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Abstract This paper presents an analysis of a year long usage log of Koders, the first
commercially available Internet-Scale code search engine (http://www.koders.com).
The usage log comprises about ten million activities from more than three million
users. Analysis of the usage data shows that despite of attracting a large number of
visitors, Koders has a very sparse usage and that it lacks regular usage from many of
its users. When compared to Web search, search behavior in Koders showed many
similar patterns. A topic modeling analysis of the usage data shows what topics
users of Koders are looking for. Observations on the prevalence of these topics
among the users, and observations on how search and download activities vary across
topics, lead to the conclusion that users who find code search engines usable are
those who already know to a high level of specificity what to look for. This paper
also presents a general categorization of these topics that provides insights on the
different ways code search engine users express their queries. It identifies various
forms of queries in Koders’s log and the kinds of results addressed by the queries.
It also provides several suggestions for improvements in code search engines based
on the analysis of usage, topics, and query forms. The work presented in this paper is
the first of its kind that reveals several insights on the usage of an Internet-Scale code
search engine.
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1 Introduction

Searching for source code constitutes a significant part of a software development
activity (Singer et al. 1997; Murphy et al. 2006). Software developers use a variety
of tools to search source code that range from conventional tools such as ‘grep’
to advanced search facilities in integrated development environments. With the
explosion of source code available on the Web, it has become a routine practice
among developers to search and reuse source code from the Web.

Recent research in software engineering has focused on understanding and sup-
porting the search-driven nature of software development, and many such work have
produced tools that aid various search needs of developers (Hoffmann et al. 2007;
Bajracharya et al. 2006, 2009; Lemos et al. 2009; Holmes and Murphy 2005; Mandelin
et al. 2005; Thummalapenta and Xie 2007; Hummel et al. 2008; Reiss 2009). On the
other hand, there has been considerable commercial effort in the development of
Internet-Scale code search engines that have powerful crawlers and large databases
providing an index to large quantities of software available on the Web (Web site for
Koders 2010; Web site for Krugle 2010; Web site for Google Code Search 2010).

Despite the progress in developing novel code search tools, there has been little
work in understanding the actual usage of these tools. Recently, a questionnaire-
based study obtained some insights on developers’ practice of searching for source
code on the Web (Umarji et al. 2008). Two other studies used search logs to inves-
tigate information needs and query styles of developers on Web search (Hoffmann
et al. 2007; Brandt et al. 2009). These studies show that searching for source code
on the Web has various purposes: learning existing APIs, finding code samples,
implementations etc (Umarji et al. 2008; Hoffmann et al. 2007); and that developers
express their information need using various forms of queries, ranging from natural
language terms to names of code entities they are aware of (Brandt et al. 2009).

Code search engines are relatively new category of tools, and there are no existing
studies that explain what users of these code search engines are looking for, and how
they express what they are looking for. Despite of the apparent popularity of code
search engines,! it is not clear whether they are effective in providing the information
software developers need. We conducted an exploratory analysis of the usage log of
Koders, the first commercial Internet-Scale code search engine, with a goal to answer
three major research questions:

—  Usage: What kind of usage behavior can we see in Koders?
—  Search Topics: What are the users searching for?
—  Query Forms: How are users expressing their information need in their queries?

There are four motivations behind these questions. First, we wanted to compare
the usage patterns in Koders with known usage patterns in general purpose search
and developers’ search behavior on the Web. Second, we wanted to get a high-level
summary of what developers are looking for in Koders. Third, by analyzing selected
user interactions in detail we wanted to know if users have specific ways of expressing

IKoders mentions in its Web site (http:/koders.com) that more than 30,000 developers use its search
service everyday.
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their queries, and whether some forms of expression were more effective than other.
Finally, we wanted to gain some insights on what improvements could be made to
Koders, and code search engines similar to it, based on our findings.

This paper is an extension of our work presented in Bajracharya and Lopes (2009)
with new results on usage statistics, query forms, and more details on topic extraction.
It describes the process and results that we extracted from the usage log to answer the
three major questions listed above. To the best of our knowledge the work presented
in this paper is the first of its kind with detailed analysis of results extracted from
millions of entries in the usage log of an Internet-Scale code search engine. In the
context of the prior work mentioned earlier, the contributions of this paper are as
follows:

1. It provides a statistical characterization of search behavior in large scale code
search by presenting an analysis of a year long usage data from Koders. It com-
pares code search usage with Web search usage, and finds many similarities. It
also reveals usage behavior that is unique to Koders.

2. Using topic modeling analysis on the Koders’s usage data, it gives a solid
empirical evidence of the range of topics that users of code search engines look
for. It provides empirical data on the prevalence of these topics (popularity)
among users and shows how search and download activities vary across the
topics, supporting the conclusion that the most successful searches on Koders are
those where the users already know what they are looking for. It also provides
valuable insights at the different ways code search engine users express their
queries.

3. With an analysis of 150 randomly selected search sessions across various topics
(mined using the topic modeling), it identifies various lexical forms of the
queries, and the kinds of results addressed by these queries that users gave to
Koders.

4. It provides several suggestions and possible directions to improve code search
engines based on the analysis of usage data, topic modeling results, and the
analysis of query forms; something the next generation of code search engines
should take into account.

5. It makes the Koders usage log, and associated software used to produce analysis
results available to others; facilitating replication, extension, and improvement
of the presented work.

The paper is organized as follows. Section 2 discusses the usage data we analyzed.
Section 3 provides an analysis of the usage data at large, providing some general
statistics on usage and its comparison with usage in Web search. Section 4 presents
the LDA (Latent Dirichlet Allocation) topic modeling technique, describes how
we applied it to the Koders’s usage log, and presents our findings from topic
modeling. Section 5 presents the results of analyzing 150 search sessions sampled
from various topics where we identify five lexical forms and four result types users
generally expressed in their queries. Section 5 also presents the form of queries that
were effective in producing relevant results. Section 6 provides discussion on our
interpretation and implication of the results we obtained from analyzing the general
usage statistics, mining topics, and encoding various forms of queries. Section 7
discusses validity and limitations of our work. Section 8 presents related work, and
we conclude in Section 9.
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2 Usage Log Data

The data used for topic modeling consists of a year long user activity log obtained
from Koders (Web site for Koders 2010). The usage log contained records of
5,207,758 search activities and 5,072,045 download activities from 3,187,969 unique
users covering the period of 2007-01-01 to 2007-12-31.

The log data was recorded in a relational database. The portion of the log we used
is represented as a set of tuples with the following fields; <uid, act-type, term-or-file,
ts, [>, where:

1. uid = a unique user id assigned by Koders to each of its user based on the
combination of the user’s IP address and browser cookies.

2. act-type = activity type, that can be either search or download. A search activity
constitutes a query consisting of several terms, whereas a download activity is an
activity where the user interacts with one of the results shown in the hits either by
selecting the code or downloading it. A download activity means the user showed
interest in the code that was found in the search results and used it in some way.
Therefore a download activity in Koders is equivalent to the result-click events
in Web search.

3. term-or-file = denotes the collection of terms in the query when the activity is
search, otherwise denotes a unique file identifier denoting the source code that
was accessed during the download activity.

4. ts = the timestamp attached to each activity that denotes when that activity took
place.

5. | = the programming language specified by the user for each query. If no
language is specified the value is ‘“*’ denoting search in all languages. Other
possible values are languages listed in the Koders’s user interface such as Java,
C, Python etc. This value exists only for search activities and not applicable to
download activities.

The usage log studied in this paper is available from the UCI Source Code Data
Sets Web site (Lopes et al. 2010). The software used to process the data is available as
an open source project at Web page for Koders log analysis github repository (2010).

3 Analysis of Usage Data

In this section we look at several statistics to gain insights on usage behavior in
Koders. We look at variables that are commonly used in analysis of query logs
such as statistics on activities, search sessions, query types and query reformulations
(Silverstein et al. 1999; Brandt et al. 2009). Being a code search engine, Koders offers
some unique features not found in general purpose search engines. For example,
query operators specific to source code, and facility to download (or browse) code
after search. We focus more on variables pertaining to these features. These statistics
not only reveal usage patterns that are unique to Koders, but also allow us to compare
search behavior of users in Koders to those on the Web. Given below is a summary
of all the variables we look at.

— Routine usage: First, we look at three variables to understand whether users
are searching in Koders routinely and actively. We look at number of days that
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users are active in Koders, number of search activities, and number of download
activities among the users.

— Analysis of sessions: Second, we do an analysis on sessions of activities in the
usage log. A session is considered to be a series of queries by a single user in a
short interval that represents a single information need (Silverstein et al. 1999).
We look at three variables in sessions: duration, activities, and page views.
Duration is the length of session in minutes, activities are either search or down-
load activities, and page views are count of consecutive repeating queries that
are recorded in the log when a user navigates through multiple pages of search
results for the same query.

—  Analysis of queries: Third, we do an analysis of the queries in the log to under-
stand how users are expressing their queries. We look at query length, common
usage of terms in queries among users, types of queries user give, and the kind of
query operators and reformulations in the queries.

—  Comparing with Web search: Finally, we compare some of the results we obtained
with existing results from analysis of logs in Web search.

3.1 Routine Usage

Koders mentions in its Web site that more than 30,000 developers use the search
engine every day. However this number does not indicate how routinely users rely
on the system. A code search engine might have many visitors, but if the visitors
are not coming back, or using it routinely, its utility is questionable. Therefore, we
seek to answer the following questions: How many activities users typically have in
the system? Do users who use Koders once come back to it again later for their
information needs?

Table 1 lists statistics on number of days the users used Koders, and the count of
search and download activities for users. These statistics are computed for users who
had at least one search activity. We can make the following observations based on
the data in Table 1.

—  Users engage in very few activities: A large percentage of the users had only few
search activities. More than 85% of users had just three or less search activities;
about 67% of users had only one search activity. More than half of the users

Table 1 Usage statistics

#Act Days active Download activities Search activities

# Users % # Users % # Users %
0 NA NA 1,212,666 64.35 NA NA
1 1,685,551 89.45 289,988 15.39 1,276,549 67.74
2 125,331 6.65 146,623 7.78 225,018 11.94
3 37,026 1.96 74,482 3.95 114,280 6.06
>3 36,418 1.93 160,567 8.52 268,479 14.24
<=3 1,847,908 98.06 1,723,759 91.48 1,615,847 85.75
3 <#Act <= 10 36,418 1.8 121,875 6.47 206,153 10.95
> 10 2,648 0.14 38,692 2.05 62,326 33

#Act = number of activities, % denote percentage with respect to total of the users with at least one
search activity
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do not download anything after search, and those who download have only few
downloads. About 64% of the users who searched had no download activity, and
91% of users had three or less downloads.

—  Most of the users did not used Koders again after using it for a day: About 90% of
the users were active only for one day. Among others, 98% of users were active
for less than or equal to three days. Only 0.14% of users were active for more
than 10 days.

In summary, these statistics indicate that although Koders gets many visitors, the
actual usage is quite sparse among the users.

3.2 Analysis of Sessions

In analysis of usage logs, it is often assumed that a series of activities by a single user
within a small duration of time constitutes a session (Silverstein et al. 1999; Brandt
et al. 2009). A session is considered to capture the interactions made by a particular
user to fulfill a single information need. We divided the user activities in Koders into
sessions, where a session is defined as a sequence of query and download events from
a same user with no gaps longer than 6 min. This definition of session is common in
query log analysis (Silverstein et al. 1999; Brandt et al. 2009).

We found out that among all the users in the Koders log, about 41% (1,303,643)
did not have any search activity. They had only downloads. This initially seemed as
an anomaly, as we were expecting that there needs to be a search in order to have
a download. Later, upon discussing this issue with Koders, we realized there could
be two reasons for this. First, a user could have reached a link to download a code
in Koders directly by following a hyperlink from an external Web site. For example,
someone can post a Web page that contains a link to a specific file on Koders. So,
end users who initiate a search on a general search engine such as Google, can find
such Web pages that provide links to files in Koders. When users follow such links
and view code in Koders, such activity is recorded as a download activity in the log.
Second, it could simply be that bots are crawling links of code downloads in Koders.
Being unsure about what might have caused the log to contain a large number of
users having no search activity, we excluded them while creating the sessions.

Breaking the users activities into sessions using a gap of more than six minutes,
we obtained 2,804,432 sessions. These sessions had 5,207,758 search activities and
3,189,018 download activities in total. Table 2 lists the statistics on duration and

Table 2 Duration (in min) and activities count in sessions

Count (c) % of sessions
¢ = duration ¢ = activities ¢ = searches ¢ = downloads

0 57.44 0.00 14.02 57.13
1 0.16 55.49 57.99 27.46
2 0.09 17.23 12.11 8.05
3 0.07 9.34 5.92 3.05
>3 16.19 17.95 9.97 4.30
<=3 83.81 82.05 90.03 95.70
3<c<=10 12.59 15.05 8.81 3.48
> 10 3.60 2.90 1.16 0.82
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activities count in these sessions. Based on that statistics we can make the following
observations about sessions:

— Sessions are short: About 57% of sessions had only one activity. About 84% of
sessions had a duration of less than or equal to three minutes. Only 3.6% of
sessions had a duration of more than 10 min.

—  More than half of the sessions had no downloads: About 57% of sessions had no
downloads in them. Sessions with lot of downloads are very rare; less than 1%
had more than ten downloads.

—  There are few sessions with no search activities: Table 2 shows that about 14%
of sessions had no search activities. These sessions can be described as series
of isolated download activities made by an user. Sessions have only few search
activities in them. About 90% of sessions have less than or equal to three search
activities.

In summary, these statistics indicate that sessions are short, and usually have few
activities in them.

Activities in Sessions Data in Table 2 indicates that we can classify sessions based
on whether they contain search or download activities. One reason to do so is to see
if there are any noticeable differences between sessions that do not have downloads
with sessions that have both search and downloads. Since a download indicates that a
user looked at a result that was considered relevant, knowing such differences might
shed some light on what leads users to get relevant results. Table 3 lists the counts
of activities in three different categories of sessions: sessions without downloads,
sessions with both search and downloads, and sessions without search. We can see
that sessions with both search and downloads tend to have more search activities in
them. About 20% of sessions with both search and downloads have more than three
search activities. Compared to this, only about 7% of sessions without downloads
have more than three activities. This suggests that users who look at relevant results
have more search activities than those who do not.

Table 3 also shows that sessions that only have downloads tend to have a larger
percentage (82%) of sessions with only one download activities. Some of these
downloads could be because that users arrived at Koders by following link found
elsewhere (as discussed in Section 2). Table 4 provides some insight on what leads to
a download in Koders. It shows that about 43% of all downloads in the session have
a preceding download activity; about 29% of downloads follow search activities; and,
about 27% of downloads have no other activity before them in the sessions. This

T?ble 3 Activity COUI"ltS in #Act #Act = search #Act = download
different kinds of sessions

% of Seswop % of Seswsp % of Seswos

1 76.95 48.62 82.23

2 10.90 20.37 10.24

3 5.01 10.60 2.88

Seswop = sessions without -3 7.14 20.40 4.65
dqwnloads; Seswsp = sessions -3 92.86 79.60 95.35
g;&n?g;gfzzﬁoznf wssions | 3 <H#ACt<=10 647 17.72 3.14
; . > 10 0.67 2.68 1.51

without search activities
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Table 4 What activities do

. 7 Previous activity # downloads % of downloads in session
downloads follow in a session
Download 1,388,810 43.55
Search 938,440 29.43
None 861,768 27.02

suggests that most of the downloads in Koders are made because a user finds one
result, and start browsing for other related code using its code browser; therefore a
high percentage of downloads follow a download activity.

Screen Views (Repeating Queries) A series of consecutive repeating queries in a
search log indicates a user going through the subsequent pages in the search result.
This is because when a user requests for the next result page for a query, the same
query is repeated. These repeating queries are counted as “Screen Views” in analysis
of Web search logs (Silverstein et al. 1999). Screen views measure the tendency of
users to navigate to low ranked search results for the same query.

Table 5 shows the statistics for screen views in the search sessions in Koders.
We also compute this statistics for search request in sessions with both search
and download, and sessions without download to observe any noticeable effect
of screen views on downloads. Data in Table 5 indicate that most of the search
requests have only one screen view, and there does not seem to be any noticeable
difference between screen view statistics in sessions with both search and download,
and sessions without download. About 85% of all downloads that followed a search
activity were made after only one page view. This suggests that when users download
code from Koders, most of the times they do it from the first result page itself. To
summarize, we can say that most of the users do not look beyond the first result page
in Koders.

3.3 Analysis of Queries

We looked at several variables related to the queries that users gave to understand
how users express their information need in Koders.

Query Terms Each query in the log was broken down into its constituent terms by
using whitespace as delimiter. This produced 913,325 distinct terms. Two different

Table 5 Screen views statistics

# Screen Views (SV) % Searchayy, % Searchwsp % Searchwop % Downloadg
1 86.35 85.17 87.47 85.68
2 9.53 10.50 8.62 10.16
3 2.30 247 2.13 2.38
>3 1.82 1.86 1.78 1.78
<=3 98.18 98.14 98.22 98.22
3<8V<=10 1.63 1.72 1.54 1.65
> 10 0.19 0.14 0.24 0.13

Searchayy, = search requests in all sessions; Searchwsp = search requests in sessions that have both
search and download; Searchwop = search requests in sessions without download; Downloady =
download activities following screen views
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Table 6 Number of terms (¢) or query length among users and queries

# of max. terms in query # of users % of users # of queries % of queries
1 1,488,364 78.99 4,147,683 79.64
2 254,823 13.52 737,565 14.16
3 85,032 451 205,441 3.94
>3 56,107 2.98 117,069 224
<=3 1,828,219 97.02 5,090,689 97.75
3<t<=10 55,211 2.93 115,652 222
> 10 896 0.05 1,417 0.03
statistics were computed on these terms that revealed the following characteristics

about term usage in the queries.

Queries are very short: Table 6 shows that about 79% of the users had only
one term in their query; 97% of the users had three or less terms. Only 0.05%
of the users had more than ten terms in their queries. This statistic is similar
when we look at number of terms across queries. More than 79% of queries had
only one term in them, and more than 97% of queries had less than or equal to
three terms.

Terms in queries are quite diverse: Large percentage of the terms were unique
among users. Table 7 shows that about 72% of the terms had only one user using
them in queries, 89% the of terms had at most three users in common, and only
3% of all the terms were common among more than ten users. The top five of the
most common terms were (showing number of users using them inside brackets):
md5 (46,433), sort (29,728), £ile (19,219), code (15,532), and java (15,092).
Examples of (rare) terms that had only one user each are: bjc compress,
stream update, partitioning.h, “evaluate nbr bits”, and ktportlet.
Koders maintains a list of most popular queries in its Web site, and the top terms
listed above can be found in that list. It is possible that users tend to look at
these popular examples and try those queries themselves, thus contributing to
the popularity of already popular examples. All of the terms that were unique
seem to be names of variables and files.

Users use very few terms in a query to express their search needs. It seems that

they are using frequently used terms to try out popular queries listed in Koders, and
rarely used terms are being used to find specific methods and functions within the
code the users are familiar with.

Use of Operators Almost every search engine have options for query operators.
Query operators provide various ways to restrict or expand search results by using

Table 7 Terms common

# of common users (1) # of terms %
among users

1 659,401 72.19
2 107,881 11.81
3 48,029 5.25
>3 98,014 10.73
<=3 815,311 89.27
3<u<=10 67,001 7.33
> 10 31,013 3.40
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special characters or terms in the query. Koders provides six operators that users
can use to refine their queries: use of quotes to denote phrase search; using “cdef:”,
“mdef:”, and “idef:” as prefix to a query term to find class, method and interface
definitions; adding a “*” at the end of a term to denote stemming; and, adding a
“—” before a term to denote exclusion of a term. We analyzed all query terms for
these operators, and found that most of the queries do not have any operators at all.
We also found rare instances where users used operators that are similar to but not
available in Koders. Two such operators were: use of “mcall:” as term prefix, possibly
to denote finding a method call; and, use of “+” as a term prefix possibly indicating
inclusion (opposite of “—"). We found these two operators while doing a cursory
scan of the queries in the log to see any observable use of operators and included
them in our analysis.

Table 8 shows the statistics on use of operators. About 93% of the queries did
not have any operators. The most popular operator seemed to be use of quotes,
followed by operators to find definitions. It is interesting to note that two operators
(“mcall:” and “4”) that are not available in Koders, are more popular than some
other operators that are available.

Koders offers two other operators in its user interface to refine the query results:
Language and License type. The default value for these operators will return results
in any language and results from code with any license. Looking at the use of these
operators revealed an interesting information. About 62% of the queries had a
language specified in them, whereas only about 1% of total queries had specified
a license.

These observations on the use of operators indicate that in general users do not
use query refinement operators, with an exception of the operator for a language.
This probably means that users care about the language they want to search in, over
any other refinements.

Query Types A recent study of search behavior of developers on the Web found
that there are usually three forms of queries that developers write (Brandt et al.
2009): Natural: where all the terms in the queries are natural language words; Code:
where none of the terms in the queries are natural language words, and Hybrid:
where users mix natural and code terms in the query. We classified the queries in
the Koders log into these three based on the types of terms they contained. First a
query was split into terms using whitespace as a delimiter. For each term, all query

Table 8 Use of operators in queries

Operator Description # Queries % Queries
No operator 4,853,829 93.20

“ Use of quotes before/after a query term 178,014 3.42

cdef: Finding class definitions 133,832 2.57

mdef: Finding method definitions 89,107 1.71

idef: Finding interface definitions 52,705 1.01

mcall: Used but not defined by Koders 11,358 0.22

+... Used but not defined by Koders 6,652 0.13

LE * after a term, stemming operator 5,189 0.1
—... — before a term, exclusion operator 4,761 0.09
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operators contained in it were removed. Next, it was determined whether it is a
natural term or a code term based on the following criteria:

— A term is a natural term if two conditions are met: it only contains the alphabets
from the English language, and if the term is found in a dictionary of English
words. We prepared this dictionary using an exhaustive list of words found in the
automatically generated inflection database available at Web site for AGID word
list (2010). The dictionary contained 252,379 unique English words.

— A term is a code term if it contains alphabets other than those of English
language (such as numbers and symbols), or if the term is not found in the
dictionary mentioned above.

With the above definitions for natural and code terms, a query is determined to be
a Natural query if all of its terms are natural terms. A query is determined to be a
Code query if all of its terms are code terms. A query is determined to be a Hybrid
query if some of its terms are code and some are natural. Table 9 shows the statistics
on these three query types we found in Koders log. We can make the following
observations in Table 9:

— Code queries are the mostly used types of queries. Natural queries are less used
than code queries. There are few queries that are Hybrid.

— Among the three types of queries, Code queries lead to the most of the down-
loads. About 21% of Code queries lead to a download. Compared to this, only
about 12% Natural queries lead to a download. Hybrid queries are better than
natural queries in terms of being followed by a download in a session.

In summary, it can be said that users seem to be more successful in getting relevant
results with code queries (that do not contain any natural language term but only
names and symbols used in code). Furthermore, it is quite rare that users combine
natural terms with code like terms.

Query Reformulation Query reformulation measures how users are modifying their
queries in search sessions. For our analysis of query reformulations, we use the
definitions of modifications given in (Silverstein et al. 1999). Following that, we
define a query to be totally new (“T”) in a session if none of its terms matches the
terms in a query that comes before it. Modifications to a query are classified into
five kinds: Added Terms (“A”), meaning new terms are added to an existing query;
Deleted Terms (“D”), meaning some terms are removed from an existing query;
Operators modified (“O”), meaning either some operators are added or removed in
a query with no other changes; and, Modified Otherwise (“M”), meaning changes

Table 9 Statistics on query types

Query type # Queries % Query # Downloadsy % Q2D
Code (C) 2,982,171 57.26 652,856 20.90
Natural (N) 1,756,080 33.72 215,871 12.29
Hybrid (H) 469,507 9.01 69,713 14.85

Downloadsy = downloads that immediately follow a query type, % Q2D = percentage of the
particular type of queries that lead to an immediate download
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other than mentioned before. Table 10 shows the statistics on query reformulations
in Koders based on these definitions of modifications.

Table 10 shows that the most widely used modification in the sessions is introduc-
ing a completely new query (more than 76% of all the queries that were modified).
There are very few instances where users take an existing query and modify it by
changing few terms or operators. In cases where users tend to modify an existing
query, adding terms is the most common; next common one being combinations of
modifications on terms and operators (identified by “M”).

3.4 Comparison with Web search

Analysis of usage log of general purpose search engines is a widely research topic.
It is not possible to compare every characteristics of Web search behavior with what
we found in Koders. We provide comparison with results given in two studies of
query logs. The first is the study of the query logs of the Altavista search engine that
Silverstein et al. reported in Silverstein et al. (1999). Second one is a study of a query
log of search engine in Adobe’s developer portal done by Brandt et al. (2009).

Silverstein et al. reported that the query log they studied had a record of 993
million requests made in 43 days. Comparing that number with Koders, Koders has
about 10 million requests (activities) over a period of one year. Naturally, being a
code search engine, Koders is not that actively used as a general purpose search
engine.

The average length of query terms per query is often reported to be 2.35
(Silverstein et al. 1999). The average length of queries in Koders is 1.31. It seems
users in code search engines write even shorter queries compared to users in Web
search. Silverstein et al. noted that there is very small duplication in queries, implying
users searching for different things or using different words for same items. We
noticed similar case in Koders, there were very few terms in the queries that were
common among the users.

Sessions are generally found to be short and simple in Web search. Silverstein et al.
noted that average number of queries in Web search is 2.02. Brandt et al. reported
that average number of queries in sessions tend to be smaller among developers
(1.45). In Koders, we found average number of queries (search activities) to be 2.16
(only including users that had search), that is higher than what both Silverstein and
Brandt et al. found. About 63.7% of the sessions had only one activity in Web search.
In Koders, 55.49% of sessions had only one activity. This indicates that sessions in
code search are longer than sessions in Web search.

Table 10 Query reformulation (QR) statistics

QR Description % OSEs % OMmOD
T Totally changing the query 23.35 76.50
A Adding terms 227 7.45
D Deleting terms 1.61 5.28
(0] Modifying operators only 1.31 431
M Modifications other than those mentioned 1.97 6.46

MOD indicates if a query is modified, % QOsgs = percentage of all queries in sessions, % Owmop =
percentage of those queries that are modified
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The number of screen views in Koders seems to be quite similar to that seen in
Web search. In Koders, about 86.35% of all search requests had a single page view.
This is very similar to 85.2% of search request having a single screen view in Web
search (Silverstein et al. 1999).

Brandt et al. report that the highest number of queries were Code queries (48%),
second being Natural queries (38% ), and third being mixed (Hybrid) queries (14%).
In Koders, we found the same order of popularity among types, but there were more
code queries (57.26%), and fewer Natural (33.72%) and Hybrid queries (9.01%).
Since Koders is a code search engine, unlike the Adobe’s developer’s portal (whose
query log Brandt et al. analyzed), it is quite plausible that users are using more Code
queries compared to others. One commonality is that in both search engines, there
are fewer instances where users mix natural terms with code terms in their queries.

Developers using the Web are reported to refine a query very rarely (Brandt et al.
2009). In Koders we noted this to be true for the case of modifications on an existing
query; there were very few cases where a query was modified by adding or removing
terms. In Koders, modifications to a query seem to be simpler than those found on
the Web. Silverstein et al. report that the most common modification to a query
on the Web involves complex modifications (not covered by simpler ones such as
just adding or deleting terms). However, in Koders, the most common modification
was changing the query entirely to a new query. More complex modifications only
accounted for about 1.97% of the queries that were modified. Compared to 53.2% of
complex modifications on the Web queries, this number is quite low. One thing that
is noticeable in Koders is the use of operator for language. It seems, this particular
feature is very widely used. The use of operators in Koders seems to be less than
in Web search. In Koders about 93% of the queries did not have any operator,
where as in Web search about 80% of queries did not have any operator (Silverstein
et al. 1999).

To summarize, we can say that usage behavior is quite similar between Koders
and search on the Web. Users in these search engines have short queries and simple
sessions. There is very little chance that users refine their existing queries. Users in
Koders also had few unique characteristics. For example, a lot of the queries had
refinements for language type (probably because this is a unique feature applicable
to source code not available in Web search engines), and fewer use of other operators
compared to Web search. Furthermore, users in Koders seem to be using simpler
query refinements than users in Web search engine.

4 Topic Modeling

In the previous section we looked at several variables that measured the usage
behavior in Koders. In this section we seek an answer to the question: What are
users searching for? Since our source of information to answer this question contains
a large collection of queries given by users, we need a technique that allows us to get a
high level summary of fine grained information stored in the queries. For this purpose
we use a probabilistic topic modeling method named Latent Dirichlet Allocation
(LDA) (Blei et al. 2003).

LDA is a popular topic modeling technique. The benefits of LD A over other topic
modeling techniques is that it is an unsupervised method that requires no learning
data. Topics emerge as sets of words that are probabilistically correlated in terms of
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their co-existence in the same documents. LDA works with the following underlying
model (adapted from Griffiths and Steyvers 2004):

1. A document can deal with multiple topics, and the words in the document reflect
the particular set of topics it addresses, and

2. Each topic can be viewed as a probability distribution over words, and a
document as a probabilistic mixture of these topics.

The mechanics of applying LDA has been shown in various kinds of corpora
ranging from scientific papers to source code (Griffiths and Steyvers 2004; Baldi
et al. 2008; Linstead et al. 2007a, b, 2009; Maskeri et al. 2008). Underlying details and
its mathematical underpinnings are well described in Griffiths and Steyvers (2004)
and Blei et al. (2003). We summarize the important points in the context of our log
analysis.

In the LDA model for text, the data consist of a set of documents. The length
of each document is known, and each document is treated as a bag of words.
Applying LDA on a corpus requires three things as input: (i) A list of documents
with corresponding bag of words (document X word matrix) , (ii) the number of fixed
topics to extract, and (iii) parameters (hyperparameters over the topic-document and
the word-topic distributions, « and B) for the LDA to tune the mining process to suit
the nature of the corpus.

1. Corpus: We limit our corpus to a subset from the Koders’s usage log. Our data-
set consists of activities from users mostly searching in the Java programming
language. This is primarily to address the fact that topic identification is a process
of inference that needs some expertise in the domain. Selecting users searching
mostly for Java code helps making better judgements in extracting the Java topics
they were searching in. To get this subset of users searching in Java, first we
select all the users who had at least one search activity with Java as the selected
language. From this set, we then select those who have the largest number of
search activities in Java among all their activities, or those who have the second
largest number of search activities in Java provided that their largest number of
search activities did not have any language specified. With this criteria our corpus
for topic modeling consisted of 1,055,105 search and 755,588 download activities
from 291,839 users.

2. Document and words: We model a document required for LDA as the collection
of all queries made by a user. Thus we obtain a collection of 291,839 documents
corresponding to all the users in our corpus. This document collection is assumed
to contain a set of latent topics that we will discover as a result of the topic
modeling. These topics can be considered as the topics that the users are
searching for in the system.

3. Number of Topics: Non-parametric Bayesian and other methods exist to try to
infer the suitable number of topics from the data. However results from such
methods have been found to contradict the numbers predicted by human experts
while applying LDA to software corpus (Maskeri et al. 2008). Thus, we manually
set the numbers in our study.

4. Hyperparameters: Two hyperparameters are required to tune the distribution in
the LDA model to match the nature of the corpus. In our study we fixed o at

@ Springer



438 Empir Software Eng (2012) 17:424-466

0.5 and B at 0.1 as these values seem to result in the most meaningful assignment
of words to topics. For further mathematical details on these hyperparameters
please refer to Griffiths and Steyvers (2004).

For this study, we used the LDA topic modeling feature from the Dragon
Toolkit (Zhou et al. 2007).

Data Processing for LDA The terms in individual queries are processed to extract
more meaningful terms since the raw queries ranged from ambiguous symbols to
code snippets. The words in a document are produced by first splitting all the queries
into terms using whitespace as the delimiter, and, second splitting each of these terms
further on non alphabetic characters (eg: ‘_°, ‘—’). All the terms in the log were
in lower case so we could not do code specific term extraction such as camel-case
splitting. It should be noted that we do not use any stop word in our processing.
After this step we have the document-word matrix ready to be fed into the topic

modeling toolkit.

4.1 Results—Latent Topics

We applied LDA on our corpus with varying number of topics, starting with 50 and
increasing this number to 100, 150 and 500. We found that increasing the number
of topics results in more granular topics. For example, when the number of topics is
set to 500, most of them are sub-topics of those that are found when the number of
topics is 50.

Table 11 shows five sample topics that emerged when LDA was applied with 50
as the number of topics. A table with full list of 50 topics is given in the Appendix
(Table 19). The topic description and the code for each topic were manually assigned
after looking at (i) the top 20 most probable words assigned to the topic, and (ii) some
randomly selected search activities from users who were assigned the topics. This
process makes interpretation of the topic more reasonable when the top 20 words
assigned to the topic are not enough to interpret it. We use the topic code as an easy
mnemonic while presenting it throughout the paper.

Table 12 shows some sample topics that emerged when LDA was applied to mine
500 topics. It shows how the set of topics picked from the set of 500 can be seen
as a fine grained breakdown of topics from the set of 50 shown in Table 11. ‘Data
Structure’ is one of the topics identified when the number of topics is 50; when the
number is 500, several variants of data structures can be identified, such as AVL tree
and B-Tree. Table 20 in the Appendix shows another such example where the topic
‘Network’ breaks down into finer ones, such as http, ftp, packet sniffing etc. Many
of these fine-grained topics are not visible when the number of topics is set to 50.

Table 11 Five sample topics mined from the query logs

Topic code Description Words

Audio Working with audio and sound Compare, control, encode, audio, decode
DataStr Data structures List, object, arraylist, map, vector
Network Networking, FTP Client, server, ftp, socket, iso

Files Working with files File, read, files, create, write

GUI Swing and AWT GUI Swing, jtable, applet, awt, window
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Table 12 Sample topics

Data structure topics
related to data structures

obtained when number of AVL Tree Tree, avl, minimum, spanning, avltree
topics fixed at 500 B-Tree Tree, b, btree, trie, suffix
Queue Queue, priority, fifo, circular, priorityqueue
Lists List, linked, linkedlist, sorted, lists
Heap Max, heap, min, unix, chromaticity
Graph Graph, vertex, dfs, edge, salvo

Two such examples are the topics ‘initializing the modem’ and ‘listing usb devices’.
This is also an expected behavior of LDA. In summary, this captures an important
characteristic of LDA in identifying topics at various levels of granularity.

For the reminder of the paper, the discussion and results refer to the application
of LDA with number of topics set to 50.

4.2 Topic Categories

We found that the 50 topics that we mined from the usage log can be generically
placed under one of the following six categories.

1. Applications: These were topics where users were looking at specific applica-
tions. For example ‘Calendar Scheduling’, ‘Multimedia’ and ‘Mobile Games’.

2. Programming Tasks: These topics mostly pertained to general programming
tasks applicable to many domains and systems. Sample topics include; data
structures, date time functionality, object relational mapping, document formats,
working with files, string, xml etc.

3. Frameworks: This category represents topics that captured well known Java
frameworks in use. Examples include JBoss, Eclipse, and Lucene.

4. Java/IDK Libraries: These topics represent common features available in the
JDK. One prevalent topic under this category has the term ‘java’ as the most
common word. Queries that matched this topic were either about the core JDK
libraries such as the java.lang.* or users were simply adding java as a qualifier
term along with other query terms. Other topics under this include GUI APIs
such as Swing and AWT, and Database APIs such as JDBC.

5. Form Centric: This category of topics captured a different characteristics about
the queries the user made compared to other topics. Rather than capturing
what the users were searching for, topics under this category captured how they
were expressing their queries. These topics pertained to the various forms of the
queries users subscribe to while expressing their search need. Among these topics
we found four distinct forms in which users express their queries:

— Three of the 50 topics contained words (such as “How”, “Source”, “Code”)
that are often used in writing a verbose query. We looked at several queries
that belonged to these three topics and found that they start with phrases
such as; “How to use ..”, “Source code for ..” etc. Based on this information
we interpreted these topics to be describing forms of queries where natural
language expressions were used. LD A was able to detect these topics without
any preprocessing. These topics appear with a prefix “NL.” in their names in
Table 19.
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— Others topics related to the form of queries captured the use of query
operators, “mdef:” and “cdef:”.

— We also found topics that seemed to be capturing the common terms used
in the FQNs (fully qualified names) of Java entities. We include these topics
under the category “Form Centric” with the interpretation that using FQNs
is also a common technique to search for relevant source code.

— One of the topics (Topic ‘Jkw’ in Table 19) captured the use of the Java lan-
guage keywords to express structure in the query. For example, a query such
as ‘extends iactionlistener’ uses the keyword ‘extends’ where the user is pos-
sibly trying to find interfaces that extend the interface IActionListener.

6. Unknown: These were topics that we could not interpret easily. The most proba-
ble words assigned for these topics just seemed to be a combination of random
words that did not seem to capture anything in particular. We group these topics
into this category.

In the rest of this section we will look at several statistics on users, search activities
and downloads associated with the topics. Our goal behind looking at these statistics
is to get an idea about the popularity of topics based on the numbers of users and
activities. Getting these statistics also leads us to understand the prevalence of users
and activities in the topic categories.

While referring to the individual topics we will be using the mnemonics given to
each topic that is listed in Table 19.

4.3 Users and Topics

Applying LDA results in a probabilistic assignment of the topics to each document
in the corpus. In our case, each document represents the collection of words from
all the queries a corresponding user makes. Consequently, the topics are assigned
to the users. This results in a probability distribution of the topics assigned to each
user. This parallels the fact that a user might be looking across more than one topic
with varying degree of interest. To select the most likely topics a user searched in,
we discard all the topics with the lowest probability for the user. This is based on
our observation that when the topics assigned to a user are sorted in a descending
order, based on the their probabilities assigned to a user, they follow a long tailed
distribution. There are usually a larger number of least probable topics in this tail, all
having the same probability value. This value varies among the users, but a common
thing is that all users have such low probable topics assigned to them. Discarding
these lower end topics from the distribution allows us to have a good approximation
of the topics that a user searched in. Getting these assignments of topics to users
allows us to look at two statistics: the number of users under a topic, and the number
of topics per user. We discuss these statistics below.

Given the list of the most likely topics for each user in the corpus, the user count
for a topic (say tp) is the sum of all unique users who has been assigned the topic tp
as one of their most likely topics. In other words, if a topic has a user searching under
it, its user count increases by one for each unique user. Getting this count gives us the
first insight on the popularity of the topics among the users. Figure 1 shows this result;
for each topic it shows the percentage of the total users who searched under the topic.
Few topics were more popular than others. The top three being ‘JAVA’ (7.8% of
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users searched under this topic), ‘DEF’ (6.8% of users), and ‘apache’ (6.4%). The
lowest three topics with least users were ‘gameMob’ (4.2% of users) , ‘U2’ (4.2% of
users) and ‘BIRT’ (4.2% of users). These results indicate that users do not search in
all of the topics. Each topic had users that ranged from 4% to 8% of the total users,
and most of the topics had users that ranged from 4% to 5%.

We plot the number of users grouped by the number of topics to see how many
topics users search in. Figure 2 shows this plot. We can see that this distribution is
exponential. A very large number of users search in either one or two topics only,
this is not surprising as we have seen that most of the search sessions are short in
Koders. Almost all of the users searched in less than five topics. There was a very
small number of users that searched almost in 40 topics (out of 50).
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4.4 Search, Downloads and Topics

In the previous section we matched users with the most likely topics they searched
in. In this section we seek to rank the topics based on counts of search activities they
have, and count of downloads that follow them. With this we will be able to see the
topics that are popular among users, the topics that had the highest search activities,
and the topics that led to most of the downloads.

Search Activities Under a Topic With each user being assigned to a list of topics,
we can further match the queries from the user with the topics assigned to them.
This assignment of topics to individual queries allows us to get the counts of search
activities under each topic. The distribution of search counts across topics gives
further insight on the prevalence of the topics among the users.

For each query from a user, we compute its similarity with topics that were
assigned to the user. We then select the most similar topic (say tp) that the query
matches with and count it as a search activity under the topic tp. We use a simple
similarity metric defined as follows. For a query g composed of a list of terms
(t1, t, .., 1), issued by a user U who was been assigned a set of topics 7T, similarity
of g to a topic ¢p from T is given as:

P(qlip) = P(p|U) [ | Parilip) (1)

i=1

where, P(tr;|tp) = probability of term (word) tr; appearing in topic tp, and P(tp|U) =
probability of topic fp being assigned to user U. Both of these probabilities can be
obtained from the output of the topic modeling.

This technique of associating queries with topics can result in different assignment
of topics for exact same query for two different users. The matching depends on the
topics that a user has searched in. Assignment of the query to a topic is limited to
only the topics the users have been associated with.

Downloads that Follow a Topic We assume that an immediate download activity
that follows a search activity is a download related to the preceding search activity.
With this, we can associate a download with a topic by picking the topic that best
matches the query (corresponding to the search activity) that precedes the download.
This gives us the count of downloads that followed a topic. A higher count of down-
loads under a topic could suggest that users were successful in finding usable results
under the topic and vice versa.

Results  Figure 3 shows the distribution of the search and download counts among
all topics. It shows that most of the topics get similar percentage of search activities,
ranging from 1.5 to 2.5%, remaining top five topics had 2.5-4% of all search activities.
Table 13 shows the top ten and lowermost ten of the topics based on how many
users, search and downloads these topics get. The top ten topics with largest number
of search activities are: JAVA, DEF, Eclipse, GUI, Network, Jkw, files, imaging,
hibernate, and sort.

Looking at the counts of immediate downloads that followed a search in a topic
(Fig. 3) shows a slightly different ranking of topics. The range is similar; from 1.5
to 3.6%. The top ten topics, with respect to number of immediate downloads that
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followed the search in those topics, are: JAVA, DEF, Eclipse, GUI, jfreeC, Jkw,
hibernate, Imaging, secAuth, and files. Topics ‘sort’ and ‘Network’ disappeared
from the top 10 list here, taken over by ‘jfreeC’ and ‘secAuth’. Also the topics
‘NL.apps’, NL.SC’, ‘NL.HUD’ are ranked lower compared to others with respect to
the immediate count of downloads that follow them. This supports our observation
in Section 3 that queries with natural terms lead to lower downloads.

Topics JAVA’ and ‘DEF’ seem special since they are the top two topics with
largest proportion of users, search and download activities. ‘DEF’ is a topic that
captures two things: (i) use of query operators to find definitions in code, and (ii)
the terms from this topic match very closely the examples and popular terms given
in the Koders’s Web site. These observations support our previous hypothesis about
users trying popular queries that Koders lists in its Web site. The high rank for this
topic could be explained by the fact that most users who come and use the search
engine try some of the examples given in the Web site. ‘JAVA’ seems special as it
relates to core JDK packages, and also the case where the term ‘java’ appears in

Table 13 Highest and lowest ranked topics

Top 10 Low 10

Users Search Download Users Search Download
JAVA JAVA JAVA BIRT U2 NL.HUD
DEF DEF DEF U2 Ul fqn.j3DSfCon
apache Eclipse Eclipse gameMob fqn.j3DS{Con U2

files GUI GUI searchEng Netbeans U1

String Network jfreeC Ul jboss NL.apps
DataStr Jkw Jkw audio JMS searchEng
GUI files hibernate lucene searchEng Netbeans
Network imaging Imaging ML BIRT jboss
DateTime hibernate secAuth M.GwtSecAuth audio calSched
NL.HUD sort files secAuth junit NL.SC
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the queries. It is quite likely that both searches on the core Java packages and using
the term ‘java’ along with other terms yields large number of search and download
activities. This might also be a side effect of limiting our corpus to the users searching
in the Java language.

Another interesting observation to make is that topics that were identified as
unknowns (‘U1’, ‘U2’) are in the lower most part of the ranks. Also, among the lower
ranked topics are specific topics such as ‘Mobile Games and GUI” and ‘Searching’
(search engines).

4.5 Prevalence in Topic Categories

Table 14 shows all the above topic categories and how each of the 50 topics from
Table 19 falls under these categories. We can see that ‘Programming Tasks’ and
‘Frameworks’ contain the majority of topics.

Figure 4 shows the prevalence of each of these categories based on the counts of
activities (search and download) and users in all the topics that fall under a category.
In a nutshell, it captures what users of Koders look at and get engaged in. The top
two categories are ‘Programming tasks’ and ‘Frameworks’. The rest are ‘Java/JDK
libraries’ and ‘Form centric’ topics. ‘Applications’ category is the least prevalent.
This means that there are not many activities and users searching for domain specific
applications. Or, at least such topics are not visible when we look at a smaller number
of topics. Conversely, all the frameworks represent solutions built for some specific
domain. The prevalence of frameworks in the usage log leads us to conclude that
there are two categories of users searching for specific application domains:

1. Those who know the projects to look at and use names from the projects in their
search queries (users under topic ‘Frameworks’), and

2. Those who are not yet familiar with the right projects to look at but have search
needs pertaining to specific domains (users under topic ‘Applications’).

Besides providing these insights on the varying prevalence of topic categories
among the users, the categorization of the topic under categories provides one
important hint regarding the expression needs of code search engine users. The
category ‘Form Centric’ captures some common ways in which users express their
queries. Topics under these category illustrate the fact that users often qualify their
queries with operators to find definitions (topic ‘DEF’ in Table 19) and keywords
such as ‘extends’ and ‘implements’ to express structure. They also suggest that FQNs
could have been used as quick mnemonics to retrieve code (Topic ‘fqn.j3DSfCon’ in
Table 19) and terms such as “how to”, “source code”, “example” are often associated
with verbose natural language like queries.

Table 14 Topic category

ad Category # of Users Searches Downloads
statistics topics followed
Applications 4 51,723 74,828 20,109
Programming tasks 15 216,989 315,322 86,035
Form centric 6 93,695 142,321 35,011
Java/JDK libraries 5 80,406 133,898 36,744
Frameworks 15 205,630 299,281 89,632
Unknown 5 65,849 89,455 26,439
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5 Query Forms

In Section 3 we saw that queries in Koders can be categorized as Code, Natural
or Hybrid query based on their linguistic form. The topic category ‘Form Centric’
suggested that there are could be more idiomatic forms of queries that are used
during code search, for example use of FQNSs to retrieve code entities. To delve
deeper inside this issue we sought answers to questions related to the form of code
queries; in particular, what do they look like and what type of search result they
find. The motivations behind these questions were to identify the ways in which
users express themselves with queries while searching for code, and to see if there
are certain query forms that are effective compared to others. For this purpose, we
performed a qualitative analysis on 150 randomly selected sessions from the log.

We use a slightly different definition of session for our analysis in this section.
Since we are interested in the query forms that lead to downloads effectively and
efficiently, we focus on a set of search activities that precedes a download. We define
a search-download session as a consecutive list of search activities that end with a
download. We performed a qualitative analysis on 150 randomly selected search-
download sessions from the query log.

We obtained the 150 sample sessions by randomly selecting a query from various
topics mined from the usage log, and selecting the search-download session the
query belonged to. Being able to sample queries across these topics ensures that
the sample we consider is representative of the range of topics users search in.
We selected ten queries from 15 different topics, resulting in 150 queries. For each
of these 150 queries we looked at their corresponding search-download session.
The 15 different topics span across various categories such as, Programming Tasks
(Network Concepts, Working with Strings, Data Structures), Frameworks (Eclipse,
Apache libraries), and those pertaining to ways users express queries (using natural
prose to find systems and asking “how to” questions). The spreadsheet that con-
tains the result of the analysis is available online at: http://wiki.github.com/sushil/
koders-loganalysis/ese2010.

Table 15 shows a sample search-download session. It shows that the randomly
selected query was the sixth activity in the session (starting with a —). The second
column shows the activities. It shows the query for a search activity and the down-
loaded code’s unique identifier for a download activity (activity D). Topics that are
assigned to the query are shown in the third column. In this session, we can see a user
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Table 15 Example of a sample

. Activities Topic assigned

search-download session -
under investigation S “Date range” Date time

S> How validate the number Natural language

Days data range Query

S3 “Date range validation” Date time

S4 “Date range” Date time

Ss Date range Date time

— Se Number days date range Date time

D Downloaded <file_id>

was trying to find a feature that would give the number of days in a date range. The
user issued six queries and then downloaded a result she found relevant. Looking at
the file that was downloaded revealed that it was a class named DateUtil with a
method named getDataRange that takes two dates and a flag, and returns a long
value as the range. This demonstrates that looking at the activities in the session, the
topic assigned to the queries in the session, and the file that was downloaded allows
us to perform a reasonable qualitative analysis.

5.1 Lexical Structure

Observing all the queries in the sample revealed that the lexical structure of the terms
in the queries followed five unique and recurring patterns. This allowed us to encode
the queries into five basic forms:

1. NL: Query formulated as a verbose natural language phrase.

2. Term: Collection of few natural language words.

3. Name: Mostly a single word that resembles a name used in source code.

4.  Acronym: short length terms denoting common acronyms such as “emf” standing
for “Eclipse Modeling Framework”.

5. Code: Query that appeared to be a direct copy of few lines of code with symbols
and operators.

Table 16 shows some examples of these various lexical forms of queries. These
lexical forms show the range of verbosity that queries can exhibit. They can be very
terse as in the acronyms or very verbose as in natural language phrase.

5.2 Result Types

Just as the lexical nature of the query terms reveals the form of the queries, the
meaning of the terms and interpretation of the terms together in a query allows us
to make an estimate about the kinds of results users were expressing in their queries.
We do this by looking at the individual 150 queries, the queries that surround them in
their respective session, and downloads they ended with (in case where they existed).
This allowed us to encode the kinds of results being sought for in the queries into four
categories:

1. System: self contained applications or parts of applications.
2. Feature: Some functionality of a software system that achieves a particular task.
3. Entity: A smaller unit in a program such as a class or a method.
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Table 16 Example of various

- Form Examples (each query separated by a comma)
forms of queries
Acronym emf, dao, crud
Code Catch(sqlexception, substring(, byte[]
Name Filewriter, tchat, javax.media.datasink
NL Storing vector file format,

example programs for datagram,
read value from xml file
Term Drag drop, string date, file reading

4. Line: A particular line or location in source code.

Table 17 shows some examples of these various kinds of results sought using
queries. These various kinds of results show that users seek results at various levels
of granularity ranging from an entire system to a particular line in a code.

Table 18 shows the cross-tabulation of the counts of the randomly selected 150
queries across the two categories we encoded for: the lexical form and result type
of queries. The most common lexical form was Name (40% of all queries); second
being Term (32% of all queries). The most common search was for finding an Entity
defined in the code (48% of all queries); second being finding a Feature (32% of all
queries) that implements some piece of functionality. Within the sample we collected
it seems that the users mainly searched for entities using names and features using
terms.

5.3 Form and Relevance

We looked into statistics on download activities for the various forms of queries
(from the sample of 150 mentioned earlier) to gain an understanding on what seems
to produce relevant and possibly usable results. For this purpose we devised the
following definitions.

—  Relevant Results: A search result for a query in a search session is relevant (and
possibly usable) if a download activity follows the query in the session. We
associate download with relevancy assuming that users download code only if
they think it to be usable. This is quite similar to the assumption in general
purpose search that click-through is a significant indicator of relevance (Joachims
2002; Joachims et al. 2007).

—  Efficient Query: A query is efficient if it produces a download as the next
immediate activity in a session.

Table 17 Example of various

; Form Examples (each query separated by a comma)
result types expressed in a - - - -
query Entity Hashtable, filewriter, cdef:jpegdecoder
Feature Parse the url data, lucene search, pad
Line Catch(sqlexception, byte[],
/Ispecial values for whereclauses
System Media player, example programs for datagram,

apache torque
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Table 18 Lexical form and

T Form Intent

result types of queries in code - -

search Entity Feature Line System S %
Acronym 2 2 0 8 12 8.00
Code 0 1 4 0 5 333
Name 55 6 0 0 61  40.67
NL 2 14 1 7 24 16.00
Term 13 25 0 10 48 32.00
S 72 48 5 25 150
% 48 32.00 333  16.67

—  Effective Query: A query is effective if it produces a relevant download after
the query in a session. We inspect the downloaded code to see if the download
was indeed relevant to the query in the session. An efficient query might not be
effective if it results in an immediate download that is not relevant to the query.

We measure effectiveness of a given type of a query (Q-type) by a metric D,/S;
where, D, is the count of relevant downloads all Q-type queries produced in the
search-download sessions, and S is the count of all O-type queries in the sessions.
Similarly, we measure efficiency by a metric D;/S; where, D; is the count of all
immediate downloads all Q-type queries produced in our search sessions.

Figure 5 plots the efficiency and effectiveness for all of the lexical forms, and Fig. 6
for all of the result types. These figures also show the percentage of search activities
across different lexical forms and result types. Name queries and queries asking
for Entities are the most effective and efficient. Feature queries are ranked second
in terms of effectiveness and efficiency. Term queries are second to Name queries in
terms of being efficient, but much less effective. Term queries are ranked fourth in
terms of effectiveness. These observations can be summarized as follows:

Users mostly are looking for entities defined in programs, and features that
implement some behavior. They mostly issue queries that look like names of
the entities as they are defined in the code. In absence of the knowledge about
the defined names, they issue short queries that consist of natural language
terms. Users get to relevant results with much less effort when they use queries
that include the names of code entities. While users seem to look into the results

Fig. 5 Effectiveness and 0.7 - M Effectiveness
efficiency of queries with 0.6 - > .
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efficiency of queries for Efficiency
different result types 0.5 - B % Searches
0.4 1 I~
?
0.3 1 é
] 7
0.2 é é %
0.1 - % % % ?
'A L.V
T
g 2 3 3
W E &

they get with queries having natural language terms, these queries mostly fail
to yield relevant results compared to other forms of queries.

6 Discussion

In this section we reflect upon some of our findings on usage, topics and query forms,
to provide some guidelines for the design of code search engines.

6.1 Usage

Supporting Users who Give up Quickly We noticed that most of the users in Koders
do not look beyond the first result page. This could mean two things; they found the
result they were looking for in the first page, or they tend not to browse through
search results to find relevant results if they do not find one in the first result page.
We believe it to be the second case because of reason that we explain next. If a
relevant result was found in the first page itself it should have resulted in some
download (note that download here means result view by clicking on the code
found). Since more than 64% of the users had no downloads at all, this could mean
that many users did not find relevant results in the first page. It could be argued
that users could have fulfilled their information need by just looking at the search
results without actually downloading results. However, we believe this is not the
case either. In our own experience of using Koders, the result page often showed
irrelevant parts from the code (mostly few lines from the top of the source code file).
Therefore, there is an indication that users tend to abandon their search if they find
irrelevant results. This implies that code search engines should have better ranking
techniques and presentation of results to reduce abandonment. Source code being
different both in content and structure, there could be techniques that are specific to
code search engines that can improve efficiency. For example, code specific ranking
heuristics (Linstead et al. 2009; Bajracharya et al. 2007) and improvements in user
interface specific to code search engines (Hoffmann et al. 2007; Bajracharya et al.
2010b).

Support for Programming Language Specific Queries There is a strong indication in
the analysis of the usage log that users care about what language they want to search
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for. Most of the queries that users gave were Code queries. This implies that a code
search engine should offer different set of features based on the language that users
have selected. For example, searching for class definitions is not meaningful for users
searching in C programming language. Koders could offer searching for ‘Structs’ or
‘Unions’ instead for users searching in C.

Support for Browsing Code After Search Most of the download activities that
existed in the log followed another download, indicating users tend to browse code
after they find some result. Users even expected the presence of operators to express
relations that exist in source code, for example method calls. This implies that along
with the search facility, a code search engine should also have strong support for
browsing and finding code using relations in the code.

Leveraging Query Logs for Effective Retrieval Various forms of relevance feed-
back mechanisms (Grossman et al. 2004; Baeza-Yates and Ribeiro-Neto 1999) can
be devised based on the information stored in a search engine’s usage log. The
underlying idea behind usage log based relevance feedback is that term associations
mined from queries and successive click-through in sessions (downloads in case of
Koders) can be applied to generate more relevant terms for query expansion and
retrieval. Such techniques have proven to work in general Web search (Joachims
2002; Cui et al. 2003; Zhu and Gruenwald 2005), and could be applied to code search
engines as well. One area of improvement could be in the user interface to support
relevance feedback and retrieval by reformulation. These techniques have been
known to be successful in past; both in the case of software and general information
retrieval (Henninger 1997; Koenemann and Belkin 1996).

Support for Natural Queries Our results show that although users tend to use
natural queries, and they are less effective in leading to a download. This could be
because of the well known vocabulary problem in information retrieval (Furnas et al.
1987). This indicates that there should be better support for natural queries in code
search engines. Automatic query expansion or semantic indexing techniques could
help (Xu and Croft 1996; Zhu and Gruenwald 2005; Zazo et al. 2005; Bajracharya
et al. 2010a).

6.2 Topic Modeling

Facilitating Search on Specific Topics The statistics on users and topics from
Section 4.3 (Fig. 1) suggests that a large number of users look at few topics only.
This is not surprising since we saw that users tend to have very short sessions with
few queries. This observation implies that users look for specific topics in sessions.
Therefore, a code search engine can facilitate searching in specific topics, or support
filtering results by topics. Results from topic modeling on source code show that it
is possible to extract meaningful topics from source code automatically (Baldi et al.
2008; Kuhn et al. 2007). Code search engines should leverage such information.

Supporting Users who do not Know what to Look for The top ten list in Table 13
shows that the ranked topics are almost the same between search and download
counts but that they differ when it comes to users count. Many users searched in
topics such as ‘apache’, ‘strings’, and ‘DataStr’. These topics neither have the largest
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number of searches nor downloads. In place of these we see that topics such as ‘GUT’,
jFreeC’, ‘Jkw’ are ranked high on both search and download. One interpretation of
this observation is that many users look at very common programming idioms like
data structures and strings manipulation, but these are not the ones that yield the
largest number of the activities. There seems to be users who use the search engine
extensively, and they do not look for these common programming idioms. Rather,
they look at large frameworks like Eclipse, and get comparatively more downloads
from specific projects (such as Eclipse, Jfree Chart). This could imply that users who
stick to the system and use it more are looking at very specific projects, and not at
general programming idioms as such. In other words, users who find code search
engines like Koders usable are those who already know where (or what) to look for.
This leads to the question that how can a code search engine support users who do
not know what solutions exists for the problems they have, or those who do not know
what exactly to search?

For example, the topic ‘lucene’ (a popular information retrieval engine for Java)
could be the one that users searching in the topic ‘searchEng’ ought to look at. This
suggests that there could be ways to assist users searching for specific application
domains by giving them feedback so they could direct their queries to one of
the frameworks that has solutions pertaining to their interest. Perhaps, suggesting
the terms from ‘lucene’ to the users of ‘searchEng’ could result in better search
performance among the users searching for search engines.

Support for Natural Language Expressions in the Queries All topics related to
expressing queries in a more natural language form (‘NL.HUD’, ‘NL.apps’, and
‘NL.SC’) are ranked low in terms of Search and Download counts. However, they
are not ranked low in terms of Users. In fact, ‘NL.HUD’ is one of the high ranked
topics with respect to user counts. This observation can be interpreted as follows.
Large number of users who come and use the search engine try natural language
queries (ranked high on user count) but they do not use it extensively (not ranked
high on search activities) as they don’t seem to lead to usable results (ranked low on
downloads). An important implication of this observations is that certain linguistic
feature in queries need to be treated specially. For example, when a query contains
a phrase such as “How to ...” a code search engine should understand that a user is
interested in knowing about performing certain tasks, possibly trying to find an API
to do something as opposed to find implementations.

6.3 Query Forms

Understanding the Underlying Structure in Code We encountered a few odd cases
during the analysis of 150 sessions that were outliers from the general statistics. For
example, name queries were found to be most effective and efficient. However,
in one of the sessions a user had a name query ‘xmlserializer’ that followed an
immediate download which was not relevant. Koders retrieved a source file that had
the query term inside a comment but the code was not about xml serialization. This
indicates that a code search engine needs to treat certain sections in code differently
from others. A match of a query term in a comment could be less valuable than a
match in a method name. Koders, in particular, seems to ignore this fact; many of
the queries we tried in Koders gave results that matched source code portions that
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we found to be irrelevant. For example a match in copyright information header on
top of the file, or comments describing functionality that were no longer available in
the code.

Supporting Code Abbreviations Use of acronyms in the queries implies that tech-
niques to expand and contract abbreviations in code might be used to improve
code search (Liu and Lethbridge 2001). Such techniques could be used as a part
of a retrieval scheme where an abbreviation is expanded to match more terms, or
commonly occurring words would be contracted to match abbreviations in code.

Generating the Right Code Snippet to Show in the Result Page In another ses-
sion in our analysis of query forms, a name query ‘org.apache.naming.config.
xmlconfigurator’ did not have any downloads. Upon running this query in Koders
ourselves, we noticed that none of the results in the first page had any cue that
suggested that the results were relevant to the query. However, clicking on the
first result showed us that it was a class that imports XmlConfigurator, perhaps
something the original user would have found useful. This suggests that lack of useful
cues in the snippets shown in search result page will fail to make them useful to
the users.

Support for Retrieving Various Result Types The observation that users seek results
at various levels of granularity suggests that a single way of presenting results may
not always work. For example, Koders and most other code search engines present
the results at the level of a file. This result could be useful for someone interested in
locating a file but not much of a use for a user seeking a feature. A feature usually
spans multiple files and could have multiple dependencies on external libraries. A
user seeking a feature would benefit if she can see the entire context of that feature
(for example, related files and dependencies) in the result. Code search engines
could use techniques for feature location that have been studied extensively in soft-
ware engineering (Marcus et al. 2004; Poshyvanyk and Marcus 2007; Poshyvanyk
et al. 2007).

7 Validity

In all three analyses (usage, topic modeling, and query forms analysis), we held
certain assumptions and made some interpretations that could lead to validity
threats. In this section we list the major issues that could pose some threats to the
validity of our arguments and findings in the paper.

7.1 Usage Analysis

Accuracy of Identifying Users The analysis of usage we presented in Section 3
depends critically on the accuracy of identifying users in the log. When we contacted
Koders during the time we got the query logs, they claimed their scheme for identi-
fying users to be quite robust. We do not know much, besides the fact that Koders
uses a combination of IP addresses and cookies stored in browsers to identify users.
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A weak technique to identify users, or the practice among users to regularly delete
cookies could affect the results related to activity. For example, the measurement
of active days will be severely affected. Unfortunately, it is not possible to find how
accurate the information on users is in the Koders log.

Noise Introduced by Activities from Bots Some of the activities in Koders might
have been because of bots crawling Koders. For example, a large number of users
having no search activity, and few users having a large number of search and
download activities could be because of bots. We detected two users who were
routinely searching for only the example queries given in Koders Web site. We
removed these users as outliers. There does not seem to be an easy way to detect
activities due to bots in the system, and thus what effect they have on the results is
unknown.

Limitations of Log Analysis It is well known that studying query logs alone is not
enough to fully understand usage behavior of the search engines (Grimes et al.
2007; Aula and Nordhausen 2006). Results from the analysis we present in this
paper complement those in Umarji et al. (2008), which used a completely different
methodology. Since the findings in both of these studies point to the same general
conclusion that current code search engines are not that effective, we believe the
deeper analysis in this paper is not only valid, but provides valuable insights for what
the problems may be and how to overcome them.

Generalizing to Other Search Engines It should be noted that although similar in
functionality, Koders is quite different from other search engines in terms of its
user interface and presentation of results. Because of this, it is also not possible to
generalize our findings for other code search engines such as Krugle (Web site for
Krugle 2010) and Google Code Search (Web site for Google Code Search 2010).
More work is needed to understand the effect of user interface and presentation
(of results) on usage behavior across various code search engines that are available
today.

7.2 Topic Modeling

Choice of LDA Topic Modeling to Mine Topics We chose to use LDA topic
modeling as a method to mine topics from the query log because of two major
reasons. First, topic modeling using LDA has been applied to solve a wide range
of problems in software engineering such as: statistical debugging (Andrzejewski
et al. 2007), mining business topics (Maskeri et al. 2008), mining author-topic
models (Linstead et al. 2007b), software traceability (Asuncion et al. 2010), software
categorization (Tian et al. 2009), bug localization (Lukins et al. 2008) etc. In an earlier
work we used LDA topic modeling to mine topics from large corpus of source code,
and showed that topics that emerge often resemble widely known aspects or concerns
in source code (Baldi et al. 2008). In that work we did an in-depth comparison of
LDA with other well-known techniques for feature location, and found that LDA
based technique can indeed find all the features that other tools find. Second, LDA is
a more recent technique and has been shown to be superior to other alternatives such
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as Latent Semantic Indexing (LSI) (Dumais 2004) in many information retrieval and
machine learning applications (Blei et al. 2003). In addition to these two reasons we
also found that LDA has been successfully applied to compare similarity of very short
texts (Quan et al. 2009). Our corpus being a query log, contained many documents
with very few words. Therefore, applicability of LDA to measure similarity in short
documents (Quan et al. 2009) gave us some confidence that LDA would be an
appropriate method for mining topics from the log.

In terms of functionality, both LDA and LSI seem to be equally relevant for
various classification tasks in software. LSI is equally popular in software engineering
research, in areas such as program comprehension (Maletic and Marcus 2001), auto-
matic feature location (Marcus et al. 2004; Poshyvanyk and Marcus 2007; Poshyvanyk
et al. 2007), software clustering and categorization (Maletic and Marcus 2000; Kuhn
et al. 2007; Kawaguchi et al. 2006), clone detection (Marcus and Maletic 2001),
recommender systems (McCarey et al. 2006; Ye and Fischer 2002) etc. Kuhn et al.
report that LSI performs bit worse for analyzing software because of the scarcity
of words in source code (Kuhn et al. 2007). Furthermore, LSI does not provide a
solid probabilistic model to associate documents with topics and topics with words.
Labeling clusters of similar documents (or topics) in LSI is often an additional step
and requires a use of good similarity model. This could introduce an additional
fuzziness in the accuracy of the method. Due to these issues with LSI, we believe
that our choice of LDA for mining topics from the usage log is valid.

However, it should be noted that both LDA and LSI require proper tuning
of parameters to get meaningful results. It is still an open question whether one
approach is indeed superior to another for various classification tasks in software
since there has not been a sound empirical comparison of these techniques for
working with software artifacts.

Criteria for Selecting Users Searching in Java There were two options to select the
user searching in Java. The first option was to simply select all the users who specified
Java as a language in their query. Second was to select users who mostly searched for
Java as defined by the criteria we presented in Section 4. When we looked at this list
of users for all the languages that they searched in, we noticed that the users rarely
searched in other languages than Java. Since this criteria covered maximum number
of users who mostly searched for Java, we chose this option. Some noise could have
been introduced if this criteria included non-Java queries in our corpus for topic
modeling. In retrospect, we think that the choice of just selecting users searching in
Java could have equally good too.

Choice of a Model for a Document For LDA, we modeled all collections of user
queries as a single document. Other choices were to model a single query or a single
session as a document. Since we observed that most of the queries had very few
terms, and most of the sessions contained very few search activities (Section 3), these
choices to model a document would have resulted in a document with mostly one
word. That would have made our document collection even sparser. Therefore, we
decided to model a document as a collection of all queries given by a user.

Data Processing for LDA A common practice in topic modeling is to carefully
select the vocabulary by omitting some words that are considered noise (stop words).
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We do not use any such stop words in our study. This was primarily because we
wanted to see the results as it came from mining the queries as much in their origi-
nal form as possible. Employing a list of stop words such as those commonly
found in name definitions, query operators, Java keywords, and those that made
up the natural language queries might result in a different set of topics. We plan
to investigate this in future. Another limitation with the vocabulary was that the
Koders log was case insensitive. A large number of the queries seemed to be names
of entities in source code that users were trying to locate. It is possible that the users
had included coding conventions such as camel case in their original query. Koders’s
log seems to have lost this information since all of the query terms in the log were in
lower case. Had we been able to do a finer extraction based on code specific heuristic
such as camel case splitting, we might have seen a different set of topics, perhaps
easier to interpret linguistically.

Assumptions with LDA We have made several simplifying assumptions as we
proceeded with our analysis. Here we discuss some limitations based on these
assumptions.

Our choice of selecting the activities from users looking in Java to make interpret-
ing the topics easy might pose some limitation in carrying over the conclusions to
the entire users of the search engine. At this point, we cannot say for sure if there
could be any perceivable difference in the results if we repeat our study with users in
a different language or do the study on all the users combined.

Another assumption we made was with the decision of selecting only the best
matching topic while matching queries with topics. We have tried getting the results
with weighted counts, unlike the absolute count that considers only the best matching
topic to query. The results did not differ much in that case. We also chose a simpler
similarity metric to match queries with topics. Although there exists better models to
do similarity matches of queries to topics, for example similarity metric used in rele-
vance feedback based on the language model for information retrieval (Grossman
et al. 2004; Baeza-Yates and Ribeiro-Neto 1999), we proceeded with our metric since
it was computationally much cheaper to execute. We did some comparison on how
the matching differed when we employed a bit more complicated scheme, but did not
see any observable difference. Both of these are topics further to be explored.

The analysis of the results from LDA topic modeling requires subjective interpre-
tation. For most of the topics, the interpretations were straightforward, few were
difficult to interpret (eg; topics ‘U1°,U2’). There were topics that had relatively
fewer descriptive words among the most probable words assigned to them (eg;
topic ‘TJAVA’). We have included the full list of 50 topics in Table 19 to make our
interpretations about the topics clear.

The value we used for « is smaller than the commonly used value of 50/ K (where,
K = number of topics), and the value we used for 8 is higher than what is chosen
normally. In order to select an appropriate value for these hyperparamters we ran
topic modeling with different values for these hyperparameters. We started with
the standard values used in practice « = 1 (for K = 50), and g = 0.01. We obtained
topic modeling results for next two sets of values for these parameters with (o = 2,
B =0.005), and (@ = 0.5, B = 0.1). Choice of (¢ = 0.5, 8 = 0.1) seemed to result in
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the best combination of words that described most of the topics in the set of 50.
For example, when setting (¢ = 1, 8 = 0.01) we noticed topics (showing 2 of 50)
described by words as follows:

(class, database, public, object, main, ..)

(axis, mysq]l, stringutils, view, jasper, ..)

With @ = 0.5 and 8 = 0.1, we observed the following topics described by different
combinations of some of the words found above:

(sql, jdbc, connection, database, mysq]l, ..)

(class, extends, public, key, implements, ..)

The second set of topics seem to be more meaningful combination of words
describing topics related to “database” and “java keywords”. Compared to the
second set, the first set of topics mixes words among topics resulting in topics that
seem less meaningful. Overall we noticed many such better word associations for
vales (@ = 0.5, B = 0.1). Therefore, we decided to pick the topics generated with
these values for the hyperparameters.

In LDA, smaller values for « yields finer distribution of documents into topics
as it controls the division of documents into topics, and increasing 8 has an effect
of producing coarser topics (Maskeri et al. 2008; Griffiths and Steyvers 2004). Two
possible reasons for better results with our values for these hyperparameters might
be: due to the nature of our corpus (it constitutes short-text documents made up of
queries instead of natural language text), and mining smaller (50) number of topics.

Topic Categories The classification of topics into categories was done manually by
the first author. After observing the top 20 terms for each of the topics and looking at
some random sample of queries from the log that belonged to each topic, it seemed
that all the topics could be classified into one of the six categories. The assignment of
topics into the six categories was later verified by the second author to be a plausible
classification. There is a chance that others could have come up with a different
assignment of topics, if not an entirely different classification. However, both the
authors have significant experience with programming in Java and are familiar with
most of the libraries and programming concepts represented by the topics. Thus, it is
believed that the assignment of topics to categories are quite representative of search
topics in Java (see Table 21 in the Appendix).

Popularity of Topics The popularity ranking of topics indicate that certain frame-
works such as Eclipse and JFreeChart have high download activity. This might
indicate that there are certain frameworks that are popular. But, it could also be true
that Koders is highly used by developers who are working with these frameworks,
thus they have high downloads.

Choice of LDA Tools As mentioned earlier we used the Dragon toolkit (Zhou
et al. 2007) as our tool for topic modeling. There are other tools available on the
Web for LDA analysis; notably, “GibbsLDA++" (Web site for GibsLDA++ 2010),
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“LDA-C” (Web site for LDA-C 2010), “Matlab Topic Modeling Toolbox” (Web site
for Matlab Topic Modeling Toolbox 2010), “LDA-j” (Web site for LDA-J 2010),
an implementation of LDA in the Mahout project (Web site for Apache Mahout
2010) etc. Our choice of using Dragon toolkit was more of a technical convenience.
Dragon toolkit is implemented in Java, that made it easy to modify some parts of
it to generate various probability distributions we used in our analysis. We believe
other tools could have been equally suitable for our purpose since they seem to have
similar functionality.

7.3 Form and Relevance

The numbers in Table 18 suggest that lexical forms could indicate the result type in a
query. Running a Chi-square test fails to show that the lexical forms are independent
of result types and supports this argument. However, some of the counts are too low
in Table 18, that makes the statistical significance of this result questionable.

Relevance Judgements Making judgements about relevance was easier for certain
forms compared to others. For example, in the case of name queries and queries
finding entities we just had to check if the downloaded code contained the names that
were used in the queries. This was quite easy compared to term queries and queries
finding features where we had to analyze the downloaded code more carefully to
see if it really contained an implementation of the desired feature that the query
suggested. The relevance judgement was made by the first author by looking at other
queries and download that followed in the search session. When it was difficult to
make a good judgement based on this information, the session was discarded and
another session was sampled from the log. Although, every effort was made to make
a sound relevancy judgement, it is possible that some subjective bias could have
been introduced. This could effect the results we obtained about effectiveness and
efficiency of the different query forms. In the absence of feedback from the users, it
is impossible to establish what information need they had while writing a particular
query. Therefore to remove any subjective bias that might have been introduced in
our analysis, our results can be cross validated with the results from a controlled
experiment where it would be possible to define a more objective definition of
relevance.

Analysis of Topics in Search-Download Sessions Our goal with analyzing the 150
search-download sessions was to get an overview of the forms of queries that could be
considered effective and efficient. We realize there are many other variables related
to topics, and activities that can be studied in the sessions. For example, change
pattern in topics, and more complicated or accurate measures of effectiveness and
efficiency. We plan to explore these topics in our future work.

8 Related Work

Search and information seeking behavior of software developers has been studied
quite extensively in the past (Sillito et al. 2006; Ko et al. 2006, 2007; Singer et al. 1997,

@ Springer



458 Empir Software Eng (2012) 17:424-466

Murphy et al. 2006; Sim et al. 1998). However, there have been very few studies on
search behavior of developers in Internet-Scale code search engines. The two closest
studies are those by Umarji et al. (2008) and Hoffmann et al. (2007). Umarji et al.
(2008) identified three types of target sizes of results that users seek in Internet-
Scale code search. Our identification of the four query types closely matches their
target size descriptions. Hoffman et al. classify nine types of queries from 339 search
sessions they retrieved from MSN search (a general purpose search engine). Some
of their categories match some of the result types we have identified. For example,
‘Implementation’ resembles ‘Entities’, and ‘APIs’ resembles ‘Features’ (to some
extent). Some of Hoffman et al.’s categories (such as ‘Beginner Tutorials’) do not
match any of our categories. Such categories seem to be beyond the scope of code
search engines. Both of these studies (Umarji et al. 2008; Hoffmann et al. 2007) are
limited to identifying the motivations and intent behind search and differ from our
study in scope and methods employed. In particular, they did not seek understanding
of topics code search engines users look at.

With respect to the results from topic modeling presented in this paper, Umarji
et al.’s result (Umarji et al. 2008) complements ours as they provide some basic
understanding about what developers want to find in code search engines. Our results
in this paper provides a deeper understanding about the topics code search engine
users look at compared to what has been found in Hoffmann et al. (2007). First,
our results come from a larger corpus compared to the one used in Hoffmann et al.
(2007) (1,055,105 search activities vs. 339 query sessions). Second, our results come
from a code search engine as opposed to a general purpose one (Koders vs. MSN).
Four out of nine query categories (APIs, Implementations, Algorithms, Language
Syntax and Semantics) identified in Hoffmann et al. (2007) seem to constitute most
of the topic categories we have discovered. This indicates users limit their queries to
limited kinds while searching in code search engines compared to a general purpose
search engine. This highlights the fact that a code search engine cannot provide all
kinds of information programmers need. There are other sources of information
where users seek answers related to their code; such as, tutorials, troubleshooting
and development tools (Hoffmann et al. 2007). Solutions that could integrate these
kind of information along with the source code might better serve the various search
needs of developers.

A more recent study analyzed the Web search log of the Community Search portal
on Adobe’s Developer Network Web site (Brandt et al. 2009). The authors in Brandt
et al. (2009) analyzed 300 search sessions from the log and computed three properties
about search sessions: query type, query refinement method, and types of Web pages
visited. We have compared some or our results with the results presented in Brandt
et al. (2009) in Section 3. The study in Brandt et al. (2009) also showed that query
type predicts types of page visited. This finding is similar to our result that result
types seem to be related with particular lexical forms. For example, name queries
mostly finding entities, and term queries mostly finding features.

Analyzing general purpose search engine logs is a well established research topic.
Numerous techniques have been employed, resulting in wide range of results, that
had implications from understanding the search behavior of users to getting insights
into improving performance using query expansion by leveraging the information
in query logs (Silverstein et al. 1999; Whittle et al. 2007; Zhu and Gruenwald 2005).
As mentioned earlier in Section 3, some of our results indicate similar usage behavior
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among code and general purpose search engine users. Typical search engine users
searching the Web use very few terms per query, have short sessions, and only look
at the first result page (Silverstein et al. 1999; Jansen and Spink 2006). All these
were found to be similar with users in Koders too. However, we cannot make strong
claims about these two types of search engines being similar in any other aspect. The
similarity we have seen might just be because of the large numbers of users both
these search engines have, and the similarity in the user interface Koders has with
general purpose search engines.

We are not aware of a work where topic modeling has been used in analyzing
general purpose search engine logs. Just as the various applications of mining usage
logs from general search engines might be applicable to code search engine, the
method we employed in this paper of using topic modeling could be applicable in
mining usage log from general purpose search engines too.

9 Conclusion

Software development is a process of both information creation and information
seeking. Developers are constantly seeking information in (and about) the code
they write, and the code they use (that others have written). As vast amount of
source code becomes available in code repositories, the advent of tools that seem
capable of mining information from large number of such repositories holds much
promise in addressing the various information needs of developers. Koders, being
the first Internet-Scale code search engine that became commercially available,
is an ideal candidate that holds such a promise. In our analysis, we have learnt
that such a promise is far from being fulfilled entirely. Koders attracts a large
number of potential users but seems to satisfy only few of them. The interactions
of the users with Koders have accumulated large usage information that holds some
valuable information about the nature of large scale code search. In this paper we
have demonstrated that a detailed analysis of such usage information can provide
important insights that suggest improvements in the current system to make it
more usable. We believe that extensions to our work will elucidate these issues
concerning the Whats and the Hows of Internet-Scale code search. Hopefully, in
near future, an Internet-Scale code search engine such as Koders would fulfill the
promises it holds in addressing the search needs of developers - both effectively and
efficiently.
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Appendix: List of Topics Mined from the Usage Log

Table 19 Full list of 50 topics mined from the query logs

Topic code Description Words
apache Terms from Apache projects org, apache, commons, ant, axis, stringutils,
poi, lang, tools, impl, beanutils, catalina
audio Working with audio and sound  compare, control, encode, audio, decode, uuid,
diff, sound, record, barcode, rectangle
BIRT BIRT project from Eclipse birt, ibm, matrix, page, report, group, scanner,
init, ws, a, width, decimalformat
calSched Calendar and scheduling calendar, password, excel, quartz, sorting,
codehaus, xfire, none, gregoriancalendar
DataStr Data strutures list, object, arraylist, map, vector, hashmap,
array, set, add, iterator, hashtable, collection
DateTime Date and Time tree, date, time, format, btree, binary,
simpledateformat, b, timestamp, avl
db.DAO Data Access Objects, table, name, dao, base, getproperty,
Object Relational Mapping stringtokenizer, column, persistence, ibatis
db.SIMO Database sql, jdbc, connection, database, mysql, oracle,
datasource, update, tag, select, pool
DEF Queries with operators, cdef, mdef, idef, insert, tree, mcall, compute,
examples in Koders account, getuserid, jme, ruby, controller, dir
Docs Various document formats text, pdf, dom, document, print, node, element,
xpath, lowagie, w3c, jdom, itext
Eclipse Eclipse project eclipse, org, ui, swt, internal, core, jface, jdt,
resources, widgets, wizard, osgi, gef
files Working with files file, read, files, create, write, upload, csv,
directory, copy, input, reader, open, save
fqn.j3DSfCon  Mixed FQN fragments from com, net, sun, util, sf, utils, tools, j3d,
sun, sourceforge, bea sourceforge, internal, concurrent, bea, edu
gameMob Mobile games and GUI game, j2me, bluetooth, mobile, sms,
microedition, midlet, chess, canvas, polish
GUI Swing and AWT GUI swing, jtable, applet, awt, window, menu,
event, jtree, snmp, frame, button, dialog
hibernate Hibernate project hibernate, session, address, property, query,
transaction, id, mapping, lookup, expression
http Http and URLs http, download, url, proxy, httpclient, protocol,
line, httpurlconnection, rss, ping
imaging Image processing, image image, color, jpeg, compression, tiff,
file formats processing, jai, bufferedimage, fft, paint
JAVA java.lang.io, using ’java’ java, lang, io, koders, jav, noclassdeffounderror,
in query terms doctor, soapclient
jboss Jboss project org, jboss, ejb, cache, resource, loader, j2ee,
spi, sudoku, jmx, container, weblogic
jfreeC JFreeChart charting library html, jfreechart, chart, jfree, dataset, data,
wicket, telnet, link, renderer, demo, dynamic
Jkw Java Keywords class, extends, public, key, implements, gnu,
crypto, cipher, des, rsa, interface, void
JMS Java Message Service message, jms, listener, tostring, integer,
resourcebundle, mcall, locale, xsd, datatype
Jsflgraph JSF and Jgraph javax, graph, faces, component, model, jsf,

wsdl, event, portlet, jgraph, myfaces, help
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Table 19 (continued)

Topic code Description Words

JspServ JSP and Servlets servlet, jsp, request, path, javax,
httpservletrequest, tomcat, multipart

Junit Junit test, exception, junit, framework, queue, testcase,
font, start, assert, tapestry, antlr

log4j Logging with log4j log, logger, log4j, configuration, logging, config,
common, logfactory, info, debug, util

lucene Lucene, Information lucene, main, hash, javascript, index, field,

Retrieval count, function, displaytag, mozilla, analysis
M.GisThr Mixed topics: Unknown thread, 1dap, geotools, manager, wrapper, cvs,

M.GwtSecAuth ~ Mixed topics: possibly

login/authentication
M.rng Random numbers
and timing
M.util Mixed topics: possibly
utilities
media Multimedia
ML WEKA, Machine Learning
Netbeans Netbeans
Network Networking, FTP
NL.apps Natural language queries
for projects/apps
NL.HUD Natural language,
“How to” type queries
NL.SC Natural language queries
for “source code”
parsing Parsers and compilers
searchEng Searching
secAuth Security and
authentication
sort Sorting, Koders’s
example terms
Spring Spring framework
streams Working with streams
String Working with strings
Struts Struts project
Ul Random words,
unknown topic
U2 Unknown, possibly
FQON fragments
XmIWS XML and web services

monitor, point, draw, polygon, lock, jndi

google, login, user, gwt, example,
authentication, agent, grid, checkbox

random, number, calculator, zip, timer, generator,
port, edu, serial, clock, packet, cs

util, new, properties, pattern, load, enum,
regex, bufferedreader, constants, stringutil

type, error, video, media, player, mp3,
template, serializable, change, classloader

m, math, huffman, weka, attribute, instance,
call, language, linear, fibonacci, x, entry

org, netbeans, editor, api, command,
modules, windows, lib, openide, console

client, server, ftp, socket, iso, 3166,
smtp, chat, tcp, jxta, udp, ftpclient, nio

system, project, application, management,
koders, c, sip, h, projects, library, out, online

and, using, from, data, the, get, how, with,
program, value, find, for, display, check, not

code, source, for, mail, algorithm, network,
email, send, sample, puyo, internet, codes

parser, parse, base64, compiler, parsing,
htmlparser, funambol, xmlparser, utility

search, engine, rmi, browser, method, first,
status, remote, reflect, desktop, invoke

security, jar, service, jasper, ssl, auth, engine,
jasperreports, export, dori, signature

sort, mdS, card, merge, quicksort, shell,
messenger, multi, poker, hello, selection, join

org, web, springframework, spring, context,
factory, support, ajax, view, beans, services

default, inputstream, process, size, content,
runtime, length, buffer, response

string, convert, 1, byte, int, array, replace, 0, split,
converter, 2, character, stringbuffer

struts, filter, action, form, validator, validation,
validate, opensymphony, bean

import, word, bouncycastle, header, ioexception,
provider, velocity, utils, location

package, com, gui, plugin, task, all, v2,
xstream, basic, mchange, impl, c3p0

xml, shopping, cart, javax, soap, rpc, sax, bind,
transform, webservice, schema, stream
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Table 20 Sample topics related to networking obtained when number of topics fixed at 500

Network topics
Sockets

Multithreaded client/server

UDP
Telnet

tep/ip

snmp
smpp, wireles

packet sniffing
messaging, lan

jabber, dhcp
http, apache
http

ftp

file transfer, sharing
addresses, mac, ip

Routing protocols

socket, serversocket, programming, accept, sockets, socketserver,
socketimpl, closed, socketpool

server, smtp, client, webserver, multithreaded, smtpclient,
multithread, smtpconnection, smtpserver

org, jivesoftware, smack, packet, xmppconnection, spark, openfile,
jive, wildfire

udp, char, multicast, broadcast, disable, printf, const, sin, datagram

telnet, settings, terminal, ioutil, telnetclient, preference, step, ansi,
socketclient

socket, tcp, ip, external, protocol, tepclient, keepalive, tepserver,
alive

snmp, opennms, snmp4j, mib, trap, agent, pdu, oid, jmx

segmentation, smpp, azureus, latitude, adaptive, wireless, tile,
longitude, connected

lookup, packet, dns, jpcap, sniffer, env, router, arp, ctx

messenger, initialize, lan, messaging, db4o, instant, intranet,
webmail, self

id, chain, jabber, sequencegenerator, dhcp, isnumber, maze,
identifiergenerator, tablegenerator

httpclient, commons, apache, methods, jakarta, getmethod,
postmethod, httpconnection, executemethod

http, post, httpconnection, httpurlconnection, www, request,
protocol, httpserver, httpresponse

client, ftp, ftpclient, ftpserver, serveur, enterprisedt, transfert,
ftpexception, ftpconnection

file, transfer, sharing, semap, textfile, handling,
filetransfer, lister, fileobject

address, mac, book, ipaddress, fingerprint, addressbook,
automatic, machine, networkinterface

protocol, routing, dwr, simulator, aglets, aglet, networks, route, uk

Table 21 Topic assignment to categories

Category

Topics under category

Applications

Programming tasks

Form centric

calSched, gameMob, media, searchEng

audio, DataStr, DateTime, db.DAO, Docs, files, http, M.rng,
Network, parsing, secAuth, sort, streams, String, XmIWS

DEF, fqn.j3DSfCon, Jkw, NL.apps, NL.HUD, NL.SC

Java/JDK libraries db.SIMO, GUI, imaging, JAVA, JMS

Frameworks apache, BIRT, Eclipse, hibernate, jboss, jfreeC, JsfJgraph, JspServ,
junit, log4j, lucene, ML, Netbeans, Spring, Struts

Unknown M.GisThr, M.GwtSecAuth, M.util, U1, U2
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