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Abstract The selection of a set of requirements between all the requirements
previously defined by customers is an important process, repeated at the beginning of
each development step when an incremental or agile software development approach
is adopted. The set of selected requirements will be developed during the actual
iteration. This selection problem can be reformulated as a search problem, allowing
its treatment with metaheuristic optimization techniques. This paper studies how
to apply Ant Colony Optimization algorithms to select requirements. First, we
describe this problem formally extending an earlier version of the problem, and
introduce a method based on Ant Colony System to find a variety of efficient
solutions. The performance achieved by the Ant Colony System is compared with
that of Greedy RandomizedAdaptive Search Procedure and Non-dominated Sorting
Genetic Algorithm, by means of computational experiments carried out on two
instances of the problem constructed from data provided by the experts.
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1 Introduction

Software development organizations fail many times to deliver its products within
schedule and budget. Statistical studies, and CHAOS Reports (Johnson 2003) pub-
lished since 1994, reveal that, frequently, tasks related to requirements lead software
project to the disaster. As Kotonya and Sommerville (1998) suggest, one of the major
problems we face when developing large and complex software systems is the one
related with requirements. The concept of requirement, in its broadest sense, must
be understood as a logical unit of behaviour that is specified by including functional
and quality aspects; other authors as Ruhe and Saliu (2005) use instead the concept
of feature. Stakeholders propose some desired functionalities that softwaremanagers
must filter in order to define the set of requirements or features to include in the final
software product.

Usually, during the lifetime of a software product, we are faced with the problem
of selecting a subset of requirements from the whole set of candidate requirements
(e.g. when a new release is being planned). Enhancements to include into the next
software release cannot be randomly selected since there are many factors involved.
Within this scenario, customers demand their own software enhancements, but all
of them cannot be included in the software product, mainly due to the existence
limited resources (e.g. availability of man-month in a given software project). In
most cases, it is not feasible to develop all the new functionalities suggested.
Hence each new feature competes against each other to be included in the next
release.

This task of selecting a set of requirements, which until now only appeared when
defining new versions of widely distributed software products, becomes important
within the incremental approaches of software development, and specially in the
agile approaches. Agile methods promote a disciplined project management process
that encourages frequent inspection and adaption. These software development
methodologies are based on iterative development, advocating for frequent “re-
leases” in short development cycles, called timeboxes, in order to improve productiv-
ity and introduce checkpoints. Each iteration works through a full cycle, generating
a software release that has to be shown to stakeholders. These approaches focus on
the quick adaptation of software to the changing realities.

Within this prospective, the challenge of Software Engineering consists on
defining specific techniques or methods that improve the way requirements are
selected. The problem of choosing a set of requirements fulfilling certain criteria,
such as minimal cost or maximal client satisfaction, is a good candidate for the
application of metaheuristics. Specifically, this paper shows how Ant Colony Opti-
mization (ACO) systems can be applied to problems of requirements selection. Our
solution offers to developers and stakeholders a set of possibilities satisfying several
objectives, i.e. the Pareto front. The idea is to help people to take a decision about
which set of requirements has to be included in the next release during the software
development applying both, agile or classical software development approaches. The
proposed ACO system is evaluated by means of a compared analysis with Non-
dominated Sorting Genetic Algorithm (NSGA-II) (Deb 2001; Deb et al. 2002) and
Greedy Randomized Adaptive Search Procedure (GRASP) (Feo and Resende 1989;
Pitsoulis andResende 2003; Resende andRibeiro 2003); both adapted to the problem
of requirements selection.
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The rest of the paper is organized in six sections. Section 2 summarizes the
basic Requirements Engineering concepts, focusing in requirement selection process,
together with the description and definition of the problem of selection of re-
quirements to be included in the next software release, known as Next Release
Problem (NRP) (Bagnall et al. 2001), and related works. Section 3 describes the
metaheuristic technique applied in this work, Ant Colony Optimization. Specifically,
we focus on its application in multi-objective optimization problems, on the study of
how multi-objective ACO can be used to find a set of non-dominated solutions to
NRP. In Section 4, the experimental evaluation is carried out by comparing ACO
with GRASP and NSGA-II approaches. The analysis of the results is presented in
Section 5. Section 6 considers threats to the validity of the findings in the study.
Finally, in Section 7 we give some conclusions and the future works that can extend
this study.

2 Requirements Selection

Requirements related tasks are inherently difficult Software Engineering activities.
Descriptions of requirements are supposedly written in terms of the domain, describ-
ing how this environment is going to be affected by the new software product. In
contrast, other software processes and artifacts are written in terms of the internal
software entities and properties (Cheng and Atlee 2007).

The problem of selecting the subset of requirements among a whole set of
candidate requirements proposed by a group of customers is not a straightforward
problem, since there are many factors involved. Customers, seeking their own inter-
est, demand the set of enhancements they consider important, but not all customers’
needs can be satisfied. On the one hand, each requirement means a cost in effort
terms that the company must assume, but company resources are limited. On the
other hand, neither all the customers are equally important for the company, nor
the requirements are equally important for the customers. Market factors can also
drive this selection process; the company may be interested on satisfying the newest
customers’ needs, or they may consider desirable to guarantee that every customer
sees fulfilled at least one of their proposed requirements. Also, requirements show
interactions that impose a certain development order or either conflicts between
them, limiting the alternatives to be chosen.

During the software development process many interaction types between two or
more requirements can be identified. Karlsson et al. (1997) were the first in proposing
a list of interaction types. Later, Carlshamre et al. (2001) propose a set of interaction
types as result of an in-depth study of interactions in distinct sets of requirements
coming from different software development projects. Although interaction types
are semantically different, in practice they can be grouped into:

– Implication or precedence. ri ⇒ r j. A requirement ri cannot be selected if a
requirement r j has not been implemented yet.

– Combination or coupling. ri � r j. A requirement ri cannot be included separately
from a requirement r j.

– Exclusion. ri ⊕ r j. A requirement ri can not be included together with a
requirement r j.
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– Revenue-based. The development of a requirement ri implies that some others
requirements will increase or decrease their value.

– Cost-based. The development of a requirement ri implies that some others
requirements will increase or decrease their implementation cost.

These interactions must be considered as constraints in the requirements selec-
tion problem. So, two main goals are usually considered: maximize the customers
satisfaction and minimize the required software development effort satisfying the
given constraints. Therefore, optimization techniques can be used to find optimal
or near optimal solutions in a reasonable amount of time. Our aim is to define the
requirements selection problem as a science (Ruhe and Saliu 2005), formalizing the
problem and applying computational algorithms to generate good solutions.

2.1 Previous and Related Works

The Search-Based Software Engineering (SBSE) area is the research field which
proposes the application of search-based optimization algorithms to tackle problems
in Software Engineering (Harman and Jones 2001; Harman 2007). In this section we
provide a comprehensive review of different approaches that can be found in the
literature to tackle with the requirements selection problem (an earlier review can
be found in del Sagrado et al. 2010b).

As a problem in which is necessary to evaluate multiple conflicting objectives,
its solution requires to find the best compromise between the different objectives.
In order to achieve this, we can proceed in two ways. The first approach consists
in transforming the multi-objective problem into a single objective problem. To
do that, we need to combine the different objectives into a single one by means
of an aggregation function (e.g. a weighted sum or product). This is the approach
chosen by Bagnall et al. (2001), they formulate the problem of selecting a subset of
requirements (i.e. Next Release Problem-NRP) having as goal meet the customer’s
needs, minimizing development effort and maximizing customers satisfaction and
apply hill climbing, greedy algorithms and simulated annealing. Later, Baker et al.
(2006) demonstrate that these metaheuristics techniques can be applied to a real-
world NRP out-performing expert judgment. Greer and Ruhe (2004) study the
generation of feasible assignments of requirements to increments taking into account
different stakeholders’ perspectives and resources constraints. The optimization
method they used is iterative and essentially based on a genetic algorithm.

With respect to the application of ACO to tackle the single-objective version
of NRP, the first approach can be found in the works of del Sagrado and del
Águila (2009) and del Sagrado et al. (2010a) where an Ant Colony System (ACS)
is proposed. Jiang et al. (2010) incorporate into ACO a local search for improving
the quality of solution found. Nonetheless, all of these approaches do not take
into account the existence of interactions between requirements. The problem of
requirements selection, including interactions between requirements, is introduced
in the works of del Sagrado et al. (2011) and de Souza et al. (2011) by adapting the
ACS algorithm.

The second approach to multi-objective optimization builds a set with all the
solutions found that are not dominated by any other (this is known as the set of
efficient solutions or Pareto-optimal set). The decision maker will select a solution
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from this set according to personal criteria. The works of Saliu and Ruhe (2007),
Zhang et al. (2007), Finkelstein et al. (2008, 2009) and Durillo et al. (2009), study the
NRP problem from the multi-objective point of view, either as an interplay between
requirements and implementation constraints (Saliu and Ruhe 2007) or considering
multiple objectives as cost-value (Zhang et al. 2007) or different measures of fairness
(Finkelstein et al. 2008, 2009), or applying several algorithms based on genetic
inspiration as NSGA-II, MOCell and PAES (Durillo et al. 2009, 2011).

We introduce a new multi-objective search-based approach based on ACO to the
problem of selecting requirements to be included in the next software release, in
the presence of several stakeholders (with their own importance perception of re-
quirements) and different types of interactions between requirements. The proposed
approach automates the search for optimal or near-optimal sets of requirements,
within a given effort bound, that balance stakeholders’ priorities while keeping
requirements interactions. It is worth to note that, to date, no ACO approach
has been applied to multi-objective NRP and that having more than one valid
solution, as in the multi-objective approach, constitute a valuable aid for experts who
must decide what is the set of requirements that has to be considered in the next
software release. Requirements managers analyze these alternatives and their data
(e.g. number of customer covered, additional information about risky requirements),
before selecting a solution (i.e. the set of requirements to be developed) according
to business strategies. Thus, it is considerably helpful, for any software developer,
to have these techniques available either embedded in a CASE (Computer-Aided
Software Engineering) tool (del Sagrado et al. 2012), or within a decision support
tool for release planning (Carlshamre 2002; Momoh and Ruhe 2006).

2.2 NRP Formulation

Let R = {r1, r2, . . . , rn} be the set of requirements that are still to be implemented.
These requirements represent enhancements to the current system that are suggested
by a set ofm customers and are candidates to be included in the next software release.
Customers are not equally important. So, each customer i will have an associated
weight wi, which measures its importance. Let W = {w1, w2, . . . , wm} be the set of
customers’ weights.

Each requirement r j in R has an associated development cost e j, which represents
the effort needed for its development. Let E = {e1, e2, . . . , en} be the set of require-
ments efforts. On many occasions, the same requirement is suggested by several
customers. However, its importance or priority may be different for each customer.
Thus, the importance that a requirement r j has for customer i is given by a value vij.
The higher the vij value, the higher is the priority of the requirement r j for customer
i. A zero value for vij represents that customer i has not suggested requirement r j.
All these importance values vij can be arranged under the form of anm × n matrix.

The global satisfaction, s j, or the added value given by the inclusion of a require-
ment r j in the next software release, is measured as a weighted sum of its importance
values for all the customers and can be formalized as:

s j =
m∑

i=1

wi ∗ vij (1)
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The set of requirements satisfaction computed in this way is denoted as S =
{s1, s2, . . . , sn}. Requirements interactions can be divided into two groups. The first
consists of the functional interactions: implication, combination and exclusion. The
second one includes those interactions that imply changes in the amount of resources
needed or the benefit related to each requirement: revenue-based and cost-based.
Functional interactions can be explicitly represented as a graph G = (R, I, J,X)

where:

– R (the set of requirements) is the set of nodes
– I = {(ri, r j) | ri ⇒ r j} each pair (ri, r j) ∈ I is an implication interaction and will be

represented as a directed link ri → r j
– J = {(ri, r j) | ri � r j} each pair (ri, r j) ∈ J is a combination interaction and will be

represented as a double directed link ri ↔ r j
– X = {(ri, r j) | ri ⊕ r j} each pair (ri, r j) ∈ X is an exclusion interaction and will be

represented as a crossed undirected link

For example, consider the set of requirementsR = {r1, r2, . . . , r10} and the follow-
ing functional dependencies I={(r1,r3), (r1,r6), (r2,r4),(r2,r5),(r4,r6),(r5,r7),(r7,r8),
(r7, r9), (r8, r10), (r9, r10)}, J = {(r3, r4)}, X = {(r4, r8)}. We can represent all of these
sets as the graph showed in Fig. 1.

The second group of interactions represents changes in satisfaction and effort
values of individual requirements. These two interaction types can be modelled as
a pair of n × n symmetric matrices:

– �Swhere each element�sij of this matrix represents the increment or decrement
of s j when ri and r j are implemented in the same release,

– �E where each element �eij of this matrix represents the increment or decre-
ment of e j when ri and r j are implemented simultaneously,

in which the elements in the diagonal are equal to zero.

Fig. 1 Functional interactions
represented as a graph
G = (R, I, J,X)

r1 r2

r5

r7r6

r8 r9

r10

r3 r4
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In order to define the next software release, we have to select a subset of re-
quirements R̂ included inR, which maximize satisfaction and minimize development
effort. The satisfaction and development effort of the next release can be obtained,
respectively, as:

sat(R̂) =
∑

j∈R̂
s j (2)

eff(R̂) =
∑

j∈R̂
e j (3)

where j is an abbreviation for requirement r j. For a given release there is a cost
bound B, that cannot be overrun. Under this set of circumstances the requirements
selection problem for the next software release can be formulated as an optimization
problem:

maximize sat(R̂)

minimize eff(R̂) (4)

subject to the restriction
∑

j∈R̂ e j ≤ B due to the particular effort bound B applied,

where R̂ also fulfills functional requirements interactions. Thus, two conflicting
objectives, such as maximizing customer satisfaction and minimizing software deve-
lopment effort, are optimized at the same time within a given software development
effort bound. The solution to this problem consists of a set of solutions known as
Pareto-optimal set (Coello et al. 2007; Deb 2001; Srinivas and Deb 1994).

2.3 Basic Instance of NRP

Bagnall et al. (2001) defines a basic NRP as an NRP where no requirement has
any prerequisites. So, following Bagnall formulation, any NRP can be transformed
into a basic NRP simply by grouping together each requirement and its ancestors
in the graph of precedence interactions (i.e. requirements for which there is a path
in the graph ending in the requirement that is being considered). However, there
are also other types of interactions besides implication (i.e. combination, exclusion,
revenue-based and cost-based interactions) that also have to be taken into account
when solving an NRP. Therefore, we are going to extend the work of Bagnall et al.
(2001), defining a process for transforming an NRP into a basicNRP, before applying
metaheuristics optimization techniques.

The process to transform an NRP into a basic NRP is made on three steps:

1. Each pair (ri, r j) ∈ J is transformed into a new requirement ri+ j, with si+ j = si +
s j + �sij and ei+ j = ei + e j + �eij. The ancestors set of ri+ j is defined as the union
of the ancestors of ri and r j, anc(ri+ j) = anc(ri) + anc(r j). The same applies to
descendant set (i.e. requirements for which there is a path in the graph starting
in the requirement that is being considered) of ri+ j, that is, des(ri+ j) = des(ri) +
des(r j). In this way, the set I of implication interactions is modified. Finally, all
occurences of ri and r j in the set of X of exclusion interactions are replaced by
ri+ j. This produces a new functional interactions graphG′ = (R, I, J,X) in which
J = ∅.
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2. A pair (ri, r j) ∈ X requires the alternative deletion of each requirement together
with its descendants from G′, resulting two new functional interactions graphs
G′

i and G′
j. This process is repeated from these new graphs until there are no

exclusion interactions.
3. For each interactions graph G′

i obtained in step 2, a basic NRP is built by
grouping together implication interactions (i.e. each requirement and its an-
cestors in the graph), r+

j = {r j} ∪ anc(r j), which causes that s+j = ∑
rk∈r+j sk +

∑
rk,rl∈r+j ,k<l �skl and e+

j = ∑
rk∈r+j ek + ∑

rk,rl∈r+j ,k<l �ekl .

Revenue-based and cost-based interactions are updated taking into account these
graphs and the values of the original NRP:

1. Each pair (ri, r j) ∈ J implies that, starting from �S′ = �S, �s′ik = �sik + �s jk
and �s′ki = �s′ik, for i = k, and �s′ii = 0. After that, the row and column as-
sociated to r j are deleted from �S′. The same process applies to cost-based
interactions. As result, we obtain new revenue-based, �S′, and cost-based, �E′,
matrices.

2. A pair (ri, r j) ∈ X requires the alternative deletion of the rows and columns
associated to each requirement and its descendants inG′ from �S and �E. Thus,
the deletion of the rows and columns associated to {ri} ∪ des(ri) produces �S′

i
and �E′

i, whereas that of {r j} ∪ des(r j) produces �S′
j and �E′

j. This process is
repeated from these new matrices and the graphs G′

i and G′
j until there are no

exclusion interactions.
3. For each r+

j in the basic NRP built from an interactions graph G′
i together with

its pair of associated matrices �S′
i and �E′

i, we define the elements of revenue-
based, �S+, and cost-based, �E+ matrices as the sum of the values associated to
unshared requirements,

�s+ij =
⎧
⎨

⎩

∑
rk∈r+i
rl∈r+j

�s′kl, if rk, rl /∈ r+
i ∩ r+

j ,

0, otherwise
(5)

�e+
ij =

⎧
⎨

⎩

∑
rk∈r+i
rl∈r+j

�e′
kl, if rk, rl /∈ r+

i ∩ r+
j ,

0, otherwise
(6)

For example, if we consider the NRP depicted in Fig. 1 as a functional interactions
graph, then during the first stage of the process, combination interactions are erased
and the graph shown in Fig. 2a is obtained. The second stage takes this functional
interactions graph and proceeds to eliminate exclusion dependences. Thus, require-
ment r3+4 and its descendants are deleted which produces the graph G′

3+4 (see
Fig. 2b) and the elimination of requirement r8 along with its descendants, produces
the graph G′

8 (see Fig. 2c). Last two graphs contain only implication interactions and
define the basic NRP.

Once we get the set of functional interactions graphs, containing only implication
interactions, the transformation ends simply by grouping together each requirement
and its ancestors in each graph, obtaining several basic NRPs. For example, if we
consider the graph G′

3+4 in Fig. 2b we get r+
1 = {r1}, r+

2 = {r2}, r+
5 = {r2, r5}, r+

7 =
{r2, r5, r7}, r+

8 = {r2, r5, r7, r8}, r+
9 = {r2, r5, r7, r9} and r+

10 = {r2, r5, r7, r8, r9, r10}.
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(a) Functional interactions graph G’ after eliminating combinations interactions

(b) Functional interactions graph G  after deleting r and its descendants from G’

(c) Functional interactions graph G after deleting r and its descendants from G’

r1

r3+4

r2

r5

r7r6

r8 r9

r10

r1 r2

r5

r7

r8 r9

r10

r1

r3+4

r2

r5

r7r6

r9

3+4 3+4

8 8

Fig. 2 Transformation of an NRP into a basic NRP

Empir Software Eng (2015) 20:577–610 585



After executing these processes of eliminating combination and exclusion interac-
tions, we obtain a set of graphs, containing only implication interactions. Observe
that the presence of exclusion interactions causes an alternative consideration of
requirements and the appearance of a greater number of interactions graphs. This
is due to the inner nature of exclusion. If there is an exclusion interaction between
two requirements, (ri, r j) ∈ X, by definition these requirements are incompatible
software features that cannot be included in the same software product at the
same time. Requirements Engineering faces this problem as a negotiation problem.
Project developers must obtain an agreement by the elimination of one of them
(i.e. discarding one of the requirements) or by generating two different software
applications. For example, consider the exclusive requirements ri: “all users should
be able to search for data about both products and customers” and r j: “only
personnel with a high security level should be able to search for customers classified
as military related”. Each one of them leads to a different software product and we
need to perform different search processes defining different alternatives for the next
software release.

Note that a more restrictive special case arises when requirements are basic and
independent: for all ri ∈ R, r+

i = {ri}. Bagnall et al. (2001) has shown that NRP is an
instance of 0/1 knapsack problem, which is NP-hard (Garey and Johnson 1990). This
result means that large instances of the problem cannot be solved efficiently by exact
optimization techniques. Nonetheless, in this situation the use of metaheuristics is
suitable because they can find near-optimal solutions to NRP spending a reasonable
amount of time.

3 Multi-Objective Ant Colony Optimization for the NRP

Ant Colony Optimization (ACO) has been applied to multi-objective optimization
problems (Iredi et al. 2001; Doerner et al. 2004; Häckel et al. 2008) using a multi-
colony strategy, extending the Ant Colony System (ACS) (Dorigo et al. 2006; Dorigo
and Stützle 2004). Iredi et al. (2001) and Häckel et al. (2008) propose a multi-colony
method to solve multi-objective optimization problems when the objectives cannot
be ordered by importance, in which each colony searches for a solution in a different
region of the Pareto-front. Whereas Doerner et al. (2004) propose the use of a single
colony in which each ant searches in a different direction of the Pareto front, and
apply it specifically to a portfolio optimization problem. This last approach enables
us to extend in a natural way theACS for NRP, described in del Sagrado et al. (2010a,
2011), to the multi-objective case by searching in different directions on the Pareto
front.

In ACO algorithms, each ant builds its solution from an initial node (requirement)
which is selected randomly. At each stage, an ant locates a set of neighbouring nodes
to visit (these requirements must satisfy the restrictions of the problem). Among all
of them it selects one in a probabilistic way, taking into account the pheromone level
and heuristic information. The level of pheromone deposited in an arc from node ri
to node r j, τij, is stored in a matrix τ , whereas the heuristic information about the
problem is represented as the value ηij and have to be defined based on the problem
itself.

Many authors Brooks (1995), Boehm (1981) and Albrecht and Gaffney (1983)
have proposed several metrics for software projects and products, e.g. man-moths
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(Brooks 1995), number of lines of code (Boehm 1981) and function points (Albrecht
and Gaffney 1983), are only some of them. These metrics help in the assessment
of the quality of a software product when its development has finished (i.e. quality
metrics) and also in the estimation of the effort of a new software project, either
using productivity metrics (e.g. time to delivered a feature or requirement to the final
product, total number of units of production, or amount of units produced during
a given period of time) or financial metrics (e.g. investment, operating expense
that includes salaries, money amount of software sold minus the cost, return of
investment, or cost of development effort per feature produced). Since we have to
select requirements and the data available are related to requirements, we should
consider a metric that measure the productivity in terms of the customers’ benefit
and development effort (sets S and E). This concept has been applied in the selection
and triage of the requirements (Davis 2003; Simmons 2004). In NRP we can define
a productivity metric associated to a requirement r j, as, s j/e j which is the level
of satisfaction obtained by the customers when including this requirement in an
increment based on the effort applied in its development. Hence, we define:

ηij = ξ
s j
e j

(7)

where ξ is a normalization constant.
Let Rk ⊆ R be the partial solution to the problem built by ant k and assume that

the ant is located at node ri, then

Nk
i = {

r j|r j /∈ Rk, ef f (Rk) + e j ≤ B,

Rk ∪ {rj} fulfills functional interactions
}

(8)

represents the set of non visited neighbours nodes that can be reached by ant k from
node ri. That is, for ant k a node r j is visible from node ri if and only if r j has not been
previously visited, its inclusion in the partial solution Rk does not exceed the fixed
development effort bound B and does not break functional interactions.

In the multi-objective ACO, there will be a pheromone matrix τ g for each one of
the objectives, g ∈ O (for NRP the set of objectives is O = {s, e}, where s represents
satisfaction and e represents effort) and the solution constructed by one ant is
based on a weighted combination of these pheromone matrices. The weights λk

g ,
that ant k assigns to the different objectives, measure the relative importance of the
optimization criteria and should be distributed uniformly over the different regions
of the Pareto front. For the NRP case, if the colony has z ants, then the weights for
users’ satisfaction and development effort used by the ant k ∈ [0, z − 1] are defined
respectively as

λk
s = k

(z − 1)
and λk

e = 1 − λk
s (9)

Note that weights are kept fixed over the ant’s lifetime (i.e. time expended by the ant
to build its solution).

In the ACS algorithm, each ant builds, in a progressive way, a solution to the
problem. During the construction process of the solution, ant k selects from node
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ri the next node r j to visit applying a pseudorandom proportional rule (Dorigo and
Gambardella 1997) that takes into account the weights λk

g (Doerner et al. 2004):

j =

⎧
⎪⎨

⎪⎩

argmaxu∈Nk
i

{[∑

g∈O
λk
gτ

g
iu

]α

[ηiu]β
}
, if q ≤ q0,

u, otherwise

(10)

where q is a random number uniformly distributed in [0, 1], q0 ∈ [0, 1] is a parameter
that determines a trade-off between exploitation (q ≤ q0) and exploration, and u ∈
Nk

i is a node randomly selected. This selection is made by the ant k, which selects
randomly from node ri the next node u = r j to visit with a probability pkij given by
Doerner et al. (2004):

pkij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
∑

g∈O λk
gτ

g
ij

]α

[ηij]β

∑
h∈Nk

i

[
∑

g∈O λk
gτ

g
ih

]α

[ηih]β
, if j ∈ Nk

i ,

0, otherwise

(11)

where the parameters α and β reflect the relative influence of the pheromone with
respect to the heuristic information. For example, if α = 0 the nodes with higher
heuristic information values will have a higher probability of being selected (the
ACO algorithm will be close to a classical greedy algorithm). If β = 0 the nodes with
higher pheromone value will be preferred in order to be selected. From these two
examples, it is easy to deduce that is needed a balance between heuristic information
and pheromone level.

While building its solution each ant k in the colony updates pheromone locally. If
it chooses the transition from node ri to r j, then it has to update the pheromone level
of the corresponding arc for each objective g applying the following rule:

τ
g
ij = (1 − ϕ) ∗ τ

g
ij + ϕτ0 (12)

where ϕ ∈ [0, 1] is the pheromone decay coefficient and τ0 is the initial pheromone
value, which is defined as τ0 = 1/|R|. Each time an arc is visited, its pheromone level
decreasesmaking it less attractive for subsequent ants. Thus, this local update process
encourages the exploration of other arcs avoiding premature convergence.

Once all ants in the colony have built a solution, only the two ants that have
obtained the best solutions reinforce pheromone on the arcs that are part of the best
solutions. They update pheromone globally for each objective g ∈ O and each arc,
(i, j), included in the best solutions applying the following rule:

τ
g
ij = (1 − ρ) ∗ τ

g
ij + ρ�τ

g
ij (13)

where ρ ∈ [0, 1] is the pheromone evaporation rate and �τ
g
ij represents the increase

of pheromone with respect to objective g.
In the NRP case, we have two objectives,O = {s, e}, satisfaction and effort, so, for

a given best solution R̂, we define two pheromone increments (�τ s
ij for satisfaction

and �τ e
ij for effort) as:

�τ s
ij =

1

sat(R̂)
(14)
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Fig. 3 Search process in ACS

�τ e
ij = 1

ef f (R̂)
(15)

where sat(R̂) and ef f (R̂) are the evaluations of the best solution (see (2) and (3))
with respect to each objective.

For example, Fig. 3 shows an example of the steps followed by the ant k
during an iteration. A thin arrow represents a candidate path for the ant and a
bold arrow is a path yet crossed. Figure 3a shows the set of six requirements
R = {r1, r2, r3, r4, r5, r6} with associated development efforts and customers satisfac-
tion sets, E = {3, 4, 2, 1, 4, 1}, S = {1, 2, 3, 2, 5, 4}, respectively. Also, consider the
set of functional dependencies F = {r1 ⇒ r3, r1 ⇒ r5, r2 ⇒ r4, r2 ⇒ r5, r5 ⇒ r6, r3 �
r4, r4 ⊕ r5} and that the development effort bound B is set to a value of 11. Figure 3b
to d depict the steps followed by ant k. Initially (see Fig. 3b), the ant chooses
randomly a requirement from the set {r1, r2} that contains the visible requirements
(i.e. those verifying requirements interactions and whose effort limit is lower than
B). Suppose that it selects r2 as the initial node and adds it to its solution, Rk = {r2}.
Then the ant obtains the set of non visited neighbours nodes from r2 is Nk

2 = {r1}
and arcs reaching to r2 have been deleted because they could never be used. In
this example, we are going to assume that the ant only uses heuristic information
in order to build its solution Rk, so at each step it will choose the vertex with the
highest μij value from the set of non visited neighbours nodes. Now the ant adds
r1 to its solution Rk = {r2, r1} and searches for a new requirement to add from this
node as it is depicted in Fig. 3c. In this situation the ant’s set of neighbours nodes
is Nk

1 = {r3 − r4, r5} and using only heuristic information the next node to travel
to is r3 − r4 (note that this node is consequence of the combination interaction
r3 � r4. Finally, Fig. 3d shows that once the ant has added r3 − r4 to its solution,
Rk = {r2, r1, r3, r4}, it has to stop because there are not any other visible vertex due
to the exclusion relationship r4 ⊕ r5.

4 Experimental Evaluation

In this section, we describe the aspects related with the design of the experiments for
making the performance evaluation of the multi-objective ACO algorithm proposed.
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Table 1 Dataset 1: assignment of the priority level of each requirement, requirements development
effort and interactions

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20
c1 4 2 1 2 5 5 2 4 4 4 2 3 4 2 4 4 4 1 3 2
c2 4 4 2 2 4 5 1 4 4 5 2 3 2 4 4 2 3 2 3 1
c3 5 3 3 3 4 5 2 4 4 4 2 4 1 5 4 1 2 3 3 2
c4 4 5 2 3 3 4 2 4 2 3 5 2 3 2 4 3 5 4 3 2
c5 5 4 2 4 5 4 2 4 5 2 4 5 3 4 4 1 1 2 4 1
Eff. 1 4 2 3 4 7 10 2 1 3 2 5 8 2 1 4 10 4 8 4

r3 � r12 r11 � r13
r4 ⇒ r8 r4 ⇒ r17 r8 ⇒ r17 r9 ⇒ r3 r9 ⇒ r6 r9 ⇒ r12 r9 ⇒ r19 r11 ⇒ r19

First, we present the data used in the experiments. Then, we briefly describe other
two metaheuristic algorithms used in the experiments. Finally, we define the set of
quality measures applied and the comparison methodology we have followed.

4.1 Datasets

For testing the effectiveness of our proposed ACS we have used two datasets. The
first dataset is taken from Greer and Ruhe (2004). It has 20 requirements and 5
customers. The development effort associated to each requirement and the level
of priority or value assigned by each customer to each requirement are shown in
Table 1. The customers’ weights are given in the 1 to 5 range, following a uniform
distribution (see Table 2). These values (and also those of the level of priority of
each requirement) can be understood as linguistic labels such as: without importance
(1), less important (2), important (3), very important (4), extremely important (5).
Each requirement has an associate effort estimate in terms of score between 1 and
10. Also, we consider a set of implication and combination interactions between
requirements. The reason for not including exclusion interactions is that its presence
leads to different alternatives which can be considered as independent NRP instances
(see Section 2.3). The main reason to use this dataset resides in its wide use in the
evaluation of other studies of distinct instances of NRP (Finkelstein et al. 2009;
Zhang et al. 2007; Durillo et al. 2009) and, as far as we know, the lack of other
available real datasets due to the privacy policies followed by software development
companies. At the time of performing the experiments we have set the development
effort boundary as a percentage of the total development effort needed to include all
the requirements in a software product. Then we have considered the 30, 50 and 70%
of the total development effort, which respectively translates into an effort bound of
25, 43 and 60 effort units in our experiments. The change in the effort limit allows
us to have, in a simple way, different instances of the problem on which to test the
algorithms.

The second dataset has been generated randomly with 100 requirement, 5 cus-
tomers and 44 requirements interactions, according to the NRP model (see Table 3).

Table 2 Customers’ relative
importance

Customers’ weights c1 c2 c3 c4 c5
For dataset 1 1 4 2 3 4
For dataset 2 1 5 3 3 1
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The relative importance of the customers is given in the second row of Table 2. This
dataset was defined because in real agile software projects development, in the initial
timeboxes, we are faced with the problem of selecting requirements from a wider set.
Therefore, the number of requirements has been incremented from 20 to 100. The
development effort values of each requirement are given in the 1 to 20 range. We
had fixed 20 units (4 weeks) as the maximum development effort for a requirement,
considering the timebox limit defined in agile methods (e.g. Scrum proposes iteration
in the range 2 to 4 weeks). The customers values of level of priority of requirements
are in the range of 1 to 3, because when customers have to make an assignment of
the benefit that will imply the inclusion of a given requirement, they prefer to use
a coarse grained scale instead of one of finer granularity. Usually, they simply place
requirements in one of three categories: inessential (1), desirable (2) or mandatory
(3) (Wiegers 2003; Simmons 2004).

Following the same considerations made on dataset 1, we have set the develop-
ment effort boundary using the same percentages (30, 50 and 70 %) of the total
development effort needed to include all the requirements in a software product,
which respectively translates into an effort bound of 312, 519 and 726 effort units in
our experiments. So, we will test ACS using six instances of NRP.

4.2 Metaheuristic Techniques Applied in Experimentation

Many metaheuristic techniques have been applied to the requirement selection
problem, a review of them can be found at del Sagrado et al. (2010b). We select two
algorithms against with our multi-objective ant colony system will be evaluated for
solving the NRP: Greedy Randomized Adaptive Search Procedure (GRASP) and
Non-dominated Sorting Genetic Algorithm (NSGA-II).

The first one is a metaheuristic algorithm that generates a good approximation to
the efficient set of solutions of a multi-objective combinatorial optimization problem
(Vianna and Arroyo 2004). GRASP was first introduced by Feo and Resende (1989).
Survey papers on GRASP include Feo and Resende (1995), Pitsoulis and Resende
(2003), and Resende and Ribeiro (2003). This algorithm proceeds iteratively by first
building a greedy randomized solution and then improving it through a local search.
The greedy randomized solution is built from a list of elements ranked by a greedy
function by adding elements to the solution set of the problem. The greedy function is
in charge of measuring the profit of including an element in the solution with respect
to the cost of its inclusion. In our approach, the greedy function used measures the
quality of a requirement based on users satisfaction with respect to the effort (i.e.
si/ei) according to the following ratio:

λs ∗ si + λe
ei

2 ∗ ei
(16)

where λs and λe are the weights associated with each objective as defined in (9). This
measure is a productivity metric that weighs the profit of including a requirement
with respect to the resources involved in their development. The local search acts,
in an iterative way, trying to replace the current solution by a better one located in
its neighbourhood. GRASP terminates when no better solution can be found in the
neighbourhood.
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The fast Elitist Non-dominated Sorting Genetic algorithm (NSGA-II) was pro-
posed by Deb et al. (2002). The word elitist refers to the fact that only the
best individuals found so far are transferred to the next population. During each
generation, a population is constructed by combining the parent and the child
population. Individuals represent the possible solutions, that is, an individual is a
set of requirements. Each individual is evaluated with respect to the two objective
functions defined in (4), where the total effort is multiplied by −1 in order to
transform the second objective into a maximization problem, so that the NSGA-II
algorithm will try to maximize each one of them. Each generation represents the
evolution of the population. The idea is that by means of crossover and mutation
the new children and mutated individuals have even better fitness values than the
original ones. Better individuals have a higher probability of stating at the Pareto
front, whose cardinality is limited by the population defined in the execution. In the
case of NRP, the crossover andmutation methods are more specific and difficult than
in other problems because we need to take into account the resources bound in order
to obtain new valid individuals (see del Sagrado et al. 2010a). The works of Durillo
et al. (2011) and Zhang and Harman (2010) show that NSGA-II can solve NRP
offering a set of comparable solutions with those obtained by other metaheuristics.

4.3 Performance Measures

We have calculated the optimal Pareto front of the problem defined by the first
dataset, in order to compare it against those calculated by the metaheuristic opti-
mization techniques. However, when the number of requirements grows, dataset 2,
obtaining the optimal Pareto front becomes an intractable problem. So, our approach
here is to compare the results using several quality indicators, giving an insight on
the quality of the results achieved for all the executed algorithms. Therefore, we use
the following indicators with the purpose of conducting a comparative measure of
diversity and convergence of the solutions obtained:

– The number of non dominated solutions found (#Solutions). Pareto fronts with
a higher number of non dominated solutions are preferred.

– The size of the space covered by the set on non-dominated solutions found
(Hypervolume) (Zitzler and Thiele 1999). For a two dimensional problem, for
each solution i ∈ Q, a vector vi is built with respect to a reference point W, and
the solution i is considered as the diagonal corner of an hypercube. Hypervolume
is the volume occupied by the union of all of these hypercubes:

HV = volume

( |Q|⋃

i=1

vi

)
(17)

Pareto fronts whit higher hypervolume values are preferred.
– The extent of spread achieved among the obtained solutions (�-Spread) (Durillo

et al. 2009).

�(F) = d f + dl + ∑n−1
i=1 |di − d̄|

d f + dl + (n − 1) ∗ d̄
(18)
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where the Euclidean distance between two consecutive solutions R̂i and R̂i+1, di
is computed as

di =
√

(sat(R̂i+1) − sat(R̂i))2 + (ef f (R̂i+1) − ef f (R̂i))2 (19)

d̄ is the average of these distances, d f ,dl are, respectively, the Euclidean dis-
tances of the first, R̂1, and last, R̂n, obtained solutions to the extreme solutions
R̂ f and R̂l of the optimal Pareto front, and n is the number of solutions in the
obtained Pareto front F. Pareto fronts with smaller spread are preferred.

– A measure that evaluates the uniformity of the distribution of non-dominated
solutions found (Spacing) (Schott 1995). If the problem has N objectives and its
Pareto front has n solutions, the spacing of F is defined as:

Spacing(F) =
∑n

j=1

(∑N
i=1

(
1 − |dij|

d̄i

)2
)1/2

n ∗ N
(20)

where, d̄i is the mean value of the magnitude of the i − th objective in the set F
and dij is the value of the i-th objective for the j-th solution in F. Pareto fronts
with higher spacing are preferred.

Pareto fronts with a higher number of non-dominated solutions, smaller spread,
higher spacing and higher hypervolume are preferred. The average and standard
deviation of all of these quality indicators are computed.

4.4 Comparison Methodology

In order explore the applicability of multi-objective ACO for solving NRP, we will
compare its performance on the datasets with that of the multi-objective meta-
heuristics approaches selected. All algorithms are executed for a maximum of 10,000
fitness functions evaluations. Taking this fact into account, it is worth to note that,
for the parameters setting we have used default values to explore different search
behaviours in the algorithms. This choice, as Arcuri and Fraser (2013) points out,
“is a reasonable and justified one, whereas parameter tuning is a long and expensive
process that might or might not pay off in the end”. Thus, the comparison of the
results is done in four steps:

1. For each dataset and each development effort bound, we have performed 100
consecutive executions of each of the metaheuristic search techniques, using
different parameters settings representative of the different behaviours that
the algorithms can exhibit. We compute the average (as measure of central
tendency) and standard deviation (as measure of statistical dispersion) of the
number of solutions in the Pareto-front, of the quality indicators, and of the
execution time.

2. With these values at hand, we have analyzed each technique separately. The
scores of the five quality indicators are ranked, and we select the parameters
setting that exhibits the best average ranking.

3. Once a parameter setting has been established for each one of the algorithms
(GRASP, NSGA-II and ACS), the average values of their indicators are visually
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compared, using Kiviat graphs. This step allows us evaluate the goodness of our
ACS proposal, comparing it against the other two search methods used.

4. The Pareto fronts returned by each of the metaheuristic search techniques are
compared using the non-parametric significance Mann-Whitney U test, which
is a non-parametric statistical hypothesis test for assessing whether one of two
samples of independent observations tends to have larger values than the other.
The comparison is made based on the values computed for the productivity
metric given by

Productivity(R̂) = sat(R̂)

ef f (R̂)
(21)

for each solution R̂ in the Pareto front. This metric give us an insight of the profit
returned by the solutions according to the software development process.

5 Analysis of the Experimental Results

Tables 8, 9 and 10 included in the Appendix collect the results of the experiments
returned by GRASP, NSGA-II and ACS for the different datasets, requirements
interactions and effort bounds used. We have highlighted with a star symbol the best
values of the quality indicators and the parameters setting with the best average
ranking. Next, we analyze these results following the comparison methodology
previously exposed.

The GRASP algorithm receives as input parameters the number of iterations
(each iteration consists of two phases: construction and local search) and a number
in the 0 to 1 range that controls the amount of greediness and randomness (values
close to zero favors a greedy behaviour, whereas values close to one favor a random
behaviour). In most of the problems considered the value 0.9, that favor a random
behaviour to explore wider areas, obtains the best results. The values obtained by
GRASP for the quality indicators in the different datasets are shown in Table 8.

The execution time of NSGA-II depends on the number of generations developed.
We look for a balance in the number of function evaluations performed by the
algorithm, by adjusting the size of the populations and the number of iterations. So,

Table 4 Dataset 1 best average results for each algorithm

# Sols Hypervol �Spread Spacing Exec. time (ms)

Dataset 1 30 %
GRASP 11.37±1.47 5,851.00±277.82 0.64±0.09 �0.36±0.03 �362.80±10.84
NSGA-II 9.69±2.09 6,842.92±849.03 0.76±0.09 0.29±0.11 1,891.55±196.10
ACS �13.66±13.66 �7,805.39±49.87 �0.52±0.03 0.33±0.01 639.10±17.79

Dataset 1 50 %
GRASP 17.65±2.22 14,508.20±265.88 0.73±0.07 0.35±0.03 1,208.25±29.15
NSGA-II 11.30±1.82 15,676.77±1,214.25 0.79±0.07 0.27±0.06 1,980.93±144.42
ACS �17.75±0.61 �18,153.33±51.26 �0.52±0.01 �0.37±0.01 �787.62±33.29

Dataset 1 70 %
GRASP 20.26±2.18 24,473.66±377.05 0.69±0.06 0.34±0.03 839.84±31.48
NSGA-II 11.70±1.90 24,408.67±1,746.18 0.80±0.07 0.26±0.05 2,034.25±120.81
ACS �20.57±20.57 �29,196.12±53.72 �0.48±0.02 �0.40±0.01 �836.76±34.35
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Table 5 Dataset 2 best average results for each algorithm

# Sols Hypervol �Spread Spacing Exec. time (s)

Dataset 2 30 %
GRASP �57.99±3.66 112,418.88±235.53 �0.60±0.04 �0.41±0.02 28.92±0.37
NSGA-II 54.34±8.51 218,138.21±6,861.82 0.80±0.07 0.22±0.05 �28.13±1,28
ACS 47.12±5.44 �234,583.42±1,710.00 0.68±0.06 �0.41±0.04 616.87±21.98

Dataset 2 50 %
GRASP �75.81±5.81 425,642.47±1,894.97 0.74±0.04 0.32±0.03 118.34±2.00
NSGA-II 65.54±11.86 495,948.91±14,310.53 0.81±0.06 0.19±0.03 �35.05±0.84
ACS 57.68±5.69 �527,685.22±2,738.50 �0.66±0.06 �0.43±0.04 770.22±37.33

Dataset 2 70 %
GRASP �120.14±7.27 769,613.34±2,064.60 0.70±0.03 0.29±0.02 324.61±13.24
NSGA-II 83.32±10.52 873,383.61±24,556.01 0.77±0.05 0.19±0.03 �38.30±0.79
ACS 70.98±5.27 �902,769.29±3,141.76 �0.61±0.06 �0.45±0.03 881.95±54.19

a)

b)

c)

d)

e)

f)

Fig. 4 Kiviat graph comparing metaheuristic algorithms

Empir Software Eng (2015) 20:577–610 597



in our tests, the size of the population have been fixed to 20 and 40 in dataset 1, and
100 and 125 in dataset 2, keeping the number of functions evaluation at 10,000. The
mutation probability is kept fixed at a value equal to 1/n, where n is the number
of requirements (i.e. 0.05 for dataset 1, and 0.01 for dataset 2) and we use a high
crossover probability, assigning it a value in {0.8, 0.9}, to favor recombination of
individuals. Best values have been obtained when using a higher population size with
the lowest crossover probability (i.e. 40 individuals and 0.8) in the case of dataset
1 and the highest crossover probability (i.e. 125 individuals and 0.9) in dataset 2.
Table 9 contains the quality indicators results obtained by NSGA-II in the different
datasets.

The number of ants in the colony has a direct impact on execution time of ACS
algorithm. We use as number of ants n/2, where n is the number of requirements.
We fix the pheromone evaporation rate ρ = 0.01 (we also set the pheromone decay
coefficient ϕ to 0.01) and the parameter q0 = 0.95, favouring exploration. For the
(α, β) pair of parameters, we have used different combinations (i.e. (0,1) (1,0) (1,1)
(1, 2) (1,5)), reflecting the importance of using local information (i.e. pheromone)
with respect to heuristic information in the search. We highlight that the best average

Fig. 5 Pareto fronts for datasets 1 and 2
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values for the ranking of quality indicators are obtained by ACS (see Table 10)
when both local and heuristic information are used in the search, but given more
importance to heuristic information than to pheromone, that is, α ≥ 1, α ≤ β.

Once, we have selected for each algorithm, a parameters setting taking into
account the best average ranking of the quality indicators values obtained (see Tables
4 and 5), we proceed to make a visual comparison using the Kiviat graphs. Figure 4
shows Kiviat graphs depicting the quality indicators dataset and each development
effort. With respect to dataset 1 (see Fig. 4a–c) ACS obtains the best values, except
in spacing and execution time in one case (see, Fig. 4a). The differences between
ACS and GRASP are mainly present in the hypervolume and spread, but both have
similar execution times. NSGA-II and GRASP obtain Pareto fronts with similar
hypervolume and spread values, but NSGA-II spends more execution time than
the others. In the case of dataset 2 (see Fig. 4d–f), ACS obtains the best values in
hypervolume, spacing and spread, although GRASP obtains a higher number of
solutions but the non-dominated solutions found cover less space than the Pareto
fronts built by ACS and NSGA-II which have similar hypervolume values. However,
we detect a significantly worse execution time in ACS.

Table 6 Mann-Whitney-Wilcoxon test for dataset 1
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Figure 5 represents a selected Pareto front according to the quality measures, for
each algorithm and each problem. For the first dataset we have also obtained and
depicted the Pareto optimal front. ACS and NSGA-II have very few differences
compared to the optimum. However GRASP presents large differences but with
fronts containing the greater number of solutions, this same trend is shown in the
second dataset.

Our analysis concludes performing a Mann-Whitney U test on the values for
the productivity metric (see (21)) of each solution in the Pareto fronts obtained.
Its results are shown in Tables 6 and 7. In all cases the Pareto fronts obtained by
GRASP show differences with those obtained by ACS and NSGA-II. For dataset 1
with effort bounds of 30 and 50 %, these differences are marginally significant (P<

0.05), but are significantly different (P<0.01) when considering the 70% effort bound
and highly significant (P<0.001) for dataset 2 in all cases. With respect to the optimal
Pareto front in the dataset 1, GRASP exhibits not significant differences for 30 %,
marginally significant differences (P< 0.05) for 50 % and significantly differences
(P<0.01) for 70 % efforts bounds, respectively. Whereas fronts coming from the
algorithms ACS and NSGA-II are not significantly different (P≥0.05), with the
exception of dataset 2 with a 70 % effort bound which exhibits marginally significant
differences (P< 0.05). There are no significant differences between the optimal
Pareto front and those obtained by ACS and NSGA-II. These results confirm the
graphical representation of the selected Pareto fronts (see Fig. 5).

Table 7 Mann-Whitney-Wilcoxon test for dataset 2
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6 Threats to Validity

The results obtained in this research work are subject to the limitations which are
inherent to any SBSE empirical study. It is worth to discuss the validity of the results,
in order to provide a complete understanding of limitations and extent that the work
has. In the literature (Wohlin et al. 2012; Ali et al. 2010), we can find different ways
to classify aspects of validity and threats to validity. We are going to follow the types
of threats proposed by Ali et al. (2010) that comprise four aspects of the validity:
construct validity, internal validity, conclusion validity and external validity.

Construct validity reflects if the measures and scales used capture properly the
concepts they need to represent. In this paper, the objects studied are set of
requirements and the associated data are estimates provided by software engineers
or customers (e.g cost and value added estimates). This fact leads to one possible
validity threat due to subjectivity and accuracy (i.e. in real software development
projects, the values associated to requirements are gathered as an answer from a
closed set to a simple statement). Nonetheless, development teams use estimations
in every day work both for exploring tradeoffs in release planning and decision-
making. Related to the effectiveness measures we use quality measures related to
the diversity and convergence of the sets of requirements selected. Specifically, the
number of solutions, hypervolume, spread and spacing measures refer to the quality
of the Pareto fronts obtained by the different search-based metaheuristic techniques
applied, whilst the time expended refers to performance.

Internal validity regards to the analysis of the performance of the metaheuristic
search techniques applied (i.e. parameter settings and biased selection of datasets
that can favor a certain technique). In our experiments we have used default
parameter settings with the idea of preserving the inner nature of the metaheuristic
techniques and exploring different search behaviours in the algorithms. With respect
to the quality of the problem instances we have used two datasets, probably a more
significant number of datasets seems necessary, but, typically, real world datasets are
considered confidential by the companies that own them. So, we have preferred to
extend the available dataset by changing the effort limits, as others authors (Jiang
et al. 2010) do, instead of generate and employ a greater number synthetic datasets.
We think that, in this way, a biased selection in favor of a certain technique is more
or less avoided.

Conclusion validity is concerned with the relationship between approach and
outcome, ensuring that there is a right statistical relationship between them. In
the case of our paper, the proposed multi-objective ACO approach automates the
search for optimal or near-optimal sets of requirements, within a given effort bound,
that balance stakeholders’ priorities while keeping requirements interactions. As
conclusion the evidence suggest that this approach is feasible. This conclusion is
based on the statistical comparison of the experiments carried out on the datasets.
In order to avoid the randomness all experiments were executed several times, so
we have performed 100 consecutive executions on the same hardware platform. The
variables measured are the quality indicators showing their average and dispersion
values. As baseline for comparison, we have used two metaheuristic techniques
(i.e. GRASP and NSGA-II) that have a very different nature and we believe that
are sufficiently representative and appropriate. By other hand, the Pareto fronts
returned are assessed in pairs using the non-parametric significance Mann-Whitney
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U test on a productivity metric of the solutions from the point of view of the
software project. The significance level chosen was 95 % looking for a compromise
in the adoption of a technique between its performance and robustness. The results
obtained suggest that our multi-objective ACO is a good enough search method that
offers software developers, who must decide what is the best set of requirements
(according to business strategies) that has to be considered in the next software re-
lease, several alternatives among the whole set of candidate requirements proposed
by customers.

External validity deals with the generalization of observed results. For our study,
this is a major threat to validity. First, as greater the complexity of a real software
project, greater the ability for generalization. But real software projects are difficult
to obtain due to the privacy policies followed by software development companies.
Second, the generalization domain of our study is wide, as is the domain of human
activities in which software is present. Thus, the set of stakeholders and requirements
for a software project focused on the development of a computer game is significantly
different from that of an accounting software system. As consequence, it is difficult
to estimate, using only the results of this study, the extent in which our proposed
ACS algorithm can help software development teams. However, we believe that for
any software developer is considerably helpful to have these techniques available for
determining which candidate requirements of a software product should be included
in a certain release.

7 Conclusions and Further Works

In this paper, we study the applicability of multi-objective Ant Colony Optimization
algorithms in the field of Software Engineering, specifically within the field of
analysis and study of requirements for a software project. ACO has already been
applied in other fields like testing, but not to requirements from the multi-objective
perspective.

Our paper formally defines the Next Release Problem including interactions
between requirements. As value added, we propose a method to reduce all the
interactions of NRP in order to manage the problem as a basic instance of NRP,
facilitating the execution of metaheuristics that do not take them into account.
We develop our own multi-objective ant colony system (ACS) for finding a non-
dominated solution set for NRP considering functional requirements interactions,
and apply two other techniques (GRASP, NSGA-II) in order to evaluate our system.

GRASP has shown a bad performance in our experiments with NRP, but it will
be useful to examine how it behaves when using other greedy functions (different
from the one we have proposed) designed specifically for this problem. During
the adaptation of NSGA-II to tackle NRP we have found several difficulties with
crossover and mutation operations due to the restrictions imposed by NRP. These
restrictions have force us to develop a repair operator, in order to ensure that the
solutions built in an evolutionary way satisfy the constraints imposed by effort bound
and requirements interactions. Our multi-objective ACS obtains non dominated
solution sets slightly better than those found by NSGA-II, and GRASP. ACS can
be applied efficiently to solve NRP, in order to obtain the Pareto front that allows
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software developers to take decisions about the set of features that must to be
included in the next software release.

The use of metaheuristic techniques constitute a valuable aid for experts who
must decide what is the set of requirements that has to be considered in the next
development stages when they face to contradictory goals. Our approach combine
computational intelligence and the knowledge experience of the human experts with
the idea of obtaining a better requirements selection than that produced by expert
developer’s judgment alone. The actual approaches in Requirements Engineering
usually are assisted by requirements management tools. These tools assist the
development team in the management of each iteration. Here is where we think that
our proposal algorithm can be useful as an aid, by its inclusion as a new facility.

As future lines of work we plan to study the quality of the solution sets found
and improve the model of requirements selection between increments in a software
development project, that is to say, consider human and dynamic aspects. By other
hand we are developing an experience, where novel software developers (students)
solve NRP alone, and next they perform the same tasks with the aid and support of
metaheuristic techniques, with the objective of evaluating human competitiveness.
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Appendix: Experiments results

Table 8 Results of Greedy Randomized Adaptive Search Procedure (GRASP)

Parameters # Sols Hypervol �Spread Spacing Exec. time
(iter, α) (ms)

Dataset 1 30 %
�(1000,0.9) 11.37±1.47 �5,851.00±277.82 �0.64±0.09 0.36±0.03 362.80±10.84
(1000,0.8) �11.67±1.60 5,239.29±337.86 0.71±0.09 �0.40±0.03 356.41±11.28
(1000,0.5) 6.72±1.03 3,571.45±526.58 0.75±0.10 0.35±0.03 340.61±10.12
(1000,0.3) 6.00±0.00 1,487.00±0.00 0.65±0.00 0.31±0.00 339.06±11.66
(500,0.9) 10.26±1.60 5,386.75±318.31 0.65±0.09 0.38±0.03 183.77±10.46
(500,0.8) 11.12±1.48 4,764.96±407.39 0.72±0.09 �0.40±0.03 180.64±11.42
(500,0.5) 6.56±1.00 3,125.67±471.71 0.82±0.07 0.35±0.04 �169.54±9.28
(500,0.3) 6.00±0.00 1,487.00±0.00 0.65±0.00 0.31±0.00 169.99±9.75

Dataset 1 50 %
�(1000,0.9) �17.65±2.22 �14,508.20±265.88 �0.73±0.07 0.35±0.03 1,208.25±29.15
(1000,0.8) 17.33±2.04 13,730.69±365.03 0.77±0.06 �0.40±0.03 1,202.66±24.38
(1000,0.5) 14.96±0.60 11,268.44±175.26 0.78±0.04 0.27±0.02 1,175.61±23.76
(1000,0.3) 14.00±0.00 9,847.00±0.00 0.80±0.00 0.23±0.00 1,162.34±23.35
(500,0.9) 16.99±2.10 13,932.90±368.64 0.74±0.07 0.35±0.03 605.58±22.47
(500,0.8) 16.66±2.01 13,275.39±477.28 0.77±0.07 0.40±0.03 599.04±19.03
(500,0.5) 14.64±0.63 11,122.17±184.16 0.79±0.03 0.26±0.02 584.37±16.30
(500,0.3) 14.00±0.00 9,847.00±0.00 0.80±0.00 0.23±0.00 �580.63±18.71
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Table 8 (continued)

Parameters # Sols Hypervol �Spread Spacing Exec. time
(iter, α) (ms)

Dataset 1 70 %
(1000,0.3) �20.97±2.16 �24,837.24±297.55 �0.68±0.06 0.34±0.03 1,678.75±41.20
(1000,0.8) 19.67±1.71 23,897.72±309.97 0.74±0.05 �0.38±0.03 1,531.68±38.51
(1000,0.5) 14.89±0.68 21,232.90±161.44 0.78±0.04 0.27±0.02 1,170.96±26.27
(1000,0.3) 14.00±0.00 19,826.00±0.00 0.80±0.00 0.23±0.00 1,160.77±24.36
�(500,0.9) 20.26±2.18 24,473.66±377.05 0.69±0.06 0.34±0.03 839.84±31.48
(500,0.8) 19.48±1.59 23,413.63±387.34 0.75±0.05 0.37±0.03 764.94±29.40
(500,0.5) 14.70±0.63 21,074.26±162.06 0.80±0.04 0.26±0.02 588.96±18.68
(500,0.3) 14.00±0.00 19,826.00±0.00 0.80±0.00 0.23±0.00 �584.50±17.64

Dataset 2 30 %
(500,0.3) 53.99±3.78 111,783.21±296.19 �0.55±0.05 0.40±0.02 15,715.18±1,619.54
(500,0.5) 56.21±4.79 117,227.38±871.86 0.65±0.05 0.38±0.03 15,291.71±1,240.43
(500,0.8) 48.99±4.88 126,148.96±1,824.04 0.65±0.05 0.34±0.04 15,436.13±1,112.42
�(500,0.9) 46.32±3.87 128,336.00±1,770.28 0.64±0.05 0.33±0.03 �14,674.33±235.43
(1000,0.3) 57.99±3.66 112,418.88±235.53 0.60±0.04 �0.41±0.02 28,915.27±371.20
(1000,0.5) �62.74±4.97 119,395.37±826.79 0.69±0.05 0.39±0.02 29,141.69±638.77
(1000,0.8) 53.66±5.14 129,680.62±1,501.14 0.67±0.06 0.35±0.03 29,346.86±384.38
(1000,0.9) 52.47±5.23 �132,182.64±1,924.53 0.66±0.05 0.34±0.03 29,526.05±363.79

Dataset 2 50 %
(500,0.3) 71.05±4.20 402,416.59±1,039.90 0.77±0.03 0.41±0.02 �59,385.89±1,531.46
(500,0.5) 69.32±5.01 407,057.50±1,531.07 0.74±0.04 0.40±0.03 61,738.85±4,761.45
(500,0.8) 73.32±5.54 415,226.09±1,785.76 0.74±0.04 0.31±0.03 63,504.13±3,792.53
(500,0.9) 67.99±5.32 420,263.92±2,183.74 0.74±0.04 0.32±0.03 61,463.12±1,935.45
(1000,0.3) 75.80±4.69 404,784.23±790.84 0.79±0.03 �0.44±0.02 121,349.99±2,508.53
(1000,0.5) 74.82±4.50 410,221.09±1,464.63 �0.74±0.03 0.41±0.02 122,381.05±3,872.40
(1000,0.8) �81.39±5.85 419,804.19±1,617.48 0.74±0.04 0.31±0.02 120,585.52±4,053.31
�(1000,0.9) 75.81±5.81 �425,642.47±1,894.97 0.74±0.05 0.32±0.03 118,335.71±2,000.27

Dataset 2 70 %
(500,0.3) 120.51±5.59 745,387.59±781.13 0.74±0.03 0.34±0.02 �164,035.28±8,251.63
(500,0.5) 117.43±5.67 750,964.34±1,601.37 0.71±0.03 0.32±0.02 165,807.50±7,222.89
(500,0.8) 118.35±7.19 758,626.65±2,045.66 0.71±0.03 0.28±0.02 173,550.47±14,891.71
(500,0.9) 109.35±6.57 763,586.43±2,015.47 �0.70±0.03 0.28±0.02 168,849.21±9,234.50
(1000,0.3) 129.59±5.76 747,684.46±773.36 0.75±0.02 �0.34±0.02 329,101.66±11,926.18
(1000,0.5) 128.50±6.49 754,667.97±1,647.21 0.72±0.02 0.32±0.02 337,569.40±21,378.16
(1000,0.8) �130.88±5.90 762,924.13±1,822.50 0.71±0.03 0.28±0.02 336,762.35±13,095.81
�(1000,0.9) 120.14±7.27 �769,613.34±2,064.60 �0.70±0.03 0.29±0.02 324,604.49±13,244.30

Table 9 Results of Non-dominated Sorting Genetic Algorithm (NSGA-II)

Parameters # Sols Hypervol �Spread Spacing Exec. time
(Pop, pmut, (ms)
pcross,Gen)

Dataset 1 30 %
(20,.05,.9,500) 7.83±1.70 6,429.18±1,078.58 0.76±0.11 0.27±0.12 1,105.33±124.41
(20,.05,.9,500) 8.32±1.80 6,623.22±802.87 0.76±0.10 0.27±0.11 �1,100.97±122.37
(40,.05,.9,250) �9.69±2.09 �6,842.92±849.03 0.76±0.09 0.29±0.11 1,891.55±196.10
�(40,.05,.8,250) 9.44±2.57 6,663.56±935.59 �0.73±0.10 �0.33±0.13 1,856.43±216.09
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Table 9 (continued)

Parameters # Sols Hypervol �Spread Spacing Exec. time
(Pop, pmut, (ms)
pcross,Gen)

Dataset 1 50 %
(20,.05,.9,500) 8.86±2.14 14,832.53±1,957.58 0.80±0.08 0.26±0.10 �1,130.43±106.19
(20,.05,.8,500) 9.38±2.15 15,205.51±1,623.13 �0.79±0.07 0.26±0.10 1,137.50±99.64
�(40,.05,.9,250) 11.30±1.82 �15,676.77±1,214.25 �0.79±0.07 0.27±0.07 1,980.93±144.42
(40,.05,.8,250) �11.46±1.98 15,664.81±1,339.10 0.80±0.06 �0.27±0.06 1,999.39±138.59

Dataset 1 70 %
(20,.05,.9,500) 9.11±1.61 23,494.48±2,303.49 0.80±0.09 0.24±0.06 �1,144.04±95.96
(20,.05,.8,500) 9.22±2.09 23,358.35±3,061.03 �0.78±0.08 0.26±0.10 1,156.72±100.40
(40,.05,.9,250) 11.33±1.93 23,967.40±1,974.73 0.81±0.06 �0.26±0.05 2,035.61±123.05
�(40,.05,.8,250) �11.70±1.90 �24,408.67±1,746.18 0.80±0.07 �0.26±0.05 2,034.25±120.81

Dataset 2 30 %
�(125,.01,.9,80) 54.34±8.51 218,138.21±6,861.82 �0.80±0.07 0.22±0.05 28,127.77±1,275.83
(125,.01,.8,80) �56.86±8.91 �219,662.51±6,320.36 0.81±0.07 �0.22±0.04 28,428.73±1,385.88
(100,.01,.9,100) 46.73±8.59 213,287.75±9,791.80 0.83±0.07 0.20±0.06 �22,987.83±1,329.29
(100,.05,.8,100) 50.79±8.12 216,657.11±7,377.47 0.82±0.06 0.20±0.05 24,134.12±1,546.03

Dataset 2 50 %
�(125,.01,.9,80) �85.19±8.54 �542,408.15±22,993.26 �0.65±0.06 0.14±0.02 40,683.34±518.12
(125,.01,.9,80) 65.54±11.86 495,948.91±14,310.53 0.81±0.06 �0.19±0.03 35,045.76±840.87
(125,.01,0.8,80) 67.00±11.24 497,866.51±16,045.67 0.81±0.06 �0.19±0.03 35,149.95±743.31
(100,.01,.9,100) 53.26±10.04 483,773.06±19,331.55 0.85±0.07 0.17±0.04 �28,453.78±708.03
(100,.05,.8,100) 57.30±9.89 488,446.02±19,717.84 0.83±0.06 0.17±0.04 28,620.55±843.44

Dataset 2 70 %
(125,.01,.9,80) 80.43±10.04 868,208.57±24,183.01 �0.77±0.05 0.18±0.03 38,716.48±1,681.94
�(125,.01,.8,80) �83.32±10.53 �873,383.61±24,556.01 0.77±0.06 �0.19±0.03 38,295.95±784.52
(100,.01,.9,100) 68.06±6.99 859,481.95±25,202.17 0.80±0.06 0.18±0.03 �31,283.26±581.24
(100,.05,.8,100) 71.72±8.69 870,345.56±23,093.39 0.77±0.06 �0.19±0.03 31,352.58±717.18

Table 10 Results of Ant Colony System (ACS)

Parameters # Sols Hypervol �Spread Spacing Exec. time
(Ants, α, β) (ms)

Dataset 1 30 %
(10,0,1) �13.80±0.51 �7,817.44±38.32 �0.52±0.02 0.33±0.01 637.69±21.42
(10,1,0) 12.56±1.00 6,326.28±375.84 0.52±0.08 �0.34±0.02 �533.57±23.97
(10,1,1) 13.66±0.59 7,801.76±54.74 0.52±0.03 0.33±0.01 641.09±21.85
�(10,1,2) 13.66±0.61 7,805.39±49.87 0.52±0.03 0.33±0.01 639.10±17.79
(10,1,5) 13.69±0.61 7,806.74±50.69 0.52±0.03 0.33±0.01 744.67±23.54

Dataset 1 50 %
(10,0,1) 17.65±0.56 18,144.53±55.00 0.52±0.02 �0.37±0.01 789.03±34.51
(10,1,0) 15.73±1.22 14,951.09±603.70 0.57±0.05 0.37±0.02 �761.86±34.02
(10,1,1) 17.60±0.60 18,143.78±56.05 0.52±0.02 �0.37±0.01 788.59±27.80
�(10,1,2) �17.75±0.61 �18,153.33±51.26 �0.52±0.01 �0.37±0.01 787.62±33.29
(10,1,5) 17.66±0.59 18,140.09±64.45 0.52±0.02 �0.37±0.01 914.80±33.36
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Table 10 (continued)

Parameters # Sols Hypervol �Spread Spacing Exec. time
(Ants, α, β) (ms)

Dataset 1 70 %
(10,0,1) 20.57±0.64 29,188.04±61.87 0.49±0.02 �0.40±0.01 842.63±36.16
(10,1,0) 19.77±1.35 25,882.17±686.76 0.53±0.05 0.38±0.02 855.28±38.66
�(10,1,1) �20.57±0.62 �29,196.12±53.72 �0.48±0.02 �0.40±0.01 �836.76±34.35
(10,1,2) 20.53±0.74 29,195.16±55.44 �0.48±0.02 �0.40±0.01 837.62±31.57
(10,1,5) 20.50±0.73 29,176.01±79.45 0.49±0.02 �0.40±0.01 969.39±44.37

Dataset 2 30 %
(50,0,1) �47.41±5.87 �234,609.66±1,689.93 �0.69±0.06 0.41±0.04 618,755.93±26,695.67
(50,1,0) 38.12±5.15 111,445.99±3,602.45 0.79±0.06 0.35±0.05 �490,487.56±24,849.13
(50,1,1) 45.74±5.65 234,212.10±2,000.59 �0.69±0.06 �0.42±0.04 630,320.35±31,083.56
�(50,1,2) 47.12±5.44 234,583.42±1,710.00 0.68±0.06 0.41±0.04 616,873.55±21,983.20
(50,1,5) 45.30±4.72 234,354.84±1,881.55 0.68±0.07 0.41±0.04 646,635.17±30,675.35

Dataset 2 50 %
(50,0,1) 57.72±5.16 527,407.75±3,107.23 0.67±0.07 �0.44±0.04 771,106.11±37,794.04
(50,1,0) �63.17±5.89 334,719.66±5,059.43 0.74±0.06 0.34±0.03 919,818.36±45,425.92
(50,1,1) 57.76±5.37 527,577.63±3,002.42 �0.65±0.07 0.43±0.03 �768,485.74±34,399.04
�(50,1,2) 57.68±5.69 �527,685.22±2,738.50 0.66±0.06 0.43±0.04 770,221.21±37,331.73
(50,1,5) 57.38±5.01 527,682.14±2,663.33 0.66±0.06 0.43±0.03 812,531.72±47,958.66

Dataset 2 70 %
(50,0,1) 70.92±5.78 902,040.57±4,206.39 0.64±0.05 0.45±0.03 908,792.96±56,879.39
(50,1,0) 84.45±6.95 674,078.31±6,146.74 0.72±0.04 0.34±0.03 1,227,042.34±75,250.72
(50,1,1) 70.05±4.89 902,380.79±3,655.72 0.63±0.06 0.44±0.03 914,333.94±63,482.50
�(50,1,2) �70.98±5.27 �902,769.29±3,141.76 �0.61±0.06 0.45±0.03 �881,950.91±54,188.14
(50,1,5) 69.18±4.52 901,764.91±3,425.91 0.63±0.05 0.45±0.03 914,228.95±50,084.02

Iterations = 100, ρ = 0.01,q0 = 0.95
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