and believe they introduced new bugs. Consider that a developer has two
test cases and only one fails. Upon fixing a fault, they find that while the failing test case
now passes, the passing test case now fails. Intuition would suggest that new faults were
introduced, but these results suggest that such behavior is likely.

For RQ6: There is a positive correlation between fault quantity and FLI
magnitude. Higher fault densities correlate with an increased interference
and an increased probability of an entirely obfuscated fault. In other
words, FLI can cause the localization of arbitrary pre-specified faults to
be difficult at higher fault quantities.

4.7 Research Question 7: Does fault type affect the likelihood of causing interference
or being subject to interference?

This section investigates potential correlations between fault type and FLI by comparing
fault types against the interference they experience.

To classify each fault type, this experiment uses the same four fault taxonomies dis-
cussed in Section 2.2: Smith92, Firesmith92, Hayes94, and Hayes11. Note that
due to the long descriptions of each fault type, numerical values are used to represent them,
though the index relating numerical value to fault-type description is given in the (see
Appendix A). For simplicity of analysis and discussion, only Gzip’s figures is shown in this
section (which sufficiently represents all our subjects), but the remaining five fault-type fig-
ures (corresponding to the remaining five subjects) can be found in the (see Appendix A) as
Fig. 15.

In Fig. 10 the horizontal axis represents the identifier for each fault type, and is labeled
with the taxonomy used, and the vertical axis is the interference that the fault experienced
across all multi-fault versions. Like previous box plots, the center red line represents the
median, the box represents the first and third quartiles, and the “whiskers” represent the min
and max. Note that each subfigure represents the same subject and data (i.e., the bars are
the same in all four graphs), the difference lies in the taxonomy used, and the ordering of
the bars within each subfigure.

Each box represents a single unique fault, across all multi-fault versions of Gzip. In every
instance where the expense of a fault is increased (i.e., the fault experiences interference),
the amount of increase is stored so that each box represents the increase experienced.

Some faults have a large interference variance (large boxes) — i.e., they experienced
many different interference values — and others have a small interference variance (small
boxes) — i.e., they consistently experienced the same degree of FLI.Note that when there

Empir Software Eng (2015) 20:928–967 955

Fig. 10 The range of interference that was observed for every fault for each taxonomy with Gzip

appears to be no box, the entirety of the box is a single line at 100 %, which means that
when the fault is obfuscated, it becomes completely unexecuted.

As in the previous study leveraging fault taxonomies, we performed an Mann Whitney U
test for each subject, utilizing each fault taxonomy, and found that regardless of classifica-
tion, the null hypothesis could not be rejected for any fault type (p-values greater than 0.05),
meaning no conclusion could be drawn regarding the statistical difference of these sample
populations Further, when performing a Kendall Tau test between a fault type and its inter-
ference, we found scores near 0. For example, when considering Smith92, we compared
all bug ranges from classification 1, with those from classification 2, 3 and 4. In this way,
each classification receives its own group of data.

Across all four taxonomies there is no correlation between fault type and interference.
For our subjects, faults with different types experience the same degree of interference.
For example, looking at Firesmith92, considering type-3 faults, some instances have
large variances with high means, and other instances have small variance with low means.
Additionally, faults with similar degrees of interference spread throughout each fault type.
For example, type-2, -3 and -4 all have faults with low variance and low medians.

Further, there is significant diversity within a fault type in regards to the degree of inter-
ference that is experienced. Looking at Hayes94, fault types 2, 3 and 4 have some low
and tight bars, and some wide bars. This diversity within a fault type demonstrates a lack of
consistency, meaning that there is no “typical” value for a fault type.

956 Empir Software Eng (2015) 20:928–967

We also analyzed fault-type behavior between programs, and again found no correla-
tion to interference. All four of the taxonomies demonstrate that no single fault type has a
representative interference range.

Lastly, a manually inspection was performed for each fault across all six subjects to
identify any qualitative similarities. This manual analysis consistently revealed that fault-
type similarities were a poor indicator of interference similarities. The quantitative results
and our qualitative analysis revealed no patterns among fault types, or consistency within a
fault type.

One meaningful impact of this study is the understanding that identifying faults likely
require investigating more context specific behavior than “fault type”, or that general fault
types (like those used in our study) are potentially insufficient to categorize faults. Indeed,
these results suggest the need for more mature fault taxonomies, or for spectra that allow
for more context sensitive classification.

For RQ7: Our data suggests that fault types have little to no correlation
with FLI. Fault type is not a determining factor in causing interference,
or experiencing interference.

4.8 Results Summary

Due to the multi-faceted nature of the results presented in Section 4, this section presents a
brief overview of the findings grouped by CFL, FLI, and fault type.

CFL Results Fault density only has a significant impact upon CFL effectiveness:
the expense of the prominent fault was statistically likely to degrade,
with an impact on the median of 2 % between a program contain-
ing only a single fault and a program containing as many as 17
faults. Further, regarding the suspiciousness value, at least two faults
were always statistically higher than the suspiciousness of the non-
faulty code. However, although at least one fault was localizable, the
majority of the remaining faults (at higher fault densities) had sus-
piciousness and expense scores too poor to enable reasonable use of
CFL techniques. In other words, even in the presence of multiple
faults, CFL techniques can still perform comparable to its effective-
ness for at least one fault, although which fault will be found is
unknown, and the majority of faults cannot be simultaneously local-
ized. However, our studies showed that typically the non-prominent
(and unlocalizable) faults were often not even executed, and as such
would not have been the cause of witnessed failures, thus being
unlikely to be the target for debugging.

FLI Results FLI is prevalent and has a substantial impact upon the expense of
non-prominent faults. Indeed, there is a positive correlation with
fault density and both FLI frequency and magnitude. At higher fault
densities, 100 % of our multi-fault versions experienced FLI with a
mean approaching 100 % obfuscation. This means that CFL tech-
niques are likely to perform poorly when developers are looking for
arbitrary faults in multi-fault programs, if they were known to exist.

Empir Software Eng (2015) 20:928–967 957

Fault Type Results The fault types examined are not a predictor of either CFL expense or
FLI. These four fault taxonomies displayed no correlation between
fault type and both FLI frequency or FLI magnitude. Addition-
ally, our data exhibited no correlation between fault type and CFL
effectiveness.

5 Threats to Validity

One difficulty in creating external validity for this work pertains to generalization. Our
evaluation measures from one to seventeen faults, thus any generalizations for pro-
grams with more than seventeen faults are only projections. However, because mean line
representing all our subjects in Fig. 2 manifests patterns that are fairly smooth and con-
sistent, it appears unlikely the behavior will drastically change in the presence of more
faults.

An additional concern with generalizability is that our evaluation only contains six sub-
jects. With the large diversity of existing software (in size and complexity), it is difficult
to examine a sufficiently large sample to ensure consistent results for all software. How-
ever, because four of the six programs in our experiments are real-world software, and
more than 72,000 versions were created, executing over 1,600 million test cases, we expect
the results from our study to at least be representative of programs with similar size or
complexity.

One final concern in generalizability is that our evaluation utilizes mutants. The nature of
this study requires more faults than are delivered by SIR, imposing a need for mutation (Do
et al. 2005). Although it is true that mutants are not “real” faults, Ali et al. found that simple,
single-line mutants behave similarly to real faults (Ali et al. 2009). Further, Ali et al. assert
that, “single-mutant-line mutants...behaved very similarly to the real faults...with respect to
Tarantula,” and that their results, “showed no reason to believe that mutants are unsuitable as
candidates for faulty versions for the purpose of studying FL [fault localization] algorithms,”
(Ali et al. 2009). Although only a single study, these findings suggest the suitability of using
mutants for this type of evaluation. Further, a study by Offutt et al. indicates that properly
created single-line mutants can be both “effective and efficient” in their ability to test a
program (Offutt et al. 1996). Thus, to minimize this concern, all of our mutants were made
in accordance with Offutt et al.’ suggestions.

One threat to construct validity is that we measure expense as the percentage of lines
a developer must examine to find the fault. For suitably large programs, 1 % could easily
be 1000 LoC or larger, leading to information overload. However, although 1 % of a large
program is still sizable, if the required search space for a developer to examine is reduced by
99 %, then CFL has successfully reduced potential information overload. This search-space
reduction has the potential to greatly reduce the time spent localizing the fault. Moreover,
this work investigates the impact of fault interactions on fault-localization effectiveness
— and does not target the evaluation of other downstream usability effects. Moreover, a
recent study by Parnin and Orso (2011) found that developers were limited in their ability
to utilize ranked lists of statements for debugging when presented with such lines without
the context of their original positions in source-code files. Such findings are unsurprising
and highlight the need for visualizations or other user interfaces that allow developers to

958 Empir Software Eng (2015) 20:928–967

understand the context of the fault-localization results (such as TARANTULA (Jones et al.
2002)). Nevertheless, the experiments described in this paper are designed to study the ways
in which multiple faults can interact to affect spectra-based fault-localization effectiveness,
outside the scope of user interfaces or developer behavior, and hence, such issues are out
of scope. Regardless, rigorous experimentation that specifically target such usability issues
remain an issue for future study.

6 Conclusions

This paper presents an experiment that examines how fault quantity affects CFL effec-
tiveness, fault-localization interference, and whether fault-types are determining factors in
either a CFL effectiveness, or FLI values.

This work provides evidence that is contrary to a commonly held belief that CFL tech-
niques cannot perform effectively in the presence of multiple faults. On one hand, beliefs
and intuitions of faults creating “noise” or interference that inhibits the effectiveness of CFL
are well founded— this interference exists and is prevalent. On the other hand, this interfer-
ence has limited impact upon the localizability of at least one, prominent fault. Our results
demonstrate that CFL techniques may continue to be effective in the presence of multiple
faults in spite of interference. Unless the goal is the simultaneous debugging of multiple
faults, or the localization of an arbitrary fault, CFL tools can still be expected to perform
well, regardless of fault quantity, with only a small loss in effectiveness.

This work formally defines fault-localization interference, gives examples of it in real-
world software, and provides data that suggests it to be a relevant concern for CFL. This
study found a positive correlation between fault density and FLI frequency, meaning that
as fault density increases the probability that an obscuring fault is active increases until
it is nearly inevitable. Additionally, our results show a positive correlation between the
magnitude of interference observed for a fault and the fault quantity.

Two investigations into how the types of the faults affects their localizability in multi-
fault programs and their interference among those faults were performed. Our data showed
no significant correlation or connection— the fault type appears independent of localizabil-
ity and interference. Our data instead suggests that the determining factors for localizability
and interference may be more execution-context-specific than fault-type alone (e.g., fault-
execution order, data-flow relationships, value sensitivity), which suggests open areas for
future study.

Acknowledgments This material is based upon work supported by the National Science Foundation,
through Award CCF-1116943 and through Graduate Research Fellowship under Grant No. DGE-0808392.

Appendix A: Fault-Type to Number Index

Smith92

1. Inter-routine conceptual
2. Inter-routine actual
3. Intra-routine conceptual
4. Intra-routine actual

Empir Software Eng (2015) 20:928–967 959

Firesmith92

1. Incorrect visibility
2. Missing component
3. Inconsistent component
4. Incorrect allocation/deallocation of resources
5. Does not meet requirements

Hayes94

1. Abstraction
2. Encapsulation
3. Modularity
4. Hierarchy

Hayes11

1. Data Declaration
2. Data Initialization
3. Data representation
4. Data accessing
5. Incorrect equation
6. Wrong manipulation
7. Incorrect/missing processing
8. Unnecessary processing
9. Rampaging go to

10. Incorrect labels
11. Dead-end code
12. Duplicate logic
13. Unachievable path
14. Incorrect initial value
15. Incorrect terminal value
16. Incorrect control value processing
17. Incorrect exception exit processing
18. Illogical conditions or impossible cases
19. Incorrect module interaction
20. Incorrect module-external data structure
21. Incorrect input parameters
22. Large response time
23. Lack of naturalness
24. Inconsistency
25. Redundancy
26. Complexity
27. Lack of flexibility
28. Non-supportiveness
29. Unpredictable flows
30. Visual stimulation
31. Platform
32. Wrong file included
33. Incorrect environment variable setting
34. Documentation

960 Empir Software Eng (2015) 20:928–967

A.1 Expense for Prominent Fault

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity of Faults

0

20

40

60

80

100

R
an

ge
 o

f E
xp

en
se

Flex

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity of Faults

0

20

40

60

80

100

R
an

ge
 o

f E
xp

en
se

Gzip

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity of Faults

0

20

40

60

80

100

R
an

ge
 o

f E
xp

en
se

Replace

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity of Faults

0

20

40

60

80

100

R
an

ge
 o

f E
xp

en
se

Schedule

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity of Faults

0

20

40

60

80

100

R
an

ge
 o

f E
xp

en
se

Sed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity of Faults

0

20

40

60

80

100

R
an

ge
 o

f E
xp

en
se

Space

Fig. 11 The range of expense that was observed for the most localizable fault at each discrete quantity of
faults

Empir Software Eng (2015) 20:928–967 961

A.2 Median Expense for All Faults

0 2 4 6 8 10 12 14 16 18
Quantity of Faults

0

20

40

60

80

100

E
xp

en
se

Flex

0 2 4 6 8 10 12 14 16 18
Quantity of Faults

0

20

40

60

80

100

E
xp

en
se

Gzip

0 2 4 6 8 10 12 14 16 18
Quantity of Faults

0

20

40

60

80

100

E
xp

en
se

Replace

0 2 4 6 8 10 12 14 16 18
Quantity of Faults

0

20

40

60

80

100

E
xp

en
se

Schedule

0 2 4 6 8 10 12 14 16 18
Quantity of Faults

0

20

40

60

80

100

E
xp

en
se

Sed

0 2 4 6 8 10 12 14 16 18
Quantity of Faults

0

20

40

60

80

100

E
xp

en
se

Space

Fig. 12 The aggregated expense for each fault, evaluated with a ranked list, in all our programs. The lowest
plot line represents the fault with the least expense (i.e., the first localized), and each higher line represents
the next found faults

962 Empir Software Eng (2015) 20:928–967

A.3 Median Suspiciousness for All Faults

0 2 4 6 8 10 12 14 16 18

Quantity of Faults

0

20

40

60

80

100

S
us

pi
ci

ou
sn

es
s

Flex

0 2 4 6 8 10 12 14 16 18

Quantity of Faults

0

20

40

60

80

100

S
us

pi
ci

ou
sn

es
s

Gzip

0 2 4 6 8 10 12 14 16 18

Quantity of Faults

0

20

40

60

80

100

S
us

pi
ci

ou
sn

es
s

Replace

0 2 4 6 8 10 12 14 16 18

Quantity of Faults

0

20

40

60

80

100

S
us

pi
ci

ou
sn

es
s

Schedule

0 2 4 6 8 10 12 14 16 18

Quantity of Faults

0

20

40

60

80

100

S
us

pi
ci

ou
sn

es
s

Sed

0 2 4 6 8 10 12 14 16 18

Quantity of Faults

0

20

40

60

80

100

S
us

pi
ci

ou
sn

es
s

Space

Fig. 13 Mean suspiciousness values for each fault, evaluated with a ranked list, across all our programs. The
dotted line represents the mean suspiciousness of all instructions in the program

Empir Software Eng (2015) 20:928–967 963

A.4 Expense Distribution per Fault Type

0

20

40

60

80

100

R
an

ge
 o

f E
xp

en
se

Flex

16 1532 716 2 4 44 215 161627 715 15 2
3 43 3 44 33 3 33 33 3 3 33 3 4 3

2 3 334 3 2323 34 33 3 3334 3
3 4 444 4 3434 44 41 4 4444 4Smith92

Firesmith92
Hayes94
Hayes11

0

20

40

60

80

100

R
an

ge
 o

f E
xp

en
se

Flex

4
15

3
3

4
3

16

4 3
4

44

4

16

2
44

3
4

3

16 4

4

4

4

4
16

3

4

2

2

2
43

16

3 3
1

4
7 46

2
2

4
5 16

3

7

3 3
43

33

16
3 44

44 2
3 3

16

4 4

16 164
2 2

3
4

3
42

3 4

16

Smith92

Firesmith92
Hayes94
Hayes11

Gzip

0

20

40

60

80

100

R
an

ge
 o

f E
xp

en
se

3
3

1

4
3

16
4

4

16
4

4
34

3
5

4
4
4

3
2

2

7
3

3
3
4

16

4

3

4

2

4

7

3
2
3

4

4

3
43

7

2
3

2
3

3
7

4
15

3
3

3
3

7

2 3
4

44

4

5

3
44

3
4

4

7 7

4

3

3

3
4

4

3

3

4

7
33

17

3 3
4

3
16 67

3
2

4
16 16

4

3

2 3
33

23

7
3 34

44 3
3 2

6

3 4

16 28
4 3

2
4

3
33

3 2

1

Smith92
Firesmith92

Hayes94
Hayes11

Replace

0

20

40

60

80

100

R
an

ge
 o

f E
xp

en
se

3
14

3
4

3
4

16

4 2
2

43

2

14

4
33

4
3

2

5 2

3

3

4

3
2

3

2

3

4

4
44

16

2 4
2

3
16 216

3
3

3
7 7

2

2

4 2
33

32

5
4 33

33 2
4 4

2

2 2

7 72
4 4

3
4

2
44

3 3

7

Smith92

Firesmith92
Hayes94
Hayes11

Schedule

0

20

40

60

80

100

R
an

ge
 o

f E
xp

en
se

4
4

3
2

2
2

7

3 4
3

42

1

2

3
22

3
2

3

2 8

1

4

4

3
8

3

2

2

2

6
33

17

3 3
4

3
4 1617

4
4

3
2 17

4

2

4 4
34

24

16
3 44

44 1
3 3

16

4 4

16 27
3 3

4
4

3
32

4 3

8

Smith92

Firesmith92
Hayes94
Hayes11

Sed

0

20

40

60

80

100

R
an

ge
 o

f E
xp

en
se

3
2

7

3

4
3

8

1
3

16
4

4

7
3

3
23

4
16

4
3
4

3
5

3

16
4

4
3
3
3

4

3

2

2

4

3

4
3
3

3

6

2
33

2

3
4

3
4

4
16

2
5

3
4

2
3

5

3 3
2

23

4

5

3
42

2
3

3

3 5

2

3

2

3
3

3

4

2

2

5
22

7

3 2
3

2
3 78

3
3

4
7 16

2

5

3 3
22

32

3
3 33

23 2
3 3

7

4 3

5 52
2 2

3
2

2
22

3 3

2

Smith92
Firesmith92

Hayes94
Hayes11

Space

Fig. 14 The range of expense that was observed for every fault with each of the four taxonomies used, for
all our programs

964 Empir Software Eng (2015) 20:928–967

A.5 Fault Interference Distribution per Fault Type

0

20

40

60

80

100

In
te

rf
er

en
ce

Flex

16 1532 716 2 4 44 215 161627 715 15 2
3 43 3 44 33 3 33 33 3 3 33 3 4 3

2 3 334 3 2323 34 33 3 3334 3
3 4 444 4 3434 44 41 4 4444 4Smith92

Firesmith92
Hayes94
Hayes11

0

20

40

60

80

100

In
te

rf
er

en
ce

4
15

3
3

4
3

16

4 3
4

44

4

16

2
44

3
4

3

16 4

4

4

4

4
16

3

4

2

2

2
43

16

3 3
1

4
7 46

2
2

4
5 16

3

7

3 3
43

33

16
3 44

44 2
3 3

16

4 4

16 164
2 2

3
4

3
42

3 4

16

Smith92

Firesmith92
Hayes94
Hayes11

Gzip

0

20

40

60

80

100

In
te

rf
er

en
ce

3
3

1

4
3

16
4

4

16
4

4
34

3
5

4
4
4

3
2

2

7
3

3
3
4

16

4

3

4

2

4

7

3
2
3

4

4

3
43

7

2
3

2
3

3
7

4
15

3
3

3
3

7

2 3
4

44

4

5

3
44

3
4

4

7 7

4

3

3

3
4

4

3

3

4

7
33

17

3 3
4

3
16 67

3
2

4
16 16

4

3

2 3
33

23

7
3 34

44 3
3 2

6

3 4

16 28
4 3

2
4

3
33

3 2

1

Smith92
Firesmith92

Hayes94
Hayes11

Replace

0

20

40

60

80

100

In
te

rf
er

en
ce

3
14

3
4

3
4

16

4 2
2

43

2

14

4
33

4
3

2

5 2

3

3

4

3
2

3

2

3

4

4
44

16

2 4
2

3
16 216

3
3

3
7 7

2

2

4 2
33

32

5
4 33

33 2
4 4

2

2 2

7 72
4 4

3
4

2
44

3 3

7

Smith92

Firesmith92
Hayes94
Hayes11

Schedule

0

20

40

60

80

100

In
te

rf
er

en
ce

4
4

3
2

2
2

7

3 4
3

42

1

2

3
22

3
2

3

2 8

1

4

4

3
8

3

2

2

2

6
33

17

3 3
4

3
4 1617

4
4

3
2 17

4

2

4 4
34

24

16
3 44

44 1
3 3

16

4 4

16 27
3 3

4
4

3
32

4 3

8

Smith92

Firesmith92
Hayes94
Hayes11

Sed

0

20

40

60

80

100

In
te

rf
er

en
ce

3
2

7

3

4
3

8

1
3

16
4

4

7
3

3
23

4
16

4
3
4

3
5

3

16
4

4
3
3
3

4

3

2

2

4

3

4
3
3

3

6

2
33

2

3
4

3
4

4
16

2
5

3
4

2
3

5

3 3
2

23

4

5

3
42

2
3

3

3 5

2

3

2

3
3

3

4

2

2

5
22

7

3 2
3

2
3 78

3
3

4
7 16

2

5

3 3
22

32

3
3 33

23 2
3 3

7

4 3

5 52
2 2

3
2

2
22

3 3

2

Smith92
Firesmith92

Hayes94
Hayes11

Space

Fig. 15 The range of interference that was observed for every fault for each of the four taxonomies used

Empir Software Eng (2015) 20:928–967 965

References

Abreu R, Zoeteweij P, Van Gemund AJ (2007) On the accuracy of spectrum-based fault localization.
In: Testing: academic and industrial conference practice and research techniques-MUTATION, 2007.
TAICPART-MUTATION 2007, pp 89–98. IEEE

Ali S, Andrews JH, Dhandapani T, Wang W (2009) Evaluating the accuracy of fault localization techniques.
In: Proceedings of the 2009 IEEE/ACM international conference on automated software engineering, pp
76–87. IEEE Computer Society

Arumuga Nainar P, Liblit B (2010) Adaptive bug isolation. In: Proceedings of the 32nd ACM/IEEE
international conference on software engineering, vol 1, pp 255–264. ACM

Clark S, Cobb J, Kapfhammer GM, Jones JA, Harrold MJ (2011) Localizing sql faults in database
applications. In: Proceedings of the 26th IEEE/ACM international conference on automated software
engineering (ASE), pp 213–222

Cleve H, Zeller A (2005) Locating causes of program failures. In: Proceedings of the 27th international
conference on software engineering, pp 342–351. ACM

Debroy V, Wong WE (2009) Insights on fault interference for programs with multiple bugs. In: 20th
international symposium on software reliability engineering, 2009. ISSRE’09, pp 165–174. IEEE

Denmat T, Ducassé M, Ridoux O (2005) Data mining and cross-checking of execution traces: a re-
interpretation of jones, harrold and stasko test information. Tech. rep.

Dickinson W, Leon D, Podgurski A (2001) Finding failures by cluster analysis of execution profiles. In:
Proceedings of the international conference on software engineering. http://portal.acm.org/citation.cfm?
id=.

Dickinson W, Leon D, Podgurski A (2001) Pursuing failure: the distribution of program failures in a profile
space. In: Proceedings of the international symposium on foundations of software engineering . http://
doi.acm.org/10.1145/503209.503243

DiGiuseppe N, Jones JA (2011a) Fault interaction and its repercussions. In: 2011 27th IEEE international
conference on software maintenance (ICSM), pp 3–12. IEEE

DiGiuseppe N, Jones JA (2011b) On the influence of multiple faults on coverage-based fault localiza-
tion. In: Proceedings of the 2011 international symposium on software testing and analysis, pp 210–
220. ACM

DiGiuseppe N, Jones JA (2012a) Concept-based failure clustering. In: Proceedings of the ACM SIGSOFT
20th international symposium on the foundations of software engineering, p 29. ACM

DiGiuseppe N, Jones JA (2012b) Software behavior and failure clustering: an empirical study of fault causal-
ity. In: 2012 IEEE fifth international conference on software testing, verification and validation (ICST),
pp 191–200. IEEE

Do H, Elbaum S, Rothermel G (2005) Supporting controlled experimentation with testing techniques: an
infrastructure and its potential impact. Empir Softw Eng 10(4):405–435

Hayes JH (1994) Testing of object-oriented programming systems (oops): a fault-based approach. In: Object-
oriented methodologies and systems, pp 205–220. Springer

Hayes JH, Chemannoor IR, Holbrook EA (2011) Improved code defect detection with fault links. Softw Test
Verification and Reliab 21(4):299–325

Jones JA (2008) Semi-automatic fault localization. Georgia Institute of Technology, Ph.D. thesis
Jones JA, Bowring JF, Harrold MJ (2007) Debugging in parallel. In: Proceedings of the 2007 international

symposium on software testing and analysis, pp 16–26. ACM
Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula automatic fault-localization technique.

In: Proceedings of the 20th IEEE/ACM international conference on automated software engineering, pp
273–282. ACM

Jones JA, Harrold MJ, Stasko J (2002) Visualization of test information to assist fault localization. In:
Proceedings of the 24th international conference on Software engineering, pp 467–477. ACM

Kung DC, Gao J, Kung CH (1998) Testing object-oriented software. Tech. rep.
Liblit B, Naik M, Zheng AX, Aiken A, Jordan MI (2005) Scalable statistical bug isolation, pp 15–26. ACM
Liu C, Han J (2006) Failure proximity: a fault localization-based approach. In: Proceedings of the 14th ACM

SIGSOFT international symposium on Foundations of software engineering, pp 46–56. ACM
Liu C, Yan X, Fei L, Han J, Midkiff SP (2005) Sober: statistical model-based bug localization, pp 286–295.

ACM

http://portal.acm.org/citation.cfm?id=.
http://portal.acm.org/citation.cfm?id=.
http://doi.acm.org/10.1145/503209.503243
http://doi.acm.org/10.1145/503209.503243

966 Empir Software Eng (2015) 20:928–967

Offutt AJ, Lee A, Rothermel G, Untch RH, Zapf C (1996) An experimental determination of sufficient
mutant operators. ACM Trans Softw Eng Methodol (TOSEM) 5(2):99–118

Parnin C, Orso A (2011) Are automated debugging techniques actually helping programmers? In: Proceed-
ings of the 2011 international symposium on software testing and analysis, pp 199–209. ACM

Podgurski A, Leon D, Francis P, Masri W, Minch M, Sun J, Wang B (2003) Automated support for clas-
sifying software failure reports. In: Proceedings 25th international conference on software engineering,
2003, pp 465–475. IEEE

Renieres M, Reiss SP (2003) Fault localization with nearest neighbor queries. In: Proceedings. 18th IEEE
international conference on automated software engineering, 2003, pp 30–39. IEEE

Santelices R, Jones JA, Yu Y, Harrold MJ (2009) Lightweight fault-localization using multiple coverage
types. In: Proceedings of the 31st international conference on software engineering, ICSE ’09, pp 56–66

Smith M, Robson D (1992) A framework for testing object-oriented programs. J Object-Oriented Program
5(3):45–53

Srivastav M, Singh Y, Gupta C, Chauhan DS (2010) Complexity estimation approach for debugging in
parallel. In: 2010 2nd international conference on computer research and development, pp 223–227.
IEEE

Vessey I (1985) Expertise in debugging computer programs: a process analysis. Int J Man-Machine Stud
23(5):459–494

Voas J (1992) Pie: a dynamic failure-based technique. IEEE transactions on software engineering 18(8):717–
727. doi:10.1109/32.153381

Wong WE, Debroy V (2009) A survey of software fault localization. University of Texas at Dallas. Tech.
Rep. UTDCS-45-09

Yu Y, Jones JA, Harrold MJ (2008) An empirical study of the effects of test-suite reduction on fault local-
ization. In: Proceedings of the 30th international conference on software engineering, pp 201–210.
ACM

Zeller A (2002) Isolating cause-effect chains from computer programs. In: Proceedings of the 10th ACM
SIGSOFT symposium on foundations of software engineering, pp 1–10. ACM

Zeller A (2009) In: why programs fail: a guide to systematic debugging. Morgan Kaufmann
Zheng AX, JordanMI, Liblit B, NaikM, Aiken A (2006) Statistical debugging: simultaneous identification of

multiple bugs. In: Proceedings of the 23rd international conference on machine learning, pp 1105–1112.
ACM

Nicholas DiGiuseppe He is a Ph.D. student studying software engineering in the Department of Informatics
at the University of California, Irvine. He currently holds a M.S in Software Engineering and a B.S. in
Information and Computer Science from the same school. Nicholas really like to solve problems. He craves
that moment when you exclaim “EUREKA!” and the world (or some small subset of it) makes just a little
more sense. He prefers spending my time playing with his daughter and enjoying the company of his wife.
They are his motivation each day. However, in his spare time he enjoys playing games (both of the video and
board variety), practicing Iaido (Japanese Sword techniques), and reading RPG rule books.

http://dx.doi.org/10.1109/32.153381

Empir Software Eng (2015) 20:928–967 967

James A. Jones Professor Jones is perhaps best known for the creation of the influential Tarantula technique
that spawned a new field of “spectra-based” fault localization. Jones’s research contributions span the dura-
tion of his undergrad, professional, graduate, and professorial career. Throughout this time, Jones created
tools and techniques for software analysis (static and dynamic), techniques to help manage test suites for
safety-critical software systems, techniques to support several aspects of software debugging and comprehen-
sion, and has studied the ways that software behaves in order to better model and predict it. Jones received the
Ph.D. in Computer Science at Georgia Tech, advised by Professor Mary Jean Harrold. At UC Irvine, Jones
leads the Spider Lab and advises Ph.D., Masters, and undergraduate students to study and improve software
development and maintenance processes.

	Empir Software Eng
	Abstract
	Introduction
	Background and Motivation
	Previous Work
	Fault Taxonomies
	Coverage-based Fault Localization
	Assumptions of CFL for Multiple Faults
	Example
	Fault-localization Interference
	Motivation for Further Study

	Experiment
	Variables, Measures and Definitions
	Objects for Analysis
	Experimental Setup
	Formal Analysis Methodology

	Experimental Results
	Research Question 1: What is the impact of fault quantity on CFL expense?
	Prominent Fault's Expense
	Range of Expense for the Prominent Fault
	All Faults' Expense

	Research Question 2: What is the impact of fault quantity on CFL suspiciousnessscores?
	Non-Fault and Fault Code Suspiciousness

	Research Question 3: Is fault type a predictor of CFL effectiveness?
	Research Question 4: What are the practical ramifications of fault-localization interference on CFL?
	Research Question 5: How often does fault-localization interference occur?
	Research Question 6: What is the typical magnitude of fault-localization interference?
	Research Question 7: Does fault type affect the likelihood of causing interferenceor being subject to interference?
	Results Summary

	Threats to Validity
	Conclusions
	Acknowledgments
	Appendix A: Fault-Type to Number Index
	A.1 Expense for Prominent Fault
	A.2 Median Expense for All Faults
	A.3 Median Suspiciousness for All Faults
	A.4 Expense Distribution per Fault Type
	A.5 Fault Interference Distribution per Fault Type
	References

