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Abstract Recent studies have reported that Support Vector Regression (SVR) has the
potential as a technique for software development effort estimation. However, its prediction
accuracy is heavily influenced by the setting of parameters that needs to be done when
employing it. No general guidelines are available to select these parameters, whose choice
also depends on the characteristics of the dataset being used. This motivated the work
described in (Corazza et al. 2010), extended herein. In order to automatically select suitable
SVR parameters we proposed an approach based on the use of the meta-heuristics Tabu
Search (TS). We designed TS to search for the parameters of both the support vector
algorithm and of the employed kernel function, namely RBF. We empirically assessed the
effectiveness of the approach using different types of datasets (single and cross-company
datasets, Web and not Web projects) from the PROMISE repository and from the Tukutuku
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database. A total of 21 datasets were employed to perform a 10-fold or a leave-one-out
cross-validation, depending on the size of the dataset. Several benchmarks were taken into
account to assess both the effectiveness of TS to set SVR parameters and the prediction
accuracy of the proposed approach with respect to widely used effort estimation techniques.
The use of TS allowed us to automatically obtain suitable parameters’ choices required to
run SVR. Moreover, the combination of TS and SVR significantly outperformed all the
other techniques. The proposed approach represents a suitable technique for software
development effort estimation.

Keywords Effort estimation . Search based techniques . Support vector regression . Tabu
search

1 Introduction

Early estimation of software development effort is a critical management activity. Indeed,
realistic estimates are crucial to the adequate allocation of resources and also affect the
competitiveness of a software company (Mendes 2009). Several studies have addressed this
problem (e.g., Briand et al. 1999; Briand et al. 2000; Briand and Wieczorek 2002;
Costagliola et al. 2006; Maxwell et al. 1999; Mendes et al. 2003b; Shepperd et al. 1996;
Shepperd and Schofield 1997), many of which focusing on the proposal and evaluation of
techniques to construct predictive models able to estimate the effort of a new project
exploiting information (actual effort and cost-drivers) related to past projects. In particular,
recent studies (Corazza et al. 2009, 2010, 2011) have investigated the effectiveness of
Support Vector Regression (SVR) for software effort estimation. SVR is a technique based
on Support Vector Machines, a family of Machine Learning algorithms that have been
successfully applied for addressing several predictive data modeling problems (Cristianini
and Shawe-Taylor 2000; Smola and Schölkopf 2004). The studies reported in (Corazza et
al. 2009, 2011) showed that SVR has potential use also for software development effort
estimation; indeed it outperformed the most commonly adopted prediction techniques using
the Tukutuku database (Mendes et al. 2005a, b), a cross-company dataset of Web projects
widely adopted in Web effort estimation studies. It was argued that the main reason for that
lies in the flexibility of the method. Indeed, SVR enables the use of kernels and parameter
settings allowing the learning mechanism to better suit the characteristics of different
chunks of data, which is a typical characteristic of cross-company datasets. However, the
setting of parameters needs to be done carefully, since an inappropriate choice can lead to
over- or under-fitting, heavily worsening the performance of the method (Chang and Lin
2001; Keerthi 2002). Nevertheless, there are no guidelines on how to best select these
parameters (Scholkopf and Smola 2002; Vapnik and Chervonenkis 1964; Vapnik 1995)
since the appropriate setting depends on the characteristics of the employed dataset.
Moreover, an examination of all possible values for parameters is not computationally
affordable, as the search space is too large, also due to the interaction among parameters,
which cannot be separately optimized.

The issues abovementioned have motivated us to investigate the use of Tabu Search (TS)
to automatically select SVR parameters (Corazza et al. 2010). TS is a meta-heuristic search
technique used to address several optimization problems (Glover and Laguna 1997). The
TS-based approach was first investigated in (Corazza et al. 2010) employing SVR in
combination with different kernels and variables’ preprocessing strategies, using as dataset
the Tukutuku database (Mendes et al. 2005a). In particular, we compared SVR configured
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with TS (SVR + TS) with other effort estimation techniques, namely Manual StepWise
Regression (MSWR), Case-Based Reasoning (CBR), Bayesian Networks (Mendes 2008),
and the Mean and Median effort of the training sets. SVR + TS gave us the best results ever
achieved with the Tukutuku database. However, these results were based on two random
splits of only one cross-company dataset and it is widely recognized that several empirical
analysis are needed to generalize empirical findings. Thus, the aim of this paper is to further
investigate the combination of TS and SVR using data from several single- and cross-
company datasets. Let us recall that the former represents a dataset containing data on
projects from a single software company while the latter includes project data gathered from
several software companies. In our analysis, we employed 13 different datasets from the
PROMISE repository and also other 8 datasets obtained by splitting the Tukutuku database
according to the values of its four categorical variables (see Appendix A). The choice to use
datasets from the PROMISE repository is motivated due to the following points:

– Availability of datasets on industrial software projects, representing a diversity of
application domains and projects’ characteristics. This is also in line with recommen-
dation made by Kitchenham and Mendes (2009).

– Availability of projects that are not Web-based, thus enabling the assessment of the
effectiveness of the estimation technique employed herein when applied to different
types of applications – Web, using the Tukutuku, and non-Web, using the PROMISE
datasets. We would also like to point out that, in our view, Web and software
development differ in a number of areas, such as: application characteristics, primary
technologies used, approach to quality delivered, development process drivers,
availability of the application, customers (stakeholders), update rate (maintenance
cycles), people involved in development, architecture and network, disciplines
involved, legal, social, and ethical issues, and information structuring and design. A
detailed discussion on this issue is provided in (Mendes et al. 2005b).

– Availability of single- and cross-company datasets, thus enabling the assessment of the
estimation technique employed herein when applied to single- and cross-company
datasets. We would also like to point out that the use of a cross-company dataset is
particularly useful for companies that do not have their own data on past projects from
which to obtain their estimates, or that have data on projects developed in different
application domains and/or technologies. To date, several studies have investigated if
estimates obtained using cross-company datasets can be as accurate as the ones obtained
using single-company datasets (e.g., Briand et al. 1999; Jeffery et al. 2000; Kitchenham
and Mendes 2004; Corazza et al. 2010; Lefley and Shepperd 2003; Maxwell et al. 1999;
Mendes et al. 2008; Mendes and Kitchenham 2004; Wieczorek and Ruhe 2002)
achieving different findings (see Kitchenham et al. 2007 for a systematic review).

In relation to the choice of SVR kernels and pre-processing strategies, we focused our
analysis on the RBF kernel and a logarithmic transformation of the variables since they
provided the best results in our previous study (Corazza et al. 2010).

In order to verify whether the proposed TS technique is able to make a suitable choice of
SVR parameters we also compared the estimates obtained with SVR + TS with those
obtained applying SVR using different strategies for parameters selection, namely:

– random SVR configurations. This means that the same number of solutions
investigated for SVR + TS was generated in a totally random fashion and the best
one among them was selected according to the same criteria employed for SVR + TS.
This is a natural benchmark when using meta-heuristic search techniques;
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– default parameters employed by the Weka tool (Hall et al. 2009);
– the Grid-search algorithm provided by (Chang and Lin 2001).

In addition, we also assessed whether the estimates provided by the proposed approach
were better than those obtained using the Mean and Median effort (popular and simple
benchmarks for effort estimation techniques) and those achieved with MSWR and CBR.
These techniques were chosen because they are the two techniques widely used in the
literature and also in industry, and the mostly employed estimation techniques (Mair and
Shepperd 2005).

Consequently, the research questions addressed in this paper are:

RQ1. Is Tabu Search able to effectively set Support Vector Regression parameters?
RQ2. Are the effort predictions obtained by using Support Vector Regression configured

with Tabu Search significantly superior to the ones obtained by other techniques?

The remainder of the paper is organized as follows. Section 2 first reports on the main
aspects of SVR and TS and then describes the proposed approach based on TS to set-up
SVR parameters. Section 3 presents the design of our empirical study, i.e., the datasets, the
null hypotheses, the validation method, and the evaluation criteria employed to assess the
prediction accuracy. Results are presented in Section 4, followed by a discussion on the
empirical study validity in Section 5. Related work is discussed in Section 6. Final remarks
and some future work conclude the paper.

2 Using Support Vector Regression in Combination with Tabu Search for Effort
Estimation

In this section, we describe Support Vector Regression, Tabu Search, and how we have
combined them for effort estimation.

2.1 Support Vector Regression

Support Vector Regression is a regression technique based on Support Vector (SV)
machines, a learning approach originally introduced for linear binary classification. Linear
classifiers construct a hyperplane separating the training set points belonging to the two
classes. In the SV machine classifier (Vapnik and Chervonenkis 1974; Vapnik 1995), the
hyperplane maximizes the classification margin, that is the minimum distance of the
hyperplane from the training points (Vapnik and Chervonenkis 1974), as shown in Fig. 1.
Choosing such optimal hyperplane requires the solution of a quadratic optimization
problem subject to linear constraints, corresponding to the fact that each point of the
training set must be correctly labeled. The hyperplane resulting from this optimization only
depends on a subset of the training points, called support vectors. As an example, in Fig. 1
the three points closest to the classification hyperplane are highlighted, as they represent the
support vectors.

Thus, the system admits a solution only if there is a hyperplane separating the two
classes in the training set (as in Fig. 1), i.e., when the training set is linearly separable.
Nevertheless, this can be considered too restrictive to be of any practical interest. Thus, in
1995, Cortes and Vapnik (1995) defined a modified version of the approach, by introducing
a parameter C to allow (but penalize) misclassifications in the training set, thus obtaining
soft margin SVM’s. The choice of the best value for C is crucial to performance, as it
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decides the trade-off between classification errors in the training set and model complexity
(Hofmann et al. 2008; Moser et al. 2007).

When the SV approach is applied to a regression problem, a function has to be derived,
which minimizes the deviation between observed and predicted values. To solve this
problem we apply an SV approach that, rather than minimizing a function of the errors on
the training set, aims at minimizing a bound on a generalized error, which also takes into
account a regularization term in addition to the training error. Thus, the goal is to find a
linear function that obtains an error lower than a constant ε on the training data and that at
the same time is as flat as possible. This formulation of the problem can be softened, as
discussed above, by using parameter C, so that an error larger than the bound can be
allowed on some of the points in the training set. Therefore, the parameter C determines the
trade-off between the occurrences of errors larger than ε in the training set and the flatness
of the function. On the other hand, ε controls the wideness of a tube such that points
occurring inside are considered correct and only points outside the tube are evaluated as
errors (see Fig. 2). The two parameters are therefore strictly correlated, even if their suitable
values depend on the dataset (Cherkassky and Ma 2004), so no rule of thumb exists.

Support Vectors
Non Support Vectors
Regression Line
Limits of the tube

Fig. 2 ε-tube in SVR

Fig. 1 Hyperplane, margin and
support vectors in linearly
separable set
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2.1.1 The Non-Linear Case and the Kernel Choice

The SV approaches described above are conceived for the linear case. Thus, they could be
not suitable for development effort estimation where the dependent variable (i.e., effort)
does not necessarily linearly depend on the independent variables (i.e., cost drivers). To
deal with the nonlinear case we can map the input vectors into a feature space before the
linear SV approach is applied.

Mathematically, such mapping requires the substitution of dot products between the
input vector x and each support vector s, with a function describing their similarity in the
feature space: such function k(x, s) with two variables (x and s) is called kernel function.

A wide variety of kernel functions has been proposed in the literature: a good overview
can be found in (Hofmann et al. 2008). An important kernel family is given by Radial Basis
Function (RBF) where the output value only depends on the distance of the two points in
the input space. In particular, the most popular kernel belonging to the RBF family is the
Gaussian one, which is defined as follows:

k x; sð Þ ¼ exp �g x� sj j2
� �

;with g > 0: ð1Þ

The Gaussian RBF kernel has been successfully applied in a variety of contexts, both
alone (e.g., Moser et al. 2007; Shin and Goel 2000) and in combination with SVapproaches
(e.g., Corazza et al. 2009, 2011; Schölkopf et al. 1997). Furthermore, Gaussian RBF kernel
is usually suggested as the first choice in many practical guides (e.g., Hsu et al. 2010) and is
implemented in LibSVM, a popular library for SV approaches (Chang and Lin 2001). All
the above considerations motivated our choice to use this kernel in the study reported in the
present paper.

Using the Gaussian RBF kernel, a value for the kernel parameter γ needs to be selected
in addition to the values for C and ε parameters. The main issue is how to set these
parameters ensuring good generalization performance for a given dataset. In the following
we report some existing approaches to address the problem and then describe our proposal.

2.1.2 SVR Parameter Setting

Many alternative strategies have been defined in the literature to select suitable values for
SVR parameters. As pointed out in (Cherkassky and Ma 2004), many studies related to the
use of SVR are based on the opinion of experts that select parameter values on the basis of
their knowledge of both the approach and the application domain. Of course the reliance
upon experts severely bounds the applicability of this approach. Another possibility is the
use of heuristics based on noise characteristics (Kwok and Tsang 2003). However, in
addition to some technical limitations of these approaches, they require either an expert
with a deep understanding of the problem or a statistical model for the noise. Parameters
choice based on more direct information, such as the range of output values, are prone to
other problems, including outliers (Mattera and Haykin 1999).

In Grid-search approaches a certain number of parameter values are explored to identify
the best option. Nevertheless, the points are chosen a-priori and do not depend on the
specific case. For instance, the software library LibSVM provides a mechanism that
explores a combination of 8 values for each of the parameters C, ε, and γ (in the ranges
[1.0E-3, 32000], [1.0E-6, 1], and [1.0E-6, 8]) using a five-fold cross-validation on the
training set (Chang and Lin 2001). Thus, a total of 512 fixed points are assessed and the
one with the best cross-validation accuracy is returned. Even if Grid-searches are easy to
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apply, they have a main drawback: the search is performed always on the same (coarse
grained) points, without taking into account the dataset to guide the search.

In (Corazza et al. 2009, 2011) the problem was addressed in the context of effort
estimation, adopting an automatic approach to explore a large number of parameter values
(employing various nested cycles with small incremental steps). For each run, depending on
the kernel, the number of executions ranged from some dozens to more than 4000
executions. An inner leave-one-out cross validation was performed on the training set (each
cycle of execution required a number of iterations corresponding to the cardinality of the
training set) and for each iteration the goodness of the solution was evaluated using a
combination of effort accuracy estimation measures 1. Thus, the setting providing the best
estimation (according to the selected criterion) on the training set was chosen.

Although such optimization strategy included a quite large combination of parameter
values, it proceeded by brute force, by predefined steps, and did not use any information
related to the prior steps trying to improve the search. Moreover, it was computationally too
expensive. Smarter optimization strategies, on the contrary, use all possible clues to focus
the search in the most promising areas of parameter values for a given dataset. Among such
strategies, in (Corazza et al. 2010) we proposed the use of the meta-heuristics Tabu Search
to search for the best parameter settings. This approach is further investigated in this paper
and will be described in the next section. One of the strengths of the Tabu Search strategy is
that it uses information both in a positive way, to focus the search, and in a negative way, to
avoid already explored areas and loops.

2.2 Tabu Search

Tabu Search (TS) is a meta-heuristic search algorithm that can be used for solving
optimization problems. The method was proposed originally by Glover to overcome some
limitations of Local Search (LS) heuristics (Glover and Laguna 1997). Indeed, while
classical LS heuristics at each iteration constructs from a current solution i a next solution j
and checks whether j is worse than i to determine if the search has to be stopped, a TS
optimization step consists in creating from a current solution i a set of solutions N(i) (also
called neighboring solutions) and selecting the best available one to continue the search. In
particular, TS usually starts with a random solution and applies local transformations (i.e.,
moves) to the current solution i to create N(i). When no improving neighboring solution
exists, TS allows for a climbing move, i.e., a temporary worsening move can be performed.
The search terminates when a stopping condition is met (e.g., a maximum number of
iteration is reached). To determine whether a solution is worse (or better) than another an
objective function is employed. In order to prevent loops and to guide the search far from
already visited portions of the search space, some moves can be classified as tabu which
means that are forbidden. The tabu moves can be stored in a list, named Tabu List, of fixed
or variable length following a short-term (i.e., moves leading to already visited solutions are
stored) or a long-term memory strategy (i.e., moves that have been performed several times
are stored). Since tabu moves sometimes may prohibit attractive solutions or may lead to an
overall stagnation of the searching process (Glover and Laguna 1997), the so called
aspiration criteria can be used to revoke the tabu status of a move. A common aspiration
criterion allows for a tabu move if it results in a solution which has an objective value better
than the current solution.

1 The same combination of effort estimation measures is used as objective function in the present paper, so it
will be detailed in Section 2.3.
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To summarize, TS starting from a random solution, at each iteration explores a search
space consisting of a set of moves. Such moves are often local transformations of the
current solution and depend on the problem to be solved. Among these moves, the one that
provides the best objective value and is not tabu or matches an aspiration criterion is
selected to continue the search.

Thus, to tailor the TS meta-heuristics to a given problem we have to perform the
following choices:

– define a representation of possible solutions and the way for generating the initial one;
– define local transformations (i.e., moves) to be applied to the current solution for

exploring the neighbor solutions;
– choose a means to evaluate the neighborhood (i.e., an objective function), thus guiding

the search in a suitable way;
– define the Tabu list, the aspiration criteria, and the termination criteria.

In the next section we describe how we designed TS for setting SVR parameters, thus
specifying the above choices.

2.3 Using Tabu Search to Configure SVR

Let us formulate our goal: starting from a dataset of past projects we have to identify a good
solution S, represented by values for variables C, ε, and γ (see step 1 in Fig. 3), so that

Fig. 3 The two steps of applying SVR + TS: parameters identification and use
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SVR configured with those parameter values can accurately predict the unknown effort for
new incoming projects (see step 2 in Fig. 3). Thus, in this section we will detail step 1,
whose process is illustrated in Fig. 4.

An initial solution is generated by randomly choosing the values for each variable in a
defined range. In particular, since the values for C, ε, and γ can vary from zero to infinity,
an upper bound has usually to be chosen. To this end, we employ the same ranges of the
Grid-search algorithm (Hsu et al. 2010) for C, ε, and γ, respectively, and, as it is usual, we
perform the search for parameter values in the logarithmic space of these ranges (Hsu et al.
2010; Keerthi and Lin 2003).

Starting from the random initial solution, at each iteration 25 moves are performed, each
one according to the pseudocode provided in Fig. 5 and explained herein. A parameter to be
changed is selected among C, ε, and γ (with equal probability). The current value of the
chosen parameter in the 80% of the cases is incremented up to its 20% adding (or

Fig. 4 The proposed TS-based approach for SVR parameters selection
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subtracting, with the same probability) a random value, while in the remaining 20% of the
cases the new parameter value is chosen in a totally random fashion within the specified
range.

The rationale for the percentage of 80% is to investigate as much as possible an actual
promising solution. Indeed, once a “better” region on the space has been identified, a finer
search on that region is conducted performing small changes around a potentially
interesting solution (Fig. 5 line 6). On the other hand, we defined also a mechanism to
allow for a diversification in the search space (obtained using total random move) to escape
from local optima (Fig. 5 line 8).

Once all moves are performed, a set of 25 new neighboring solutions is created and the
neighboring solution with the best objective function value and which is not tabu or
matches an aspiration criterion is selected as current best solution and then as starting
point to explore a new neighborhood in the next iteration. It is worth noting that a
move is marked as tabu if it leads to a solution whose parameter values are very
similar (i.e., the difference between parameter values is less than 10%) to those of a
solution stored in the Tabu List. In order to allow one to revoke tabu moves, we employ the
most commonly used aspiration criterion, namely we permit a tabu move if it results in a
solution with an objective function value better than the one of the best solution
reached so far.

Moreover, if the current best solution’s objective value is better than the one achieved by
the best solution found so far, the latter is replaced. Finally, to avoid retracing the moves
previously used, the current solution is stored in the Tabu List. Note that since only a fairly
limited quantity of information is usually recorded in the Tabu List (Glover and Laguna
1997), we decided to employ a short-term memory of fixed length with 7 elements.

The search is stopped after a fixed number of iterations is performed (i.e., 100).
It is worth noting that we adopted the same choices for number of moves, Tabu List size,

and iterations employed in our previous study (Corazza et al. 2010). Those numbers were
empirically determined as it is usual when no guidelines are available. In particular, they
were chosen for the work presented herein because our previous research showed that
increasing them did not allow us to improve the estimation accuracy while wasting
computation time.

As for the objective function, a number of accuracy measures can be used to compare
effort estimates, usually based on the residuals, i.e., the differences between predicted and
actual efforts. Among them, two widely summary measures are the Mean Magnitude of
Relative Error (MMRE) (Conte et al. 1986) and the Mean Magnitude of Relative Error

Fig. 5 The TS move
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relative to the Estimate (MEMRE) (Kitchenham et al. 2001). Let us recall that MMRE is
the Mean of MRE and MEMRE is the Mean of EMRE, where:

MRE ¼ e�bej j
e

ð2Þ

EMRE ¼ e�bej j
be ð3Þ

where e represents actual effort and ê estimated effort. We can observe that EMRE has the
same form of MRE, but the denominator is the estimate, giving thus a stronger penalty to
under-estimates. In (Corazza et al. 2009, 2010, 2011) we employed as objective function,
the mean of them:

Objective Function ¼ MMREþMEMREð Þ=2 ð4Þ
The rationale was that, since MRE is more sensitive to overestimates and EMRE to

underestimates, an objective function minimizing them should find better solutions. Since
the present paper provides a further assessment of the technique proposed in (Corazza et al.
2010), we exploited the same objective function.

It is worth noting that the solution we are proposing attempts to capture the necessary
domain knowledge by using performance indicators as the objective function. On the other
hand, it requires a meta-heuristics as robust as possible with respect to the target function
characteristics, which are completely unexplored. We think that the TS strategy has these
characteristics because of its capability to adapt to the input function both by concentrating
search efforts on promising areas and keeping away from already visited regions by means of
the Tabu List.

Finally, in order to cope with the non-deterministic nature of TS, we performed 10 executions
of SVR+TS and, among the obtained configurations, we retained as final the onewhich provided
objective value closest to the mean of the objective values obtained in the 10 executions.

3 Empirical Study Design

In this section, we present the design of the empirical study carried out to assess the
effectiveness of the proposed approach. In particular, we present the employed datasets, the
null hypotheses, the adopted validation method, and evaluation criteria. The results of the
empirical analysis are discussed in Section 4.

3.1 Datasets

To carry out the empirical evaluation of the proposed technique we employed a total of 21
industry software project datasets selected both from the PROMISE repository (PROMISE
2011) and the Tukutuku database (Mendes et al. 2005a). PROMISE contains publicly
available single and cross-company datasets, while the Tukutuku database contains data
about Web projects (i.e., Web hypermedia systems and Web applications) developed in
different companies and gathered by the Tukutuku project, which aimed to develop Web
cost estimation models and to benchmark productivity across and within Web Companies.

Concerning the PROMISE repository, it is worth noting that we did not employ all the
datasets that it contains, since we were interested only on the ones that can be employed for
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early effort estimation (i.e., datasets containing information that would be available at the
early stages of a software development process), which is the managerial goal of our
investigation. To this end, we avoided the use of datasets like NASA and COCOMO
containing as size measures only features available once a project is completed, such as the
Lines of Code (LOCs). Moreover, we pruned the remaining datasets from this kind of
features, since their use could bias the results (Shepperd and Schofield 1997). As for the
categorical variables contained in some datasets, we used them as done in (Kocaguneli et al.
2010; Shepperd and Schofield 1997) to obtain different more homogenous splits from the
original datasets or we excluded them from our analysis in case splitting was not possible
(e.g., the resulting sub datasets were too small). As an example, we used the categorical
variable “Languages” in the Desharnais dataset to split the original data into three different
datasets corresponding to Languages 1, 2, and 3, respectively. After applying the above
criteria, 13 PROMISE datasets were kept for our empirical analysis, namely Albrecht,
China, Desharnais1, Desharnais2, Desharnais3, Finnish, Kemerer, MaxwellA2, MaxwellA3,
MaxwellS2, MaxwellT1, Miyazaki, and Telecom. We applied the same procedure on the
Tukutuku database obtaining 8 splits since all the categorical variables (i.e., TypeProj, DocPro,
ProImpr, and Metrics) were binary.

Table 1 summarizes the main characteristics of the considered datasets while further
details together with the descriptive statistics of the involved features are provided in
Appendix A. They represent an interesting sample of software projects, since they contain
data about projects that are Web-based (i.e. the ones from Tukututku) and not Web-based (i.e.,
the ones from PROMISE) and include datasets that were collected from a single software
company or several companies.Moreover, all the datasets contain data about industrial projects,
representing a diversity of application domains and projects’ characteristics. In particular, they
all differ in relation to:

– geographical locations: software projects coming from Canada, China, Finland, Japan,
New Zealand, Italy, United States, etc.;

– number of involved companies;
– observation number: from 10 to 499 observations;
– number and type of features: from 1 to 27 features, including a variety of features

describing the software and Web projects, such as number of entities in the data model,
number of basic, logical transactions, number of developers involved in the project and
their experience, number of Web page or image;

– technical characteristics: software projects developed in different programming
languages and for different application domains, ranging from telecommunications to
commercial information systems.

Nevertheless, note that none of these datasets are random samples of software and Web
projects. Therefore the information provided in Appendix A can be useful for readers to
assess whether the results we gathered can scale up to their own contexts.

In order to avoid that large differences in the ranges of the features’ values can have the
unwanted effect of giving greater importance to some characteristics than to others, a data
preprocessing step should be applied when using SVR (Chang and Lin 2001; Smola and
Schölkopf 2004). In our previous studies (Corazza et al. 2009, 2011), we experimented
different preprocessing strategies, such as normalization and logarithmic. The latter is a
typical approach in the field of effort estimation (Briand et al. 2000; Costagliola et al. 2006;
Di Martino et al. 2007; Kitchenham and Mendes 2004), since it reduces ranges and at the
same time it limits the linearity issue. It provided the best results in (Corazza et al. 2009,
2011), thus, we adopted it in (Corazza et al. 2010) and in the present paper. Moreover, we
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removed from the employed datasets the observations which have missing values (see
Appendix A).

3.2 Null Hypotheses

To address the first research question (i.e., assessing the effectiveness of TS for configuring
SVR) we first verified the benefits of using a search-based approach like TS to configure
SVR against a simpler approach considering random configurations (SVRrand, in the
following). In this case, to be fair the same number of solutions has to be generated and
compared with those achieved with the meta-heuristic search approach. Thus, we randomly
generated 25*100 SVR configurations ten times (within the same ranges defined for TS in
Section 2.2) and the best one of these was selected based on the same criteria employed for
SVR + TS but without guiding the search in any way. Moreover, we also considered the use
of the default configuration (i.e., C=1, ε=0.001, γ=0) provided by the Weka tool (Hall et
al. 2009) (SVRweka in the following) and the Grid-search algorithm provided by LibSVM
(Chang and Lin 2001) (SVRgrid in the following).

As a consequence, the following null hypotheses were formulated:

Hn0: SVR + TS does not provide significant better estimates than SVRrand;
Hn1: SVR + TS does not provide significant better estimates than SVRweka;
Hn2: SVR + TS does not provide significant better estimates than SVRgrid;

which contrast with the following alternative hypotheses:

Hn0: SVR + TS provides significant better estimates than SVRrand;
Hn1: SVR + TS provides significant better estimates than SVRweka;
Hn2: SVR + TS provides significant better estimates than SVRgrid.

With regard to the second research question, we assessed whether the estimates obtained
with SVR + TS were better than those obtained using the Manual StepWise Regression
(MSWR) (Kitchenham and Mendes 2004; Mendes and Kitchenham 2004) and the Case-
Based Reasoning (CBR) (Shepperd and Kadoda 2001) that are two techniques widely used
in the literature and also in industry (probably the most employed estimation methods).

MSWR is a statistical technique whereby a prediction model (Equation) is built and
represents the relationship between independent (e.g., number of Web pages) and dependent
variables (e.g., total Effort). This technique builds the model by adding, at each stage, the
independent variable with the highest association to the dependent variable, taking into
account all variables currently in the model. It aims to find the set of independent variables
(predictors) that best explain the variation in the dependent variable (response).

Within the context of our investigation, the idea behind the use of CBR is to predict the
effort of a new project by considering similar projects previously developed. In particular,
the completed projects are characterized in terms of a set of p features (i.e., variables) and
form the case base (Shepperd and Kadoda 2001). The new project is also characterized in
terms of the same p features and it is referred as the target case. Then, the similarity
between the target case and the other cases in the p-dimensional feature space is measured,
and the most similar cases are used, possibly with adaptations, to obtain a prediction for the
target case. In our empirical study we employed CBR in two ways:

i) by considering only the independent variables that are statistically correlated to the
dependent variable (CBRfss in the following), and

ii) without applying any kind of selection of the variables (CBR in the following).
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The key aspects of MSWR and CBR are detailed in Appendix B and C, respectively.
In addition, we also assessed whether the estimates obtained with SVR + TS were

significantly better than those obtained using the mean of effort (MeanEffort in the
following) and the median of effort (MedianEffort in the following). This was done
because, as suggested by Mendes and Kitchenham in (2004), if an estimation
technique does not outperform the results achieved by using MeanEffort and
MedianEffort, it cannot be transferred to industry since there would be no value in
dealing with complex computations of estimation methods to predict development effort
compared to simply using as estimate the mean or the median effort of its own past
projects.

Thus, we formulated the following null hypotheses:

Hn3: SVR + TS does not provide significant better estimates than MSWR;
Hn4: SVR + TS does not provide significant better estimates than CBRfss;
Hn5: SVR + TS does not provide significant better estimates than CBR;
Hn6: SVR + TS does not provide significant better estimates than MeanEffort;
Hn7: SVR + TS does not provide significant better estimates than MedianEffort;

which contrast with the following alternative hypotheses:

Ha3: SVR + TS provides significant better estimates than MSWR;
Ha4: SVR + TS provides significantly better estimations than CBRfss;
Ha5: SVR + TS provides significantly better estimations than CBR;
Ha6: SVR + TS provides significantly better estimations than Mean Effort;
Ha7: SVR + TS provides significantly better estimations than Median Effort.

3.3 Validation Method

To assess the effectiveness of the effort predictions obtained using the techniques
employed herein we exploited a multiple-fold cross validation, partitioning each
original dataset into training sets, for model building, and test sets, for model
evaluation. This is done to avoid optimistic predictions (Briand and Wieczorek 2002).
Indeed, cross validation is widely used in the literature to validate effort estimation
models when dealing with medium/small datasets (e.g., Briand et al. 2000). When
applying the multiple-fold cross validation, we decided to use the leave-one-out cross
validation on the datasets that have less than 60 observations (i.e., Albrecht, Desharnais1,
Desharnais2, Desharnais3, Finnish, Kemerer, Miyazaki, and Telecom). In those cases the
original datasets of N observations were divided into N different subsets of training and
validation sets, where each validation set had one project. On the other hand, we decided
to partition the datasets having more than 60 observations (i.e., China and the 8 splits
obtained from the Tukutuku database) into k=10 randomly test sets, and then for each test
set to consider the remaining observations as training set to build the estimation model.
This choice was made trying to find a trade-off between computational costs and
effectiveness of the validation. The 10 folds for the China datasets are given in Appendix E
(Table 10).2

2 We cannot report the 10 folds used for the Tukutuku datasets since the information included in the
Tukutuku database are not public available, for confidence reasons.

520 Empir Software Eng (2013) 18:506–546



3.4 Evaluation Criteria

Several accuracy measures have been proposed in the literature to assess and compare
the estimates achieved with effort estimation methods (Conte et al. 1986; Kitchenham
et al. 2001), e.g., Mean of MRE, Median of MRE; Mean of EMRE, Median of EMRE,
and Pred(25) (i.e., Prediction at level 25%). Considering that all the above measures are
based on the absolute residuals (i.e., the absolute values of differences between predicted
and actual efforts) in our empirical analysis we decided to compare the employed
estimation techniques in terms of the Median of Absolute Residuals (MdAR), which is a
cumulative measure widely employed as the Mean of Absolute Residuals (MAR). We
chose to employ MdAR since it is less sensitive to extreme values with respect to MAR
(Mendes et al. 2003b). The use of a single summary measure was motivated by the aim to
improve the readability of the discussion on the comparison of the analyzed effort
estimation methods (that is not confused by the fact that some measures have to be
minimized and other maximized). Moreover, to make the comparison more reliable we
used, behind this summary measure, also a statistical test. Indeed, to verify if the
differences observed using the above measure were legitimate or due to chance, we
checked if the absolute residuals obtained with the application of the various estimation
techniques come from the same population. If they do, it means that there are no
significant differences between the data values being compared. We accomplished the
statistical significance test using a nonparametric statistical significance test (Kitchenham
et al. 2001), namely Wilcoxon Signed Rank test, with α=0.05. We decided to use the
Wilcoxon test since it is resilient to strong departures from the t-test assumptions
(Conover 1998).

4 Results and Discussion

Table 2 reports the Median of the Absolute Residuals (MdAR) obtained with each
technique for all the employed datasets. Let us recall that the results of TS + SVR reported
herein were obtained applying on test set the final configuration provided by TS, namely
the one having objective value closest to the mean of the objective values obtained in the 10
executions performed on training set. An assessment of the variation of the objective values
can be found in Appendix D.

Notice that for CBR we used 1, 2, and 3 analogies and due to space constraints, only the
best results are reported herein. The number of analogies used to obtain each of these best
results is specified in Table 2. The details about the application of MSWR and CBR are
reported in Appendix B and C, respectively.

In order to provide better readability, all the best results (i.e., the minimum MdAR
values) obtained for each dataset across the employed techniques are reported in bold (see
Table 2).

Table 2 shows that SVR + TS provided the best MdAR values for all the datasets, except
for NewProjects, where CBR provided a slightly better result.

To quantify how much SVR + TS provided better results than the other employed
techniques, for each dataset we calculated the ratio BestSVR/SVR + TS (AvgSVR/
SVR + TS, and WorstSVR/SVR + TS, respectively) between the best (the mean, and
the worst, respectively) MdAR provided by the other SVR based approaches with the
MdAR of SVR + TS. Similarly, we also provided the same ratios (named BestBench/
SVR + TS, AvgBench/SVR + TS, and WorstBench/SVR + TS) with respect to the
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other estimation techniques used as benchmarks. These results are reported in Table 3,
together with the median values of these ratios obtained on all the datasets.

Thus, we can observe that with respect to the other SVR techniques:

– the error (i.e., MdAR) made using the other SVR technique providing the best
estimates is on median about one half (i.e., 1.48) the error made employing
SVR + TS;

– the mean of the errors made using the other SVR techniques is on median about twice
(i.e., 1.75) the error made employing SVR + TS;

– the error made using the other SVR technique providing the worst result is on median
about twice (i.e., 2.06) the error made employing SVR + TS.

As for the comparison with the other estimation techniques used as benchmarks (i.e.,
MSWR, CBR, MeanEffort, and MedianEffort), the results in Table 3 suggest that:

– the error made using the technique providing the best estimates is on median about
twice (i.e., 1.65) the error made employing SVR + TS;

– the mean of the errors made using the other techniques is on median about four (i.e.,
3.99) times the error made employing SVR + TS;

– the error made using the technique providing the worst result is on median about nine
times (i.e., 8.93) the error made employing SVR + TS.

Table 3 A comparison between SVR + TS and the other techniques

Dataset BestSVR /
SVR + TS

AvgSVR /
SVR + TS

WorstSVR /
SVR + TS

BestBench /
SVR + TS

AvgBench /
SVR + TS

WorstBench /
SVR + TS

PROMISE repository

Single Company Albrecht 3.00 5.00 8.00 4.00 7.00 14.00

Desharnais1 2.97 3.58 4.70 4.23 6.11 8.58

Desharnais2 1.36 2.46 4.66 2.07 3.36 6.30

Desharnais3 6.29 12.76 21.10 6.31 13.25 20.98

MaxwellA2 2.64 3.16 3.82 3.26 5.85 8.44

MaxwellA3 1.76 2.31 3.24 1.60 2.95 4.31

MaxwellS2 1.17 1.31 1.47 1.33 3.99 10.90

MaxwellT1 1.53 1.75 2.06 2.37 2.72 3.70

Telecom 3.70 3.90 4.00 2.05 4.65 8.40

Cross Company China 1.05 1.13 1.29 1.10 1.54 2.75

Finnish 1.55 2.12 2.79 2.27 3.91 5.16

Kemerer 4.36 4.57 4.71 3.71 5.48 8.93

Miyazaki 1.48 1.82 2.11 1.65 2.90 7.10

Tukutuku repository

DocProNo 1.27 1.50 1.65 1.46 3.77 11.04

DocProYes 1.64 1.75 1.91 1.91 4.88 16.15

Enhancement Projects 1.06 1.29 1.41 1.41 3.74 11.29

MetricNo 1.47 1.55 1.58 1.39 4.43 14.78

MetricYes 1.25 1.50 2.00 1.17 6.87 15.75

NewProjects 1.04 1.18 1.28 0.91 3.37 11.66

ProImprYes 1.07 1.40 1.78 1.04 2.36 6.07

ProImprNo 1.27 1.30 1.37 1.20 4.34 15.76

Median 1.48 1.75 2.06 1.65 3.99 8.93
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In order to verify whether the differences observed using MdAR values were legitimate
or due to chance, we employed the Wilcoxon test (α=0.05) to assess if the absolute
residuals from all the techniques used came from the same population. The results are
reported in Table 4 where “Yes” in a cell means that SVR + TS is significantly superior to
the technique indicated on the column (i.e., it means that the absolute residuals achieved
with SVR + TS are significantly less than the ones obtained with the technique indicated on
the column).

These results allowed us to state that the predictions obtained with SVR + TS were
significantly superior than those obtained with SVRrand, SVRweka, SVRgrid, MSWR,
CBR (with and without feature selection), MedianEffort, and MeanEffort for all PROMISE
and Tukutuku datasets, except for a few cases (i.e., the China, EnhancementProjects,
MetricNo, ProImprYes, and ProImprNo datasets with respect to SVRgrid, SVRweka,
SVRgrid, CBR, and SVRweka approaches, respectively) where no significant difference
was found.

According to these results we can reject all the null hypotheses presented in Section 4
(with a confidence of 95%), highlighting that SVR + TS provided significant better
estimates than:

– SVRrand for all the datasets;
– SVRweka for 19 out of 21 datasets;
– SVRgrid for 19 out of 21 datasets;
– MSWR for all the datasets;
– CBR for 20 out of 21 datasets;
– CBRss for all the datasets;
– Mean Effort for all the datasets;
– Median Effort for all the datasets.

Thus, we conclude that we can positively answer our research questions, i.e., Tabu
Search was able to effectively set Support Vector Regression parameters and the effort
predictions obtained by using the combination of Tabu Search and Support Vector
Regression were significantly superior to the ones obtained by other techniques.

Note that these results confirm and extend those previously obtained and detailed in
(Corazza et al. 2010), thus supporting the usefulness of TS for configuring SVR. Indeed,
TS has allowed us to improve the accuracy of the obtained estimates with respect to the use
of random configurations, the use of a default configuration, and the use of the Grid-search
algorithm for parameter selection provided by LibSVM. Moreover, we want to stress that
the analysis showed that SVR outperformed the two techniques that are to date the most
widely and successfully employed prediction techniques in Software Engineering (e.g.,
Briand et al. 2000; Briand and Wieczorek 2002; Costagliola et al. 2006; Kitchenham and
Mendes 2004; Mendes et al. 2008; Mendes and Kitchenham 2004; Shepperd and Kadoda
2001), namely MSWR and CBR.

In addition, note that SVR + TS outperformed all the other techniques both for single- and
cross- company datasets and for both Web-based and not Web-based applications datasets.

5 Validity Assessment

There are several factors that can bias the validity of empirical studies. Here we consider
three types of validity threats: Construct validity, related to the agreement between a
theoretical concept and a specific measuring device or procedure; Conclusion validity,
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related to the ability to draw statistically correct conclusions; External validity, related to the
ability to generalise the achieved results. As highlighted by Kitchenham et al. (1995), to
satisfy construct validity a study has “to establish correct operational measures for the
concepts being studied”. Thus, the choice of the features and how to collect them represents
the crucial aspects. We mitigated such a threat by evaluating the employed estimation
methods on publicly available datasets from the PROMISE repository. These datasets have
been previously used in many other empirical studies carried out to evaluate effort
estimation methods (see PROMISE web site).

With respect to the Tukutuku datasets, the size measures and cost drivers used in the
Tukutuku database, and therefore in our study, have been obtained from the results of a
survey investigation (Mendes et al. 2003a), using data from 133 on-line Web forms aimed
at giving quotes on Web development projects. In addition, these measures and cost drivers
have also been confirmed by an established Web company and a second survey involving
33 Web companies in New Zealand. Consequently, it is our belief that the variables
identified are measures that are meaningful to Web companies and are constructed
from information their customers can provide at a very early stage in the project
development. As for data quality, to identify effort guesstimates from more accurate
effort data, companies were asked on how their effort data was collected (see Table 5). At least
for 93.8% of Web projects in the Tukutuku database, effort values were based on more than
just guesstimates.

In relation to the conclusion validity we carefully applied the statistical tests, verifying
all the required assumptions. Moreover, we used medium size datasets to mitigate the
threats related to the number of observations composing the dataset.

As for the external validity, let us observe that both PROMISE and Tukutuku datasets
comprise data on projects volunteered by individual companies, and therefore they do not
represent random samples of projects from a defined population. This means that we cannot
conclude that the results of this study promptly apply to other companies different from the
ones that volunteered the data used here. However, we believe that companies that develop
projects with similar characteristics to those included in the Tukutuku and PROMISE
database may be able to apply our results to their software projects. However, the adoption
of this technique by industry may require to build and calibrate the initial model, prior to its
use for effort estimation. This also applies to most effort estimation techniques investigated
to date in the literature, and some examples of how to bridge the gap between research and
practice are given in (Mendes et al. 2009).

6 Related Work

Regarding the use of SVR for software effort estimation, Oliveira (2006) was the first to
apply the technique in this domain, exploiting data on 18 applications from the well-known

Table 5 How effort data was collected

Data collection method # Projects % Projects

Hours worked per project task per day 81 41.5

Hours worked per project per day/week 40 20.5

Total hours worked each day or week 62 31.8

No timesheets (guesstimates) 12 6.2

526 Empir Software Eng (2013) 18:506–546



NASA software project dataset (Bailey and Basili 1981). The author tested the linear and
the RBF kernels, trying for each of them three settings for the SVR’s parameters. The
evaluation, conducted using a leave-one-out cross-validation, and expressed in terms of the
indicators MMRE and Pred(25), highlighted that SVR significantly outperformed both
Linear Regression and Radial Basis Function Networks (RBFNs). In a subsequent study,
Braga et al. (2007) proposed a machine learning-based method able to provide an effort
estimate and a corresponding confidence interval. To assess the defined method, they
performed a case study using the Desharnais (Desharnais 1989) and NASA (Bailey and
Basili 1981) datasets. The results of this empirical analysis showed that the proposed
method was characterized by better performance with respect to the previous study. It is
worth noting that we cannot perform a punctual comparison of our results with those
presented in that work, since authors used a hold-out validation on the Desharnias dataset,
obtained by randomly selecting 18 projects as training set, but did not report whose projects
they exploited. As for NASA, as said in section 3.1 we excluded it from our analysis since
it contains only LOC as size measure.

We also previously employed SVR (Corazza et al. 2009, 2011) and SVR + TS (Corazza
et al. 2010), as detailed in Sections 1 and 2.

As for the use of meta-heuristics to explore the parameter setting with the aim to
improve effort predictions, this is a quite new research. Some research has been conducted
to employ Genetic Algorithms (GA) to improve the estimation performance of existing
estimation techniques. To the best of our knowledge, the first attempt to combine
evolutionary approaches with an existing effort estimation technique was made by Shukla
(2000) applying GA to Neural Networks (NN) predictor (namely, neuro-genetic approach,
GANN) to improve its estimation capability. Results were significantly better than other
techniques, such as a modified version of the Regression Trees.

Li et al. (2009) proposed a combination of an evolutionary approach with CBR, aiming
at exploiting GA to simultaneously optimize the selection of the feature weights and
projects. The performed case study employed a hold-out validation on the Desharnais,
Albrecht, and two artificial datasets. The results showed that the use of GA can provide
significantly better estimations. Also in this case, we cannot compare our results with those
presented in that paper since the datasets have been handled differently.

More recently, Chiu and Huang (2007) applied GA to many different analogy-based
approaches using two datasets not included in the PROMISE repository. The results showed an
improvement of 38% in terms of MMRE, when using GA to explore an adjustment function.

About Tabu Search, to the best of our knowledge, only two case studies were performed
to assess its use for estimating software development effort. In particular, Ferrucci et al.
applied TS on Desharnais (Ferrucci et al. 2009) and Tukutuku datasets (Ferrucci et al.
2010), obtaining interesting results, motivating further investigation on the use of search-
based methods in this field.

7 Conclusions and Future Work

In this paper, we have assessed whether Support Vector Regression configured by using the
proposed Tabu Search approach can be effective to estimate software development effort.
We extended a previous empirical study (Corazza et al. 2010) where we applied SVR + TS
to two splits randomly obtained from 195 applications of the Tukutuku database and
applying a hold-out cross validation. The results obtained were promising and encouraged
us to further verify the effectiveness of SVR + TS. In particular, in this paper we have
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presented the results achieved by applying SVR + TS to other 13 datasets obtained from the
PROMISE repository and considering further 8 datasets obtained by splitting the Tukutuku
database according to the values of 4 categorical variables included in it. Thus, a total of 21
datasets (both single- and cross- company datasets related to both Web-based and not Web-
based applications) were employed to perform a 10-fold or a leave-one-out validation
depending on the size of the datasets.

Regarding the choices of SVR kernels and pre-processing strategy, we have employed
the RBF kernel and a logarithmic transformation of the variables since they provided the
best results in (Corazza et al. 2010).

The results of the empirical analysis have confirmed and extended those reported in
(Corazza et al. 2010), highlighting the goodness of TS for configuring SVR. Indeed, SVR +
TS provided significant better estimates than SVR configured with simpler approaches,
such as random configuration, default configuration provided by the Weka tool, and the
Grid-search algorithm provided by LibSVM. Moreover, SVR + TS allowed us to obtain
significantly better effort estimates than the ones obtained using MSWR and CBR, two
techniques widely employed both in academic and industrial contexts.

Many studies have been reported in the literature that show the ability of SVR to construct
accurate predictive models in different contexts (Cherkassky and Ma 2004). Nevertheless,
those studies are usually based on the opinion of experts that select SVR parameter values on
the basis of their knowledge of both the approach and the application domain (Cherkassky
and Ma 2004). Of course the reliance upon experts severely bounds the practical applicability
of this approach in the software industries. The approach investigated in the present paper
does not only address the problem to find a suitable SVR setting for effort estimation but it
also allows practitioners of software industries to effectively use it without requiring to be an
expert in the field of those techniques. Indeed, although the models constructed using the
datasets employed in the present paper cannot be immediately adopted in other software
companies, thanks to the use of the proposed approach project managers can automatically
build their own effort estimation models starting from their historical data.

These observations together with the results presented in this paper suggest SVR + TS
among the techniques that are suitable for software development effort estimation in
industrial world.

Several interesting investigations can be planned as future work. First of all, other
objective functions could be exploited in the definition of TS and their influence on the
final results could be analyzed. These functions could be based on other evaluation criteria
(e.g., Pred(25)) used to compare effort estimation models or based on measures optimized
by other estimation techniques (e.g., SSR optimized by MSWR). Other aspects of TS could
also be investigated, such as the use of a heuristics to choose the initial solution and then
compare the results with respect to the random initialization employed in the present paper.

Finally, the good results herein reported concerning the ability of TS to configure SVR
encourage us to apply a similar approach to other estimation techniques, such as CBR (for
example to select feature and/or other aspects, such as the number of analogies).
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Appendix

A. Datasets Descriptions

In this appendix we provided further information on the employed datasets from the
PROMISE repository and the Tukutuku database. In particular, summary statistics for the
employed variables are shown Tables 6, 7, and 8, and each dataset is detailed in the
following.

Table 6 Summary statistics for the variables of the datasets extracted from the PROMISE repository

Dataset Variable Min Max Mean St Dev

Albrecht Input 7 193 40.25 36.91

Output 12 150 47.25 35.17

Inquiry 0 75 16.88 19.34

File 3 60 17.38 15.41

Effort 0.50 105.20 21.88 28.42

China Input 0 9404 167.1 486.34

Output 0 2455 113.6 221.27

Inquiry 0 952 61.6 105.42

File 0 2955 91.23 210.27

Interface 0 1572 24.23 85.04

Effort 26 54620 3921 6481

Desharnais TeamExp 0 4 2.3 1.33

ManagerExp 0 4 2.65 1.52

Entities 7 386 121.54 86.11

Transactions 9 661 162.94 146.08

AdjustedFPs 73 1127 284.48 182.26

Envergure 5 52 27.24 8.6

Effort 546 2349 4903.95 4188.19

Desharnais1 TeamExp 0 4 2.43 1.39

ManagerExp 0 7 2.30 1.59

Entities 7 332 118.30 77.43

Transactions 33 886 169.52 143.43

AdjustedFPs 83 1116 277.91 179.73

Envergure 6 51 29.75 277.91

Effort 805 23940 5413 4366

Desharnais2 TeamExp 1 4 2.17 1.11

ManagerExp 1 7 3.09 1.38

Entities 31 387 137.96 109.95

Transactions 9 482 166.30 135.46

AdjustedFPs 62 688 279.91 194.24

Envergure 5 52 23.30 11.27

Effort 1155 14973 5095.391 4123.559

Desharnais3 TeamExp 0 4 2 1.56

ManagerExp 1 4 3.20 1.14
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Table 6 (continued)

Dataset Variable Min Max Mean St Dev

Entities 38 176 90.40 51.08

Transactions 97 661 256.10 177.60

AdjustedFPs 99 698 325.70 216.57

Envergure 6 43 26.90 13.73

Effort 546 5880 1685 1631

Finnish HW 1 3 1.26 0.64

AR 1 5 2.24 1.5

FP 65 1814 763.58 510.83

CO 2 10 6.26 2.73

Effort 460 25670 7678.29 7135.28

Kemerer AdjFP 99.3 2306.8 999.14 589.59

Effort 23.2 1107.31 219.25 263.06

Maxwell Nlan 1 4 2.55 1.02

T01 1 5 3.05 1

T02 1 5 3.05 0.71

T03 2 5 3.03 0.89

T04 2 5 3.19 0.70

T05 1 5 3.05 0.71

T06 1 4 2.90 0.69

T07 1 5 3.24 0.90

T08 2 5 3.81 0.96

T09 2 5 4.06 0.74

T10 2 5 3.61 0.89

T11 2 5 3.42 0.98

T12 2 5 3.82 0.69

T13 1 5 3.06 0.96

T14 1 5 3.26 1.01

T15 1 5 3.34 0.75

SizeFP 48 3643 673.31 784.08

Effort 583 63694 8223.21 10499.90

MaxwellA2 Nlan 1 4 2.41 1.12

T01 2 5 3.34 0.90

T02 1 4 3.03 0.68

T03 2 5 3.10 0.86

T04 2 5 3.28 0.75

T05 1 5 3.10 0.82

T06 1 4 2.86 0.64

T07 2 5 3.41 0.98

T08 2 5 3.69 0.97

T09 3 5 4.17 0.66

T10 2 5 3.83 0.97

T11 2 5 3.17 0.89

T12 2 5 3.79 0.82

T13 1 5 3.07 0.92
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Table 6 (continued)

Dataset Variable Min Max Mean St Dev

T14 1 5 3.07 1.03

T15 2 5 3.45 0.78

SizeFP 59 3368 687.86 769.84

Effort 845 63694 9628.86 12946.97

MaxwellA3 Nlan 1 4 2.67 0.97

T01 2 5 2.89 0.96

T02 2 5 3.11 0.83

T03 2 5 3.17 0.92

T04 2 4 3.17 0.71

T05 2 4 2.89 0.58

T06 1 4 2.72 0.75

T07 1 4 3.17 0.86

T08 2 5 3.83 0.99

T09 3 5 4.22 0.55

T10 2 5 3.50 0.71

T11 2 5 4.00 0.97

T12 3 5 3.89 0.58

T13 1 4 3.00 1.03

T14 2 5 3.28 1.02

T15 1 4 3.28 0.83

SizeFP 48 3643 874.17 1006.22

Effort 583 39479 9824.44 9555.48

MaxwellS2 Nlan 1 4 2.54 1.00

T01 1 5 2.89 0.96

T02 1 5 3.11 0.69

T03 2 5 2.96 0.89

T04 2 4 3.22 0.66

T05 2 4 2.98 0.49

T06 1 4 2.93 0.67

T07 1 5 3.15 0.83

T08 2 5 3.83 0.97

T09 2 5 4.04 0.73

T10 2 5 3.61 0.86

T11 2 5 3.50 0.99

T12 3 5 3.83 0.50

T13 1 5 3.11 0.96

T14 1 5 3.22 1.00

T15 1 5 3.28 0.63

SizeFP 48 3643 636.96 821.61

Effort 583 63694 8347.222 11211.18

MaxwellT1 Nlan 1 4 2.30 0.95

T01 1 5 3.09 1.00

T02 2 5 3.13 0.71

T03 2 5 3.06 0.92
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Table 6 (continued)

Dataset Variable Min Max Mean St Dev

T04 2 5 3.15 0.75

T05 1 5 2.98 0.77

T06 1 4 2.74 0.64

T07 1 5 3.23 0.91

T08 2 5 3.87 0.92

T09 2 5 4.04 0.75

T10 2 5 3.62 0.92

T11 2 5 3.21 0.88

T12 2 5 3.77 0.70

T13 1 5 3.13 0.95

T14 1 5 3.34 0.96

T15 1 5 3.28 0.80

SizeFP 48 3643 606.77 791.48

Effort 583 63694 7806.72 10781.81

Miyazaki SCRN 0 281 33.69 47.24

FORM 0 91 22.38 20.55

FILE 2 370 20.55 53.56

Effort 896 253760 13996 36601.56

Telecom Changes 3 377 138.06 119.95

Files 3 284 110.33 91.33

Effort 23.54 1115.54 284.34 264.71

Table 7 Summary statistics for the variables of the Tukutuku database

Variable Min Max Mean Std. Dev

Nlang 1 8 3.9 1.4

DevTeam 1 23 2.6 2.4

TeamExp 1 10 3.8 2.0

TotWP 1 2,000 69.5 185.7

NewWP 0 1,980 49.5 179.1

TotImg 0 1,820 98.6 218.4

NewImg 0 1,000 38.3 125.5

Fots 0 63 3.2 6.2

HFotsA 0 611 12.0 59.9

Hnew 0 27 2.1 4.7

totHigh 611 611 1 0.0

FotsA 0 38 2.2 4.5

New 0 99 4.2 9.7

totNHigh 0 137 6.5 13.2

TotEff 1.1 5,000 468.1 938.5
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Table 8 Summary statistics for variables of the Tukutuku split

Dataset Variable Min Max Mean St Dev

DocProNo Nlang 1 8 4.17 1.21

DevTeam 1 6 1.63 0.97

TeamExp 1 10 5.02 1.77

TotWP 3 1390 49.07 147.96

NewWP 0 1333 28.03 140.10

TotImg 0 780 59.97 107.38

NewImg 0 583 22.01 66.49

Fots 0 63 3.58 7.53

HFotsA 0 611 25.67 86.35

Hnew 0 8 0.72 1.84

totHigh 0 611 26.39 86.16

FotsA 0 38 3.06 6.04

New 0 99 6.36 13.34

totNHigh 0 137 9.41 18.60

TotEff 4 5000 350.90 851.41

DocProYes Nlang 1 8 3.65 1.59

DevTeam 1 23 3.39 2.88

TeamExp 1 10 2.80 1.65

TotWP 1 2000 86.97 211.94

NewWP 0 1980 67.99 205.72

TotImg 0 1820 131.69 276.92

NewImg 0 1000 52.21 158.61

Fots 0 21 2.86 4.90

HFotsA 0 4 0.21 0.57

Hnew 0 27 3.24 5.95

totHigh 0 27 3.45 5.93

FotsA 0 16 1.54 2.47

New 0 19 2.43 3.78

totNHigh 0 19 3.97 4.04

TotEff 1.1 3712 568.58 1000.30

EnhancementProjects Nlang 1 6 3.15 1.17

DevTeam 1 15 2.46 1.94

TeamExp 1 8 2.87 1.60

TotWP 1 2000 97.51 299.33

NewWP 0 1980 65.03 289.61

TotImg 0 1238 100.73 219.81

NewImg 0 1000 48.46 150.17

Fots 0 19 1.84 4.17

HFotsA 0 4 0.37 0.85

Hnew 0 10 1.19 2.43

totHigh 0 12 1.57 2.67

FotsA 0 16 2.72 3.10

New 0 19 1.58 3.39

totNHigh 0 19 4.30 4.07
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Table 8 (continued)

Dataset Variable Min Max Mean St Dev

TotEff 1.1 5000 203.65 634.19

NewProjects Nlang 1 8 4.27 1.43

DevTeam 1 23 2.64 2.58

TeamExp 1 10 4.33 2.05

TotWP 1 440 54.80 74.02

NewWP 0 440 41.45 72.40

TotImg 0 1820 97.46 218.46

NewImg 0 800 32.94 110.66

Fots 0 63 3.90 7.00

HFotsA 0 611 18.02 73.24

Hnew 0 27 2.54 5.48

totHigh 0 611 20.56 72.82

FotsA 0 38 1.99 5.12

New 0 99 5.63 11.43

totNHigh 0 137 7.63 15.96

TotEff 4 3712 606.54 1039.35

MetricsYes Nlang 1 7 3.18 1.32

DevTeam 1 23 3.12 3.27

TeamExp 1 10 2.84 1.79

TotWP 1 600 55.08 99.97

NewWP 0 440 31.12 71.85

TotImg 0 1064 84.14 160.88

NewImg 0 500 34.69 91.44

Fots 0 15 1.11 2.79

HFotsA 0 4 0.22 0.62

Hnew 0 12 1.23 2.69

totHigh 0 12 1.45 2.72

FotsA 0 16 1.89 2.79

New 0 13 1.66 2.95

totNHigh 0 16 3.55 3.50

TotEff 1.1 2768 197.41 461.20

MetricsNo Nlang 1 8 4.24 1.39

DevTeam 1 7 2.31 1.72

TeamExp 1 10 4.32 1.97

TotWP 3 2000 76.68 216.20

NewWP 0 1980 58.76 213.17

TotImg 0 1820 105.81 242.31

NewImg 0 1000 40.06 139.70

Fots 0 63 4.23 7.18

HFotsA 0 611 17.83 72.69

Hnew 0 27 2.50 5.39

totHigh 0 611 20.33 72.28

FotsA 0 38 2.42 5.19

New 0 99 5.53 11.43
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Albrecht

The Albrecht dataset contains data on 24 applications developed by the IBM DP Services
organization with different programming language (i.e., COBOL, PL/I or DMS). We
employed as independent variables the four types of external input/output elements (i.e.,
Input, Output, Inquiry, File) used to compute Function Points (Albrecht and Gaffney 1983)
and as dependent variable the Effort quantified in person-hours and representing the time

Table 8 (continued)

Dataset Variable Min Max Mean St Dev

totNHigh 0 137 7.95 15.82

TotEff 4 5000 603.46 1078.75

ProImprYes Nlang 1 7 3.45 1.17

DevTeam 1 23 2.79 2.93

TeamExp 1 10 3.23 1.75

TotWP 1 600 55.89 95.09

NewWP 0 440 36.52 76.21

TotImg 0 1238 102.38 199.66

NewImg 0 800 37.48 111.45

Fots 0 63 2.43 7.56

HFotsA 0 4 0.19 0.61

Hnew 0 12 1.10 2.37

totHigh 0 12 1.29 2.40

FotsA 0 38 2.97 5.69

New 0 99 5.60 13.31

totNHigh 0 137 8.57 18.23

TotEff 1.1 2768 192.36 399.99

ProImprNo Nlang 1 8 4.27 1.57

DevTeam 1 7 2.39 1.74

TeamExp 1 10 4.35 2.12

TotWP 3 2000 81.37 238.20

NewWP 0 1980 60.95 234.70

TotImg 0 1820 95.26 234.43

NewImg 0 1000 38.96 137.10

Fots 0 21 3.86 4.74

HFotsA 0 611 22.26 80.73

Hnew 0 27 2.93 5.93

totHigh 0 611 25.19 80.14

FotsA 0 20 1.61 3.09

New 0 15 3.05 4.17

totNHigh 0 35 4.65 5.64

TotEff 4 5000 709.39 1180.34
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employed to design, develop, and test each application. We excluded from the analysis the
number of SLOC.

China

The China dataset contains data on 499 projects developed in China by various software
companies in multiple business domains. We employed as independent variables the
external input/output elements used to calculate Function Points (i.e., Input, Output,
Inquiry, File, Interface) and Effort as dependent variable (PROMISE 2011).

Desharnais

Desharnais (Desharnais 1989) has been widely used to evaluate estimation methods, e.g.,
(Burgess and Lefley 2001; Ferrucci et al. 2009; Shepperd and Schofield 1997; Shepperd et
al. 1996). It contains data about 81, but we excluded four projects that have some missing
values, as done in other studies (e.g., Shepperd and Schofield 1997; Shepperd et al. 1996).

As independent variables we employed: TeamExp (i.e., the team experience measured in
years), ManagerExp (i.e., the manager experience measured in years), Entities (i.e., the
number of the entities in the system data model), Transactions (i.e., the number of basic
logical transactions in the system), AdjustedFPs (i.e., the adjusted Function Points), and
Envergure (i.e., a complex measure derived from other factors defining the environment).
We considered as dependent variable the total effort while we excluded the length of the
code. The categorical variable YearEnd was also excluded from the analysis as done in
other works (e.g., Kocaguneli et al. 2010; Shepperd and Kadoda 2001) since this not an
information that could influence the effort prediction of new applications. The other
categorical variable, namely Languages, was used (as done in Kocaguneli et al. 2010;
Shepperd and Schofield 1997) to split the original dataset into three different datasets
Desharnais1 (having 44 observations), Desharnais2 (having 23 observations), and
Desharnais3 (having 10 observations) corresponding to Languages 1, 2, and 3, respectively.

Finnish

Finnish contains data on 38 projects from different Finnish companies (Shepperd et al.
1996). In particular, the dataset consists of a dependent variable, the Effort expressed in
person-hours, and five independent variables. We decided to do not consider the PROD
variable because it represents the productivity expressed in terms of Effort and size (FP).

Kemerer

The Kemerer dataset (Kemerer 1987) contains 15 large business applications, 12 of
which were written entirely in Cobol. In particular, for each application the number of
both adjusted and raw function points is reported (only AdjFP has been exploited in our
study). The Effort is the total number of actual hours expended by staff members (i.e., not
including secretarial labor) on the project through implementation, divided by 152. We
excluded from our analysis the KSLOC variable which counts the thousands of delivered
source instructions, the variable Duration, which represents the project durations in
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calendar months, and two categorical variables, Software and Hardware, that indicate the
software (i.e., Bliss, Cobol, Natural) and the hardware (e.g., IBM 308X, IBM 43XX,
DEC Vax) employed in each project, respectively. Note that differently from Desharnais
dataset these categorical variables could not be used to create subsets since the resulting
sets were too small.

Maxwell

The Maxwell dataset (Maxwell 2002) contains data of 62 projects in terms of 17 features:
Function Points and 16 ordinal variables, i.e., number of different development languages
used (Nlan), customer participation (T01), development environment adequacy (T02), staff
availability (T03), standards used (T04), methods used (T05), tools used (T06), software’s
logical complexity (T07), requirements volatility (T08), quality requirements (T09), efficiency
requirements (T10), installation requirements (T11), staff analysis skills (T12), staff
application knowledge (T13), staff tool skills (T14), staff team skills (T15). As done for the
Desharnais dataset, we used the categorical variables to split the original dataset. In particular,
using the three variables, App, Source, and TelonUse (the former indicates the application
type, the second indicates in-house or outsourcing development, and the last indicates
whether the Telon CASE tool was employed) we obtained 9 datasets, however only those
datasets having a number of observations greater than the feature number were used in our
experimentation. In particular, we employed the set of 29 observations having App equals to
2, the set of 18 observations having App equals to 3, the set of 54 observation having Source
equals to 2, and the set of 47 observations having TelonUse equals to 1. In the following we
refer to these datasets as MaxwellA2, MaxwellA3, MaxwellS2, and MaxwellT1, respectively.

Miyazaki

The Miyazaki dataset is composed by projects data collected from 48 systems in 20
Japanese companies by Fujitsu Large Systems Users Group (Miyazaki et al. 1994). We
considered the independent variables SCRN (i.e., the number of different input or output
screen formats), and FORM (i.e., the number of different form) as done in (Miyazaki et al.
1994). The dependent variable is the Effort defined as the number of person-hours needed
from system design to system test, including indirect effort such as project management.

Telecom

Telecom includes information on two independent variables, i.e., Changes and Files, and
the dependent variable Effort (Shepperd and Schofield 1997). Changes represents the
number of changes made as recorded by the configuration management system and Files is
the number of files changed by the particular enhancement project.

Tukutuku

The Tukutuku database (Mendes et al. 2005a) contains Web hypermedia systems and Web
applications. The former are characterized by the authoring of information using nodes
(chunks of information), links (relations between nodes), anchors, access structures (for
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navigation) and its delivery over the Web. Conversely, the latter represent software
applications that depend on the Web or use the Web’s infrastructure for execution and are
characterized by functionality affecting the state of the underlying business logic. Web
applications usually include tools suited to handle persistent data, such as local file system,
(remote) databases, or Web Services.

The Tukutuku database has data on 195 projects, where:

– projects came mostly from 10 different countries, mainly New Zealand (47%), Italy
(17%), Spain (16%), Brazil (10%), United States (4%), England (2%), and Canada (2%);

– project types are new developments (65.6%) or enhancement projects (34.4%);
– about dynamic technologies, PHP is used in 42.6% of the projects, ASP (VBScript or .Net)

in 13.8%, Perl in 11.8%, J2EE in 9.2%, while 9.2% of the projects used other solutions;
– the remaining projects used only HTML and/or Javascript,
– each Web project in the database is characterized by process and product variables.

The features characterizing the web projects have the following meaning:

– nlang: Number of programming languages adopted in the project.
– DevTeam: Number of Developers involved in the project.
– TeamExp: Mean number of years of experience for the team members.
– TotWP: Total number of Web pages (new and reused).
– NewWP: Total number of new Web pages.
– TotImg: Total number of images (new and reused).
– NewImg: Total number of new images.
– Fots: Number of features/functions reused without any adaptation.
– HFotsA: Number of reused high-effort features/functions adapted.
– Hnew: Number of new high-effort features/functions.
– totHigh: Total number of high-effort features/functions.
– FotsA: Number of reused low-effort features adapted.
– New: Number of new low-effort features/functions.
– totNHigh: Total number of low-effort features/functions.
– TotEff: Effort in person-hours (dependent variable).

The Tukutuku database contains also the following categorical variables:

– TypeProj: Type of project (new or enhancement).
– DocProc: If project followed defined and documented process.
– ProImpr: If project team was involved in a process improvement programme.
– Metrics: If project team was part of a software metrics programme.

B. Manual Stepwise Regression

We applied MSWR using the technique proposed by Kitchenham (1998). Basically the idea
is to use this technique to select the important independent variables according to the R2

values and the significance of the model obtained employing those variable, and then to use
linear regression to obtain the final model.

In our study we employed the variables shown in Tables 6, 7, and 8 during cross
validation and we selected the variables for the training set of each split by using the
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MSWR procedure. In particular, at the first step we identified the numerical variable that
had a statistically significant effect on the variable denoting the effort and gave the highest
R2. This was obtained by applying simple regression analysis using each numerical variable
in turn. Then, we constructed the single variable regression equation with effort as the
dependent variable using the most highly (and significantly) correlated input variable and
calculated the residuals. In the subsequent step we correlated the residuals with all the other
input variables. We continued in this way until there were no more input variables
available for inclusion in the model or none of the remaining variables were
significantly correlated with the current residuals (Kitchenham 1998). At the end of the
procedure, the obtained variables were used to build the estimation model for the
considered training set, which was then used to obtain the estimates for the observations
in the corresponding validation set.

It is worth mentioning that whenever variables were highly skewed they were
transformed before being used in the MSWR procedure. This was done to comply
with the assumptions underlying stepwise regression (Maxwell 2002) (i.e., residuals
should be independent and normally distributed; relationship between dependent and
independent variables should be linear). The transformation employed was to take the
natural log(Ln), which makes larger values smaller and brings the data values closer to
each other (Kitchenham and Mendes 2009). A new variable containing the transformed
values was created for each original variable that needed to be transformed. In addition,
whenever a variable needed to be transformed but had zero values, the Ln transformation
was applied to the variable’s value after adding 1.

To verify the stability of each effort estimation model built using MSWR, the following
steps were employed (Kitchenham and Mendes 2004; Kitchenham and Mendes 2009):

– Use of a residual plot showing residuals vs. fitted values to investigate if the residuals
are randomly and normally distributed.

– Calculate Cook’s distance values (Cook 1977) for all projects to identify influential
data points. Any projects with distances higher than 3×(4/n), where n represents the
total number of projects, are immediately removed from the data analysis
(Kitchenham and Mendes 2004). Those with distances higher than 4/n but smaller
than 3×(4/n) are removed to test the model stability by observing the effect of their
removal on the model. If the model coefficients remain stable and the adjusted R2

(goodness of fit) improves, the highly influential projects are retained in the data
analysis.

C. Case-Based Reasoning

To apply CBR we have to choose the similarity function, the number of analogies to
pick the similar projects to consider for estimation, and the analogy adaptation
strategy for generating the estimation. Moreover, also relevant project features could
be selected.

In our case study, we applied CBR by employing the tool ANGEL (Shepperd and
Schofield 1997) that implements the Euclidean distance which is the measure used in the
literature with the best results (Mendes et al. 2003b). As for the number of analogies, we
used 1, 2, and 3 analogies, as suggested in other similar works (Briand et al. 2000; Mendes
and Kitchenham 2004). Moreover, to select similar projects for the estimation, we
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employed as adaptation strategies the mean of k analogies. Regarding the feature selections,
we considered the independent variables that are statistically correlated to the effort (at level
0.05), obtained by carrying out a Pearson correlation test (Mendes 2008) on the training set
of each split. We did not use feature subset selection of ANGEL since it might be
inefficient, as reported in (Briand et al. 1999; Shepperd and Schofield 1997). In addition, all
the project attributes considered by the similarity function had equal influence upon the
selection of the most similar project(s). We also decided to apply CBR employing all the
variables of Table 1 as set of features, as done for the application of SVR + TS, considering
all relevant factors for designers and developers. In the paper we distinguish between the
two different applications of CBR, using CBRfss for denoting the use of the method with
feature selection.

D. Executions of SVR + TS on training sets

Table 9 reports for each dataset some summary statistics of the objective values achieved in
the 10 executions of SVR + TS on training sets. As we can see the standard deviation of the
results is very low, thus there is not so much variability in the achieved results on all the
employed datasets.

Table 9 Min, Mean, Max, and Dev.St of the objective values obtained employing SVR + TS on datasets
from PROMISE and Tukutuku

Dataset Min Mean Max Dev.St

Albrecht 0.15 0.28 0.33 0.05

Desharnais1 0.04 0.06 0.07 0.01

Desharnais2 0.21 0.22 0.23 0.01

Desharnais3 0.23 0.26 0.29 0.02

MaxwellA2 0.02 0.03 0.05 0.01

MaxwellA3 0.38 0.43 0.46 0.02

MaxwellS2 0.33 0.38 0.40 0.03

MaxwellT1 0.22 0.26 0.30 0.03

Telecom 0.37 0.38 0.39 0.01

China 0.91 0.99 1.07 0.05

Finnish 0.61 0.63 0.69 0.03

Kemerer 0.36 0.38 0.42 0.02

Miyazaki 0.37 0.40 0.49 0.04

DocProNo 0.32 0.40 0.48 0.05

DocProYes 0.42 0.48 0.55 0.04

Enhancement Projects 0.90 1.01 1.12 0.07

NewProjects 0.28 0.37 0.51 0.08

MetricYes 0.42 0.48 0.57 0.05

MetricNo 0.32 0.41 0.52 0.06

ProImprYes 0.42 0.48 0.57 0.05

ProImprNo 0.31 0.43 0.59 0.08
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E. Folds of China dataset
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