
Empir Software Eng (2013) 18:901–932
DOI 10.1007/s10664-012-9226-8

Using structural and semantic measures to improve
software modularization

Gabriele Bavota · Andrea De Lucia ·
Andrian Marcus · Rocco Oliveto

Published online: 14 September 2012
© Springer Science+Business Media, LLC 2012
Editors: Giuliano Antoniol and Martin Pinzger

Abstract Changes during software evolution and poor design decisions often lead
to packages that are hard to understand and maintain, because they usually group
together classes with unrelated responsibilities. One way to improve such packages
is to decompose them into smaller, more cohesive packages. The difficulty lies in the
fact that most definitions and interpretations of cohesion are rather vague and the
multitude of measures proposed by researchers usually capture only one aspect of
cohesion. We propose a new technique for automatic re-modularization of packages,
which uses structural and semantic measures to decompose a package into smaller,
more cohesive ones. The paper presents the new approach as well as an empirical
study, which evaluates the decompositions proposed by the new technique. The
results of the evaluation indicate that the decomposed packages have better cohesion
without a deterioration of coupling and the re-modularizations proposed by the tool
are also meaningful from a functional point of view.

Keywords Software re-modularization · Information-flow-based coupling ·
Conceptual coupling between classes · Empirical studies

G. Bavota · A. De Lucia
University of Salerno, Fisciano SA, Italy

G. Bavota
e-mail: gbavota@unisa.it

A. De Lucia
e-mail: adelucia@unisa.it

A. Marcus
Wayne State University, Detroit, MI 48202, USA
e-mail: amarcus@wayne.edu

R. Oliveto (B)
University of Molise, Pesche IS, Italy
e-mail: rocco.oliveto@unimol.it

902 Empir Software Eng (2013) 18:901–932

1 Introduction

During the software development life cycle, changes are inevitable (Lehman 1980).
A software system evolves as changes in the environment and requirements are
incorporated in the system. Empirical studies have indicated that over 90 % of the
costs of a typical system arise in the maintenance phase. A key point for sustainable
program maintenance is to tackle software complexity. In Object-Oriented (OO)
software, packages group together logically and structurally related classes aiming
at localizing changes, among other things. Such groupings should be done with
care, otherwise they result in modules that are hard to understand and maintain.
Researchers defined coupling and cohesion as properties of decomposition units and
generally accepted rules state that modules (i.e., classes and packages in OO software
systems) should have high cohesion and low coupling.

During software evolution the structural design of the software system changes.
Such changes are driven by the processes (if any) used by the developers, their
individual choices, and by external pressure. In consequence, more often than not,
software quality decreases in time. In such cases a re-modularization of the system is
recommended.

In this paper we focus on a specific restructuring problem in the context of OO
software: given a package with poor cohesion, decompose it into smaller and mean-
ingful packages that have higher cohesion. The problem is deceivingly simple; the
challenges stem from the definition of cohesion. The concept of software cohesion
has been defined by Stevens et al. (1974), who defined it as the degree to which the
internal contents of a module are related. In OO software, cohesion is usually applied
at class level and it can be extended to package level. In our context, classes are the
elements of a package and any cohesion measure should reflect how they “belong
together”. Classes relate to one another in more than one way and previous work
(Marcus et al. 2008) has shown that no single metric captures all aspects of cohesion.
It is a result that motivates our work. We approach the package re-modularization
problem by adapting two class-level coupling metrics (i.e., Information-Flow-based
Coupling (ICP) (Lee et al. 1995) and Conceptual Coupling Between Classes (CCBC)
(Poshyvanyk et al. 2009)) to measure package cohesion. These measures capture
structural and semantic relationships between classes, respectively. The use of the
ICP measure allows us to capture the amount of information flowing between the
classes of the system via parameters through method invocations. In other words
the ICP measure provides information about the structural cohesion of a package,
which corresponds to highest cohesion levels of a module (Stevens et al. 1974).
On the other side, the CCBC measure captures the lexical information embedded
in the comments and identifiers of the classes, allowing to identify semantically
(i.e., domain semantics) related classes, i.e., classes containing similar terms in their
comments and identifiers. Thus, the CCBC captures lower cohesion levels in a
module (such as logical cohesion (Stevens et al. 1974)), concerned with cases of
classes that deal with common concepts and that make sense to package together.
We combine these two sources of information and use an aggregated measure
to determine classes that should belong together in a package. The technique is
automated and suggests to developers how to split existing packages, when needed.

A first version of the proposed approach together with a preliminary evaluation
on three software systems has been previously presented (Bavota et al. 2010a).

Empir Software Eng (2013) 18:901–932 903

In this paper we extend the approach and its empirical evaluation. The specific
contributions of this paper can be summarized as follows:

– an analysis of the impact of the algorithm’s configuration parameters on the
performances of the proposed approach. The analysis allowed us to derive an
heuristic based on Principal Component Analysis (PCA) to identify of default
values for the configuration parameters. The proposed heuristic improves the
usability of the proposed approach by facilitating its application in real usage
scenarios;

– an analysis of the orthogonality of the measures used to capture relationships
between classes. We also empirically analyze the role of the semantic measures
in the context of software re-modularization;

– the replication of the preliminary evaluation. In addition to the three systems
used in Bavota et al. (2010a), the evaluation has been extended to include two
other software systems. In the context of the study we merged several packages
of the object systems and used the proposed approach to split the merged package
aiming at reconstructing the original packages. Our assumption is that the higher
the reconstruction accuracy of our approach, the higher the meaningfulness of the
proposed re-modularization. This assumption is supported in part by our choice
of systems, which have high quality. However, to further verify this assumption in
the cases where the re-modularization proposed by our approach is significantly
different from the original decomposition of the system, we asked some of
the original developers of the object systems to analyze the proposed package
decompositions and evaluate them from a functional point of view.

The last contribution, i.e., the analysis of the meaningfulness of the recommended
re-modularizations, is a fundamental issue. In a recent survey by Praditwong et al.
(2011) was found that there is no literature in software re-modularization that evalu-
ated from the point of view of the software engineer, the modularizations suggested
by the tools. This is an important factor given the vague definition of cohesion
in general and the fact that most cohesion measures capture only certain aspects
of cohesion (e.g., common attribute references). In addition, modules with poor
cohesion are either poorly constructed or (more often) they implement different and
unrelated functionalities. Most metrics do not distinguish between these two causes
of poor cohesion, hence, once again, it is important to evaluate such approaches from
a functional point of view.

The rest of the paper is organized as follows. Section 2 discusses the related
research, while Section 3 presents the proposed approach. Sections 4 and 5 present
the design and the results of the empirical study, respectively. Section 6 discusses
lessons learned and threats to validity that could affect the results of our empirical
study. Finally, Section 7 gives concluding remarks and presents future work.

2 Related Work

A lot of effort has been devoted to the definition of automatic and semi-automatic
approaches aimed at supporting software engineers in the re-modularization of
software systems. Since the 80’s, many authors investigated how to increase the
quality of procedural programs, in terms of maintainability, reusability, and high

904 Empir Software Eng (2013) 18:901–932

level design, by restructuring the software architecture. In particular, many ap-
proaches have been proposed to aggregate procedures with high functional cohesion
(Antoniol et al. 2001; Cimitile and Visaggio 1995; Shaw et al. 2003). Most of these
approaches are based on identifying strongly connected sub-graphs in the call graph
representing the program. Cimitile and Visaggio (1995) proposed a technique based
on dominance trees to aggregate procedures in reusable modules. An improvement
of this technique has been proposed in Shaw et al. (2003) to support program
comprehension. Antoniol et al. (2001) proposed the use of concept analysis to
restructure the architectural organization of the source code files in legacy systems.
Other techniques have been proposed for the identification of objects or ADTs
(Abstract Data Types) in legacy systems. Such approaches generally identify objects
or ADTs in legacy code exploiting the relations existing between program routines
and global variables and/or user defined data types (see e.g., Canfora et al. 2001; van
Deursen and Kuipers 1999; Koschke et al. 2006; Tonella 2001).

Most of the work on re-modularization is based on clustering techniques. Wiggerts
(1997) provides the theoretical background for the application of cluster analysis in
software re-modularization. The paper discusses how to establish similarity criteria
between the entities to cluster and gives a summary of possible clustering algorithms
to use in software re-modularization. Anquetil and Lethbridge (1999) tested some of
the algorithms proposed by Wiggerts and compared their strengths and weaknesses
when applied to system re-modularization. They performed this study on several
software systems, including a real world legacy system. Mitchell and Mancoridis
(2001) proposed some guidelines to compare the performance of different clustering
algorithms for source code decomposition, while a more recent work by Shtern
and Tzerpos (2009) introduced a method for the selection of a suitable clustering
algorithm, given specific needs. Wu et al. (2005) conducted a comparative study of
clustering algorithms in the context of software evolution. In particular, the authors
focused their attention on the stability of clustering algorithms, i.e., a clustering
algorithm is stable if it produces very similar output given very similar input, like
two subsequent versions of the same system with no major changes. Their results
show that for large systems the analyzed clustering algorithms are not ready to be
widely adopted. Maqbool and Babri (2007) focused on the application of hierarchical
clustering in the context of software architecture recovery and modularization. They
investigated the measures to be used in this domain, categorizing various similarity
and distance measures into families according to their characteristics. The behavior
of various clustering algorithms was also studied on four large legacy systems.

Mancoridis et al. (1998) proposed an automatic technique aiming at creating a
high-level view of the system organization. In particular, they introduced a search-
based approach that uses a hill-climbing based clustering to identify the organization
of a software system. The same technique is also used in Mitchell and Mancoridis
(2006) where the authors present Bunch, a tool supporting automatic system decom-
position. Search-based approaches are also used in Abdeen et al. (2009), Harman
et al. (2002) and Seng et al. (2005). In particular, in Harman et al. (2002) and
Seng et al. (2005) the authors used a genetic algorithm to improve the subsystem
decomposition of a software system. The fitness function to be maximized is defined
using a combination of quality metrics, e.g., coupling, cohesion, and complexity.
Abdeen et al. (2009) proposed a heuristic search-based approach for automatically
optimizing, i.e. reducing, the dependencies between packages of a software system.

Empir Software Eng (2013) 18:901–932 905

Starting from an initial decomposition, their technique optimizes the existing pack-
age structure by moving classes between the original packages.

The combined use of semantic and structural measures for software re-modulari-
zation is the main characteristic of our approach. The re-modularization approaches
discussed above exploit only information derived by structural metrics. A lot of
important information is embedded in the comments and identifiers of the system’s
classes. From this point of view our approach is closer to Corazza et al. (2010,
2011), Maletic and Marcus (2001) and Scanniello et al. (2010). In particular, Maletic
and Marcus (2001) combined semantic and structural measures to identify ADTs in
legacy code. They used Latent Semantic Indexing (LSI) (Deerwester et al. 1990),
an Information Retrieval (IR) technique, to capture semantic relationships between
source artifacts. The aim of our approach is different: we combine structural and
semantic class coupling measures to decompose a package with low cohesion in two
or more packages with much higher cohesion. Kuhn et al. (2007) also used LSI
to cluster together source artifacts that use a similar vocabulary. Moreover, they
provided a visual notation that gives an overview of all the clusters and their semantic
relationships. Their approach is focused on the identification of topics in the source
code and, for this reason, only uses semantic information.

Ducasse et al. (2007) introduced the Package Surface Blueprint, a visual approach
for understanding package relationships in complex software systems. In particular,
the authors showed that their approach helps users in identifying poorly designed
packages.

Corazza et al. (2010, 2011) presented a clustering based approach to partition
object oriented systems into subsystems. In particular, they extracted lexical infor-
mation from the source code and use the K-Medoids partitioning algorithm (Corazza
et al. 2010) or the Hierarchical Agglomerative Clustering algorithm (Corazza et al.
2011) to build subsystems containing semantically related classes. Unlike our ap-
proach, in Corazza et al. (2010, 2011) the structural dependencies between the classes
are ignored. Moreover, the number of clusters, i.e., subsystems, to build must be fixed
a priori (in Corazza et al. (2010) it is arbitrarily set to the 10 % of the number of
classes, yet this value is not empirically evaluated). Conversely, our approach is able
to automatically identify the number of packages in which a set of classes should be
organized.

A clustering based approach using both structural and lexical information is also
proposed by Scanniello et al. (2010), but it is focused on recovering a layered archi-
tecture from the source code of object oriented systems. In particular, the structural
information is used by the Kleinberg algorithm (Kleinberg 1999) to identify software
layers, while lexical information is employed to partition each identified layer into
software modules using the k-means algorithm (Hartigan 1975). In a related research
thread, semantic clustering was also recently used to support the comprehension of
web sites (Ricca et al. 2008).

The focus of our approach is different with respect to the aforementioned works.
Most of the approaches in literature (see, e.g., Mancoridis et al. 1998; Shtern and
Tzerpos 2009; Wiggerts 1997; Wu et al. 2005) support the software engineer during
a “big-bang” re-modularization, i.e., all the classes of the software system are re-
organized in a new package decomposition. Our approach is different: we aim at
incrementally re-modularizing a software system focusing on a single package at a
time.

906 Empir Software Eng (2013) 18:901–932

3 The Proposed Approach

The proposed approach analyzes the (structural and semantic) relationships between
classes in a package to suggest a possible re-modularization in two or more packages.
The combined use of structural and semantic coupling metrics allows us to analyze
the package’s cohesion from the point of view of the dependencies between the
classes and the point of view of the responsibilities of the classes from the pack-
age. Generally, a package with loosely coupled classes both from a structural and
semantic point of view exhibits low cohesion. Thus, extracting new packages from
the original package may improve its cohesion.

The proposed approach takes as input a package identified by the software
engineer as a candidate for re-modularization. Then, a measure reflecting a relation-
ship between pairs of classes from the package is computed. The measured values
between classes are stored in a n × n matrix, called class-by-class matrix, where n
is the number of classes in the package under analysis. A generic entry mi, j in the
class-by-class matrix represents the likelihood that class ci and class cj should be in
the same package.

Using the information in the class-by-class matrix the approach extracts chains
of strongly related classes. The classes of the original package are distributed in
different packages according to the extracted chains. If the number of extracted
chains is one, no re-modularization is suggested by the tool (this generally happens
when the cohesion of the analyzed package is high). Otherwise, based on the
extracted class chains the approach suggests new packages with higher cohesion than
the original package. Note that the structure of individual classes in the package is
not changed.

While the proposed approach is automated, it is actually supposed to serve
as an assistant to the developer. Design decisions are often more complex and
subtle than just trying to maximize package cohesion. In consequence, the extracted
packages are analyzed by the software engineer who can accept the proposed re-
modularization as is, or change it by moving classes from one package to another.

3.1 Class-by-Class Matrix Construction

The likelihood that class ci and class c j should be in the same package is estimated
by capturing different types of relationships between classes that can affect package
cohesion. In the context of this work, we define the likelihood that two classes should
be in the same package by combining two different (structural and semantic) mea-
sures, i.e., information-flow-based coupling (ICP) (Lee et al. 1995) and Conceptual
Coupling Between Classes (CCBC) (Poshyvanyk et al. 2009).

Our choice of metrics to use is not random, as it is based on previous research
(Poshyvanyk et al. 2009) that analyzed the combination of structural and semantic
coupling metrics to predict changes in OO software. ICP and CCBC fared better
than other structural and conceptual metrics, respectively. Moreover, the empirical
analysis conducted in Poshyvanyk et al. (2009) have shown that structural and
semantic coupling measures do not correlate, which indicates that they capture
different aspects of coupling. In light of these results, we expect that (i) a package
composition based on these metrics will group together classes that tend to change
together, which is a desirable property in order to localize change, and (ii) the use of

Empir Software Eng (2013) 18:901–932 907

a combination of orthogonal quality metrics to guide the re-modularization activity
can provide better results than any one of its constituents (Maletic and Marcus
2001; De Lucia et al. 2008). However, the choice of coupling metrics may have a
strong impact on the performances of a re-modularization method (Harman et al.
2005) and therefore, as future work we plan to investigate other combinations of
metrics.

The CCBC measure is based on the semantic information (i.e., domain semantics)
captured in the code by comments and identifiers. Two classes are conceptually
related if their (domain) semantics are similar, i.e., they have similar responsibil-
ities. The definition of CCBC requires the introduction of a lower level measure
(Poshyvanyk et al. 2009): the Conceptual Coupling Between Methods (CCM).

To measure CCM, Latent Semantic Indexing (LSI) is used to represent each
method as a real-valued vector that spans a space defined by the vocabulary extracted
from the code. The conceptual coupling between two methods mi and mj is then
calculated as the cosine of the angle between their corresponding vectors (Baeza-
Yates and Ribeiro-Neto 1999):

CCM(mi, m j) =
−→mi · −→m j

‖−→mi‖ · ‖−→m j‖

where −→mi and −→m j are the vectors corresponding to the methods mi and m j, respec-
tively, and ‖−→x ‖ represents the Euclidean norm of the vector x (Baeza-Yates and
Ribeiro-Neto 1999). Thus, the higher the value of CCM the higher the similarity
between two methods. It is clear that CCM depends on the consistency of naming
used in the source code and comments. Note that other IR methods could be used
here, as well as other similarity measures.

Now we can define the conceptual coupling between two classes ci and cj as:

CCBC(ci, cj) =
∑

mh∈ci

∑
mk∈cj

CCM(mh, mk)

|ci| × |cj|

where |ci| (|cj|) is the number of methods in ci (cj). Thus, CCBC(ci, cj) is the
average of the coupling between all unordered pairs of methods from class ci and
class c j. The definition of this measure ensures that CCBC is symmetrical, i.e.,
CCBC(ci, cj) = CCBC(cj, ci).

Concerning the structural information, the ICP measure is based on method
invocations between classes. In particular, ICP measures the amount of information
flowing into and out of a class via parameters through method invocation, i.e., the
measure sums the number of parameters passed at each method invocation. Note
that the ICP metric also implicitly captures class references performed through
method calls, such as, the invocation of a constructor when an instance variable is
created. Like the majority of coupling metrics in literature, this metric is defined
at the system level, i.e., for a given class c all method calls between c and all other
classes in the system are taken into account. For our approach we need to redefine
ICP to take into account coupling between a pair of classes. We use the ICP metric as
redefined in Poshyvanyk et al. (2009); the information-flow-based coupling between
a pair of classes ci and cj is measured as the number of method invocations in the class

908 Empir Software Eng (2013) 18:901–932

ci to methods in the class cj,1 weighted by the number of parameters of the invoked
methods:

ICPi→ j = ∑|calls(ci,cj)|
k=1 p(call(ci, cj)k)

where p(call(ci, cj)k) is the number of parameters in the k − th call from ci to cj.
To ensure that ICP represents a commutative measure we define the overall

information-flow-based coupling between the classes ci and cj as follows:

ICP(ci, cj) = ICP(c j, ci) = max
{

ICPi→ j, ICPj→i
}

While CCBC has value in [0, 1], ICP is equal or higher than 0 but it is unbounded on
top. To combine the two metrics in a single similarity measure we need to normalize
the ICP values in [0, 1]. To this aim, we defined the normalized ICP as follow:

˜ICP(ci, cj) = ICP(ci, cj) − minICP

maxICP − minICP

where minICP (maxICP) is the minimum (maximum) ICP(ci, cj) value measured
between the classes of the package to re-modularize.

Finally, we compute the likelihood that classes ci and cj should be in the same
package as:

couplingi, j = wICP · ˜ICP(ci, cj) + wCCBC · CCBC(ci, cj)

where wICP + wCCBC = 1 and their values express the confidence (i.e., weight) in
each measure. The weights assigned to these measures are empirically defined and
the methodology for this step is presented in Section 5.

3.2 Class Chains Extraction

The extraction of the class chains is performed in two steps. In the f irst step we obtain
a set of chains based on the transitive closure of the class-by-class matrix. However,
in the class-by-class matrix there could be very few zero values, due to spurious (but
light) structural and/or semantic relationships between classes (Koschke et al. 2006).
Thus, a transitive closure may include almost all the classes in a single chain. To
avoid such a problem and to identify the strongest relationships between classes, we
filter the class-by-class matrix, based on a coupling threshold. All values less than a
threshold, minCoupling, are converted to zero:

m̃i, j =
{

couplingi, j if couplingi, j > minCoupling;
0 otherwise.

In this way we capture only the strongest relationships in the class-by-class matrix,
ensuring that spurious structural and/or semantic relationships between classes are
ignored (Koschke et al. 2006). There are many ways to define a threshold aimed

1The method call are captured through static analysis of the source code.

Empir Software Eng (2013) 18:901–932 909

at removing spurious relationships between classes. A simple classification allow to
identify two different kinds of thresholds:

– constant threshold: the value of the threshold is fixed a priori, e.g., minCou-
pling = 0.1. This kind of threshold is simple to implement, but in general it is very
difficult to choose a priori a constant value to prune-out spurious relationships.
Indeed, the values in the class-by-class matrix depend on the package chosen to
be refactored. In fact, there may be cases where the matrix contains a lot of high
values. In this case, if the fixed threshold is high, it will probably remove the noise
from the matrix, e.g., spurious relationships between the classes of the package.
Otherwise almost all the values will be left in the matrix. On the other hand, there
may be cases where the matrix contains a high number of very low values. In this
case, a high constant threshold will remove almost all the information from the
matrix.

– variable threshold: the value of the threshold is automatically selected taking into
account the characteristics of the given input. For example, minCoupling can be
set as the median of the values present in the class-by-class matrix. This kind of
threshold should resolve the problems derived by the use of a constant threshold
and should ensure more stable filtering performances across the different inputs.
Choosing the best threshold in this case is far from trivial.

We experimented with both constant and variable thresholds to empirically vali-
date the above observations. The findings allowed to define a heuristic to select the
best threshold (see Section 5 for details).

Once the f irst step is completed (i.e., the transitive closure of the class-by-class
matrix is computed), it is possible that the set of computed chains (i.e., suggested
packages) may include chains with a very short length due to classes having poor
relationships with other classes. In the second step, to avoid suggesting very small
packages (i.e., packages with a very low number of classes), we use a chain length
threshold, minLength, to identify trivial chains, i.e., chains with a length less than
minLength. Similar to Bittencourt and Guerrero (2009), in our approach we set
minLength = 4 since a good re-modularization approach should avoid the creation of
packages with too few classes. This minimum length can be easily changed if needed.
Then, we compute the coupling between trivial and non-trivial chains and merge
each trivial chain with the strongest coupled non-trivial chain. The coupling between
chains is calculated using the same measures used to calculate the coupling between
classes. Specifically, the coupling between chains Chi and Ch j is computed as the
average coupling between all the possible pairs of classes from Chi and Ch j:

Coupling(Chi, Ch j) =
∑

ci∈Chi

∑
c j∈Ch j

couplingi, j

|Chi| × |Ch j|
where |Chi| (|Ch j|) is the number of classes in Chi (Ch j).

4 Case Study Design

In this section we describe in detail the design of the case study we carried out
to empirically assess the proposed re-modularization technique and the results we
obtained. The study follows the Goal-Question-Metrics paradigm (Basili et al. 1994).

910 Empir Software Eng (2013) 18:901–932

Table 1 Systems used in the case study

System Version KLOC #Classes #Packages Cohesion

Mean Median St. dev

eTour 1.0 30 134 17 0.348 0.311 0.067
GESA 2.0 46 297 22 0.332 0.289 0.120
JHotDraw 6.0 b1 29 275 12 0.364 0.379 0.052
SESA 1.2 11 128 14 0.318 0.292 0.073
SMOS 1.0 23 121 12 0.400 0.424 0.039

4.1 Definition and Context

The goal of the empirical study is (i) to assess the parameters of the proposed
approach, i.e., the weights of the coupling metrics (wICP, and wCCBC) and the class-
by-class matrix filtering threshold (minCoupling), and (ii) to determine whether the
proposed approach generates meaningful re-modularization of packages in object-
oriented software systems. The quality focus is ensuring a better package quality,
while the perspective is both (i) of a researcher, who wants to evaluate how the
combination of structural and semantic similarity measures between classes can
support software re-modularization; and (ii) of a project manager, who wants to
evaluate the possibility of adopting the proposed technique within his/her software
company.

The objects of our study are: an open source system, JHotDraw2 and four software
systems (eTour, GESA, SESA, and SMOS) developed by university students during
a Software Engineering course. JHotDraw is a Java GUI framework for structured
drawing editors. eTour is an electronic touristic guide, while GESA is a web-based
application used in the management of university courses. SESA is also a web-based
application used to manage relevant information of the Software Engineering Lab
of the University of Salerno, e.g., people, projects, publications. Finally, SMOS is
a software developed for high schools, which offers a set of functionalities aimed
at simplifying the communications between the school and the students’ parents.
Table 1 reports the statistics (i.e., KLOC, number of classes, and number of pack-
ages) as well as the versions of the systems used in the study. The table also reports
the descriptive statistics of the packages’ cohesion from the systems, measured
using a cohesion metric, namely CohesionQ, defined in Abdeen et al. (2009). Our
evaluation strategy requires that the object systems have high package cohesion. The
measures support our choice, as the average cohesion values for the five systems are
higher than that of the systems analyzed in Abdeen et al. (2009): JEdit (with average
cohesion 0.288), ArgoUML (0.172), Jboss (0.125), and Azureus (0.117).

4.2 Research Questions and Planning

By construction, the approach will extract from a package, class chains having higher
cohesion than the original package. However, as we mentioned before a good re-
modularization cannot be based only on the higher cohesion of the new packages.

2http://www.jhotdraw.org

http://www.jhotdraw.org

Empir Software Eng (2013) 18:901–932 911

An evaluation involving developers is required in order to assess the overall quality
and meaningfulness of the proposed re-modularization. For this reason, our study
aims at (i) assessing the parameters of our approach and (ii) analyzing if the
proposed approach is able to identify meaningful re-modularization operations from
a developer point of view. Thus, two research questions are formulated:

– RQ1: How do the parameters of the proposed approach affect the results?
– RQ2: Is the proposed approach able to find meaningful re-modularizations?

To respond to our research questions we mutated the original version of the object
systems using a tool that randomly selects m ≥ 2 packages of the system and merges
them in a single package P̂m. The merging operation was recorded in a log file to al-
low us to know the packages merged by the tool. At the end of the merging operation
we obtained a mutated system with a worse package decomposition compared to the
original system. The proposed approach is then applied to the P̂m package in order to
reconstruct (or improve) the original packages. At the end of the re-modularization
operation we obtained a new version of the mutated system. Specifically, given the
merged package P̂m, the proposed approach is expected to generate m packages.
To evaluate the proposed approach, the new packages were compared with the
originally merged packages aiming at identifying the total number of classes correctly
and incorrectly placed in the new packages. The ideal behavior is that the split
packages are the same (i.e., contain the same classes) as the original packages. In
essence, we consider them as a “golden standard”. This choice is supported by the
fact that the systems used in the study have a generally good package quality that is
reflected in terms of package cohesion (see Table 1). In particular, one of the object
systems, JHotDraw, has been developed as a “design exercise” and its design relies
heavily on using well-known design patterns. The other four systems were chosen
among the best projects developed during the software engineering course. As shown
in Table 1 the cohesion of the packages of the other four systems is close to that of
JHotDraw. With that in mind, recovering the original packages likely means that the
approach is able to identify meaningful re-modularizations.

In order to respond to our first research question, we identified different re-
modularization solutions on the same merged packages, i.e., mutated systems, using
different settings of weights for the selected metrics, i.e., wICP, and wCCBC, and
different values for the threshold used to remove spurious relationships from the
class-by-class matrix, i.e., the parameter minCoupling. In particular, for each metric
weight we varied this parameter starting at 0 and increasing it until 1 by a step
of 0.1. We exercised all the possible combinations of such values assuring that
wICP + wCCBC = 1, i.e., 11 different combinations. Concerning the parameter
minCohesion we experimented the two types of thresholds described in Section 3.2,
i.e., constant and variable threshold. In particular, we used four different constant
thresholds and three different variable thresholds. Concerning the constant thresholds
we used 0.1, 0.2, 0.3, 0.4, and 0.5, while as variable thresholds we considered the
first (Q1), the second (Q2), and the third (Q3) quartile, respectively, of the non-zero
values in the class-by-class matrix. Note that the use of quartiles allows to define a
threshold that is less affected—as compared to the other descriptive statistics (e.g.,
mean)—by problems caused by skewed distributions of the values in the class-by-
class matrix. We selected different values for the number of packages to be merged,
i.e., m ∈ {2, 3, 5}, aiming at obtaining merged packages with a low cohesion and

912 Empir Software Eng (2013) 18:901–932

varied set of responsibilities. For each value of m we performed 10 different trials,
i.e., n = 10, randomly selecting each time different combinations of the merged
packages. In total, we did 30 merging and re-modularizations operations for each
system (varying on the 11 combinations of weights, i.e., wICP and wCCBS, and on
8 different values for minCoupling). Thus, the total number of trials performed on
each object system is 11 × 8 × 30 = 2, 640, for a total of 13,200 re-modularizations
for the five systems.

To evaluate the results produced by the configurations experimented for our
approach, we used two well-known Information Retrieval (IR) metrics, namely recall
and precision (Baeza-Yates and Ribeiro-Neto 1999):

recallPi = |C(P̂i) ∩ C(Pi)|
|C(Pi)| precisionPi = |C(P̂i) ∩ C(Pi)|

|C(P̂i)|
where Pi and P̂i are the original and the reconstructed packages, respectively, while
C(Pi) is the set of classes of Pi. Recall measures the percentage of classes correctly
placed in the split packages, while precision measures the percentage of classes that
are correctly placed. Since the two metrics measure two different concepts, a balance
between them is usually measured using an aggregate metric, namely the F-measure
(Baeza-Yates and Ribeiro-Neto 1999), which is the harmonic mean of the precision
and recall:

F-measurePi = 2 ∗ precisionPi ∗ recallPi

precisionPi + recallPi

We decided to use the F-measure as the dependent variable to assess the perfor-
mances of the proposed approach and to guide the selection of the best values for
the weights and parameters described above. Note that the F-measure is computed
analyzing only the reconstruction of the merged packages and not the entire system
decomposition.

The reconstruction accuracy (F-measure) achieved using the best parameters
setting is also used to respond to our second research question. Our assumption is
that the higher the reconstruction accuracy of our approach, the higher the mean-
ingfulness of the proposed re-modularization. As explained before, this assumption
is supported in part by our choice of systems which have a high quality in terms
of package cohesion. In order to further verify this assumption (and implicitly
answer the second research question) we analyzed the proposed re-modularization
operations from a functional point of view. In particular, in the cases where the re-
modularization proposed by our approach is considerably different from the original
decomposition of the system, we asked some of the original developers of eTour,
GESA, SESA, and SMOS to analyze the proposed package decomposition and
evaluate the performed re-modularizations. For JHotDraw, the same evaluation was
made by two graduate students who are very familiar with the system. We involved
a total of 16 subjects in the functional evaluation distributed among the object
systems as reported in Table 2. To identify the cases to analyze, we set an F-measure
threshold ε. All the cases for which our approach was not able to reconstruct the
original packages with an F-measure higher than ε were analyzed by the students.
For each of the selected cases the students responded to the following question:

Is the proposed package decomposition meaningful?

Empir Software Eng (2013) 18:901–932 913

Table 2 Subjects involved in
the functional evaluation

System #Subjects Original developers?

eTour 2 Yes
GESA 5 Yes
JHotDraw 2 No
SESA 2 Yes
SMOS 5 Yes

with a score using a 5-point Likert scale (Oppenheim 1992): 1: Strongly agree; 2:
Weakly agree; 3: Neutral; 4: Weakly disagree; 5: Strongly disagree.

5 Empirical Study Results

In this section we present the results of the empirical study. We discuss two aspects
of the results. First, we use the results to determine the best values for the weights
and parameters. Second, we analyze the results of the students’ evaluation of the
proposed re-modularizations.

Table 3 reports the results produced—in terms of F-measure—by the best
configuration of parameters identified on each of the object systems.3 The results in
Table 3 highlight:

– the benef its of the second step of our approach. After merging each trivial chain
(i.e., a chain composed of less than 4 classes), with the most similar non-trivial
chain (see Section 3.2), we obtained an average increment of the F-measure by
about 7 % (with respect to the previous step of the approach);

– the decrease of the reconstruction accuracy when increasing the number of merged
packages. Indeed, the average F-measure decreases from 88 % when merging
2 packages, to 75 % when merging 3 packages, until 68 % when merging 5
packages;

– a general rule for setting the parameters of our approach. The results reveals that
the best performances can be obtained using as threshold the third quartile, i.e.,
Q3, of the non-zero values of the class-by-class matrix and setting wCCBC ≥ 0.7.
However, the best configuration of weights is slightly different among the object
systems. Thus we need to investigate deeper the influence of the configuration
parameters on the performances of the proposed approach.

5.1 Influence of the Parameters

To better analyze the influence of the configuration parameters Figs. 1, 2, and 3 show
the interaction plots between Weights and Threshold on GESA, merging 2, 3, and 5
packages, respectively. We report the results obtained using all the three variable
thresholds but for sake of readability we only report the results achieved using the
lower, the higher, and the best constant threshold (see Bavota et al. (2011a) for the
complete interaction plots of all the systems).

3The complete results achieved with all the possible combinations of parameters can be found in
Bavota et al. (2011a).

914 Empir Software Eng (2013) 18:901–932

Table 3 Descriptive statistics of results achieved reconstructing merged packages

System m Best configuration F-Measure (after step 1) F-Measure (after step 2)

wCCBC wICP Threshold Mean Median Std.dev. Mean Median Std.dev.

eTour 2 0.9 0.1 Q3 0.804 0.852 0.094 0.891 0.936 0.086
3 0.9 0.1 Q3 0.688 0.703 0.102 0.760 0.774 0.082
5 0.9 0.1 Q3 0.559 0.562 0.084 0.668 0.659 0.057

GESA 2 0.9 0.1 Q3 0.917 0.936 0.039 0.967 0.981 0.044
3 0.9 0.1 Q3 0.763 0.795 0.114 0.822 0.897 0.131
5 0.9 0.1 Q3 0.603 0.578 0.104 0.720 0.706 0.073

JHotDraw 2 0.7 0.3 Q3 0.749 0.788 0.142 0.785 0.807 0.180
3 0.9 0.1 Q3 0.672 0.709 0.100 0.724 0.760 0.085
5 0.8 0.2 Q3 0.593 0.635 0.056 0.688 0.675 0.027

SESA 2 0.8 0.2 Q3 0.897 1.000 0.095 0.930 1.000 0.108
3 0.8 0.2 Q3 0.647 0.602 0.125 0.700 0.643 0.109
5 0.8 0.2 Q3 0.548 0.522 0.138 0.660 0.600 0.104

SMOS 2 0.8 0.2 Q3 0.769 0.846 0.206 0.804 0.920 0.263
3 0.8 0.2 Q3 0.705 0.720 0.108 0.770 0.790 0.101
5 0.9 0.1 Q3 0.558 0.604 0.126 0.668 0.700 0.138

The number of merged packages is m

The analysis indicates that the variable thresholds ensure better filtering perfor-
mances than the constant thresholds across the different inputs, i.e., the different
artificial packages to be re-modularized. In particular, the best performances are
achieved using Q3 as threshold to remove spurious relationships in the class-by-class
matrix.

Regarding the weights, the results reveal that the weight for the semantic metric,
i.e., wCCBC, should be higher than 0.6. In fact, all combination of weights having

Fig. 1 Interaction between weight and threshold on GESA merging 2 packages

Empir Software Eng (2013) 18:901–932 915

Fig. 2 Interaction between weight and threshold on GESA merging 3 packages

wCCBC ≥ 0.7 has a reconstruction accuracy almost equal to the best (see Figs. 1, 2,
and 3). This trend (as well as the trend concerning the variable threshold Q3) is
confirmed across all the experimented systems (see Bavota et al. 2011a). The high
importance (i.e., weight) of the semantic metric probably derives from the fact that
even for packages with good structural cohesion there might be pairs of classes with
no structural interaction, e.g., two classes with no method calls between each other.

Fig. 3 Interaction between weight and threshold on GESA merging 5 packages

916 Empir Software Eng (2013) 18:901–932

Note that the method calls that we capture are just a subset of all possible ways in
which two classes can be structurally related. We extract method calls statically with
a rather simple and conservative analysis of the code using Eclipse’s AST parser. A
more sophisticated analysis would likely yield additional structural relations, which
may increase the weight of the structural component of the combined measure. In the
cases where there are no structural relationships between classes, only the semantic
metric can help to cluster together these pairs of classes, when needed. This fact is
also highlighted by the strong performances decrease affecting our approach when
the weight for the semantic metric is equal to zero. It is worth noting that even if our
approach is really stable across all the configurations of weights having wCCBC ≥ 0.7,
it shows slight decrease of performances when the structural metric, i.e., ICP, is set
to zero (see Figs. 1, 2, and 3). All these observations suggest that the semantic metric
captures most of the coupling (relevant to our task) between the classes of the object
systems and consequently helps to better cluster together classes of the same original
package, i.e., classes with high coupling. To verify such a conjecture we apply PCA to
the coupling measures. This allows identifying the different dimensions that describe
a phenomenon, e.g., the coupling between pairs of classes, and obtain an indication
of the importance of each dimension (captured by one or more coupling metrics)
in the description of this phenomenon, i.e., the proportion of variance. It is worth
noting that as it is defined, the structural metric ICP gives a value different than
zero only in case two classes are related at least by one method call. The problem
is that the pair of classes that are related through a method call represents only
a small percentage of the possible pairs of classes in a software system, e.g., in
JHotDraw “only” 2 % out of about 38,000 possible pairs of classes have method
calls between them (about 650). In such a situation, the output of the PCA is trivial
since it assigns almost all the description of the observed phenomenon, i.e., coupling
between classes, to the semantic metric. To avoid this problem, we executed the PCA
only on the pairs of classes related trough at least a method call. Table 4 shows the
achieved results. As we can see, the semantic metric is identified by the PCA as the
metric that describes most of the coupling between pairs of classes (its proportion
of variance is always higher than 0.6). Moreover, the proportion of variance values
provided by the PCA are close to the weights used for the coupling metrics in the
configurations with the best results of the F-measure. Thus, we conjecture that the
PCA could be used to weight the exploited coupling metrics taking into account the
portion of coupling captured by each metric (proportion of variance). In particular,
the higher the proportion of variance captured by one metric, the higher its weight.
To verify the usefulness of the PCA in setting the weights for the metrics exploited
by our approach we formulated an additional research question:

– RQ3: Can the proportion of variance obtained by PCA be used to weight the
coupling metrics exploited in our approach?

To respond to this research question, we compared the results obtained using as
configuration parameters the one identified by the proportion of variance of the
PCA, i.e., PCA-based conf iguration, with the best results obtained in our experi-
mentation, i.e., best conf iguration. Table 5 reports the achieved results. As we can see
the difference between the reconstruction accuracy of the PCA-based conf iguration
compared with the accuracy obtained using the best configuration is very small, i.e.,
the difference of F-measure is never higher than 0.04. This result indicates that the

Empir Software Eng (2013) 18:901–932 917

Table 4 Results of PCA:
rotated components

PC1 PC2

(a) eTour
Proportion of variance 0.62 0.38
Cumulative proportion 0.62 1.00
CCBC 0.96 0.26
ICP 0.26 −0.96

(b) GESA
Proportion of variance 0.90 0.10
Cumulative proportion 0.90 1.00
CCBC 0.99 −0.05
ICP 0.05 0.99

(c) JHotDraw
Proportion of variance 0.82 0.18
Cumulative proportion 0.82 1.00
CCBC −0.99 0.07
ICP −0.07 −0.99

(d) SESA
Proportion of variance 0.77 0.23
Cumulative proportion 0.77 1.00
CCBC −0.98 0.21
ICP −0.21 −0.98

(e) SMOS
Proportion of variance 0.94 0.06
Cumulative proportion 0.94 1.00
CCBC −0.99 −0.01
ICP −0.01 0.99

PCA-based conf iguration provides an accuracy similar to the best accuracy obtained
exploiting all possible configurations. Such results support our conjecture indicating
that the proportion of variance provided by the PCA can be used to weight the
corresponding metric.

Table 5 Results reconstructing merged classes: PCA based vs best configuration

System # Merged classes Best configuration PCA-based configuration

eTour 2 wCCBC = 0.9, wICP = 0.1 (0.89) wCCBC = 0.6, wICP = 0.4 (0.85)
3 wCCBC = 0.9, wICP = 0.1 (0.76) wCCBC = 0.6, wICP = 0.4 (0.74)
5 wCCBC = 0.9, wICP = 0.1 (0.67) wCCBC = 0.6, wICP = 0.4 (0.63)

GESA 2 wCCBC = 0.9, wICP = 0.1 (0.97) same as the best configuration
3 wCCBC = 0.9, wICP = 0.1 (0.82) same as the best configuration
5 wCCBC = 0.9, wICP = 0.1 (0.72) same as the best configuration

JHotDraw 2 wCCBC = 0.7, wICP = 0.3 (0.79) wCCBC = 0.8, wICP = 0.2 (0.77)
3 wCCBC = 0.9, wICP = 0.1 (0.72) wCCBC = 0.8, wICP = 0.2 (0.72)
5 wCCBC = 0.8, wICP = 0.2 (0.69) same as the best configuration

SESA 2 wCCBC = 0.8, wICP = 0.2 (0.93) same as the best configuration
3 wCCBC = 0.8, wICP = 0.2 (0.70) same as the best configuration
5 wCCBC = 0.8, wICP = 0.2 (0.66) same as the best configuration

SMOS 2 wCCBC = 0.8, wICP = 0.2 (0.80) wCCBC = 0.9, wICP = 0.1 (0.80)
3 wCCBC = 0.8, wICP = 0.2 (0.77) wCCBC = 0.9, wICP = 0.1 (0.77)
5 wCCBC = 0.9, wICP = 0.1 (0.67) same as the best configuration

In parenthesis the reconstruction accuracy, i.e., the average F-Measure

918 Empir Software Eng (2013) 18:901–932

Given these findings we propose the following heuristics to set the parameters of
our approach in a real usage scenario:

– minCoupling: use the third quartile of the non-zero values of the class-by-class
matrix as threshold to remove spurious relationships between the classes of the
package to re-modularize.

– weights: the weights assigned to the structural and semantic metrics are estab-
lished for the system under analysis by performing the PCA of the values of the
coupling metrics computed on the pair of classes of the system having ICP > 0.
The value of the proportion of variance obtained for each metric will be used as
the weight for the corresponding metric.

5.2 Qualitative Evaluation

Even if our approach is able to reconstruct merged packages with very high accuracy,
in a minority of cases it does not reconstruct the original packages and proposes
an alternative decomposition of the system. In order to understand if the proposed
decomposition is still meaningful, even when different from the original, the de-
velopers analyzed the proposed re-modularizations. To select the cases to analyze,
we set an F-measure threshold ε = 0.7; all the cases under this threshold, i.e., 35 of
150, were analyzed by the developers. Table 6 reports the answers to the question
“Is the proposed package decomposition meaningful?” given by the developers for
each analyzed case. In particular, the table reports the number of students that have
answered one of the possible options. Moreover, Table 6 assigns a unique ID to
each re-modularization operation evaluated by the students. This is done to easily
reference the operations in the discussion of the results. As we can see in Table 6,
the developers marked as meaningful most of the re-modularization operations
suggested by the tool. It is worth noting that the answers given by the students for
each of the analyzed cases never differ by more than one point on the Likert scale,
which indicates high agreement among them.

Three of the cases for which the developers gave a positive evaluation will be
the object of discussion in the Sections 5.2.3 (id = 1), 5.2.4 (id = 14), and 5.2.5
(id = 21). In this discussion we will use topic maps (Kuhn et al. 2007) to represent
the main topics in a package. There are many ways to determine topics in source
code. In particular, given a generic set of classes S, e.g., a package or a group
of packages, it is possible to derive the main topics in S by analyzing the term
frequency in the classes it contains. We count, for each term present in S, the number
of classes that contain it with a frequency higher than 3. The five most frequent
terms, i.e., the terms present in the highest number of classes, are then used to
construct the topic map of S that for this reason is represented by a pentagon,
where each vertex represents one of the main topics. Each vertex is connected to
the center of the pentagon by an axis representing the percentage of classes in S
that implements the corresponding topic. The graphical representation of the main
topics of S is then obtained by tracing lines between the point on each of the five axes
indicating the percentage of classes belonging to S that implement the corresponding
topic.

First, we present some of the cases for which the developers gave negative
evaluations (i.e., high values on the Likert scale; 4 or 5), in Sections 5.2.1 and 5.2.2.

Empir Software Eng (2013) 18:901–932 919

Table 6 Analysis of the failure cases

System #Subjects ID operation 1: Fully agree; 5: Strongly disagree

1 2 3 4 5

eTour 2 1 2 – – – –
2 – 1 1 – –
3 – 1 1 – –
4 1 1 – – –
5 – – 2 – –
6 – 1 1 – –
7 – – – – 2

JHotDraw 2 8 1 1 – – –
9 – 2 – – –

10 – – 2 – –
11 – 1 1 – –
12 – – 2 – –
13 – – 2 – –

GESA 5 14 4 1 – – –
15 – – – 3 2
16 – 3 2 – –
17 – 3 2 – –
18 2 3 – – –
19 – 1 4 – –
20 – – 2 3 –

SMOS 5 21 5 – – – –
22 – – – – 5
23 – – 3 2 –
24 – – 4 1 –
25 – – 3 2 –
26 – 1 4 – –

SESA 2 27 – – – – 2
28 1 1 – – –
29 – 1 1 – –
30 – – 2 – –
31 – – 2 – –
32 – 1 1 – –
33 – – – 2 –
34 1 1 – – –
35 – 2 – – –

Answers to the question: “Is the proposed package decomposition meaningful?”

5.2.1 GESA—Merging Two Packages

In a first case negatively evaluated by the developers (id = 15 in Table 6) the tool
merged the following three packages: examSessionManagement, timetableManage-
ment, and classroomManagement. The last two packages were reconstructed by our
approach as a single package. The re-modularization is most likely due to the seman-
tic similarity of the two packages. In fact, the timetableManagement package contains,
among others, classes for the management of the classroom timetable, which use
identifiers similar to those used in classroomManagement. Another case where the
developers did not agree with the suggested re-modularization is represented by
id = 22 in Table 6. In this case the tool merged five packages and only four pack-

920 Empir Software Eng (2013) 18:901–932

ages were reconstructed by our approach. In particular, the connectionManagement
package, which contains the set of classes responsible of the connection to the
DBMS, was merged with the classRegisterManagement package. This is due to the
strong structural relationships (i.e., method calls) between the classes of the two
packages. In fact, the classRegisterManagement groups all the classes assigned to
operations related to the class register, e.g., absence, delay, disciplinary note, and
most of these classes access the persistent data in the DBMS using the classes in the
connectionManagement package.

5.2.2 SESA—Code Clones

Two other interesting cases negatively evaluated by the developers regard the SESA
software system (id = 27 and id = 33 in Table 6). Both these cases have a common
reason that caused the failure of our approach. In particular, several classes in SESA
contain “source code clones”, e.g., pieces of codes copied and pasted among different
classes. Moreover, the comments used to describe the responsibilities assigned to
the classes follow a standard template containing a set of words shared between
almost all the classes of the system. This clearly results in a high semantic similarity
even between classes having different responsibilities. Thus, our approach fails to
reconstruct the original packages when it attempts to decompose a package created
by merging packages containing classes with source code clones and/or very similar
comments. A possible solution to this limitation can be found in De Lucia et al.
(2011), where the authors propose the use of smoothing filters to improve the
performances of the IR-based traceability recovery techniques. In particular, these
filters reduce the weight of terms that frequently occur among different artifacts (in
our case classes), improving the precision of the IR method. The application of this
kind of filters to our approach is outside the scope of this paper. However, we think
that our approach could only benefit from the use of the smoothing filters.

5.2.3 eTour—Removing the Preferences Package

A first “failure” case positively evaluated by the developers regards the eTour
software system. The following three packages were merged together in a single
artificial package:

– tourOperatorManagement: this package contains all the classes responsible with
the management of the users registered to the system as tour operators.

– touristManagement: similar to the previous package, touristManagement groups
together all the classes resposible with the management of the users registered as
tourists.

– preferences: package containing classes used to manage the preferences set by the
users of the system, e.g., favored cities for the tourist.

When applied to the resulting package, our technique suggested only two packages,
with the six classes from the preferences package distributed among the two suggested
packages. In particular, two classes were moved to the tourOperatorManagement
package while four classes were moved to the touristManagement package. We

Empir Software Eng (2013) 18:901–932 921

Fig. 4 Topic map eTour: original packages vs new packages

deeply analyzed the original package in order to find some explanations. We
observed that in eTour three kind of roles are defined for the users: administrator,
tour operator, and tourist. However, only the last two have the possibility to
customize the system using the preference panel. In fact, two out of the six classes
present in preferences are responsible for the management of the tour operator’s
preferences, while the remaining four deal with the tourist’s preferences. The high
method interactions and semantic consistency between the classes present in the
tourOperatorManagement (touristManagement) package and the two (four) classes
responsible of the management of the tour operator’s (tourist’s) preferences explain
the output of our approach. Figure 4 show the topic map of the packages pre and post
the re-modularization. It is worth noting that the topics assigned to the new packages
are almost the same as the topics assigned to the original touristManagement and
tourOperatorManagement packages.

5.2.4 GESA—Two Packages Instead of Three

In a second interesting case the tool merged in a single package the following three
packages, all belonging to the application layer:

– lessonNegotiationManagement: GESA has a feature that allows teachers to nego-
tiate the teaching schedule. This package contains all the classes responsible for
the schedule negotiation.

– reportManagement: this package contains a set of classes that provide different
kinds of reports to the administrator of the system. The reports contain a
schematic representation of a portion of the persistent data in the system.

– userManagement: this package contains all the classes assigned to the manage-
ment of the system’s users.

922 Empir Software Eng (2013) 18:901–932

We applied our approach to reconstruct the original packages. However, the out-
put of the tool was significantly different from the original package decomposition.
In fact, instead of three packages the approach reconstructed only two packages; we
call them P1 and P2. In particular, we noticed that P1 is equal to the userManagement
package, i.e., it contains the same set of classes, while P2 is the result of merging
the lessonNegotiationManagement package with the reportManagement package. To
understand if the proposed decomposition is still meaningful we compared the topic
map of the original packages with the topic map of the new packages (see Fig. 5).
Besides confirming the semantic equivalence of the packages userManagement and
P1, from the analysis of Fig. 5 we can observe that in the original decomposition
the main topics of reportManagement were completely subsumed by the main topics
of lessonNegotiationManagement. Analyzing the package reportManagement we no-
ticed that six out of the seven classes from this package provide the administrator
with reports directly or indirectly concerned with the entity lesson, e.g., course
timetable report, classroom timetable report, teacher’s lesson report, etc. The high
conceptual coupling between lessonNegotiationManagement and reportManagement
is also confirmed by the similarity of the topic map representing package lesson-
NegotiationManagement and the topic map representing package P2 (see Fig. 5). So,
while the original decomposition is probably meaningful from a functional point of
view, one can argue that the proposed decomposition is still semantically meaningful.
This observation is useful in planning our future research, as we could adapt our
approach not only to split packages, but also to recommend existing packages to be
merged, when needed. As mentioned earlier, design decisions regarding the structure
of a system involve more considerations than just high cohesion and low coupling.
This is clearly such a case, where the user may or may not agree with our tool’s
suggestion in the end. It is important to note also that the semantic analysis based on
IR techniques, such as, LSI, is independent of grammar and domain models, while it
is dependent on consistent use of terms in the analyzed code. Inconsistencies in the
use of terms usually affect such an analysis negatively.

Fig. 5 Topic map GESA: original packages vs new packages

Empir Software Eng (2013) 18:901–932 923

Fig. 6 Topic map of the moved classes in the SMOS re-modularization

5.2.5 SMOS—Moving Classes Between Packages

The last case is from the SMOS software system. In particular, the following packages
were merged from the application layer:

– teachingManagement: this package contains all the classes assigned to the man-
agement of the lectures.

– userManagement: this package contains all the classes assigned to the manage-
ment of the users.

In this case, the number of packages reconstructed is equal to the number of origi-
nal packages (two), yet our approach applied an interesting operation. Specifically, a
subset of eight classes from the userManagement package was moved in the teaching-
Management package. Analyzing this set we noticed that the eight classes implement
operations regarding the management of the association between users, i.e. teachers,
and teaching assignments (e.g., assign a new teaching assignment to a teacher, show
the teacher’s assignments, etc.). The topic map shown in Fig. 6 underlines that the
moved set of classes is semantically closer to the teachingManagement package than
to the userManagement package. This indicates that probably the set of moved classes
is more suited in the teachingManagement package than in the userManagement
package. Indeed, although it is different from the original design, the proposed
modularization has been evaluated as meaningful by the developers.

6 Threats to Validity

All the findings reported in Section 5 could be affected by several threats to validity
(Yin 2003) discussed in the following.

924 Empir Software Eng (2013) 18:901–932

6.1 System Mutation

We decided to use the proposed approach to split previously merged packages and
then evaluated the re-modularization accuracy comparing the split packages with the
original packages. While the object systems were chosen because they are generally
well designed, there is the risk that the original packages are not a good oracle.
To mitigate such a threat we analyzed the package decomposition of the subject
systems in order to ensure its meaningfulness. Moreover, as we can see in Table 1, the
cohesion of the packages in the object systems is very high on average, which is also
an indicator of good modularization. In fact, the same metrics were used in Abdeen
et al. (2009) to evaluate the decomposition quality of several open source systems,
e.g., ArgoUML, JEdit. The metric values obtained by the object systems are much
better than the values obtained by the systems in Abdeen et al. (2009). Moreover,
JHotDraw is generally considered a well-designed system and it was developed using
several design patterns. eTour, GESA, SESA, and SMOS were selected among the
best systems developed during a Software Engineering course and, as we can see in
Table 1, have an average package cohesion comparable to JHotDraw.

Another aspect of the evaluation is represented by the choice to split previously
merged packages. Indeed, given the high quality of the subject systems, the coupling
between classes from different packages is generally low. Thus, the splitting oper-
ation seems to be trivial. However, we observed that in several cases, classes from
different packages have many structural dependencies between them, e.g., such a
situation is typical of classes from the subsystems responsible with the management
of the system’s users. In such cases, the semantic measures avoid the creation of class
chains with different responsibilities and help in the reconstruction of the original
packages.

6.2 Experiment Design and Results Analysis

The meaningfulness of the proposed re-modularization operations was evaluated
using the F-measure,based on the precision and recall that reflect the reconstruction
accuracy of the proposed approach. The same approach was also used in previ-
ous work on class refactoring (Bavota et al. 2010b, 2010c, 2011b; O’Keeffe and
O’Cinneide 2006; Seng et al. 2006).

To better evaluate the suggested re-modularizations, we also analyze the cases
where our approach does not reconstruct the original package decomposition. In par-
ticular, several students, familiar with the systems, analyzed the proposed alternative
re-modularization and evaluated its meaningfulness. The students did not know the
goal of our experimentation to avoid bias, however as in any such situation, user
subjectivity is part of the evaluation.

6.3 The Role of CCBC in Software Re-Modularization

In order to find the optimal setting of parameters for our approach, we analyzed
several different configurations (see Section 4.2). The results showed that the weight
wCCBC for the semantic metric should be really high, generally higher than 0.7, to

Empir Software Eng (2013) 18:901–932 925

Fig. 7 Performances on GESAComments and on GESANoComments merging 2 packages

obtain good performances. CCBC is highly dependent on the quality of the iden-
tifiers and comments in the code, so, given its high influence on the approach, we
expect the approach also to be sensitive to the quality of the comments and iden-
tifiers. All the experimented systems have well commented classes besides exhibiting
a generally good package decomposition. Thus, to investigate the performances of
our approach (and the influence of the configuration parameters) in a completely
different scenario, we removed all the comments present in the source code from

Fig. 8 Performances on GESAComments and on GESANoComments merging 3 packages

926 Empir Software Eng (2013) 18:901–932

Fig. 9 Performances on GESAComments and on GESANoComments merging 5 packages

the object systems and re-executed our experimentation. The goal was to assess
the impact of the comments on the approach. The results show again that the best
performances of our approach are achieved using as threshold the third quartile of
the class-by-class matrix, as in the cases where comments are included. Regarding
the weights, Figs. 7, 8, and 9 compare the performances of our approach on GESA
with comments (GESAComments) and GESA without comments (GESANoComments)
using all the possible combinations of weights and merging 2, 3, and 5 packages,
respectively.4 It is worth noting that the reconstruction accuracy achieved by our
approach is almost identical on the two “versions” of the system. However, our
approach applied on GESANoComments shows a strong decrease in performance
when the weights assigned to the semantic metric is higher than 0.8. Moreover,
while the best performances on GESAComments are achieved setting wCCBC = 0.9, on
GESANoComments the best results are obtained setting wCCBC = 0.8. Thus, even if the
weight for the semantic metric slightly decreases, its contribution in the software re-
modularization remains essential. This is most likely due to the semantic information
present in the identifiers used by the developers. Note that, the need to reduce the
weight of the semantic metric in order to achieve good results in the no comment
scenario is confirmed on all the experimented systems (see Bavota et al. 2011a).

6.4 On the use of PCA as Heuristic to set the Metric Weights

The experimentation performed in the no comment scenario allows also to further
investigate the validity of the proposed PCA-based heuristic to set the metric
weights. In fact, we expected that applying the PCA on the object systems without
comments, we obtain a decrement of the proportion of variance assigned to the

4The complete results achieved with the other systems can be found in Bavota et al. (2011a)

Empir Software Eng (2013) 18:901–932 927

Table 7 Results of PCA on
the “NoComments” systems

PC1 PC2

(a) eTour
Proportion of variance 0.55 0.45
Cumulative proportion 0.55 1.00
CCBC −0.84 0.45
ICP −0.45 −0.84

(b) GESA
Proportion of variance 0.80 0.20
Cumulative proportion 0.80 1.00
CCBC 0.99 −0.07
ICP 0.07 0.99

(c) JHotDraw
Proportion of variance 0.68 0.32
Cumulative proportion 0.68 1.00
CCBC −0.99 0.07
ICP −0.07 −0.99

(d) SESA
Proportion of variance 0.71 0.29
Cumulative proportion 0.71 1.00
CCBC 0.97 0.25
ICP 0.25 −0.97

(e) SMOS
Proportion of variance 0.84 0.16
Cumulative proportion 0.84 1.00
CCBC −0.99 0.00
ICP 0.00 0.99

semantic metric, i.e., CCBC, with a consequent decrement of its weight, i.e., wCCBC.
To verify such a conjecture, we re-executed the PCA on the “NoComment” versions
of the object systems. Table 7 reports the achieved results. Analyzing Figs. 7, 8, and
9, and Table 7, it is easy to see that in this scenario also, the weights suggested
by the PCA on the GESA system, i.e., wICP = 0.2 and wCCBC = 0.8, result in a
configuration with performances very close to the best. This trend is confirmed on
all the experimented systems (see Bavota et al. 2011a) and further supports the
possibility to use PCA as a heuristic to set the metric weights.

7 Conclusions and Future Work

We proposed and evaluated a technique that suggests decompositions of packages
to improve their cohesion. Central to our approach, and a departure from previous
work, is the combined use of structural and semantic relationships between classes
in this context. The evaluation revealed that the technique produces meaningful de-
compositions from structural and functional point of view. Due to the heterogeneous
nature of software systems, it is always hard to propose analysis techniques that
perform equally on any system. Hence, our technique incorporates a PCA-based
heuristic that is established empirically for each system on which re-structuring is
undertaken. While the heuristic is system dependant, its performance is stable across
the systems we experimented with.

928 Empir Software Eng (2013) 18:901–932

Although we applied the approach on five realistic systems, as with all empirical
studies, the generalization of our findings cannot be ensured. Thus, replicating the
study on other systems is the only way to corroborate the results achieved and
mitigate the external threat to validity related to the generalization of our findings.
Nevertheless, this paper sheds lights on the effectiveness of combining semantic
and structural coupling measures between classes to re-structure packages with low
cohesion. At the same time, our work can be used as starting point for future
research. We plan to investigate additional structural and semantic measures and
determine whether the choice we made here is the best or it can be improved. More
empirical studies are planned, using systems with poorer package quality, which
would better approximate the everyday use of our technique. A natural extension
of this work will be to adapt our technique to be used on multiple, related packages
rather than a single one. Coupling between packages (in addition to cohesion) will
also have to be considered in such cases. Last but not least, a direct comparison with
clustering and search based approaches will be performed.

Acknowledgements We would like to thank all the students who participated to our study. We
would also like to thank the anonymous reviewers for their careful reading of our manuscript and
useful comments. Andrian Marcus was supported in part by grants from the US National Foundation:
CCF-1017263 and CCF-0845706.

References

Abdeen H, Ducasse S, Sahraoui HA, Alloui I (2009) Automatic package coupling and cycle mini-
mization. In: WCRE, pp 103–112

Anquetil N, Lethbridge T (1999) Experiments with clustering as a software remodularization
method. In: WCRE, pp 235–255

Antoniol G, Penta MD, Casazza G, Merlo E (2001) A method to re-organize legacy systems via
concept analysis. In: IWPC, pp 281–292

Baeza-Yates R, Ribeiro-Neto B (1999) Modern information retrieval. Addison-Wesley, Reading,
MA

Basili V, Caldiera G, Rombach DH (1994) The goal question metric paradigm. Wiley, Inc.,
New York

Bavota G, De Lucia A, Marcus A, Oliveto R (2010a) Software re-modularization based on structural
and semantic metrics. In: Proceedings of the 17th working conference on reverse engineering.
Beverly, MA, USA, pp 195–204

Bavota G, De Lucia A, Marcus A, Oliveto R (2010b) A two-step technique for extract class refactor-
ing. In: Proceedings of 25th IEEE international conference on automated software engineering,
pp 151–154

Bavota G, Oliveto R, De Lucia A, Antoniol G, Guéhéneuc YG (2010c) Playing with refactoring:
identifying extract class opportunities through game theory. In: Proceedings of the 26th IEEE
international conference on software maintenance

Bavota G, De Lucia A, Marcus A, Oliveto R (2011a) Software re-modularization
based on structural and semantic metrics. Tech. rep., University of Salerno.
http://www.sesa.dmi.unisa.it/TR2011_EMSE.pdf

Bavota G, De Lucia A, Oliveto R (2011b) Identifying extract class refactoring opportunities using
structural and semantic cohesion measures. J syst softw 84(3):397–414

Bittencourt RA, Guerrero DDS (2009) Comparison of graph clustering algorithms for recover-
ing software architecture module views. In: Proceedings of the 2009 European conference
on software maintenance and reengineering. IEEE Computer Society, Washington, DC, USA
pp 251–254

Canfora G, Cimitile A, De Lucia A, Di Lucca GA (2001) Decomposing legacy systems into objects:
an eclectic approach. Inf Softw Technol 43(6):401–412

http://www.sesa.dmi.unisa.it/TR2011_EMSE.pdf

Empir Software Eng (2013) 18:901–932 929

Cimitile A, Visaggio G (1995) Software salvaging and the call dominance tree. J Syst Softw 28(2):117–
127

Corazza A, Martino SD, Scanniello G (2010) A probabilistic based approach towards software
system clustering. In: CSMR, pp 88–96

Corazza A, Martino SD, Maggio V, Scanniello G (2011) Investigating the use of lexical information
for software system clustering. In: CSMR, pp 35–44

Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by latent
semantic analysis. J Am Soc Inf Sci 41(6):391–407

De Lucia A, Oliveto R, Vorraro L (2008) Using structural and semantic metrics to improve class
cohesion. In: Proceedings of international conference on software maintenance. Beijing, China,
pp 27–36

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2011) Improving ir-based traceability
recovery using smoothing filters. In: Proceedings of the 19th IEEE international conference on
program comprehension. Kingston, ON, Canada, pp 21–30

Ducasse S, Pollet D, Suen M, Abdeen H, Alloui I (2007) Ackage surface blueprints: visually sup-
porting the understanding of package relationships. In: Proceedings of international conference
on software maintenance. Paris, France, pp 94–103

Harman M, Hierons RM, Proctor M (2002) A new representation and crossover operator for
search-based optimization of software modularization. In: Proceedings of the 2002 conference
on genetic and evolutionary computation, pp 1351–1358

Harman M, Swift S, Mahdavi K (2005) An empirical study of the robustness of two module clustering
fitness functions. In: Proceedings of the 2005 conference on genetic and evolutionary computa-
tion. ACM Press, Washington DC, USA, pp 1029–1036

Hartigan JA (1975) Clustering algorithms. Wiley, New York
Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5):604–632
Koschke R, Canfora G, Czeranski J (2006) Revisiting the delta ic approach to component recovery.

Sci Comput Program 60(2):171–188
Kuhn A, Ducasse S, Gîrba T (2007) Semantic clustering: identifying topics in source code. Inf Softw

Technol 49(3):230–243
Lee Y, Liang B, Wu S, Wang F (1995) Measuring the coupling and cohesion of an object-oriented

program based on information flow. In: International conference on software quality
Lehman MM (1980) On understanding laws, evolution, and conservation in the large-program life

cycle. J Syst Softw 1:213–221
Maletic JI, Marcus A (2001) Supporting program comprehension using semantic and structural

information. In: Proceedings of 23rd international conference on software engineering. IEEE
CS Press, Toronto, Ontario, Canada, pp 103–112

Mancoridis S, Mitchell BS, Rorres C, Chen YF, Gansner ER (1998) Using automatic clustering to
produce high-level system organizations of source code. In: IWPC, p 45

Maqbool O, Babri HA (2007) Hierarchical clustering for software architecture recovery. IEEE Trans
Softw Eng 33(11):759–780

Marcus A, Poshyvanyk D, Ferenc R (2008) Using the conceptual cohesion of classes for fault
prediction in object-oriented systems. IEEE Trans Softw Eng 34(2):287–300

Mitchell BS, Mancoridis S (2001) Comparing the decompositions produced by software clustering
algorithms using similarity measurements. In: Proceedings of 17th international conference of
software maintenance. IEEE CS Press, Florence, Italy, pp 744–753

Mitchell BS, Mancoridis S (2006) On the automatic modularization of software systems using the
bunch tool. IEEE Trans Softw Eng 32(3):193–208

O’Keeffe M, O’Cinneide M (2006) Search-based software maintenance. In: Proceedings of 10th
European conference on software maintenance and reengineering. IEEE CS Press, Bari, Italy,
pp 249–260

Oppenheim AN (1992) Questionnaire design, interviewing and attitude measurement. Pinter
Publishers

Poshyvanyk D, Marcus A, Ferenc R, Gyimóthy T (2009) Using information retrieval based coupling
measures for impact analysis. Empir Software Eng 14(1):5–32

Praditwong K, Harman M, Yao X (2011) Software module clustering as a multi-objective search
problem. IEEE Trans Softw Eng 37(2):264–282

Ricca F, Pianta E, Tonella P, Girardi C (2008) Improving web site understanding with keyword-based
clustering. J Softw Maint Evol 20(1):1–29. doi:10.1002/smr.v20:1

Scanniello G, D’Amico A, D’Amico C, D’Amico T (2010) Using the kleinberg algorithm and vector
space model for software system clustering. In: ICPC, pp 180–189

http://dx.doi.org/10.1002/smr.v20:1

930 Empir Software Eng (2013) 18:901–932

Seng O, Bauer M, Biehl M, Pache G (2005) Search-based improvement of subsystem decomposi-
tions. In: GECCO, pp 1045–1051

Seng O, Stammel J, Burkhart D (2006) Search-based determination of refactorings for improving the
class structure of object-oriented systems. In: Genetic and evolutionary computation conference,
pp 1909–1916

Shaw SC, Goldstein M, Munro M, Burd E (2003) Moral dominance relations for program compre-
hension. IEEE Trans Softw Eng 29(9):851–863

Shtern M, Tzerpos V (2009) Methods for selecting and improving software clustering algorithms. In:
Proceedings of 17th IEEE international conference on program comprehension. IEEE CS Press,
Vancouver, Canada, pp 248–252

Stevens WP, Myers GJ, Constantine LL (1974) Structured design. IBM Syst J 13(2):115–139
Tonella P (2001) Concept analysis for module restructuring. IEEE Trans Softw Eng 27(4):351–363
van Deursen A, Kuipers T (1999) Identifying objects using cluster and concept analysis. In: Pro-

ceedings of 21st international conference on software engineering. ACM Press, Los Angeles,
California, USA, pp 246–255

Wiggerts TA (1997) Using clustering algorithms in legacy systems remodularization. In: WCRE
’97: proceedings of the fourth working conference on reverse engineering (WCRE ’97). IEEE
Computer Society, p 33

Wu J, Hassan AE, Holt RC (2005) Comparison of clustering algorithms in the context of software
evolution. In: ICSM, pp 525–535

Yin RK (2003) Case study research: design and methods, 3rd edn. SAGE Publications

Gabriele Bavota was born in Napoli (Italy) on November, 19th, 1985. He received (cum laude) the
Laurea in Computer Science from the University of Salerno (Italy) in 2009 defending a thesis on
Traceability Management advised by Prof. Andrea De Lucia and Dr. Rocco Oliveto. He is currently
a PhD student at the Department of Mathematics and Informatics of the University of Salerno under
the supervision of Prof. Andrea De Lucia. His research interests include refactoring of software sys-
tems, traceability management, information retrieval, software maintenance and empirical software
engineering. He serves and has served on in the organizing and program committees of international
conferences in the field of software engineering. In particular, he was the web chair of WCRE 2012
and he will be publicity co-chair of ICPC 2013. He is student member of IEEE.

Empir Software Eng (2013) 18:901–932 931

Andrea De Lucia received the laurea degree in computer science from the University of Salerno,
Italy, in 1991, the MSc degree in computer science from the University of Durham, UK, in
1996, and the PhD degree in electronic engineering and computer science from the University
of Naples “Federico II”, Italy, in 1996. He is a full professor of software engineering and the
Director of the International Summer School on Software Engineering at the University of Salerno.
Previously, he was with the Department of Engineering and the Research Centre on Software
Technology (RCOST) at the University of Sannio. He is actively consulting in industry and has
been involved in several research and technology transfer projects conducted in cooperation with
industrial partners. His research interests include software maintenance, program comprehension,
reverse engineering, reengineering, migration, global software engineering, software configuration
management, workflow management, document management, empirical software engineering, visual
languages, web engineering, and e-learning. He has published more than 150 papers on these topics
in international journals, books, and conference proceedings and has edited books and journal
special issues. He serves on the editorial board of Journal of Software: Evolution and Process and
other international journals and on the organizing and program committees of several international
conferences in the field of software engineering. Prof. De Lucia is a senior member of the IEEE
and the IEEE Computer Society. He was also at-large member of the executive committee of the
IEEE Technical Council on Software Engineering (TCSE) and committee member of the IEEE
Real World Engineering Project (RWEP) Program.

Andrian Marcus is Associate Professor and Director of the Undergraduate Program in the
Department of Computer Science at Wayne State University (Detroit, MI). He obtained his Ph.D. in
Computer Science from Kent State University in 2003. His current research interests are in software
engineering, with focus on using information retrieval and text mining techniques for software
analysis to support comprehension during software evolution. He served on the Steering Committee
of the IEEE International Conference on Software Maintenance (ICSM) between 2005–2008 and

932 Empir Software Eng (2013) 18:901–932

2011–2014, and on the Steering Committee IEEE International Wokshop on Visualizing Software for
Understanding and Analysis (VISSOFT) between 2005–2009. He serves on the editorial board of the
Empirical Software Engineering and the Journal of Software: Evolution and Process. He also served
as organizing or program committee member to many conferences related to his area of research.

Rocco Oliveto received (cum laude) the Laurea in Computer Science from the University of
Salerno (Italy) in 2004. From October 2006 to February 2007 he has been a visiting student at the
University College London, UK. He received the PhD in Computer Science from the University
of Salerno (Italy) in 2008. From July 2009 to September 2009 he has been a visiting researcher at
the Polytechnique of Montreal, Canada. From July 2009 to September 2009 he has been a visiting
researcher at the Polytechnique of Montreal, Canada. From 2008 to 2010 he was research fellow
at the Department of Mathematics and Informatics of the University of Salerno. From 2005 to
2010 he is also adjunct professor at the Faculty of Science of the University of Molise (Italy).
He is member of the Software Engineering Lab at the University of Salerno. In 2011 he joined
the STAT Department of the University of Molise where he is currently assistant professor. His
research interests include traceability management, information retrieval, software maintenance and
evolution, and empirical software engineering. He has published about 40 papers on these topics in
international journals, books, and conference proceedings. He serves on the editorial board of the
Advances in Software Engineering. He serves and has served as organizing and program committee
member of international conferences in the field of software engineering. In particular, he was the
program co-chair of TEFSE 2009, the Traceability Challenge Chair of TEFSE 2011, the Industrial
Track Chair of WCRE 2011, the Tool Demo Co-chair of ICSM 2011 and he will be the program co-
chair of WCRE 2012. Dr. Oliveto is member of IEEE, ACM, and IEEE-CS Awards and Recognition
Committee.

	Using structural and semantic measures to improve software modularization
	Abstract
	Introduction
	Related Work
	The Proposed Approach
	Class-by-Class Matrix Construction
	Class Chains Extraction

	Case Study Design
	Definition and Context
	Research Questions and Planning

	Empirical Study Results
	Influence of the Parameters
	Qualitative Evaluation
	GESA---Merging Two Packages
	SESA---Code Clones
	eTour---Removing the Preferences Package
	GESA---Two Packages Instead of Three
	SMOS---Moving Classes Between Packages

	Threats to Validity
	System Mutation
	Experiment Design and Results Analysis
	The Role of CCBC in Software Re-Modularization
	On the use of PCA as Heuristic to set the Metric Weights

	Conclusions and Future Work
	References

