
DOI 10.1007/s10664-013-9274-8

Studying the relationship between logging
characteristics and the code quality
of platform software

Weiyi Shang · Meiyappan Nagappan ·
Ahmed E. Hassan

© Springer Science+Business Media New York 2013

Abstract Platform software plays an important role in speeding up the development
of large scale applications. Such platforms provide functionalities and abstraction on
which applications can be rapidly developed and easily deployed. Hadoop and JBoss
are examples of popular open source platform software. Such platform software
generate logs to assist operators in monitoring the applications that run on them.
These logs capture the doubts, concerns, and needs of developers and operators of
platform software. We believe that such logs can be used to better understand code
quality. However, logging characteristics and their relation to quality has never been
explored. In this paper, we sought to empirically study this relation through a case
study on four releases of Hadoop and JBoss. Our findings show that files with logging
statements have higher post-release defect densities than those without logging
statements in 7 out of 8 studied releases. Inspired by prior studies on code quality,
we defined log-related product metrics, such as the number of log lines in a file, and
log-related process metrics such as the number of changed log lines. We find that the
correlations between our log-related metrics and post-release defects are as strong as
their correlations with traditional process metrics, such as the number of pre-release
defects, which is known to be one the metrics with the strongest correlation with post-
release defects. We also find that log-related metrics can complement traditional
product and process metrics resulting in up to 40 % improvement in explanatory
power of defect proneness. Our results show that logging characteristics provide

Communicated by: Sunghun Kim

W. Shang (B) · M. Nagappan · A. E. Hassan
Software Analysis and Intelligence Lab (SAIL),
Queen’s University,
Kingston, ON, Canada
e-mail: swy@cs.queensu.ca

M. Nagappan
e-mail: mei@cs.queensu.ca

A. E. Hassan
e-mail: ahmed@cs.queensu.ca

Published online: 8 201September 3

Empir Software Eng (201) :1–275 20

strong indicators of defect-prone source code files. However, we note that removing
logs is not the answer to better code quality. Instead, our results show that it might
be the case that developers often relay their concerns about a piece of code through
logs. Hence, code quality improvement efforts (e.g., testing and inspection) should
focus more on the source code files with large amounts of logs or with large amounts
of log churn.

Keywords Mining software repositories · Software logs · Software quality

1 Introduction

Large platform software provides an infrastructure for a large number of applications
to run over it. Hadoop and JBoss are examples of popular open source platform
software. Such software relies heavily on logs to monitor the execution of the applica-
tions running on top of it. These logs are generated at run-time by logging statements
in the source code. Generating logs during the execution plays an essential role in
field debugging and support activities. These logs are not only for the convenience
of developers and operators, but has already become part of legal requirements.
For example, the Sarbanes–Oxley Act of 2002 (http://www.soxlaw.com/) stipulates
that the execution of telecommunication and financial applications must be logged.
Although logs are widely used in practice, and their importance has been well-
identified in prior software engineering research (Shang et al. 2011; Yuan et al. 2012),
logs have not yet been fully leveraged by empirical software engineering researchers
to study code quality.

We believe that logs capture developers’ concerns and doubts about the code.
Developers tend to embed more logging statements to track the run-time behaviour
of complex and critical points of code. For example, one developer commented on
a bug report (HADOOP-24901) of Hadoop, as follows: “...add some debug output ...
so can get more info on why TestScanner2 hangs on cluster startup.”

Logs also contain rich knowledge from the field. Operators of platform software
often need to track information that is relevant from an operational point of
view. For example, a user of Hadoop submitted a bug report (HADOOP-10342)
complaining about the limited amount of logging. In the description of the bug
report, the user mentions, “Only IOException is catched and logged (in warn). Every
Throwable should be logged in error”.

To meet this need for run-time information, developers and operators record
note-worthy system events, including domain-level and implementation-level events
in the logs. In many cases, logs are expected to be leveraged for fixing issues, with
additional analyses and diagnoses. Therefore the inclusion of more logs in a source
code file by a developer could be an indicator that this particular piece of source code
is more critical. Hence, there could be a direct link between logging characteristics
and code quality. However, except for individual experiences and observations,

1https://issues.apache.org/jira/browse/HADOOP-2490 last checked on May 2013.
2https://issues.apache.org/jira/browse/HADOOP-1034 last checked on May 2013.

Empir Software Eng (201) :1–275 202

http://www.soxlaw.com/
https://issues.apache.org/jira/browse/HADOOP-2490
https://issues.apache.org/jira/browse/HADOOP-1034

there are no empirical studies that attempt to understand the relationship between
logs and code quality. In this paper we seek to study the relationship between the
characteristic of logs, such as log density and log churn, and code quality, especially
for large platform software. We use post-release defects as a measurement of code
quality since it is one of the most important and widely studied aspects of it (Shihab
2012). In order to study this relationship, we perform a case study on four releases
of Hadoop and four releases of JBoss. In particular, we aim to answer the following
research questions:

RQ1: Are source code files with logging statements more defect-prone?

We find that source code files (i.e., files) with logging statements have higher
average post-release defect densities than those without logging statements in 7 out
of 8 studied releases. We also find positive correlations between our log-related
metrics and post-release defects. In 7 out of 8 releases, the largest correlations
between log-related metrics and post-release defects are larger or same as the
correlation between post-release defects and pre-release defects, which prior studies
have shown to have the highest correlation to post-release defects. The correlation
between average log churn (number of change log statements in a commit) and
post-release defects is the largest among our log-related metrics. Such correlation
provides support to our intuition about the developers’ tendency to add more logs in
the source code files that they feel are more defect-prone than others.

RQ2: Can log-related metrics help in explaining post-release defects?

We find that our log-related metrics provide up to 40 % improvement over
traditional product and process metrics in explaining post-release defects (i.e.,
explanatory power).

This paper is the first work to establish an empirical link between logs and defects.
We observe positive correlation between logging characteristics and post-release
defects in all studied releases. Therefore, practitioners should allocate more effort
on source code files with more logs or log churn. However, such positive correlations
do not imply that logs are harmful or that they should be removed. For instance, prior
research has shown that files with high churn are more defect prone (Nagappan and
Ball 2007; Nagappan et al. 2006). Such studies do not imply that we should not change
files. Instead, our study along with prior studies provide indicators to flag high-risk
files that should be carefully examined (tested and/or reviewed) prior to release in
order to avoid post-release defects.

The rest of this paper is organized as follows: Section 2 presents a qualitative study
to motivate this paper. Section 3 presents the background and related research for
this paper. Section 4 presents our new log-related metrics. Section 5 presents the
design and data preparation steps for our case study. Section 6 presents the results of
our case study and details the answers to our research questions. Section 7 discusses
the threats to validity of our study. Finally, Section 8 concludes the paper.

2 Motivating Study

In order to better understand how developers make use of logs, we performed a
qualitative study. We first collected all commits that had logging statement changes

Empir Software Eng (201) :1–275 20 3

Table 1 Distribution of log churns reasons

Hadoop (%) JBoss (%)

Field debugging 32 16
Change of feature 59 75
Inaccurate logging level 0 7
Logs that are not required 9 2

in Hadoop release 0.16.0 to release 0.19.0 and JBoss release 3.0 to release 4.2. We
then selected a 5 % random sample (280 commits for Hadoop and 420 commits
for JBoss) from all the collected commits with logging statement changes. Once we
extracted the commit messages from the sample commits, we follow an iterative
process similar to the one from Seaman et al. (2008) to identify the reasons that
developers change the logging statements in source code, until we could not find any
new reasons. We identified four reasons using this process and their distributions are
reported in Table 1. These four reasons are described below:

– Field debugging: Developers often use logs to diagnose run-time or field defects.
For example, the commit message of revision 954,705 of Hadoop says: “Region
Server should never abort without an informative log message”. Looking through
the source code, we observed that the Region Server would abort without
any logs. In this revision, the developer added logging statements to output
the reason for aborting. Developers also change logging statements when they
need logs, to diagnose pre-release defects. For example, the commit message of
revision 636,972 of Hadoop says: “Improve the log message; last night I saw an
instance of this message: i.e. we asked to sleep 3 s but we slept <30 s”.

– Change of feature: Developers add and change logs when they change features.
For example, in revision 697,068 of Hadoop, developer added a new “KILLED”
status for the job status of Hadoop jobs and adapted the logs for the new job
status. Changing logs due the change of feature is the most common reason for
log churn.

– Inaccurate logging level: Developers sometimes change logging levels because
of an inaccurate logging level. For example, developers of JBoss changed the
logging level at revision 29,449 with the commit message “Resolves (JBAS-
1571) Logging of cluster rpc method exceptions at warn level is incorrect.”. The
discussion of the issue report “JBAS-1571” shows that the developers considered
the logged exception as a normal behaviour of the system and the logging level
was changed from “warn” to “trace”.

– Logs that are not required: Developers often think that logs used for debugging
are redundant after the defect is fixed and they remove logs after using them
for debugging. For example, the commit message of revision 612,025 of Hadoop
says: “Remove chatty debug logging from 2,443 patch”.

Our motivating study shows that developers change logs for many reasons, such as
debugging a feature in the field or when they are confident about a feature. Hence,
we believe there is value in empirically studying the relationship between logging
characteristics and code quality.

Empir Software Eng (201) :1–275 204

3 Background and Related Work

We now describe prior research that is related to this paper. We focus on prior work
along two dimensions: (1) log analysis and (2) software defect modeling.

3.1 Log Analysis

In the research area of computer systems, logs are extensively used to detect system
anomalies and performance issues. Xu et al. (2009) created features based on
the constant and variable parts of log messages and applied Principal Component
Analysis (PCA) to detect abnormal behaviours. Tan et al. introduced SALSA, an
approach to automatically analyze logs from distributed computing platforms for
constructing and detecting anomalies in state-machine views of the execution of a
system across machines (Tan et al. 2008).

Yuan et al. (2011) propose a tool named Log Enhancer, which automatically adds
more context to log lines. Recent work by Beschastnikh et al. (2011) designed an
automated tool that infers execution models from logs. The models can be used by
developers to verify and diagnose bugs. Jiang et al. design log analysis techniques to
assist in identifying functional anomalies and performance degradations during load
tests (Jiang et al. 2008, 2009). Jiang et al. (2009) study the characteristics of customer
problem troubleshooting by the use of storage system logs. They observed that the
customer problems with attached logs were resolved sooner than those without logs.

A workshop named “Managing Large-Scale Systems via the Analysis of System
Logs and the Application of Machine Learning Techniques”3 is organized every year.
One of the problems that the workshop aims to address is leveraging the analysis of
system logs to assist in managing large software systems.

The existing research of log analysis demonstrates the wide use of logs in soft-
ware development and operation. However, in the aforementioned research, the
researchers look at the logs collected at run time, whereas in our paper we look at
the logging code present in the source code in order to establish an empirical link
between logging characteristics and code quality. Therefore, the wide usage of logs
in software and the lack of sufficient research motivates us to study the relationship
between logging characteristics and code quality in this paper.

A recent work by Yuan et al. (2012) study the logging characteristics in 4 open
source systems. They quantify the pervasiveness and the benefit of software logging.
They also find that developers modify logs because they often cannot get the correct
log message on the first attempt. Our previous research (Shang et al. 2011, 2013)
study the evolution of logs from both static logging statements and log lines outputted
during run time. We find that logs are often modified by developers without con-
sidering the needs of operators. The findings from these previous studies motivates
this work. However, previous studies only empirically study the characteristics of
logs, but do not establish an empirical link with code quality. This paper focus
on empirically studying the relationship of such logging characteristics and code
quality.

3http://sosp2011.gsd.inesc-id.pt/workshops/slaml, last checked on December 2012.

Empir Software Eng (201) :1–275 20 5

http://sosp2011.gsd.inesc-id.pt/workshops/slaml

3.2 Software Defect Modeling

Software engineering researchers have built models to understand the rationale
behind software defects. Practitioners use such models to improve their processes
and to improve the quality of their software systems. Fenton and Neil (1999) provide
a critical review on software defect prediction models. They recommend holistic
models for software defect prediction, using Bayesian belief networks. Hall et al.
(2012) recently conduct a systematic review on defect prediction models. They find
the methodology used to build models seems to influence predictive performance.
Prior research typically builds models using two families of software metrics:

– Product metrics: Product metrics are typically calculated from source code.

– Traditional product metrics: Early work by Ohlsson and Alberg (1996)
build defect models using complexity metrics. Nagappan et al. (2006) also
performed case studies to understand the relationship between source code
complexity and software defects. Several studies found complexity metrics
were correlated to software defects although no single set of metrics can
explain defects for all projects (Nagappan et al. 2006).

– Code dependency metrics: Prior research investigates the relationship be-
tween defects and code dependencies. Zimmermann and Nagappan (2008)
find code complexity metrics have slightly higher correlation to defects than
dependency metrics. However, the dependency metrics perform better than
complexity metrics in predicting defects. Nguyen et al. (2010) replicate the
prior study and find that a small subset of dependency metrics have a large
impact on post-release failures, while other dependency metrics have a very
limited impact.

– Topic metrics: A few recent studies have tried to establish a link between
topics and defects. Liu et al. (2009) proposed to model class cohesions by
latent topics. They propose a new metric named Maximal Weighted Entropy
(MWE) to measure the conceptual aspects of class cohesion. Nguyen et al.
(2011) apply Latent Dirichlet Allocation (LDA) (Blei et al. 2003) to the
subject systems using K = 5 topics, and for each source code entity they
multiply the topic memberships by the entity’s LOC. They provide evidence
that topic-related metrics can assist in explaining defects. Instead of focusing
on the cohesiveness of topics in a entity, Chen et al. (2012) proposed metrics
focus on the defect-prone topics in a code entity. They find that some topics
are much more defect-prone than others and the more defect-prone topics a
code entity has, the higher are the chances that it has defects.

– Process metrics: Process metrics leverage historical project knowledge. Exam-
ples of process metrics are prior defects and prior commits (code churn).

– Traditional process metrics: Several studies showed that process metrics,
such as prior commits and prior defects, better explain software defects
than product metrics (i.e., provide better statistical explanatory power)
(Bettenburg and Hassan 2010; Moser et al. 2008; Nagappan and Ball 2005,
2007). Hassan (2009) used the complexity of source code changes to explain
defects. He found that the number of prior defects was a better metric to
explain software defects than prior changes. A recent study by Rahman and

Empir Software Eng (201) :1–275 206

Devanbu (2013) analyze the applicability and efficacy of process and product
metrics from several different perspectives. They find that process metrics
are generally more useful than product metrics.

– Social structure metrics: Studies have been conducted to investigate the
relationship between social structure and software defects. Wolf et al. (2009)
carry out a case study to predict build failures by inter-developer communi-
cation. Pinzger et al. (2008) and Meneely et al. (2008) use social network
metrics to predict software defects. Bacchelli et al. (2010) investigate the
use of code popularity metrics obtained from email communication among
developers for defect prediction. Recent work by Bettenburg and Hassan
(2010, 2013) uses a variety of measures of social information to study
relationships between these measures and code quality.

– Ownership metrics: There is previous defect modeling research focusing on
the ownership and developers’ expertise of source code. Early work by
Mockus and Weiss (2000) define a metric to measure developers’ experi-
ence on a particular modification request. They use this metric to predict
defect. Bird et al. focus on the low-expertise developers. They find that
the contribution from low-expertise developers play a big role in the defect
prediction model. Rahman and Devanbu (2011) find that stronger ownership
by a single author is associated with implicated code. Recent work by Posnett
et al. (2013) propose to use module activity focus and developers’ attention
focus to measure code ownership and developers’ expertise. They find that
more focused developers are less likely to introduce defects than less focused
developers, and files that receive narrowly focused activity are more likely
to contain defects than files that receive widely focused activities.

Due to the limitation of version control systems, most research on defect
modeling extract the process metrics on a code-commit level. Mylyn4 is a tool
that can record developers’ activity in IDE. Using Mylyn enables researchers to
investigate finer-level process metrics. For example, Zhang et al. (2012) leverage
data generated by Mylyn to investigate the effect of file editing patterns on code
quality.

Studies show that most product metrics are highly correlated to each other, and
so are process metrics (Shihab et al. 2010). Among all the product metrics, lines of
code has been shown to typically be the best metric to explain post-release defects
(Herraiz and Hassan 2010). On the other hand, prior commits and pre-release defects
are the best metrics among process metrics to explain post-release defects (Graves
et al. 2000). Prior research rarely considers comments. However, a relatively recent
empirical study by Ibrahim et al. (2012) studied the relationship between code
comments and code quality. They find that a code change in which a function and its
comment are co-updated inconsistently (i.e., they are not co-updated when they have
been frequently co-updated in the past, or vice versa), is a risky change. Hence they
have shown an empirical link between commenting characteristics and code quality.
Similarly, the goal of this paper is to investigate and establish an empirical link
between logging characteristics and code quality (quantified through post-release
defects).

4http://wiki.eclipse.org/Mylyn last checked on May 2013.

Empir Software Eng (201) :1–275 20 7

http://wiki.eclipse.org/Mylyn

4 Log-related Metrics

Prior research has shown that product metrics (like lines of code) and process metrics
(like number of prior commits) are good indicators of code quality. Product metrics
are obtained from a single snapshot of the system, which describes the static status
of the system. On the other hand, process metrics require past information about the
system, capturing the development history of the system. Inspired by prior research,
we define log-related metrics that cover both these aspects, namely product and
process.

4.1 Log-related Product Metrics

We propose two log-related product metrics, which we explain below.

1. Log density: We calculate the number of logging statements in each file. We
consider each invocation of a logging library method as a logging statement. For
example, with Log4j (http://logging.apache.org/log4j/1.2/), a method invocation
by “LOG” and the method is one of the logging levels, e.g., “LOG.info()”, is
considered a logging statement. To factor out the influence of code size, we
calculate the log density (LOGD) of a file as:

LOGD = # of logging statements in the f ile
LOC

(1)

where LOC is the number of total lines of code in the source code file.
2. Average logging level: Logging level, such as “INFO” and “DEBUG”, are used

to filter logs based on their purposes. Intuitively, high-level logs are for system
operators and lower-level logs are for development purposes (Gilstrap 2002).
We transform the logging level of each logging statement into a quantitative
measurement. We consider all log levels including “TRACE”, “DEBUG”,
“INFO”, “WARN”, “ERROR”, “FATAL”. We consider that the lowest logging
level is 1 and the value of each higher logging level increases by 1. For example,
the lowest logging level in Log4j is “TRACE”, therefore we consider the value of
the “TRACE” level as 1. One level above “TRACE” is “DEBUG”, so the value
of a “DEBUG” level logging statement is 2. We calculate the average logging-
level (LEVELD) of each source code file as

LEV ELD =

n∑

i=1
logging level valuei

n
(2)

where n is the total number of logging statements in the source code file and
logging level valuei is the logging level value of the ith logging statement in the
source code file. The higher-level logs are used typically by administrators and
lower-level logs are used by developers and testers. Hence the log level acts as
an indicator of the users of the logs. Our intuition behind this metric is that some
log levels are better indicators of defects.

Empir Software Eng (201) :1–275 208

http://logging.apache.org/log4j/1.2/

4.2 Log-related Process Metrics

We propose two log-related process metrics, which we explain below.

1. Average number of log lines added or deleted in a commit: We calculate the
average amount of added and deleted logging statements in each file prior to
release (LOGADD and LOGDEL).

LOGADD =

T PC∑

i=1
added logging statementsi

T PC
(3)

LOGDEL =

T PC∑

i=1
deleted logging statementsi

T PC
(4)

where T PC is the number of total prior commits to a file. Similar to log-
related product metrics which were normalized, we normalize the log-related
process metrics using T PC. # added logging statementsi or # deleted logging
statementsi is the number of added or deleted logging statements in revision i.
The intuition behind this metric is that updating logging statements frequently
may be caused by extensive debugging or changes to the implementation of
software components, which both may correlate to software defects.

2. Frequency of defect-fixing code changes with log churn: We calculate the number
of defect-fixing commits in which there was log churn. We calculated this metric
(FCOC) as:

FCOC = N(def ect f ixing commits ∩ log churning commits)
T PC

(5)

where N(def ect f ixing commits ∩ log changing commits) is the number of bug-
fixing commits in which there was log churn. The intuition behind this metric
is that developers may not be 100 % confident of their fix to a defect. There-
fore, they might add some new logs or update old logs. Adding new logging
statements, deleting existing logging statements, and adding new information to
existing logging statements are all counted as log churn in this metric.

5 Case Study Setup

To study the relation between logging characteristics and code quality, we conduct
case studies on two large and widely used open-source platform software:

– Hadoop (http://hadoop.apache.org) is a large distributed data processing plat-
form that implements the MapReduce (Dean and Ghemawat 2008) data-
processing paradigm. We use 4 releases (0.16.0 to 0.19.0) of Hadoop in our case
study.

– JBoss Application Server (http://www.jboss.org/jbossas) (referred as “JBoss” in
the rest of this paper) is one of the most popular Java EE application servers.
We use 4 releases (3.0 to 4.2) of JBoss in our case study.

Empir Software Eng (201) :1–275 20 9

http://hadoop.apache.org
http://www.jboss.org/jbossas

Table 2 Overview of subject systems

Release # changed files # defects

Hadoop 0.16.0 1,211 98
0.17.0 1,899 180
0.18.0 3,084 218
0.19.0 3,579 175

JBoss 3.0 9,050 1,166
3.2 25,289 1,108
4.0 36,473 1,233
4.2 126,127 3,578

The goal of our study is to examine the relationship between our proposed
log-related metrics and post-release defects. Previous studies of software defects
(Bettenburg and Hassan 2010; Shihab et al. 2010) typically use an Eclipse data set
provided by Zimmermann et al. (2007). We do not use this data set since we are inter-
ested in platform software, where logging is more prominent. Eclipse does not have
substantial logging code, therefore, Eclipse is not an optimal subject system for our
study. Hadoop and JBoss are two of the largest and widely used platform software.
Both generate large amounts of logs during their execution, and tools have been
developed to monitor the status of both systems using their extensive logs (Rabkin
and Katz 2010; Jbossprofiler: https://community.jboss.org/wiki/JBossProfiler). To
avoid the noise from the logging statements in the unit testing code in both projects,
we exclude all the unit testing folders from our analysis. Table 2 gives an overview of
the subject systems.

Figure 1 shows a general overview of our approach. (A) We mine the SVN
repository of each subject system using a tool called J-REX (Shang et al. 2009)
to produce high-level source code change information. (B) We then identify the
log-related source code changes from the output of J-REX. (C) We calculate our
proposed log-related metrics and traditional metrics. (D) Finally, we use statistical
tools, such as R (Ihaka and Gentleman 1996), to perform experiments on the data to
answer our research questions. In the rest of this section we describe the first 2 steps
in more detail.

5.1 Extracting High-level Source Change Information

Similar to C-REX (Hassan 2005), J-REX is used to study the evolution of the source
code of Java software systems. For each subject system, we use J-REX to extract
high-level source change information from their SVN repository.

Fig. 1 Overview of our case study approach

Empir Software Eng (201) :1–275 2010

https://community.jboss.org/wiki/JBossProfiler

The approach used by J-REX is broken down into three phases:

1. Extraction: J-REX extracts source code snapshots for each Java file revision
from the SVN repository.

2. Parsing: Using the Eclipse JDT parser, J-REX outputs an abstract syntax tree
for each extracted file in XML.

3. Differencing: J-REX compares the XML documents of consecutive file revisions
to determine changed code units and generates evolutionary change data. The
results are stored in an XML document. There is one XML document for each
Java file.

As common practice in the software engineering research community, J-REX uses
defect-fixing changes (Cataldo et al. 2009; Hassan 2009; Nagappan et al. 2006) in each
source code files to approximate the number of bugs in them. The approximation is
widely adopted because (1) only fixed defects can be mapped to specific source code
files, (2) some reported defects are not real, (3) not all defects have been reported,
and (4) there are duplicate issue reports.

To determine the defect-fixing changes, J-REX uses a heuristic proposed by
Mockus and Votta (2000) on all commit messages. For example, a commit message
containing the word “fix” is considered a message from a defect-fixing revision. The
heuristic can lead to false positives, however, an evaluation of the J-REX heuris-
tics shows that these heuristics identify defect-fixing changes with high accuracy
(Barbour et al. 2011).

5.2 Identifying the Logging Statements

Software projects typically leverage logging libraries to generate logs. One of the
most widely used logging libraries is Log4j (http://logging.apache.org/log4j/1.2/). We
manually browse a sample of source code from each project and identify that both
subject systems use Log4j as their logging library.

Knowing the logging library of each subject system, we analyze the output of J-
REX to identify the logging source code fragments and changes. Typically, logging
source code contains method invocations that call the logging library. For example,
in Hadoop and JBoss, a method invocation by “LOG” with a method name as one of
the logging levels is considered a logging statement. We count every such invocation
as a logging statement.

6 Case Study Results

We now present the results of our case study. For each research question, we discuss
the motivation for the question, the approach used to address the question and our
experimental results. For our case study, we examine the code quality at the file level.

6.1 Preliminary Analysis

We start with a preliminary analysis of the log-related metrics presented in Section 5
to illustrate the general properties of the collected metrics.

Empir Software Eng (201) :1–275 20 11

http://logging.apache.org/log4j/1.2/

Table 3 Lines of code, code churn, amounts of logging statements, log churns, percentage of files
with logging, percentage of files with pre-release defects, and percentage of files with post-release
defects over the releases of Hadoop and JBoss

Hadoop JBoss

0.16.0 0.17.0 0.18.0 0.19.0 3.0 3.2 4.0 4.2

Lines of code 133 K 108 K 119 K 169 K 321 K 351 K 570 K 552 K
Code churn 7 k 10 k 9 k 12 k 489 k 260 k 346 k 170 K
Logging statements 563 881 1,278 1,678 2,438 3,716 5,605 10,379
Log churn 601 2,136 2,272 1,579 6,233 5,357 5,966 18,614
Percentage of files 18 % 26 % 25 % 28 % 27 % 23 % 24 % 23 %

with logging
Percentage of files 16 % 26 % 27 % 42 % 50 % 34 % 27 % 31 %

pre-release defects
Percentage of files with 34 % 27 % 46 % 29 % 45 % 34 % 33 % 26 %

post-release defects

In the preliminary analysis we calculate seven aggregated metrics for each release
of both subject systems: total lines of code, total code churn (total added, deleted and
modified lines of code), total number of logging statements, total log churn (total
added and deleted logging statements), percentage of source code files with logs,
percentage of source code files with pre-release defects, and percentage of source
code files with post-release defects. Table 3 shows that around 18 to 28 % of the
source code files contain logging statements. Since less than 30 % of the source code
files have logs, we calculate the skew and Kurtosis values for our log-related metrics.
We observe that our log-related metrics have positive skew (i.e., all the metric values
are on the low scale) and large Kurtosis values (i.e., the curve is too tall). To alleviate
the bias caused by these high skew and Kurtosis values, we follow a typical approach
used in previous research (Shihab et al. 2010): to log transform all of the metrics.
From this point on, whenever we mention a metric, we actually are referring to its
log transformed value.

6.2 Results

RQ1. Are source code files with logging statements more defect-prone?

Motivation: Our qualitative study in Section 2 shows that software developers often
add or modify logs to diagnose and fix software defects. We want to first explore the
data to study whether source code files with logging statements are more likely to be
defect-prone.

Approach: First, we calculate the post-release defect densities of each source code
file in each of the studied releases. We compare the average defect density of source
code files with and without logging statements. Then, we perform independent
two-sample unpaired one-tailed T tests to determine whether the average defect-
densities for source code files with logs are statistically greater than the average
defect-densities for source code files without logs. Finally, we calculate the Spearman
correlation between our log-related metrics and post-release defects to determine if
our metrics lead to similar prioritization (i.e., similar order) with source code files
with more bugs having higher metric values.

Empir Software Eng (201) :1–275 2012

Table 4 Average defect densities of the source code files with and without logging statements in the
studied releases

Hadoop JBoss

0.16.0 0.17.0 0.18.0 0.19.0 3.0 3.2 4.0 4.2

With 0.116 0.142 0.249 0.140 0.172 0.145 0.101 0.092
logging

Without 0.095 0.083 0.250 0.124 0.122 0.101 0.075 0.090
logging

Statistically Yes Yes No No Yes Yes Yes No
significant

Largest defect densities are shown in bold. The p-value for significance test is 0.05

Results and discussion:

We find that source code files with logging statements are more defect-prone

Table 4 shows the average post-release defect densities of source code files with and
without logging statements. The results show that in 7 out of the 8 studied releases,
source code files with logging statements have higher average post-release defect
densities than source code files without logging statements.

We use independent two-sample unpaired one-tailed T tests to determine whether
the average defect density of source code files with logs was statistically greater than
those without logs. Our null hypothesis assumes that the average post-release defect
densities of source code files with and without logging statements are similar. Our
alternate hypothesis was that the average defect density of source code files with logs
was statistically greater than those without logs. For 5 of the 7 releases where source
code files with logs have higher defect density, the p-values are smaller than 0.05 (see
Table 4). We reject the null hypothesis and can conclude that in these 5 releases, the
average defect density of source code files with logs is greater than those without
logs.

We examine in detail the release 0.18.0 of Hadoop, which is the exception where
the average defect densities of source code files with and without logs are similar.
We found that there is a structural change in Hadoop before release 0.18.0 and that a
large number of defects appear after this release (largest percentage of defect-prone
source code files in Hadoop as shown in Table 3). This might be the reason that in
release 0.18.0 of Hadoop, the software source code files with logging statements are
not more defect-prone.

Log-related metrics have positive correlation with post-release defects

Table 5 presents the Spearman correlations between our log-related metrics and
post-release defects. We find that, in 7 out of 8 releases, the largest correlations
between log-related metrics and post-release defects are similar (3 releases with a
+/− 0.03 value) or higher than the correlations between pre-release defects and
post-release defects. Since the number of pre-release defects is known to have a
positive correlation with post-release defects, this observation supports our intuition
of studying the relation between logging characteristics and code quality.

For the only exception (release 3.0 of JBoss), we examine the results more closely
and find that the correlation between log-related metrics and post-release defects in
this version of JBoss is not very different from the other releases of JBoss. However,

Empir Software Eng (201) :1–275 20 13

Table 5 Spearman correlation between log-related metrics and post-release defects. Largest number
in each release is shown in bold

Hadoop

0.16.0 0.17.0 0.18.0 0.19.0

LOGD 0.36 0.26 0.24 0.24
LEVELD 0.36 0.25 0.22 0.23
LOGADD 0.42 0.27 0.28 0.24
LOGDEL 0.23 0.09 0.21 0.10
FCOC 0.25 0.30 0.18 0.17
PRE 0.15 0.27 0.25 0.12

JBoss

3.0 3.2 4.0 4.2

LOGD 0.26 0.26 0.21 0.13
LEVELD 0.26 0.27 0.22 0.13
LOGADD 0.34 0.29 0.59 0.19
LOGDEL 0.34 0.18 0.42 0.13
FCOC 0.23 0.20 0.20 0.14
PRE 0.40 0.22 0.21 0.22

the correlation between pre-release defects and post-release defects in this version of
JBoss is much higher even when compared to the other releases of JBoss. On further
analysis of the data, we found that in release 3.0 of JBoss, up to 50 % more files (as
compared to other releases) had pre-release defects. Therefore, we think that this
might be the reason that the correlation between pre-release defect and post-release
defects in release 3.0 of JBoss is higher than the correlation between post-release
defects and our log-related metrics.

Density of logging statements added has higher correlation with post-release defects
than density of logging statements deleted

We find that the average logging statements added in a commit has the largest
correlation with post-release defects in 5 out of 8 releases, while the correlation
between the average deleted logging statements in a commit and post-release defects
is much lower than the other log-related metrics (see Table 5). We count the number
of added and deleted logging statements in source code files with and without defects
separately. We find that in Hadoop, the total lines of code ratio between defect-
prone source code files and non defect-prone source code files is 1.03; while the
number of logging statements added in defect-prone source code files (2,309) is
around 3 times that of the number of logging statements added (736) in non defect-
prone source code files. This shows that there exists a relation between logs and
defect-prone source code files. However, the number of logging statements deleted
in defect-prone source code files (268) is only around 2 times that of the number
of logging statements deleted in non defect-prone source code files(124). Therefore,
even though developers delete more log lines in defect-prone source code files, the
ratio with non defect-prone source code files is much lower in comparison to the
ratio for log lines added. Hence, this shows that the developers may delete logs when
they feel confident with their source code files. Concrete examples of such logging
behaviour has been presented in Section 2.

Empir Software Eng (201) :1–275 2014

Summary: We find that in 7 out of 8 studied releases, source code files with logging
statements have higher average post-release defect densities than those without
logging statements. In 5 of these 7 releases, the differences of average defect density
between the source code files with and without logs are statistically significant. The
correlations between log-related metrics and post-release defects are similar to the
correlations between post-release defects and pre-release defects (one of the highest
correlated metrics to post-release defects). Among the log-related metrics, average
logging statements added in a commit has the highest correlation with post-release
defects.

�

�

�

�

Source code f iles with logging statements tend to be more defect-prone.

RQ2. Can log-related metrics help in explaining post-release defects?

Motivation: In the previous research question, we show the correlation between
logging characteristics and post-release defects. However there is chance that such
correlations may be due to other factors, such as lines of code being correlated to
both the logging characteristics and post-release defects. To further understand the
relationship between logging characteristics and post-release defects, in this research
question, we control for factors that are known to be the best explainers of post-
release defects, i.e., lines of code, pre-release defects, and code churn. In particular,
we would like to find out whether we can complement the ability of traditional
software metrics in explaining post-release defects by using logging characteristics
(i.e., our proposed log-related product and process metrics).

Approach: We use logistic regression models to study the explanatory power of our
log-related metrics on post-release defects. However, previous studies show that
traditional metrics, such as lines of code (LOC), code churn or the total number
of prior commits (TPC), and the number of prior defects (PRE), are effective in
explaining post-release software defects (Graves et al. 2000; Nagappan et al. 2006).
Therefore, we included these metrics as well in the logistic regression models. Note
that many other product and process software metrics are highly correlated with each
other (Shihab et al. 2010). To avoid the collinearity between TPC and PRE, we run

Table 6 Spearman correlation between the two log-related product metrics: log density (LOGD)
and average logging level (LEVELD), and the three log-related process metrics: average logging
statements added in a commit (LOGADD), average logging statements deleted in a commit
(LOGDEL), and frequency of defect-fixing code changes with log churn (FCOC)

Hadoop JBoss

0.16.0 0.17.0 0.18.0 0.19.0 3.0 3.2 4.0 4.2

LOGD and LEVELD 0.74 0.62 0.41 0.64 0.58 0.16 0.19 0.26
LOGADD and FCOC 0.49 0.46 0.69 0.47 0.68 0.58 0.59 0.56
LOGDEL and FCOC 0.25 0.36 0.48 0.18 0.48 0.43 0.43 0.36
LOGADD and LOGDEL 0.56 0.50 0.59 0.55 0.59 0.52 0.54 0.55

Empir Software Eng (201) :1–275 20 15

PCA on TPC and PRE and use the first component as a new metric, which we call
TPCPRE:

T PCPRE = PCA(T PC, PRE)firstcomponent (6)

Before building the logistic regression models, we study the Spearman correlation
between the two log-related product metrics and the three log-related process
metrics. From the results in Table 6, we find that in some releases, the correlations
between the two log-related product metrics and between the three log-related
process logging metrics are high.

To address the collinearity as noted in Table 6, we derive two new metrics: a log-
related product metric (PRODUCT) and a log-related process metric (PROCESS),
to capture the product and process aspects of logging respectively. To compute
the two new metrics, we ran Principal Component Analysis (PCA) (Jackson and
Wiley 1991) once on the log-related product metrics (i.e., log density and average
logging level), and another time on the log-related process metrics (average logging
statements added in a commit and frequency of defect-fixing code changes with
log churn) (Harrell 2001). Since the previous section shows that average deleted
logging statements (LOGDEL) has rather low correlation with post-release defect
(see Table 5), we decided not to include LOGDEL in the rest of our analysis and
models. From each PCA run, we use the first principal component as our new metric.

PRODUCT = PCA(LOGD, LEV ELD)firstcomponent (7)

PROCESS = PCA(LOGADD, FCOC)firstcomponent (8)

We used the two combined metrics (PRODUCT and PROCESS) for the rest of the
paper, so that we can build the same models across releases without worrying about
the impact of collinearity on our results.

We want to see whether the log-related metrics can complement traditional
product and process based software metrics in providing additional explanatory
power. The overview of the models is shown in Fig. 2. We start with three baseline
models that use these best-performing traditional metrics as independent variables.

– Base(LOC): The first base model is built using lines of code as an independent
variable to measure the explanatory power of traditional product metrics.

– Base(TPCPRE): The second base model is built using a combination of pre-
release defects and prior changes as independent variables to measure the
explanatory power of traditional process metrics.

– Base(LOC+TPCPRE): The third base model is built using lines of code and the
combination of pre-release defects and prior changes as independent variables to
measure the explanatory power of both traditional product and process metrics.

We then build subsequent models in which we add our log-related metrics as
independent variables.

– Base(LOC)+PRODUCT: We add our log-related product metric (PRODUCT)
to the base model of product metrics to examine the improvement in explanatory
power due to log-related product metrics.

Empir Software Eng (201) :1–275 2016

Fig. 2 Overview of the models built to answer RQ2. The results are shown in Tables 7, 8 and 9

– Base(TPCPRE)+PROCESS: We add our log-related process metric
(PROCESS) to the base model of process metrics to examine the improvement
in explanatory power due to log-related process metrics.

– Base(LOC+TPCPRE)+PRODUCT: We add log-related product metric
(PRODUCT) to the base model Base(LOC+TPCPRE) to examine the improve-
ment in explanatory power due to log-related product metrics.

– Base(LOC+TPCPRE)+PROCESS: We add log-related process metrics
(PROCESS) to the base model Base(LOC+TPCPRE) to examine the improve-
ment in explanatory power due to log-related process metrics.

– Base(LOC+TPCPRE)+PRODUCT+PROCESS: Finally, we add both
log-related product metric (PRODUCT) and log-related product metric
(PROCESS) into the base model Base(LOC+TPCPRE) to examine the
improvement in explanatory power due to both log-related metrics.

For each model, we calculate the deviance explained by the models to measure
their explanatory power. A higher percentage of deviance explained generally indi-
cates a better model fit and higher explanatory power for the independent variables.

To understand the relationship between logging characteristics and post-release
defects, we need to understand the effect of the metrics in the model. We follow
a similar approach used in prior research (Mockus 2010; Shihab et al. 2011). To
quantify this effect, we set all of the metrics in the model to their mean value and
record the predicted probabilities. Then, to measure the effect of every log metric,
we keep all of the metrics at their mean value, except for the metric whose effect
we wish to measure. We increase the value of that metric by 10 % off the mean
value and re-calculate the predicted probability. We then calculate the percentage
of difference caused by increasing the value of that metric by 10 %. The effect of
a metric can be positive or negative. A positive effect means that a higher value of
the factor increases the likelihood, whereas a negative effect means that a higher
value of the factor decreases the likelihood of the dependent variable. This approach

Empir Software Eng (201) :1–275 20 17

Table 7 Deviance explained (%) improvement for product software metrics by logistic regression
models

Hadoop

0.16.0 0.17.0 0.18.0 0.19.0

Base(LOC) 14.37 12.74 3.23 8.14
Base+PRODUCT 15.85(+10 %)* 12.76 (+0 %) 4.62(+43 %)** 9.7(19 %)***

JBoss

3.0 3.2 4.0 4.2

Base(LOC) 5.26 5.67 4.49 2.28
Base+PRODUCT 6.25(+19 %) *** 6.41(+13 %)*** 4.93(+10 %)*** 2.56(+12 %)***

*** p < 0.001, ** p < 0.01, * p < 0.05, � p < 0.1

permits us to study metrics that are of different scales, in contrast to using odds ratios
analysis, which is commonly used in prior research (Shihab et al. 2010).

We would like to point out that although logistic regression has been used to build
accurate models for defect prediction, our purpose of using the regression model
in this paper is not for predicting post-release defects. Our purpose is to study the
explanatory power of log-related metrics and explore its empirical relation to post-
release defects.

Results and discussion:

Log-related metrics complement traditional metrics in explaining post-release
defects

Table 7 shows the results of using lines of code (LOC) as the base model. We find
that the log-related product metric (PRODUCT) provides statistically significant
improvement in 7 out of the 8 studied releases. The log-related product metric
(PRODUCT) provides up to 43 % improvement in explanatory power over the Base
(LOC) model.

Table 8 shows the results of using process metrics (TPCPRE) as the base model.
In 5 out of 8 models, the log-related process metric (PROCESS) provides statistically
significant (p < 0.05) improvement. In particular, release 0.16.0 of Hadoop has the
largest improvement (360 %) over the base model.

Table 9 shows the results of using both product and process metrics in the base
models. In all studied releases, except for release 0.17.0 of Hadoop, at least one

Table 8 Deviance explained (%) improvement for process software metrics by logistic regression
models

Hadoop

0.16.0 0.17.0 0.18.0 0.19.0

Base(TPCPRE) 2.49 8.47 4.53 2.44
Base+PROCESS 11.47(+360 %)*** 8.55 (+1 %) 5.09 (+12 %) � 3.69(+51 %)***

JBoss

3.0 3.2 4.0 4.2

Base(TPCPRE) 10.38 3.75 4.56 2.37
Base+PROCESS 10.55(+2 %) � 4.71(+26 %)*** 4.83(+6 %)*** 2.73(+15 %)***

*** p < 0.001, ** p < 0.01, * p < 0.05, � p < 0.1

Empir Software Eng (201) :1–275 2018

Table 9 Deviance explained (%) improvement using both product and process software metrics by
logistic regression models. The values are shown in bold if the model “Base+PRDUCT+PROCESS”
has at least one log metric statistically significantly

Hadoop

0.16.0 0.17.0 0.18.0 0.19.0

Base(LOC+TPCPRE) 14.69 13.34 5.3 8.32
Base+PRODUCT 16.56 (+13 %)** 13.34 (+0 %) 6.21 (+17 %)* 9.84 (+18 %)***
Base+PROCESS 19.17 (+30 %)** 13.4 (+0 %) 5.72 (+8 %) 8.85 (+6 %)*
Base+PRODUCT+ 20.5 (+40%) 13.42 (+1 %) 6.36 (+20 %) 9.98 (+20 %)

PROCESS

JBoss

3.0 3.2 4.0 4.2

Base(LOC+TPCPRE) 12.09 6.46 6.45 3.22
Base+PRODUCT 12.79 (+6 %)*** 6.98 (+8 %)*** 6.69 (+4 %)** 3.34 (+4 %)*
Base+PROCESS 12.09 (+0 %) 6.94 (+8 %)*** 6.51 (+1 %)* 3.41 (+6 %)**
Base+PRODUCT+ 12.93 (+7 %) 7.23 (+12 %) 6.73 (+4 %) 3.47(+8 %)

PROCESS

*** p < 0.001, ** p < 0.01, * p < 0.05, � p < 0.1

log-related metric is statistically significant in enhancing the base model (in bold
font). The log-related metrics provide up to 40 % of the explanatory power of the
traditional metrics.

Release 0.17.0 of Hadoop is the release where neither product nor process log-
related metrics are significant. In that release, we noted that source code files with
logs increased from 18 to 26 % (see Table 3). Some logs may be added into defect-
free source code files when there is such a large increase in logs. We performed
an independent two-sample unpaired two-sided T-test to determine whether the
average log-densities of source code files with post-release defects was statistically
different to the average log-densities of source code files without post-release defects.
The p-value of the test is 0.22. Hence there is no statistical evidence to show that the
log-densities of defect-prone and defect-free source code files differ in release 0.17.0
of Hadoop. We think this might be the reason that log-released product metrics do
not have significant explanation power in Hadoop release 0.17.0.

Table 10 Effect of log-related metrics on post-release defects. Effect is measured by setting a
metric to 110 % of its mean value, while the other metrics are kept at their mean values. The bold
font indicates that the metric is statistically significant in the Base(LOC+TPCPRE)+PRODUCT+
PROCESS model

Hadoop

0.16.0 0.17.0 0.18.0 0.19.0

PRODUCT 2.2 % −0.1 % 1.9 % 3.6 %
PROCESS 2.5 % 0 % 0.3 % 0.3 %

JBoss

3.0 3.2 4.0 4.2

PRODUCT 1.8 % 0.8 % 0.7 % 4.7 %
PROCESS −0.5 % 0.5 % 0.1 % 2.5 %

Empir Software Eng (201) :1–275 20 19

Log-related metrics have a positive effect on the likelihood of post-release defects

In Table 10 we show the effect of the PRODUCT and PROCESS metrics on post-
release defects. We measure effect by increasing the value of a metric by 10 % from
its mean value, while keeping all other metrics at their mean value in a model. We
only discuss the effect of log-related metrics that are statistically significant in model
Base(LOC+TPCPRE)+PRODUCT+PROCESS (shown in Table 9). The effects
of log-related product metric (PRODUCT) are positive. Since log-related product
metric (PRODUCT) is the combination of log density and average logging level, this
result implies that more logging statements and/or a higher logging level lead to a
higher probability of post-release defects. Table 10 shows that in all 4 releases where
the log-related process metric (PROCESS) is statistically significant, the log-related
process metric (PROCESS) has a positive effect on defect proneness. The result
shows that in some cases, developers change logs to monitor components that might
be defect-prone. For example, in revision 226,841 of Hadoop, developers enhanced
the logging statement that tracks nodes in the machine cluster to determine the
rationale for field failure of nodes in their cluster. Therefore, in some source code
files, the more logs added and/or more defect fixes with log churns, the higher the
probability that the source code file is defect-prone.

Summary: Log-related metrics complement traditional product and process metrics
in explaining post-release defects. In particular, log-related product metrics con-
tribute to an increased explanatory power in 7 out of 8 studied releases, and log-
related process metrics contribute to an increased explanatory power in 5 out of 8
studied releases. We also find that both log-related product and process metrics have
positive effect on defect proneness.

�

�

�

	

Our results show that there exists a strong relationship between logging
characteristics and code quality.

7 Threats to Validity

This section discusses the threats to the validity of our study.

External validity

Our study is performed on JBoss and Hadoop. Even though both subject systems
have years of history and large user bases, more case studies on other platform
software in other domains are needed to see whether our findings can be generalized.
There are other types of software systems that make use of logs only while the system
is under development. The logs are removed when the system is released. Even
though such systems do not benefit from the field feedback through logs, logging is
still a major approach in diagnosing and fixing defects. Our findings may generalize

Empir Software Eng (201) :1–275 2020

to such software systems. We plan to perform a study on logs of such types of
systems.

Internal validity

Our study is based on the version control repositories of the subject systems. The
quality of the data contained in the repositories can impact the internal validity of
our study.

Our analysis of the link between logs and defects cannot claim causal effects, as we
are investigating correlations, rather than conducting impact studies. The explanative
power of log-related metrics on post-release defects does not indicate that logs cause
defects. Instead, it indicates the possibility of a relation that should be studied in
depth through user studies.

The deviance explained in some of the models may appear low, however this is
expected and should not impact the conclusions. One reason for such low deviance
is that in a few releases, the percentage of source code files with defects are less than
30 % (Menzies et al. 2007; Zimmermann et al. 2010). Moreover, only around 20 %
to 30 % of the source code files contain logging statements. The deviance explained
can be increased by adding more variables to the model in RQ2, however we would
need to deal with the interaction between the added variables.

Construct validity

The heuristics to extract logging source code may not be able to extract every
logging statement in the source code. However, since the case study systems use
logging libraries to generate logs at runtime, the method in the logging statements
are consistent. Hence, this heuristic will capture all the logging statements.

Our software defect data is based on the data produced by J-REX, a software
evolution tool that generates high-level evolutionary source code change data. J-
REX uses heuristics to identify defect-fixing changes. The results of this paper are
dependent on the accuracy of the results from J-REX. We are confident in the results
from J-REX as it implements the algorithm used previously by Hassan (2008) and
Mockus and Votta (2000). However, previous research shows that the mis-classified
bug-fixing commits may introduce negative effects on the performance of prediction
techniques on post-release defects (Bird et al. 2009). We select a random sample
of 337 and 366 files for Hadoop and JBoss, respectively. Only 14 and 2 % of the
files for Hadoop and JBoss are misclassified, respectively. Both random sample sizes
achieve 95 % confidence level with a 5 % confidence interval (Smithson 2003). We
will leverage other approaches that identify bug-fixing commits, such as the data in
the issue tracking systems, to perform additional case studies in our future work to
further understand the relationship between logging characteristics and code quality.
J-REX compares the abstract syntax trees between two consecutive code revisions. A
modified logging statement is reported by J-REX as an added and a deleted logging
statement. Such limitation of J-REX may result in inaccuracy of our metrics. We
plan to leverage other techniques to extract the log-related metrics in our future case
studies.

In addition, we find that on average, there is a logging statement for every 160 and
130 lines of source code for Hadoop and JBoss, respectively. A previous study by

Empir Software Eng (201) :1–275 20 21

Yuan et al. (2011) shows that the ratio between all source code and logging code
is 30. We think the reason for such a discrepancy is that the log density metric
(LOGD) defined in this paper uses the number of logging statements instead of
lines of logging code, and the total lines of code instead of source lines of code. We
calculated the ratio between total lines of code and number of logging statements
for the four subject systems studied in prior research Yuan et al. (2011). We found
that the ratios are 155, 146, 137 and 70 for Httpd, Openssh, PostgreSQL and Squid,
respectively. Such ratios are similar to the ratios in our two studied systems. In this
paper, we extract our log-related metrics from AST. We chose to use the AST so that
we can accurately extract every invocation to a logging method. Hence due to this
choice, we can only get the number of logging statements and not number of lines of
logging code. We will compare the metric using the log density metric with the lines of
logging code and source lines of code to our log density metric (LOGD) in future case
studies.

The possibility of post-release defects can be correlated to many factors other than
just logging characteristics, such as the complexity of code and pre-release defects.
To reduce such a possibility, we included 3 control metrics (lines of code, pre-release
defects, and prior changes) that are well known to be good predictors for post-release
defects in our logistic regression model (Moser et al. 2008; Nagappan et al. 2006).
However, other factors may also have an impact on post-release defects. Future
studies should build more complex models that consider these other factors.

Source code from different components of a system may have various characteris-
tics. Logs may play different roles in components with different levels of importance.
Value and importance of code is a crucial topic, yet it has been rarely investigated.
However, this paper introduces a way to use logs as a proxy to investigate the role of
different parts of the code.

8 Conclusion

Logging is one of the most frequently-employed approaches for diagnosing and fixing
software defects. Logs are used to capture the concerns and doubts from developers
as well as operators’ needs for run-time information about the software. However,
the relationship between logging characteristics and software quality has never been
empirically studied before. This paper is a first attempt (to the best of our knowledge)
to build an empirical link between logging characteristics and software defects. The
highlights of our findings are:

– We found that source code files with logging statements have higher post-release
defect densities than those without logging statements.

– We found a positive correlation between source code files with log lines added
by developers and source code files with post-release defects.

– We found that log-related metrics complement traditional product and process
metrics in explaining post-release defects.

Our findings do not advocate the removal of logs that are a critical instrument used
by developers to understand and monitor the field quality of their software. Instead,
our findings suggest that software maintainers should allocate more preventive

Empir Software Eng (201) :1–275 2022

maintenance effort on source code files with more logs and log churn, since such
source code files might be the ones where developers and operators may have more
doubts and concerns, and hence are more defect prone.

References

Bacchelli A, D’Ambros M, Lanza M (2010) Are popular classes more defect prone? In: FASE
’10: proceedings of the 13th international conference on fundamental approaches to software
engineering. Springer, Berlin, pp 59–73

Barbour L, Khomh F, Zou Y (2011) Late propagation in software clones. In: ICSM 2011: proceedings
of the 27th IEEE international conference on software maintenance, pp 273–282

Beschastnikh I, Brun Y, Schneider S, Sloan M, Ernst MD (2011) Leveraging existing instrumentation
to automatically infer invariant-constrained models. In: ESEC/FSE ’11: proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on foundations of software
engineering. ACM, New York, pp 267–277

Bettenburg N, Hassan A (2013) Studying the impact of social interactions on software quality. Empir
Software Eng 18(2):375–431

Bettenburg N, Hassan AE (2010) Studying the impact of social structures on software quality. In:
ICPC ’10: proceedings of the 18th international conference on program comprehension. IEEE
Computer Society, Washington, pp 124–133

Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu P (2009) Fair and balanced?:
bias in bug-fix datasets. In: ESEC/FSE ’09: proceedings of the the 7th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT symposium on the foundations
of software engineering. ACM, New York, pp 121–130

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022
Cataldo M, Mockus A, Roberts JA, Herbsleb JD (2009) Software dependencies, work dependencies,

and their impact on failures. IEEE Trans Softw Eng 35:864–878
Chen TH, Thomas SW, Nagappan M, Hassan AE (2012) Explaining software defects using topic

models. In: MSR. IEEE, pp 189–198
Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM

51(1):107–113
Fenton N, Neil M (1999) A critique of software defect prediction models. IEEE Trans Softw Eng

25(5):675–689
Gilstrap BR (2002) An introduction to the java logging api. http://www.onjava.com/pub/a/onjava/

2002/06/19/log.html
Graves TL, Karr AF, Marron J, Siy H (2000) Predicting fault incidence using software change history.

IEEE Trans Softw Eng 26(7):653–661
Graves TL, Karr AF, Marron JS, Siy H (2000) Predicting fault incidence using software change

history. IEEE Trans Softw Eng 26:653–661
Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature review on fault

prediction performance in software engineering. IEEE Trans Softw Eng 38(6):1276–1304
Harrell F (2001) Regression modeling strategies with applications to linear models, logistic regres-

sion, and survival analysis. Springer
Hassan AE (2005) Mining software repositories to assist developers and support managers. Ph.D.

thesis, University of Waterloo
Hassan AE (2008) Automated classification of change messages in open source projects. In: SAC ’08:

proceedings of the 2008 ACM symposium on applied computing. ACM, New York, pp 837–841
Hassan AE (2009) Predicting faults using the complexity of code changes. In: ICSE ’09: proceed-

ings of the 2009 IEEE 31st international conference on software engineering. IEEE Computer
Society, Washington, pp 78–88

Herraiz I, Hassan A (2010) Beyond lines of code: do we need more complexity metrics? In: Oram A,
Wilson G (eds) Making software: what really works, and why we believe it? OReilly Media

Ibrahim WM, Bettenburg N, Adams B, Hassan AE (2012) On the relationship between comment
update practices and software bugs. J Syst Softw 85(10):2293–2304

Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat
5(3):299–314

Empir Software Eng (201) :1–275 20 23

http://www.onjava.com/pub/a/onjava/2002/06/19/log.html
http://www.onjava.com/pub/a/onjava/2002/06/19/log.html

Jackson J, Wiley J (1991) A user’s guide to principal components, vol 19. Wiley Online Library
Jiang W, Hu C, Pasupathy S, Kanevsky A, Li Z, Zhou Y (2009) Understanding customer problem

troubleshooting from storage system logs. In: FAST ’09: proccedings of the 7th conference on
file and storage technologies. USENIX Association, Berkeley, pp 43–56

Jiang ZM, Hassan AE, Hamann G, Flora P (2008) Automatic identification of load testing problems.
In: ICSM ’08: proc. of 24th IEEE international conference on software maintenance. IEEE,
Beijing, pp 307–316

Jiang ZM, Hassan AE, Hamann G, Flora P (2009) Automated performance analysis of load tests.
In: ICSM ’09: proc. of the 25th IEEE international conference on software maintenance. IEEE,
Edmonton, pp 125–134

Liu Y, Poshyvanyk D, Ferenc R, Gyimothy T, Chrisochoides N (2009) Modeling class cohesion as
mixtures of latent topics. In: ICSM 2009: proceedings of the 2009 IEEE international conference
on software maintenance, pp 233–242

Meneely A, Williams L, Snipes W, Osborne J (2008) Predicting failures with developer networks
and social network analysis. In: SIGSOFT ’08/FSE-16: proceedings of the 16th ACM SIGSOFT
international symposium on foundations of software engineering, SIGSOFT ’08/FSE-16. ACM,
New York, pp 13–23

Menzies T, Greenwald J, Frank A (2007) Data mining static code attributes to learn defect predictors.
IEEE Trans Softw Eng 33(1):2–13

Mockus A (2010) Organizational volatility and its effects on software defects. In: FSE ’10: proc. of
the 18th ACM SIGSOFT international symp. on foundations of software engineering. ACM,
New York, pp 117–126

Mockus A, Votta LG (2000) Identifying reasons for software changes using historic databases. In:
ICSM ’00: proceedings of the international conference on software maintenance. IEEE Com-
puter Society, Washington, pp 120–130

Mockus A, Weiss DM (2000) Predicting risk of software changes. Bell Labs Tech J 5:169–180
Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and

static code attributes for defect prediction. In: ICSE 2008: proceedings of the 30th international
conference on software engineering. ACM, New York, pp 181–190

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In:
ICSE ’05: proc. of the 27th international conference on software engineering. ACM, New York,
pp 284–292

Nagappan N, Ball T (2007) Using software dependencies and churn metrics to predict field fail-
ures: an empirical case study. In: ESEM ’07: proceedings of the 1st international symposium
on empirical software engineering and measurement. IEEE Computer Society, Washington,
pp 364–373

Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict component failures. In: ICSE ’06:
proceedings of the 28th international conference on software engineering. ACM, New York,
pp 452–461

Nguyen THD, Adams B, Hassan AE (2010) Studying the impact of dependency network measures
on software quality. In: ICSM ’10: proceedings of the 2010 IEEE international conference on
software maintenance. IEEE Computer Society, Washington, pp 1–10

Nguyen TT, Nguyen TN, Phuong TM (2011) Topic-based defect prediction (nier track). In: ICSE ’11:
proceedings of the 33rd international conference on software engineering. ACM, New York,
pp 932–935

Ohlsson N, Alberg H (1996) Predicting fault-prone software modules in telephone switches. IEEE
Trans Softw Eng 22:886–894

Pinzger M, Nagappan N, Murphy B (2008) Can developer-module networks predict failures? In:
SIGSOFT ’08/FSE-16: proceedings of the 16th ACM SIGSOFT international symposium on
foundations of software engineering. ACM, New York, pp 2–12

Posnett D, D’Souza R, Devanbu P, Filkov V (2013) Dual ecological measures of focus in software
development. In: ICSE ’13: proceedings of the 2013 international conference on software engi-
neering. IEEE Press, Piscataway, pp 452–461

Rabkin A, Katz R (2010) Chukwa: a system for reliable large-scale log collection. In: LISA’10:
proc. of the 24th international conference on large installation system administration. USENIX,
Berkeley, pp 1–15

Rahman F, Devanbu P (2011) Ownership, experience and defects: a fine-grained study of authorship.
In: ICSE ’11: proceedings of the 33rd international conference on software engineering. ACM,
New York, pp 491–500

Empir Software Eng (201) :1–275 2024

Rahman F, Devanbu P (2013) How, and why, process metrics are better. In: ICSE ’13: proceed-
ings of the 2013 international conference on software engineering. IEEE Press, Piscataway,
pp 432–441

Seaman CB, Shull F, Regardie M, Elbert D, Feldmann RL, Guo Y, Godfrey S (2008) Defect
categorization: making use of a decade of widely varying historical data. In: ESEM ’08: pro-
ceedings of the 2nd ACM-IEEE international symposium on empirical software engineering
and measurement. ACM, New York, pp 149–157

Shang W, Jiang ZM, Adams B, Hassan AE (2009) MapReduce as a general framework to support
research in Mining Software Repositories (MSR). In: MSR ’09: proceedings of 6th IEEE inter-
national working conference on Mining Software Repositories, pp 21–30

Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2011) An exploratory
study of the evolution of communicated information about the execution of large software sys-
tems. In: WCRE 2011: proceedings of the 2011 18th working conference on reverse engineering.
IEEE Computer Society, Washington, pp 335–344

Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2011) An exploratory
study of the evolution of communicated information about the execution of large software
systems. In: WCRE ’11: proceedings of the 2011 18th working conference on reverse engineering.
IEEE Computer Society, Washington, pp 335–344

Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2013) An exploratory
study of the evolution of communicated information about the execution of large software
systems. J Softw: Evolution and Process. doi:10.1109/WCRE.2011.48

Shihab E (2012) An exploration of challenges limiting pragmatic software defect prediction. Ph.D.
thesis, Queen’s University

Shihab E, Jiang ZM, Ibrahim WM, Adams B, Hassan AE (2010) Understanding the impact of code
and process metrics on post-release defects: a case study on the eclipse project. In: ESEM ’10:
proc. of the 2010 ACM-IEEE int. symposium on empirical software engineering and measure-
ment. ACM, New York, pp 4:1–4:10

Shihab E, Mockus A, Kamei Y, Adams B, Hassan AE (2011) High-impact defects: a study of
breakage and surprise defects. In: ESEC/FSE ’11: proc. of the 19th ACM SIGSOFT symp. and
the 13th Euro. conf. on foundations of software engineering. ACM, NY, pp 300–310

Smithson M (2003) Confidence intervals. Sage Publications, Thousand Oaks
Tan J, Pan X, Kavulya S, Gandhi R, Narasimhan P (2008) Salsa: analyzing logs as state machines.

In: WASL’08: proceedings of the 1st USENIX conference on analysis of system logs. USENIX,
San Diego, pp 6–6

Wolf T, Schroter A, Damian D, Nguyen T (2009) Predicting build failures using social network analy-
sis on developer communication. In: ICSE ’09: proceedings of the 31st international conference
on software engineering. IEEE Computer Society, Washington, pp 1–11

Xu W, Huang L, Fox A, Patterson D, Jordan MI (2009) Detecting large-scale system problems
by mining console logs. In: SOSP ’09: proceedings of the ACM SIGOPS 22nd symposium on
operating systems principles. ACM, Big Sky, Montana, pp 117–132

Yuan D, Park S, Zhou Y (2012) Characterizing logging practices in open-source software.
In: ICSE 2012: proceedings of the 2012 international conference on software engineering, ICSE
2012. IEEE Press, Piscataway, pp 102–112

Yuan D, Zheng J, Park S, Zhou Y, Savage S (2011) Improving software diagnosability via log
enhancement. In: ASPLOS ’11: proceedings of the 16th international conference on archi-
tectural support for programming languages and operating systems. ACM, Newport Beach,
pp 3–14

Zhang F, Khomh F, Zou Y, Hassan AE (2012) An empirical study of the effect of file editing patterns
on software quality. In: WCRE ’12: proceedings of the 2012 19th working conference on reverse
engineering. IEEE Computer Society, Washington, pp 456–465

Zimmermann T, Nagappan N (2008) Predicting defects using network analysis on dependency
graphs. In: ICSE ’08: proceedings of the 30th international conference on software engineering.
ACM, New York, pp 531–540

Zimmermann T, Nagappan N, Williams L (2010) Searching for a needle in a haystack: Predicting se-
curity vulnerabilities for windows vista. In: Proceedings of the 2010 3rd international conference
on software testing, verification and validation, ICST ’10, pp 421–428

Zimmermann T, Premraj R, Zeller A (2007) Predicting defects for eclipse. In: PROMISE ’07:
proc. of the 3rd int. workshop on predictor models in software engineering. IEEE, Washington,
pp 9–15

Empir Software Eng (201) :1–275 20 25

http://dx.doi.org/10.1109/WCRE.2011.48

Weiyi Shang is a Ph.D. student in the Software Analysis and Intelligence Lab at Queen’s University
(Canada). He obtained his M.Sc. degree from Queen’s University (Canada). His research interests
include mining software repositories (MSR), software los, large-scale data analysis, software perfor-
mance engineering, source code duplication and reverse engineering.

Meiyappan Nagappan received his PhD from North Carolina State University (NSCU). He is
currently a Post Doctoral Fellow at the SAIL lab in Queen’s University, Canada.

Dr. Nagappan believes that as SE researchers we should look at deriving solutions that encompass
the various stakeholders of software systems, and not only software developers. Hence, for the past
seven years he has been working on SE research that goes beyond just impacting S/W developers and
testers. He has worked on using large scale SE data to also address the concerns of S/W operators,
build engineers, and project managers. He continues to publish in top SE venues like TSE, FSE, and
has recently won a best paper award at MSR 2012.

Empir Software Eng (201) :1–275 2026

Ahmed E. Hassan is the NSERC/BlackBerry Software Engineering Chair at the School of Comput-
ing in Queen’s University.

Dr. Hassan spearheaded the organization and creation of the Mining Software Repositories
(MSR) conference and its research community. He serves on the editorial board of the IEEE
Transactions on Software Engineering, Springer Journal of Empirical Software Engineering, and
Springer Journal of Computing.

Early tools and techniques developed by Dr. Hassan’s team are already integrated into products
used by millions of users worldwide. Dr. Hassan industrial experience includes helping architect the
Blackberry wireless platform at RIM, and working for IBM Research at the Almaden Research Lab
and the Computer Research Lab at Nortel Networks. Dr. Hassan is the named inventor of patents
at several jurisdictions around the world including the United States, Europe, India, Canada, and
Japan.

Empir Software Eng (201) :1–275 20 27

	Studying the relationship between logging characteristics and the code quality of platform software
	Abstract
	Introduction
	Motivating Study
	Background and Related Work
	Log Analysis
	Software Defect Modeling

	Log-related Metrics
	Log-related Product Metrics
	Log-related Process Metrics

	Case Study Setup
	Extracting High-level Source Change Information
	Identifying the Logging Statements

	Case Study Results
	Preliminary Analysis
	Results

	Threats to Validity
	External validity
	Internal validity
	Construct validity

	Conclusion
	References

