
Software development effort prediction of industrial projects
applying a general regression neural network

Cuauhtemoc Lopez-Martin & Claudia Isaza &

Arturo Chavoya

Published online: 3 December 2011
Springer Science+Business Media, LLC 2011
Editors: Martin Shepperd

Abstract An important factor for planning, budgeting and bidding a software project is
prediction of the development effort required to complete it. This prediction can be
obtained from models related to neural networks. The hypothesis of this research was the
following: effort prediction accuracy of a general regression neural network (GRNN) model
is statistically equal or better than that obtained by a statistical regression model, using data
obtained from industrial environments. Each model was generated from a separate dataset
obtained from the International Software Benchmarking Standards Group (ISBSG) software
projects repository. Each of the two models was then validated using a new dataset from the
same ISBSG repository. Results obtained from a variance analysis of accuracies of the
models suggest that a GRNN could be an alternative for predicting development effort of
software projects that have been developed in industrial environments.

Keywords Software development effort prediction . General regression neural network .

Statistical regression . ISBSG . Repeatability

1 Introduction

Bad effort estimates may lead to poor planning, low profitability and consequently,
products with poor quality (Jørgensen 2006). Underestimating a project may lead to under-
staffing it, under-scoping the quality assurance effort, and setting short schedules.

Empir Software Eng (2012) 17:738–756
DOI 10.1007/s10664-011-9192-6

C. Lopez-Martin (*) :A. Chavoya
Information Systems Department CUCEA, Guadalajara University, P.O. Box 45100, Jalisco, Mexico
e-mail: cuauhtemoc@cucea.udg.mx

A. Chavoya
e-mail: achavoya@cucea.udg.mx

C. Isaza
Department of Electronic Engineering-GEPAR Research Group, Universidad de Antioquia,
Medellín, Colombia
e-mail: cisaza@udea.edu.co

Overestimating a project could lead to assigning more resources than it really needs, the
project is then likely to cost more than it should, take longer to deliver than necessary, delay
the use of the resources in the next project (De Barcelos et al. 2008), and possibly the
project could not win in a competitive bid scenario.

Software development estimation techniques can be classified into two general
categories:

1) Expert judgment. This technique implies a lack of analytical argumentation and
aims at deriving estimates based on the experience of experts on similar
projects; this technique is based on a tacit (intuitive) quantification step
(Jørgensen 2007b).

2) Model-based technique. It is based on a deliberate (mechanical) quantification step,
and it could be divided into the following two subcategories:

a) Models based on Statistics: Its general form is a statistical regression model
(Boehm et al. 2000).

b) Models based on computational intelligence: These techniques include fuzzy logic
(López-Martín 2011a), neural networks (De Barcelos et al. 2008), genetic
programming (Afzal and Torkar 2011), and genetic algorithms (Sun-Jen et al. 2008).

Based on the assumption that no single technique is best for all situations and that a
careful comparison of the results of several approaches is more likely to produce realistic
estimates (Boehm et al. 2000), this study compares the following two models against each
other: statistical regression and a type of neural network termed general regression neural
network (GRNN). A GRNN was selected as it was found to yield an acceptable accuracy
when applied for predicting the software development effort of individual projects (López-
Martín 2011b). The comparison against a statistical regression model is made because a
regression analysis should be done as the default model construction method (Kitchenham
et al. 2007), which has been the dominating model in recent years (Jørgensen and Shepperd
2007). These two models were generated from large projects. In order to obtain a
representative model based on a pattern recognition method such as a GRNN, it is
necessary to train the system with the most representative data (Duda et al. 2001).
Therefore, data samples for this study have been carefully selected from a statistically
significance analysis. A weakness of previous studies related to the use of the datasets is
that the data quality is frequently not known or discussed in the corresponding publications
(Jørgensen and Shepperd 2007).

Data from large projects were obtained from the International Software Benchmarking
Standards Group (ISBSG) software projects repository; the use of this kind of dataset is
important because a lot of studies are based on datasets that are clearly too old (such as the
COCOMO 81 dataset) to be representative of more recent or future projects (Jørgensen and
Shepperd 2007).

Comparison of models is based upon the two following main stages when an estimation
model is used (Montgomery and Peck 2001):

1) The model adequacy checking or model verification (estimation) must be
determined, that is, whether the model is adequate to describe the observed
(actual) data; if so, then

2) The model is validated using new data (prediction).

In the field of neural networks, the first stage is commonly known as training, whereas
the second stage is termed testing.

Empir Software Eng (2012) 17:738–756 739

The hypothesis to be investigated in this paper is the following:

Effort prediction accuracy of a general regression neural network is statistically equal
or better than that obtained by statistical regression, when data are obtained from
industrial environments.

The remainder of this introduction section describes how each kind of project is
measured, that is, their dependent and independent variables are described, the criterion for
evaluating the models is described and justified, a brief introduction to neural networks in
general and general regression neural networks in particular is described; the section
finishes with the presentation of related work. The next section is dedicated to the
description of the data sample. The following two sections correspond to the generation and
the validation of the models respectively, whereas comparisons among models are
presented in the next section. Finally, sections of discussion, conclusions and future
research are presented.

1.1 Software Project Measurement

The effort of large projects was measured in man-months. The ISBSG dataset measures
effort value in hours, which was converted to man-months having as equivalence 152 h per
one man-month (Boehm et al. 2000).

Project size in the ISBSG dataset is mainly measured in adjusted function points
(the number of lines of code by project was only available for some of the projects).
Along with source lines of code, function points (FP) is one of the most common
measures for estimating software project size, which is done by quantifying the
amount of functionality provided to the user in terms of the number of inputs, outputs
and files (Sheetz et al. 2009).

The function points counting process involves the following concepts:

1. Record Element Type (RET). A subgroup of data elements within an either internal or
external file.

2. File Type Referenced (FTR). A file type referenced by a transaction (i.e. add, delete or
modify data).

3. Data Element Type (DET). A unique user recognizable, non-recursive (non-repetitive)
field.

The process for counting the function points is based on the following steps (Garmus
and Herron 1996):

1) Identify data functions and their complexity. There are two types of data: internal and
external.

a) Internal Logical File (ILF). A user identifiable group of logically related data that
resides entirely within the application boundary and is maintained through External
Inputs. Even though it is not a rule, an ILF should have at least one external input.
The ILFs are rated according to Table 1.

b) External Interface File (EIF). A user identifiable group of logically related data that
is used for reference purposes only. The data resides entirely outside the
application boundary and is maintained by external inputs of another application.
Each EIF must have at least one external output or external interface file. At least
one transaction, external input, external output or external inquiry should include
the EIF as an FTR. The EIFs are rated according to Table 1.

740 Empir Software Eng (2012) 17:738–756

2) Identify transactional function and their complexity. There are three transactional
function types:

a) External input (EI). An elementary process of the application that processes data or
control information that enters from outside the boundary of the application, such
as adding, changing, and deleting transactions. The external inputs are rated
according to Table 2.

b) External output (EO). An elementary process in which derived data passes across
the boundary from inside to outside. Derived data occurs when one or more data
elements are combined with a formula to generate or derive an additional data
element. The external inputs are rated according to Table 3.

c) External inquiry (EQ). An elementary process with both input and output
components that result in data retrieval from one or more ILF and EIF. The
input process does not update or maintain any FTR (ILF or EIF) and the
output side does not contain derived data. The external inquiries are rated
according to Table 3.

3) Determine the Unadjusted Function Points (UFP) count. The levels of ILF, EIF, EI, EO
and EQ obtained from Tables 1, 2 and 3 are converted to a quantitative value according
to Table 4. The final UFP are obtained by adding all these values up.

4) Determine the value adjustment factor (VAF) from 14 characteristics. The value
adjustment factor (VAF) is obtained from 14 system characteristics that rate the general
functionality of the application (Table 5). Each characteristic has associated a
description as well as a degree of influence, whose range is from 0 to 5 having the
following meaning:

0 Not present, or no influence
1 Incidental influence
2 Moderate influence
3 Average influence

Table 2 Functional complexity matrix for EI

FTR DET

1–4 5–15 Greater than 15

Less than 2 Low Low Average

2 Low Average High

Greater than 2 Average High High

Table 1 Complexity matrix for ILF and EIF

RET DET

1–19 20–50 Greater than 50

1 Low Low Average

2 to 5 Low Average High

6 or more Average High High

Empir Software Eng (2012) 17:738–756 741

4 Significant influence
5 Strong influence throughout

To reduce the bias, each degree of influence by characteristic has a specific
meaning (Garmus and Herron 1996):

The VAF is obtained by using the following equation:

VAF ¼ 0:65þ
X14

i¼1
Ci

� �
=100

h i

Where:

Ci Degree of influence by the ith-characteristic

5) Calculate the Adjusted Function Point (AFP) count by multiplying the UFP by the VAF.

1.2 Criterion for Evaluating Estimation Model

Considering that the accuracy indicator has a large impact on the results (Myrtveit et al.
2005), the selection of the accuracy criterion for this study was based on Foss et al. (2003).
The Magnitude of error Relative to the Estimate (MER) is used as criterion for evaluating
and comparing the estimation models of this study. The MER was selected because the
Magnitude of Relative Error (or MRE, which has commonly been used as criterion) is not
strongly recommended and MER has shown better results than MRE (Foss et al. 2003). The
accuracy of an estimation technique is inversely proportional to the MMER. The MER for
observation i is defined as follows:

MERi ¼ Actual Efforti � Estimated Effortij j
Estimated Efforti

Table 4 Unadjusted function points

Components Function levels

Low Average High

Internal Logical File (ILF) 7 10 15

External Interface File (EIF) 5 7 10

External input (EI) 3 4 8

External output (EO) 4 5 7

External inquiry (EQ). 3 4 6

Table 3 Functional complexity matrix for EO and EQ

FTR DET

1–5 6–19 Greater than 19

Less than 2 Low Low Average

2–3 Low Average High

Greater than 3 Average High High

742 Empir Software Eng (2012) 17:738–756

The MER value is calculated for each observation i whose effort is estimated. The
aggregation of the MER over multiple observations (N) can be achieved through the Mean
MER (MMER) as follows:

MMER ¼ 1=Nð Þ
XN

i¼1
MERi

This MMER criterion is in accordance with Kitchenham et al. (2007), who suggest that
statistical tests based on the absolute residuals of the raw data should be performed.

In several papers, a MMRE≤0.25 has been considered as acceptable; however, the
authors who have proposed this value present neither any reference to studies nor any
argumentation providing evidence (Jørgensen 2007a). On the other hand, a reference for an
acceptable value of MMER has not been found.

1.3 Neural Networks and General Regression Neural Networks

An artificial neural network, or more succinctly a neural network (NN), is a massively
parallel, distributed system composed of simple processing units or artificial neurons that
are interconnected to mimic a biological neural network (Haykin 1999). An artificial neuron
or node in the network can have as input some data fed to the system or the outputs from
other nodes. A neuron typically performs the summation of the product of input and
weighted factors, and the resulting value is used as input to an activation function, which is
usually sigmoid. The output from the activation function, which is actually the output from
the neuron, can act as an excitatory or an inhibitory signal for other nodes, or it can be the
output from the system.

The topology (the number, distribution and interconnection of nodes) of NNs can
vary widely. One of the most used topologies is the multi-layered feedforward
network, where there the nodes in the input layer take the data from outside the
system and the nodes from the output layer provide the system’s output. Between the
input and output layers, there can be so-called hidden layers, where all nodes take as
input the output from the previous layer and their output is fed to the inputs of the
next layer (hence the name feedforward).

Description

1. Data communications

2. Distributed data processing

3. Performance

4. Heavily used configuration

5. Transaction rate

6. On-Line data entry

7. End-user efficiency

8. On-Line update

9. Complex processing

10. Reusability

11. Installation ease

12. Operational ease

13. Multiple sites

14. Facilitate change

Table 5 System characteristics

Empir Software Eng (2012) 17:738–756 743

Before a NN can be used, it has to undergo some training, which involves iteratively
finding the appropriate weight values so that the network outputs the desired value for a
given a set of input values. A number of training algorithms have been developed over the
years, with backpropagation being the most widely known. After a NN has been trained, it
is convenient to validate its performance using ideally a dataset different from the one used
to train it.

The General Regression Neural Network (GRNN) is a type of NN that performs
regression on a continuous output variable and it has the following advantages: (a) fast
learning and (b) convergence to the optimal regression surface as the number of samples
becomes very large. The GRNN has shown that, even with sparse data in a
multidimensional measurement space, the algorithm provides smooth transitions from one
observed value to another (Specht 1991). Figure 1 shows the architecture of a GRNN
(Specht 1991). The input units are merely distribution units, which provide all the scaled
measurement variables X to either all neurons on the second layer, the pattern units that are
dedicated to one exemplar, or one cluster center. When a new vector X is entered into the
network, it is subtracted from the stored vector representing each cluster center. Either the
squares or the absolute values of the differences are summed and fed into a nonlinear
activation function. The activation function normally used is the exponential function. The
pattern units output are passed onto the summation units. The summation units perform a
dot product between a weight vector and a vector composed of the signals from the pattern
units. The summation unit that generates an estimate of F(X)K sums the outputs of the
pattern units weighted by the number of observations each cluster center represents. The
summation unit that estimates Y′ F(X)K multiplies each value from a pattern unit by the sum
of the samples Y j associated with cluster center X i. The output unit merely divides Y′ F(X)K
by F(X)K to yield the desired estimate of Y. When estimation of a vector Y is desired, each
component is estimated using one extra summation unit, which uses as its multipliers sums
of samples of the component of Y associated with each cluster center X i. Figure 1 shows a
network that can be used to estimate a vector Y from a measurement vector X.

Fig. 1 General regression neural
network diagram

744 Empir Software Eng (2012) 17:738–756

1.4 Related Work

Paliwal and Kumar (2009) have identified the following problems in studies involving
neural networks and statistical techniques that have been used for prediction in various
areas of applications:

1) Most of the articles seem to have not used the statistical techniques optimally,
including validity of assumptions. Violations of assumptions and comparison of
neural networks with such techniques probably would have resulted in better
performance.

2) The determination of various parameters associated with neural networks is not
straightforward and finding the optimal configuration of neural networks is a very time
consuming process.

3) The results obtained from the model building processes are not validated on a new
dataset that is not used for building the models. Testing on separate dataset would have
provided unbiased estimate of the generalization error.

4) It is not clear whether a statistically significant difference exists in the performance of
different techniques that are compared.

In addition, some of the studies found by Paliwal and Kumar (2009) make use of
statistical techniques to select the significant variables to get a better predictive or
classification model.

With regard to the application of neural networks for predicting the development effort
on software projects, we found the following studies:

Heiat (2002) compared the prediction accuracy of two kinds of neural networks (a
multilayer perceptron and a radial basis function network) with the accuracy of a
statistical regression. Three sets of data were used: the IBM DP Services Organization
comprising 24 projects, the Kemerer dataset comprising 15 projects, and the Hallmark
dataset comprising 28 projects. Heiat conducted two experiments, the projects from the
Kemerer and the IBM datasets—which include third generation programming languages—
were combined for the first experiment, whereas in the second experiment, projects
from the Kemerer, the IBM, and the Hallmark datasets—which include both third
generation and fourth generation programming languages—were combined. The three
datasets were referenced in papers published before the year 1988. The results from
this study indicated that when a combined third generation and fourth generation
language dataset were used, the neural network produced improved performance over
conventional statistical regression. The prediction accuracy evaluation criterion was
the MMRE. The training set for the models included 32 projects for the first
experiment and 60 for the second experiment, whereas seven projects were used for
testing the models. Heiat suggested further studies with larger datasets to verify the
results obtained in his study.

Oliveira (2006) provided a comparative study on support vector regression (SVR), a
radial basis function neural network (RBFN) and linear regression. His result was based on
a set of 18 projects developed before 1981 and it showed that SVR significantly
outperforms RBFN and linear regression. The accuracy criterion was the Magnitude of
Relative Error (MMRE).

Vinay et al. (2008) proposed the use of a wavelet neural network (WNN). The WNN
is compared with a multilayer perceptron, a radial basis function network, multiple linear
regression, a dynamic evolving neuro-fuzzy inference system, and a support vector
machine (SVM). The accuracy criterion was the Magnitude of Relative Error (MMRE).

Empir Software Eng (2012) 17:738–756 745

The two datasets used were from Canadian financial, and IBM data processing services
(IBMDPS), having 24 and 37 software projects, respectively. These projects were
developed in 1996 or before. Based on their experiments, it was observed that the WNN
outperformed all the other techniques.

Park and Baek (2008) proposed and evaluated a neural network. They obtained their
conclusions from a sample of 148 projects completed between 1999 and 2003 including a
wide range of software development technologies, project scales and project periods, in
addition to having projects covering various industries. The prediction accuracy
evaluation criterion was the MMRE. They trained and applied three neural networks
varying them in their independent variables: the first network had only function points
(FPs) as variable, the second one had six variables excluding FPs, and the third one had
seven variables: FPs plus the above-mentioned six variables. They concluded that the
neural network model that used FPs and the six other input variables was superior to the
others.

De Barcelos et al. (2008) compared the accuracy of a feedforward multilayer
perceptron neural network against statistical regression. The COCOMO database of 63
projects, which was published in the year 1981, was used for training and testing the
models. The prediction accuracy evaluation criterion was the MMRE. The focus of this
study was on the investigation of the behavior of these two techniques when predicting
variables as categorical variables are used. The independent variables were nominal,
ordinal or in an absolute scale. They selected a set of 11 projects for testing their models
and the rest of the 63 was used for training the models. These two sets were selected as
follows: the first training dataset was constructed by removing projects 1, 7, 13, 19, 25,
31, 37, 43, 49, 55, and 61; the second training dataset was constructed by removing
projects 2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, and so forth. The removed projects
comprised the respective testing datasets. Results presented in this study indicated that
these two techniques were competitive. The authors suggested that new experiments
should be conducted to combine the neural network and multiple regression techniques to
calibrate and test prediction models on other datasets, such as the ISBSG (International
Software Benchmarking Standard Group) database.

Kultur et al. (2009) proposed an ensemble of neural networks with associative
memory (ENNA). They used the following five datasets for evaluating the proposed
model: the NASA dataset which includes 60 NASA projects from 1980 to 1990 (these
projects are sequencing, avionics and mission planning projects), the NASA 93 dataset
consisting of 93 NASA projects (these projects are from 1970 to 1980), the COCOMO 81
dataset containing 63 projects developed before 1981; the Softlab Data Repository (SDR)
from the University Software Engineering Research Laboratory in Turkey (the SDR
consists of 24 projects that were implemented after the year 2000), and the Desharnais
dataset consisting of 77 projects from the late 1980s. The prediction accuracy evaluation
criterion was the MMRE. The size by dataset used for training the ENNA was 50
(NASA), 78 (NASA 93), 53 (COCOMO 81), 20 (SDR) and 64 (Desharnais), whereas the
size by dataset used for testing the ENNA was 10 (NASA), 15 (NASA 93), 10
(COCOMO 81), 4 (SDR) and 13 (Desharnais). In the ENNA model an ensemble is used
rather than a single MLP. In addition to the use of the ensemble approach in this model,
an associative memory is used for bias correction. The bias of the ensemble for similar
projects is calculated and added to the result of the ensemble to provide the final result.
The ENNA was compared with a multilayer perceptron neural network (MLP) and
regression trees. Results showed that the ENNA produces better results than a MLP in
terms of accuracy for all five datasets.

746 Empir Software Eng (2012) 17:738–756

El-Sebakhy (2011) proposed functional networks as a new intelligent system paradigm
and compared its performance with both standard multilayer perceptron and nonlinear
statistical regression. The sample used was the same as the one used by Heiat (2002), and
the prediction accuracy evaluation criterion was the MMRE. The results from this research
indicated that the functional network learning scheme was competitive even better than
both standard neural networks and multiple regression. El-Sebakhy suggested for future
work to use more databases for software engineering.

As for the application of a general regression neural network (GRNN) on software
engineering, Thwin and Quah (2005) used this kind of network for predicting software
defects. The involved independent variables were object-oriented design metrics concerning
inheritance, complexity, cohesion, and coupling measures, as well as memory allocation
measures. In that study, the GRNN was found to predict more accurately than others models
which the GRNN was compared with.

Regarding software development effort estimation, a GRNN was used by Prasad et al.
(2010) for predicting large projects and by López-Martín (2011b) for predicting the effort of
individual projects. Prasad et al. compared the accuracy of the GRNN with accuracies of
the regression equation proposed by Boehm (1981) and that of a Radial Basis Neural
Network (RBNN). These authors used the 63 projects from the COCOMO 81 dataset
(developed before the year of 1981); 53 projects were used for generating the models and
then all 63 projects were used for validating the generated models; that is, they used
projects from the training set to validate their models. In addition, a GRNN spread value of
0.94 was used; however, the authors did not specify how that value was obtained. They
concluded that the RBNN was better than the GRNN. On the other hand, López-Martín
(2011b) used two sets of 163 and 80 individual projects for training and testing the GRNN,
respectively; the independent variables were two kinds of lines of code, and the accuracy
criteria were the Magnitude of error Relative to the Estimate (MER) and the Mean Square
Error (MSE). Accuracy of the GRNN was compared with those of a linear regression and of
a fuzzy logic model; results showed that a GRNN had a same statistically significant
difference than the other two mentioned models.

2 Data Sample

In experiments where effort prediction models are compared, one concern has been “how
repeatable the results are”. This concern is because conventionally researchers have
randomly partitioned the overall dataset into a training set and a validation set (Shepperd
and Kadoda 2001). In this study, samples for training and for validating the models were
not obtained randomly, but were selected based on a chronological manner.

A data sample of adjusted function points (AFP) corresponding to industrial
projects was selected based on the suggested attributes presented in Table 6, taken
from the “Selecting a Suitable Data Subset” section of the “Guidelines for use of the
ISBSG data” document.

After application of the criteria mentioned in Table 6, the resulting sample had a size of
258 projects. The first 129 were selected for generating the models; however this sample
was very asymmetric, with 31 of the projects presenting values from 520 to 17,518 AFP.
Hence a subsample of 98 projects having from 6 to 499 AFPs was selected for generating
the models. These 98 projects were developed from 1994 to 2001.

The “summary work effort” (hours) was converted to man-months applying the 152 h
per man-month equivalence suggested by Boehm et al. (2000).

Empir Software Eng (2012) 17:738–756 747

3 Verification of Models

3.1 Regression Model

Using the data from the 98 projects, the following simple linear regression equation was
generated:

Effort ¼ 0:136577þ 0:0951844»AFP

The ANOVA p-value showed in Table 7 is 0.000; hence this equation had a statistically
significant relationship between effort and AFP at the 95.0% confidence level. The plot of the
fitted model is shown in Fig. 2. The value of its coefficient of determination was r2 ≥ 0.5, that
is, 61% of the variation of the effort is explained by the model.

3.2 Applying the Models

The models presented in Sections 1.3 and 3.1 were applied to the original dataset and the
MER by project as well as the MMER by model was then calculated.

The simple linear regression presented in section 3.1 yielded a MMER = 0.40.
In the GRNN, a parameter named SPREAD was changed until a suitable value was

obtained. If the value of SPREAD is small, the GRNN function is very steep, so that the
neuron with the weight vector closest to the input will have a much larger output than other
neurons. The GRNN tends to respond with the target vector associated with the nearest

Table 7 ANOVA for simple linear regression of industrial projects

Source Sum of squares Degrees of freedom Mean square F-ratio p-value

Model 12954.1 1 12954.1 150.30 0.0000

Residual 8273.89 96 86.1864

Total 21228.0 97

Table 6 Industrial data sample characteristics

Attribute Selected value(s)

Data quality rating A = The data submitted was assessed as being sound with nothing
being identified that might affect its integrity.

B = The submission appears fundamentally sound but there are
some factors which could affect the integrity of the submitted data.

Unadjusted function point rating A = The unadjusted function point count was assessed as being
sound with nothing being identified that might affect its integrity.

B = The unadjusted function point count appears sound, but integrity
cannot be assured as a single figure was provided.

Development platform Mainframe

Count approach IFPUG

Functional sizing methods IFPUG V4+

Resource level 1 = development team effort

Language type 3GL

748 Empir Software Eng (2012) 17:738–756

input vector. As the SPREAD value becomes larger, the function slope of the GRNN
becomes smoother and several neurons can respond to an input vector. The network then
acts as if it is taking a weighted average between target vectors whose input vectors are
closest to the new input vector. As the SPREAD value becomes larger, more and more
neurons contribute to the average, with the result that the network function becomes
smoother (Demuth et al. 2008).

The values for SPREAD were varied from 1 to 10, and then from 15 to 50 in 5-unit
increments. The obtained MMER values are shown in Table 8.

4 Validation of Models

The models presented in Sections 1.3 and 3.1 were applied to a new dataset and the MER
by project as well as the MMER by model was then calculated.

A new set of 129 projects obtained from the ISBSG database was considered for
validating the models. These projects were developed from 2002 to 2008. Thirty-two
projects were excluded from the set of 129 because they had values out of the size limits
(minimum and maximum values) of the 98 projects used for generating the models. That is,
a subsample integrated by 97 projects was used for validating the models.

The simple linear regression presented in section 3.1 yielded a MMER=0.45.
The values for the SPREAD parameter were again varied from 1 to 10, and then from 15

to 50 in 5-unit increments. The MMER values obtained are shown in Table 9, which
contains the MMER values from Table 8 for comparison.

When selecting a suitable SPREAD value for the GRNN, a match between the MMERs
from the verification and the validation stages is desired to have a balance between how
well the resulting GRNN adjusts to the training dataset and how well it can predict the
behavior of the validation dataset. With smaller SPREAD values, a better function fit is
found for the training set of the verification stage, but the resulting GRNN might have a
poor fit for the validation dataset (poor generalization). In general, the SPREAD value
should be as small as possible without losing the ability to adequately predict the behavior
of the validation set.

Fig. 2 Plot of the fitted model

Table 8 MMER by SPREAD value in the verification stage

SPREAD
value

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50

MMER 0.16 0.24 0.29 0.31 0.33 0.34 0.35 0.35 0.36 0.36 0.38 0.39 0.40 0.40 0.40 0.41 0.41 0.41

Empir Software Eng (2012) 17:738–756 749

Table 9 shows that when the SPREAD value in the verification and validation stages is
equal to 45, the MMER has the best value for the validation stage (0.41); hence, predicted
values of the trained model using this SPREAD value were used for comparing them
against the ones generated by the regression model.

5 Comparison of Models

5.1 Verification Stage

The ANOVA p-value for MER of the projects (Table 10) shows that there was not a
statistically significant difference in the accuracy of estimation for the two techniques at the
95.0% confidence level. The following three assumptions of residuals for MER ANOVA
were then analyzed:

1) Independent samples: In this study, the software projects were separately made, so the
data are independent.

2) Equal standard deviations: In a plot of this kind the residuals should fall roughly in a
horizontal band centred and symmetrical about the horizontal axis (Fig. 3a), and

3) Normal populations: A normal probability plot of the residuals should be roughly
linear (Fig. 3b).

Since Fig. 3a and b suggest a slight abnormality, an additional Krustal-Wallis statistical
test was done. The resulting p-value was equal to 0.7586, that is, there was not a
statistically significant difference between the medians at the 95.0% confidence level, since
its p-value was greater than 0.05.

5.2 Validation Stage

The ANOVA p-values for MER of the projects (Table 11) show that there was not a
statistically significant difference in the estimation accuracy for the two techniques at the
95.0% confidence level, whereas the plots related to assumptions of residuals for MER
ANOVA are shown in Fig. 4a and b.

Table 9 MMER by SPREAD value by stage

SPREAD value

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50

Verification 0.16 0.24 0.29 0.31 0.33 0.34 0.35 0.35 0.36 0.36 0.38 0.39 0.40 0.40 0.40 0.41 0.41 0.41

Validation 0.67 0.58 0.53 0.49 0.49 0.49 0.48 0.48 0.47 0.46 0.44 0.43 0.42 0.42 0.42 0.42 0.41 0.41

Table 10 MER ANOVA (verification of industrial projects)

Source Sum of squares Degrees of freedom Mean square F-ratio p-value

Between groups 0.00722 1 0.00722 0.08 0.7753

Within groups 17.1533 194 0.08841

Total 17.1605 195

750 Empir Software Eng (2012) 17:738–756

In Fig. 4a and b a slight abnormality can also be observed, hence an additional Krustal-
Wallis statistical test was also done. The p-value obtained was equal to 0.7404, that is, there
was not a statistically significant difference between the medians at the 95.0% confidence
level.

6 Discussion

6.1 Neural Networks in Software Industry

As discussed in Section 1.4, many researchers have used NNs to produce models that
estimate software development effort with an accuracy equal or better than other
techniques, such as linear regression. However, despite the advantages of using neural
networks to generate a model for predicting development effort, there has been reluctance
from the part of practitioners to apply this kind of model to real-world projects (Park and
Baek 2008). The main reasons NNs have weak support in effort estimation of industrial
projects is their lack of explanation capabilities and the difficulty of finding the
appropriate network architecture and parameter values that yield a useful model (Paliwal
and Kumar 2009).

As for the first problem, since NNs are basically “black boxes” that take a number
of inputs and produce one or more outputs, it is very difficult to interpret just how a
given output can be derived from a given set of inputs. This difficulty arises from the
fact that NNs usually work by applying a set of previously determined real-numbered
“weights” to the input values along the various paths in the network and it is very
hard to explain the NN behavior solely from these weight values. In order to study
how to overcome the problem of poor interpretability of NNs when applied to effort

Residual Plot for MER

-1

-0.6

-0.2

0.2

0.6

1

re
si

du
al

Technique

Normal Probability Plot

MER

0.1
1
5

20
50
80
95
99

99.9

pe
rc

en
ta

ge

(a) Equal standard deviations (b) Normality

GRNN SLR 0 0.3 0.6 0.9 1.2 1.5

Fig. 3 Plots of MER ANOVA (verification stage). a Equal standard deviations. b Normality

Table 11 MER ANOVA (validation stage of industrial projects)

Source Sum of squares Degrees of freedom Mean square F-ratio p-value

Between groups 0.07680 1 0.07680 1.02 0.3132

Within groups 14.419 192 0.07509

Total 14.4958 193

Empir Software Eng (2012) 17:738–756 751

estimation, Idri et al. (2002) mapped a NN to a fuzzy rule-based system with the idea
that if the obtained if-then fuzzy rules could be easily interpreted, then the NN could also
be easily interpreted, given their equivalence. The NN they used was a three-layer
perceptron with 13 input nodes, 13 hidden nodes and one output node. The 13 inputs
corresponded to the same number of parameters taken from projects contained in the
COCOMO 81 database, whereas the output corresponded to development effort. All
projects from this database were used for training and testing the NN. Even though 13
fuzzy rules were obtained from the mapping of the NN, these authors had limited success
in giving a straightforward interpretation of the rules obtained. They concluded that the
operator they used to generate the fuzzy rules could not adequately model the complex set
of relationships that existed between the input parameters. Furthermore, the method these
authors used for mapping the three-layer NN to the fuzzy rule-based system cannot be
applied to map a GRNN, which is the kind of NN that was used in the present work. More
research remains to be done before the issue of interpretability of NNs is considered
surmounted.

As for the second problem of using NNs for effort estimation of industrial
projects, there are no guidelines for the construction of NNs regarding the number of
layers, number of nodes per layer and initial weights (Idri et al. 2002). NNs models
are usually built by trial and error, where a lot of experimenting has to be done to find a
suitable combination of parameters and network topology. Even then, after training a NN
to perform accurately for a given set of inputs, there is no guarantee that the NN will
perform equally well on a different set of data. Practitioners tend to favor prediction
models that can be easily recalibrated with data from other projects or environments.
Another issue is the quality of the data used to train the NN, as it is well known that
performance of a model based on NNs is highly dependent on the nature of the data
itself, such as the level of noise and the appropriateness of the input variables. In many
studies on effort estimation, a preliminary data analysis to remove outliers and non-
dominant variables is not properly done. Consequently, practitioners may encounter
difficulties when defining proper datasets from their real-world environments (Park and
Baek 2008).

It should be mentioned that GRNNs present advantages over traditional NNs. The
topology of a GRNN is in general not as variable as that of a NN, as the number of
layers is usually predetermined in the former (Specht 1991). The training of GRNNs is
also substantially faster than the methods used to train multi-layer perceptron networks,
due to the use of an unsupervised method (which uses only the input data and not the

(a) Equal standard deviations (b) Normality

Residual Plot for MER

-1

-0.6

-0.2

0.2

0.6

1

re
si

du
al

Technique

Normal Probability Plot

GRNN SLR 0 0.3 0.6 0.9 1.2 1.5

MER

0.1
1
5

20
50
80
95
99

99.9

pe
rc

en
ta

ge

Fig. 4 Plots of MER ANOVA (validation stage). a Equal standard deviations. b Normality

752 Empir Software Eng (2012) 17:738–756

target data) to find the parameters of the hidden units, and a linear method to determine
the final-layer weights (Bishop 1995).

6.2 Comparison with Previous Work

This study considered the four problems identified by Paliwal and Kumar (2009) that were
described in section 1.4 (“Related work”) of this study, which were approached as follows:

1) An ANOVA for the regression equation was done and its result showed a statistically
significant relationship between dependent and independent variables at the 95.0%
confidence level (Table 7).

2) An analysis of the SPREAD value for the GRNN was done in Section 4 and the results
were presented in Table 9. These values were obtained using a software tool (MatLab
2009), which took only a few seconds to generate the mentioned MMER values.

3) We used separate samples for verifying and for validating the models. Projects for the
two samples followed the criteria described in Table 6. The samples were
chronologically separated based upon the year in which they were developed.

4) An ANOVA of accuracies of models (Tables 10 and 11) as well as assumptions of
residuals were done (Figs. 3 and 4). Moreover, an additional Krustal-Wallis statistical
test was also done (Sections 5.1 and 5.2) as the plots of residual analysis suggested
slight abnormalities.

The projects in our study were developed from the year 1994 to the year 2008,
whereas Heiat (2002) and El-Sebakhy (2011) based their conclusions on projects
developed in 1988 or before; Oliveira (2006) used projects developed in 1981 or before,
whereas Vinay et al. (2008) worked with data from projects that were developed in 1996
or before. Park and Baek (2008) used projects developed between 1999 and 2003;
however, the sample they used was very heterogeneous. De Barcelos et al. (2008) used
the COCOMO 81 dataset, which was published in 1981. Kultur et al. (2009) used five
datasets developed respectively from 1980 to 1990, from 1970 to 1980, one dataset
published in 1981, one developed after the year 2000, and one from the late 1980s;
however, once their models were trained by the corresponding dataset, the dataset size
used for testing their models was respectively 10, 15, 10, 4 and 13, whereas De Barcelos
et al. used 11 projects for testing their models. Our study bases its conclusions on a
sample of 97 more recent projects applied to the trained GRNN.

We followed the suggestions of El-Sebakhy (2011) and De Barcelos et al. (2008) in the
sense that for future work, data from more recent projects should be used (De Barcelos et
al. even suggested the use of the ISBSG repository).

In relation to GRNN, we can only compare our study with that of Prasad et al. (2010), as
they trained a GRNN for predicting the effort of industrial projects. Prasad et al. (2010)
used the projects developed before 1981: 53 of them were used for training the models and
then the 63 projects were used for validating their models (i.e., they used the same sample
for training and validating their models). Moreover, Prasad et al. (2010) did not specify how
the spread value for the GRNN was obtained.

The projects in this study only involved projects coded with third generation
programming languages, whereas Heiat (2002) combined languages from two generations.
All studies based on industrial projects described in Section 1.4 (“Related work”) of this
study used the Mean Magnitude of Relative Error (MMRE) as accuracy criteria, whereas
we used the Mean Magnitude of error Relative to the Estimate (MMER) as it showed better
results than MMRE in Foss et al. (2003).

Empir Software Eng (2012) 17:738–756 753

7 Conclusions and Future Research

This study compared two models for estimating and predicting development effort for
projects developed in industrial environments. One of the models studied—statistical
regression—is one of the most used in the software estimation field, whereas the other
corresponded to a computational intelligence technique: a neural network. Data samples
were obtained from the ISBSG repository. For the verification and validation stages of the
models, 98 and 97 projects were used, respectively.

The accepted hypothesis was the following: effort prediction accuracy of a general
regression neural network is statistically equal than that obtained by a multiple linear
regression, when data is obtained from industrial environments.

These results suggest that a GRNN represents an alternative for predicting development
effort of projects, measured in function points and developed in industrial environments.

Future research involves the use of bidirectional associative memories for predicting the
development effort of software projects.

Acknowledgment Authors of this paper would like to thank CUCEA of Guadalajara University, Jalisco,
México, Programa de Mejoramiento del Profesorado (PROMEP), as well as to Consejo Nacional de Ciencia
y Tecnología (Conacyt).

References

Afzal W, Torkar R (2011) On the application of genetic programming for software engineering predictive
modeling: a systematic review. J Expert Syst Appl, Elsevier 38:11984–11997. doi:10.1016/j.
eswa.2011.03.041

Bishop Ch M (1995) Neural networks for pattern recognition, Oxford
Boehm B (1981) Software engineering economics, Prentice Hall
Boehm B, Abts Ch, Brown AW, Chulani S, Clarck BK, Horowitz E, Madachy R, Reifer D, Steece B (2000)

COCOMO II. Prentice Hall
De Barcelos TIF, Simies da Silva JD, Sant Anna N (2008) An investigation of artificial neural networks

based prediction systems in software project management. J Syst Software, Elsevier 81:356–367.
doi:10.1016/j.jss.2007.05.011

Demuth H, Beale M, Hagan M (2008) MatLab neural network toolbox 6, User’s Guide
Duda R, Hart P, Stork D (2001) Pattern classification. Second Edition. Willey-Interscience
El-Sebakhy EA (2011) Functional networks as a novel data mining paradigm in forecasting software

development efforts. J Expert Syst Appl, Elsevier 38:2187–2194. doi:10.1016/j.eswa.2010.08.005
Foss T, Stensrud E, Kitchenham B, Myrtveit I (2003) A simulation study of the model evaluation criterion

MMRE. IEEE Trans Softw Eng 29(11):985–995. doi:10.1109/TSE.2003.1245300
Garmus D, Herron D (1996) Measuring the software process, a practical guide to functional measurements.

Prentice Hall
Haykin S (1999) Neural networks, a comprehensive foundation, Second Edition, Pearson
Heiat A (2002) Comparison of artificial neural network and regression models for estimating software

development effort. J Inform Software Tech, Elsevier 44(15):911–922. doi:10.1016/S0950-5849(02)00128-3
Idri A, Khoshgoftaar TM, Abran A (2002) Can neural networks be easily interpreted in software cost

estimation? IEEE Int Conf Fuzzy Syst: 1162–1167. doi:10.1109/FUZZ.2002.1006668
Jørgensen M (2006) A preliminary theory of judgment-based project software effort predictions. In: Ou L,

Turner R (eds) IRNOP VIII. Project research conference. Publishing House of Electronic Industry,
Beijing, pages 661–668

Jørgensen M (2007a) A critique of how we measure and interpret the accuracy of software development effort
estimation. 1st International Workshop on Software Productivity Analysis and Cost Estimation, pages 15–22

Jørgensen M (2007b) Forecasting of software development work effort: evidence on expert judgment and
formal models. J Forecast, Elsevier 23(3):449–462. doi:10.1016/j.ijforecast.2007.05.008

Jørgensen M, Shepperd MJ (2007) A systematic review of software development cost estimation studies.
IEEE Trans Softw Eng 33(1):33–53

754 Empir Software Eng (2012) 17:738–756

http://dx.doi.org/10.1016/j.eswa.2011.03.041
http://dx.doi.org/10.1016/j.eswa.2011.03.041
http://dx.doi.org/10.1016/j.jss.2007.05.011
http://dx.doi.org/10.1016/j.eswa.2010.08.005
http://dx.doi.org/10.1109/TSE.2003.1245300
http://dx.doi.org/10.1016/S0950-5849(02)00128-3
http://10.1109/FUZZ.2002.1006668
http://dx.doi.org/10.1016/j.ijforecast.2007.05.008

Kitchenham BA, Mendes E, Travassos GH (2007) Cross versus within-company cost estimation studies: a
systematic review. IEEE Trans Softw Eng 33(5):316–329

López-Martín C (2011b) Applying a general regression neural network for predicting development effort of
short-scale programs. J Neural Comput Appl, Springer 20:389–401. doi:10.1007/s00521-010-0405-5

MatLab (2009) Version 7.8.0.347 (R2009a), MathWorks, Inc.
Montgomery D, Peck E (2001) Introduction to linear regression analysis. John Wiley
Myrtveit I, Stensrud E, Shepperd M (2005) Reliability and validity in comparative studies of software

prediction models. IEEE Trans Softw Eng 31(5):380–391. doi:10.1109/TSE.2005.58
Oliveira ALI (2006) Estimation of software project effort with support vector regression. Neurocomputing,

Elsevier 69:1749–1753. doi:10.1016/j.neucom.2005.12.119
Paliwal M, Kumar UA (2009) Neural networks and statistical techniques: a review of applications. J Expert

Syst Appl 36:2–17. doi:10.1016/j.eswa.2007.10.005
Park S, Baek S (2008) An empirical validation of a neural network model for software effort estimation. J

Expert Syst Appl, Elsevier 35:929–937. doi:10.1016/j.eswa.2007.08.001
Prasad Reddy PVGD, Sudha KR, Rama SP, Ramesh SNSVSC (2010) Software effort estimation using radial

basis and generalized regression neural networks. J Comput 2(5), May 2010
Sheetz SD, Henderson D, Wallace L (2009) Understanding developer and manager perceptions of function

points and source lines of code. J Syst Software, Elsevier 82:1540–1549. doi:10.1016/j.jss.2009.04.038
Shepperd M, Kadoda G (2001) Comparing software prediction techniques using simulation. IEEE Trans

Softw Eng 27(11):1014–1022. doi:10.1109/32.965341
Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 7(3):568–576. doi:10.1109/

72.97934
Sun-Jen H, Nan-Hsing Ch, Li-Wei Ch (2008) Integration of the grey relational analysis with genetic algorithm for

software effort estimation. J Oper Res, Elsevier 18:898–909. doi:10.1016/j.ejor.2007.07.002
Thwin MMT, Quah TS (2005) Application of neural networks for software quality prediction using object-

oriented metrics. J Syst Software, Elsevier 2:147–156. doi:doi:10.1016/j.jss.2004.05.001
Vinay KK, Ravi V, Carr M, Raj KN (2008) Software development cost estimation using wavelet neural

networks. J Syst Software, Elsevier 81:1853–1867. doi:10.1016/j.jss.2007.12.793

Cuauhtémoc López-Martín is researcher with the Information Systems Department at the Universidad de
Guadalajara, Jalisco, Mexico. He received his Ph. D. in Computer Science in the Center for Computing
Research of the National Polytechnic Institute of Mexico (2007). His research is related to software
estimation techniques, software processes and Statistics applied to software engineering. He is member of the
Mexican National System of Researchers. He has been reviewer of journals as Fuzzy Sets and Systems
(Elsevier), the Journal of Systems and Software (Elsevier), International Journal of Software Engineering and
Knowledge Engineering (IJSEKE), and of the Central European Journal of Computer Science.

Empir Software Eng (2012) 17:738–756 755

Kultur Y, Turhan B, Bener A (2009) Ensemble of neural networks with associative memory (ENNA) for
estimating software development costs. J Knowl Base Syst, Elsevier 22:395–402. doi:10.1016/j.
knosys.2009.05.001

López-Martín C (2011a) A fuzzy logic model for predicting the development effort of short scale programs
based upon two independent variables. J Appl Soft Comput, Elsevier 11(1):724–732. doi:10.1016/j.
asoc.2009.12.034

http://dx.doi.org/10.1016/j.knosys.2009.05.001
http://dx.doi.org/10.1016/j.knosys.2009.05.001
http://dx.doi.org/10.1016/j.asoc.2009.12.034
http://dx.doi.org/10.1016/j.asoc.2009.12.034
http://dx.doi.org/10.1007/s00521-010-0405-5
http://dx.doi.org/10.1109/TSE.2005.58
http://dx.doi.org/10.1016/j.neucom.2005.12.119
http://dx.doi.org/10.1016/j.eswa.2007.10.005
http://dx.doi.org/10.1016/j.eswa.2007.08.001
http://dx.doi.org/10.1016/j.jss.2009.04.038
http://dx.doi.org/10.1109/32.965341
http://dx.doi.org/10.1109/72.97934
http://dx.doi.org/10.1109/72.97934
http://dx.doi.org/10.1016/j.ejor.2007.07.002
http://dx.doi.org/doi:10.1016/j.jss.2004.05.001
http://dx.doi.org/10.1016/j.jss.2007.12.793

Claudia Isaza is an Assistant Professor in Electronic Engineering at the University of Antioquia, Medellín,
Colombia. Her research interests include complex systems monitoring using clustering methods, data mining,
fuzzy logic. She received her bachelor´s degree in electronic engineering from Distrital F.J.C. University
(Bogota-Colombia) in 2002, her M.S. degree in electrical engineering (control emphasis) from Andes
University (Bogota-Colombia) in 2004, and her Ph.D. degree in Automatic Systems from INSA, Toulouse,
France in 2007.

Arturo Chavoya is a professor with the Information Systems Department at the Universidad de Guadalajara,
Mexico working on subjects related to Artificial Intelligence, Artificial Life, Parallel Programing and
Bioinformatics. Professor Chavoya received his Ph.D. in Computer Science from the Université de Toulouse
in France. He received his M.S. in Computer Science from the Centro de Investigación y de Estudios
Avanzados del I.P.N (CINVESTAV) Unidad Guadalajara, Mexico, his B.S. in Computer Systems
Engineering from ITESO University in Guadalajara, Mexico, and his B.S. in Biology from the University
of Guadalajara in Mexico.

756 Empir Software Eng (2012) 17:738–756

	Software development effort prediction of industrial projects applying a general regression neural network
	Abstract
	Introduction
	Software Project Measurement
	Criterion for Evaluating Estimation Model
	Neural Networks and General Regression Neural Networks
	Related Work

	Data Sample
	Verification of Models
	Regression Model
	Applying the Models

	Validation of Models
	Comparison of Models
	Verification Stage
	Validation Stage

	Discussion
	Neural Networks in Software Industry
	Comparison with Previous Work

	Conclusions and Future Research
	References

