
Using information retrieval based coupling measures
for impact analysis

Denys Poshyvanyk & Andrian Marcus & Rudolf Ferenc &

Tibor Gyimóthy

Published online: 20 September 2008
Springer Science + Business Media, LLC 2008
Guest Editors: Tim Menzies and Letha Etzkorn

Abstract Coupling is an important property of software systems, which directly impacts
program comprehension. In addition, the strength of coupling measured between modules
in software is often used as a predictor of external software quality attributes such as
changeability, ripple effects of changes and fault-proneness. This paper presents a new set
of coupling measures for Object-Oriented (OO) software systems measuring conceptual
coupling of classes. Conceptual coupling is based on measuring the degree to which the
identifiers and comments from different classes relate to each other. This type of
relationship, called conceptual coupling, is measured through the use of Information
Retrieval (IR) techniques. The proposed measures are different from existing coupling
measures and they capture new dimensions of coupling, which are not captured by the
existing coupling measures. The paper investigates the use of the conceptual coupling
measures during change impact analysis. The paper reports the findings of a case study in
the source code of the Mozilla web browser, where the conceptual coupling metrics were
compared to nine existing structural coupling metrics and proved to be better predictors for
classes impacted by changes.

Empir Software Eng (2009) 14:5–32
DOI 10.1007/s10664-008-9088-2

Denys Poshyvanyk performed this work while at Wayne State University.

D. Poshyvanyk
Computer Science Department, The College of William and Mary, Williamsburg, VA 23185, USA
e-mail: dposhyvanyk@wm.edu

A. Marcus (*)
Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
e-mail: amarcus@wayne.edu

R. Ferenc : T. Gyimóthy
Department of Software Engineering, University of Szeged, Szeged, Hungary

R. Ferenc
e-mail: ferenc@inf.u-szeged.hu

T. Gyimóthy
e-mail: gyimi@inf.u-szeged.hu

Keywords Impact analysis . Latent semantic indexing . Information retrieval .

Change prediction . Coupling measurement

1 Introduction

During program comprehension, developers need to understand how software modules
relate to each other. It is especially important when changes are being made to the software
and developers need to assess the impact of their changes. One way to understand such
relationships is to measure the coupling between parts of the software. Coupling is one of
the fundamental properties of software with a strong influence on comprehension and
maintenance of large software systems. Proposed coupling measures are used in software
engineering tasks, such as change impact analysis (Briand et al. 1999a; Wilkie and
Kitchenham 2000), assessing the fault-proneness of classes (El-Emam and Melo 1999; Yu
et al. 2002; Gyimóthy et al. 2005; Olague et al. 2007), software re-modularization (Abreu et
al. 2000; Yang et al. 2005), identifying software components (Lee et al. 2001) and design
patterns (Antoniol et al. 1998), assessing software quality (Briand et al. 2000), etc.

Depending on the programming paradigm used, the choice of programming language for
the implementation, and the design of a software system, coupling is influenced by several
factors—such as control and data flow—and hence it may be measured differently.
Researchers proposed a variety of coupling measures, but recent studies (Briand et al. 2000)
suggest that some of these metrics tend to compute the same form of coupling, though
through different measuring mechanisms.

In this work we define a set of coupling measures, which capture new dimensions of
coupling, based on the textual information shared between modules of the source code.
While elements of the source code written in a programming language help identify control
or data flow between software modules, the comments and identifiers express the intent of
the software. Two parts of the software with similar intent will most likely refer to the same
(or related) concepts in the problem or solution domains of the system. Hence, they are
conceptually related. This has been also confirmed by the earlier work of other researchers
who examined overlap of semantic information in comments and identifiers among
different software modules (Etzkorn and Delugach 2000; Stein et al. 2004). This
relationship is the foundation for the new coupling measures, named conceptual coupling.
The measures are computed using IR techniques that help extract and analyze the textual
information embedded in software (i.e., in the comments and identifiers). While any of
several IR techniques could be used, in this work, we use Latent Semantic Indexing (LSI)
(Deerwester et al. 1990). The set of conceptual coupling metrics can be defined and used
for any type of programming paradigm, but we define and use them here in the context of
OO software systems.

Existing coupling measures have been previously used to support the impact analysis
process, where the task is to identify all classes that would change when a given class is
being changed. Existing models (Briand et al. 1999a) do not capture all the ripple effects of
changes in existing software. Given that the conceptual coupling metrics reflect different
relationships than structural coupling metrics, we assume that they also propagate changes
in software. The paper focuses on the use of the conceptual coupling metrics to predict
classes that will change during impact analysis. We conducted a case study on a large open-
source software system (i.e., Mozilla1) to see how the conceptual coupling metrics compare

1 Mozilla is a web browser and is available at http://www.mozilla.org/ (verified 27/06/08)

6 Empir Software Eng (2009) 14:5–32

http://www.mozilla.org/

with nine existing structural coupling metrics, when used during impact analysis. The case
study indicates that one of our conceptual coupling metrics provides best results for
predicting classes that need to be changed.

2 Related Work

We are discussing here the major approaches to coupling measurement, in order to contrast
between existing approaches and our proposed metrics. The conceptual coupling metrics
are based on the use of IR methods and constitute a novel application, compared to
previous uses of IR in program comprehension, which we also present here. Coupling
measures have been used to support impact analysis and we present those approaches here
as well.

2.1 Coupling Measurement

Coupling measurement is a rich and interesting body of research work, resulting in many
different measuring approaches for structural coupling metrics (Chidamber and Kemerer
1991; Chidamber and Kemerer 1994; Lee et al. 1995; Briand et al. 1997), dynamic coupling
measures (Arisholm et al. 2004; Hassoun et al. 2004), evolutionary and logical coupling (Gall
2003), coupling measures based on information entropy (Allen et al. 2001), coupling metrics
for specific types of software applications such as procedural systems (Offutt et al. 1993),
knowledge-based systems (Kramer and Kaindl 2004), ontology-based systems (Orme et al.
2006) and systems developed using an aspect-oriented approach (Zhao 2004).

The structural coupling metrics have received significant attention in the literature.
These metrics are comprehensively described and classified within the unified framework
for coupling measurement (Briand et al. 1999b). The best known among these metrics are
CBO (coupling between objects) and CBO' (Chidamber and Kemerer 1991; 1994), RFC
(response for class) (Chidamber and Kemerer 1991) and RFC∞ (Chidamber and Kemerer
1994), MPC (message passing coupling) (Li and Henry 1993), DAC (data abstraction
coupling) and DAC1 (Li and Henry 1993), ICP (information-flow-based coupling) (Lee et
al. 1995), the suite of coupling measures by Briand et al. (Briand et al. 1997) (IFCAIC,
ACAIC, OCAIC, FCAEC, etc). Other structural metrics such as Ce (efferent coupling), Ca

(afferent coupling) and COF (coupling factor) are also overviewed by Briand et al. (Briand
et al. 1999b).

Many of the coupling measures listed above are based on method invocations and
attribute references. For example, the RFC, MPC, and ICP measures are based on method
invocations only. CBO and COF measures count method invocations and references to both
methods and attributes. The suite of measures defined by Briand et al. (Briand et al. 1997)
captures several types of interactions between classes such as class–attribute, class–method,
and method–method interactions. The measures from the suite also differentiate between
import and export coupling as well as other types of relationships including friends,
ancestors, descendants etc.

Dynamic coupling measures (Arisholm et al. 2004; Hassoun et al. 2004) were
introduced as the refinement to existing coupling measures due to some gaps in addressing
polymorphism, dynamic binding, and the presence of unused code by static structural
coupling measures.

Another important family of coupling measures derives from the evolution of software
system in contrast to structural coupling which is determined by program analysis of a

Empir Software Eng (2009) 14:5–32 7

single version of software or dynamic coupling which is obtained by executing the
program. These are called evolutionary couplings among parts of the systems which are
determined by the past common changes or co-changes (Gall 2003).

Another form of coupling, namely interaction coupling, captures relations among
software artifacts which are relevant to a particular software engineering task (Zou et al.
2007). Interaction coupling uses information gleaned using an Integrated Development
Environment on when artifacts are being used or modified in the same development task.

Recently, several specialized coupling metrics were proposed for different types of
software systems. They are coupling metrics for knowledge-based systems (Kramer and
Kaindl 2004) as well as coupling metrics for aspect-oriented programs (Zhao 2004).

Existing work on clustering software (Maletic and Marcus 2001; Kuhn et al. 2007),
retrieving similar components in software libraries (Michail and Notkin 1999) and
measuring semantic overlap of information in comments and identifiers among software
modules (Etzkorn and Delugach 2000) uses the concept of semantic similarity between
elements of the source code (Marcus et al. 2008), which stands at the foundation of the
conceptual coupling, as defined in this paper.

2.2 The Use of IR Methods in Program Comprehension

IR methods were proposed and used successfully to address tasks of extracting and analyzing
textual information existing in software artifacts. Early models were used to construct
software libraries (Maarek et al. 1991; Fischer 1998) and support reuse tasks (Helm and
Maarek 1991; Etzkorn and Davis 1997; Michail and Notkin 1999; Pan et al. 2004; Ye and
Fischer 2005), while more recent work focused on specific software maintenance and
development tasks such as recovery of traceability links. Several approaches have been
proposed to recover traceability links between source code and external documentation using
probabilistic IR, vector space models (Antoniol et al. 2002) and LSI (Marcus et al. 2005a).
Other work proposed a set of approaches to recover traceability links among requirements
(Clelang-Huang et al. 2005; Lo et al. 2006), requirements and source code (Hayes et al.
2006), requirements and test cases (Lormans and Van Deursen 2006), etc. A set of tools that
integrates facilities to manage traceability links among different types of software artifacts
was developed and evaluated recently (De Lucia et al. 2007).

IR methods have been also successfully used for concept and feature location (Marcus et
al. 2004; Zhao et al. 2006; Poshyvanyk et al. 2007; Poshyvanyk and Marcus 2007; Eaddy
et al. 2008) in the source code. Other approaches use IR methods to classify software
systems based on their source code in open-source repositories (Kawaguchi et al. 2006) as
well as cluster source code to obtain high-level views of software systems (Maletic and
Marcus 2001; Kuhn et al. 2007).

IR techniques were also used to identify the starting impact set of a maintenance request
(Antoniol et al. 2000), and to link change request descriptions to the set of historical file
revisions impacted by similar past change requests (Canfora and Cerulo 2005). An
approach to automatically classify the type of maintenance activity based on a textual
description of changes was also proposed in (Mockus and Votta 2000). IR approaches have
been used in the context of software measurement to assess the quality of identifiers and
comments (Lawrie et al. 2006), measure complexity of the underlying software (Etzkorn et
al. 2002), compute conceptual cohesion (Patel et al. 1992; Marcus and Poshyvanyk 2005)
and coupling (Poshyvanyk and Marcus 2006) of classes.

In addition, IR techniques have been applied to several other tasks, such as identification
of duplicate bug reports (Runeson et al. 2007; Wang et al. 2008), classification of software

8 Empir Software Eng (2009) 14:5–32

maintenance requests (Di Lucca et al. 2002), recommendation rendering for novice
programmers (Cubranic et al. 2005) and identification contributions of developers (Linstead
et al. 2007).

2.3 Impact Analysis Approaches

During software change, programmers need to modify the source code of existing software
systems. The first step during software change is to identify a part of the source code that
needs to be changed. Once the starting point of the change is identified, developers need to
identify the other components that need to be changed. Bohner et al. (Bohner 1996)
recognized impact analysis as an activity that estimates all components to be changed. One
of the techniques of impact analysis was proposed in the work of Queille et al. (Queille et
al. 1994), where an interactive process was suggested, in which the programmer, guided by
dependencies among program components (i.e., classes, functions), inspects components
one-by-one and identifies the ones that are going to change—this process involves both
searching and browsing activities. This interactive process was supported via a formal
model, based on graph rewriting rules (Chen and Rajlich 2000).

More recent work appears in (Bohner and Gracanin 2003; Robillard 2005; Hill et al.
2007), where proposed tools can help navigate and prioritize system dependencies during
various software maintenance tasks. The work in (Hill et al. 2007) relates to our approach in
as much as it also uses lexical (textual) clues from the source code to identify related
methods. Several recent papers presented algorithms that estimate the impact of a change
on tests (Rountev et al. 2001; Kosara et al. 2003). A comparison of different impact
analysis algorithms was provided in (Orso et al. 2004).

Coupling measures have been used to support impact analysis in OO systems (Briand et
al. 1999a; Wilkie and Kitchenham 2000). Wilkie and Kitchenham (Wilkie and Kitchenham
2000) investigated if classes with high CBO coupling metric values are more likely to be
affected by change ripple effects. Although CBO was found to be an indicator of change-
proneness in general, it was not sufficient to account for all possible changes. The work of
Briand et al. (Briand et al. 1999a) investigated the use of coupling measures and derived
decision models for identifying classes likely to be changed during impact analysis. The
results of empirical investigation of the structural coupling measures and their combinations
showed that the coupling measures can be used to focus underlying dependency analysis
and reduce impact analysis effort. On the other hand, the study revealed a substantial
number of ripple effects, which are not accounted by the highly coupled (structurally)
classes. This work motivated our quest for novel coupling measures, which use alternative
sources of information (i.e., text in identifiers and comments) to capture dependencies that
are not captured by the existing structural coupling measures.

3 Using IR Methods for Coupling Measurement

Our approach to coupling measurement is based on the hypothesis that modules (or classes)
in (OO) software systems are related in more than one way. The evident and most explored
set of relationships is based on data and control dependencies. In addition to such
relationships classes are also related conceptually, as they may contribute together to the
implementation of a domain concept. In this work, we propose a mechanism, based on IR
techniques, to capture and measure this form of coupling, named as conceptual coupling.
Our choice of IR technique in this type of application is LSI.

Empir Software Eng (2009) 14:5–32 9

Developers use comments and identifiers to represent elements of the problem or solution
domain of the software. In our previous work (Maletic and Marcus 2001; Marcus et al. 2004;
Poshyvanyk and Marcus 2006; Poshyvanyk et al. 2007; Poshyvanyk and Marcus 2007;
Marcus et al. 2008) we investigated approaches to extract, encode, and analyze the semantic
information embedded in the comments and identifiers of the software. We use the same type
of information in the definition of the conceptual coupling metrics.

In order to compute the conceptual coupling of classes, the source code of the software
system is converted into a text corpus, where each document contains elements of the
implementations of a method. Comments and identifiers are extracted from the source code,
as well as structural information. The user has an option to choose the desired granularity
(e.g., class or method level) for documents (see more details in Section 0). LSI uses this
corpus to create a term-by-document matrix, which captures the distribution of words in
methods. The main idea behind LSI is that the information about word contexts in which a
particular word appears or does not appear provides a set of mutual constraints that
determines the statistical similarity of meaning of sets of words to each other. LSI relies on
a Singular Value Decomposition (SVD) (Salton and McGill 1983) of a term-by-document
matrix derived from a corpus that pertains to knowledge in the particular domain of interest.
SVD is applied to the term-by-document matrix to construct a subspace, called an LSI
subspace. Each document from the corpus (i.e., method from the source code) is
represented as a vector in this LSI subspace. Once the documents are represented in the
LSI subspace, conceptual coupling measures can be computed between methods and
classes. We use the cosine between the vectors corresponding to the methods as a measure
of the conceptual coupling between the two methods.

The definition of and the methodology for measuring the conceptual coupling would not
change radically if another IR method is to be used. The only significant change would be
in the definition of the conceptual coupling between methods (see definition 3 in the next
section).

3.1 System Representation and Coupling Measures

In order to define and compute the conceptual coupling measures, we introduce a graph
based representation of a software system, similar to those used to compute other coupling
measures.

Definition 1 (System, Classes) We consider an OO system as a set of classes C={c1, c2…cn}.
The number of classes in the system C is n=|C|.

Definition 2 (Methods of a Class) A class has a set of methods. For each class c ∈ C,M(c)=
{m1, …, mz} represents its set of methods, where z=|M(c)| is the number of methods in a
class c. The set of all methods in the system is defined as M(C).

Definition 3 (Conceptual Coupling Between Methods—CCM) The conceptual coupling
between two methods mk ∈ M(C) and mj ∈ M(C), CCM(mk, mj), is computed as the cosine
between the vectors vmk and vmj, corresponding to mk and mj in the semantic space
constructed by LSI.

CCM mk; mj

� � ¼ vmT
k vmj

vmkj j2� vmj

�� ��
2

10 Empir Software Eng (2009) 14:5–32

As defined, the value of CCM(mk, mj) ∈ [−1, 1], as CCM is a cosine in the LSI space. In
order to comply with non-negativity property of coupling metrics (Briand et al. 1999b), we
refine CCM as:

CCM1 mk ; mj

� � ¼ CCM mk ;mj

� �
if CCM mk ;mj

� � � 0

else 0

(

Definition 4 (Conceptual Coupling Between a Method and a Class—CCMC) Let ck ∈
C and cj ∈ C be two distinct (ck ≠ cj) classes in the system. Each class has a set of methods
M(ck)={mk1, …, mkr}, where r=|M(ck)| and M(cj)={mj1 , …, mjt}, where t=|M(cj)|.
Between every pair of methods (mk, mj) there is a conceptual coupling measure—CCM(mk,
mj). We define the conceptual coupling between a method mk and a class cj as follows:

CCMC mk ; cj
� � ¼

Pt
q¼1

CCM1 mk ;mjq

� �
t

;

which is the average of the conceptual couplings between method mk and all the methods
from class cj.

Definition 5 (Conceptual Coupling Between two Classes—CCBC) We define the
conceptual coupling between two classes ck ∈ C and cj ∈ C as:

CCBC ck ; cj
� � ¼

Pr
l¼1

CCMC mkl; cj
� �

r
;

which is the average of the couplings between all unordered pairs of methods from class ck
and class cj. The definition ensures that the conceptual coupling between two classes is
symmetrical, as CCBC(ck, cj)=CCBC(cj, ck).

3.2 The Conceptual Coupling of a Class

With this system representation, we define a measure that approximates the coupling of a
class in an OO software system by measuring the degree to which the methods of the class
are conceptually related to the methods of the other classes.

Definition 6 (Conceptual Coupling of a Class—CoCC) For a class c ∈ C, conceptual
coupling is defined as:

CoCC cð Þ ¼
Pn
i¼1

CCBC c; dið Þ
n� 1

;

where n=|C|, di ∈ C, and c≠di.

Based on the above definitions, CoCC(c) ∈ [0, ..1] ∀ c ∈ C. If a class c ∈ C is strongly
coupled to the rest of the classes in the system, then CoCC(c) should be closer to one
meaning that the methods in the class are strongly related conceptually with the methods of
the other classes. In this case, the class most likely implements concepts that overlap with

Empir Software Eng (2009) 14:5–32 11

concepts implemented in other classes (which are related in the context of the software
system).

If the methods of the class have low conceptual coupling values with methods of other
classes, then the class implements one or more concepts with limited interaction with the
rest of the system. The value of CoCC(c) in this case will be close to zero.

In this form, CoCC does not make distinction between method types. If needed, CoCC
can be altered to account for overloaded, friend, and other method stereotypes, as discussed
in (Briand et al. 1997).

3.2.1 An Example of Measuring the Conceptual Coupling of a Class

In order to illustrate how the CoCC metric is computed, let us consider three classes from
the source code of TortoiseCVS software system (see Fig. 1) with similarities between the
methods outlined in Table 1. To simplify the example, we computed similarities only
between a few methods in every class, however, in a real setting similarities will be
computed for all pairs of methods among classes. We will refer to the class
CVSServerFeatures as c1 and to its methods as m1 and m2; to the class ConflictListDialog
as c2 and its methods as m3, m4, and m5; to the class CommitDialog as c3 and its methods
as m6, m7, and m8.

In order to compute CoCC for class c1, we need to compute conceptual similarities
between classes (c1, c2) and (c1, c3), since CoCC (c1)=(CCBC(c1, c2)+CCBC(c1, c3))/2.

In order to compute the conceptual similarities between c1 and c2, we use the following
formula: CCBC(c1, c2)=(CCMC (m1, c2)+CCMC (m2, c2))/2. In this case, CCMC(m1, c2)
is an average of conceptual similarities between a method m1 and all other methods in class
c2. Thus, CCMC(m1, c2)=(CCM

1(m1, m3)+CCM
1(m1, m4)+CCM

1(m1, m5))/3=(0.7+
0.27+0.13) / 3=0.366. Similarly, CCMC (m2, c2)=(0.68+0.34+0.25)/3=0.423. Therefore,
CCBC(c1, c2)=(0.366+0.423)/2=0.3945.

Similarly, we compute conceptual couplings between classes c1 and c3, CCBC(c1, c3)=
0.4515.

Now we are able to compute CoCC(c1), since CoCC(c1)=(CCBC(c1, c2)+CCBC(c1,
c3))/2=(0.3945+0.4515)/2=0.423. Similarly, CoCC(c2)=0.357 and CoCC(c3)=0.385.

class CVSServerFeatures
{
public:
…
 CVSServerFeatures() {…};
 inline void SetCVSRoot(const std::string& cvsRoot){…};
…};

class ConflictListDialog : ResizeDialog
{
public:

class CommitDialog : ResizeDialog
{
public:
 …
CommitDialog(wxWindow* parent,

 const std::vector<std::string>& modified,
 const std::vector<std::string>& added,
 const std::vector<std::string>& removed,
 const std::string& defaultComment) { …};

 // Add files to ExtListCtrl

 …

ConflictListDialog(wxWindow* parent,

 const std::vector<std::string>& modified){…};
 void OnMenuMerge(wxCommandEvent& event){…};

 void OnMenuDiff(wxCommandEvent& e){…};

 …
};

void AddFiles(const std::vector<std::string>& filenames,

 const std::vector<ItemData*>& itemData) {…};

static int wxCALLBACK CompareFunc(long item1,

 long item2,

 long sortData){ …}
 …};

Fig. 1 Source code of the CVSServerFeatures, CommitDialog, and ConflictDialog classes from the
TortoiseCVS system

12 Empir Software Eng (2009) 14:5–32

3.3 The Maximum Conceptual Coupling of a Class

If a class c ∈ C has a high CoCC value, one can easily infer that it is strongly related to
most other classes in the system. The opposite conclusion can be inferred if CoCC value is
low. Little can be said if CoCC value is neither high nor low. It is a general drawback of
average based metrics. In these cases we can still have classes strongly related to c, which
are important from program comprehension point of view. These strong relationships can
also propagate changes between classes.

An analogous logic can be applied to the coupling between two classes (e.g., if two methods
from different classes are conceptually similar, they might need to be changed in concert).

With that in mind, we refine CoCC to capture only the strongest couplings among
methods. The goal here is to make sure that our measuring mechanism does not miss
classes that are highly coupled even to a part of the system, as developers need to be aware
of such classes. Thus, we define:

CCMCm mk ; cj
� � ¼ max CCM1 mk; mjt

� �
;8 t ¼ 1:: M cj

� ��� ��� �
The maximum conceptual coupling between method mkj is denoted by the highest

conceptual coupling among all possible pairs of methods between method mk and all the
methods in class cj.

The maximum conceptual coupling between two classes based on CCMCm is defined as
the following:

CCBCm ck; cj
� � ¼

Pr
l¼1

CCMCm mkl; cj
� �

r

The maximum conceptual coupling metric CoCCm for a class c, is defined:

CoCCm cð Þ ¼
Pn
i¼1

CCBCm c; dið Þ
n� 1

;

where n=|C|, di ∈ C ,c≠di.

Table 1 Conceptual couplings between the methods of the classes CVSServerFeatures (m1, m2),
ConflictListDialog (m3, m4, m5), and CommitDialog (m6, m7, m8). Conceptual couplings between methods
of the same class

m1 m2 m3 m4 m5 m6 m7 m8

m1 1 0.6 0.7 0.27 0.13 0.3 0.41 0.65
m2 0.6 1 0.68 0.34 0.25 0.41 0.39 0.55
m3 0.7 0.68 1 0.45 0.39 0.56 0.66 0.21
m4 0.27 0.34 0.45 1 0.34 0.47 0.23 0.18
m5 0.13 0.25 0.39 0.34 1 0.05 0.03 0.5
m6 0.3 0.41 0.56 0.47 0.05 1 0.23 0.43
m7 0.41 0.39 0.66 0.23 0.03 0.23 1 0.54
m8 0.65 0.55 0.21 0.18 0.5 0.43 0.54 1

Empir Software Eng (2009) 14:5–32 13

Referring back to the example in the previous subsection, with these new definitions,
CoCCm(c1)=(CCBCm(c1, c2)+CCBCm(c1, c3))/2=0.645. Similarly, CoCCm(c2)=0.486
and CoCCm(c3)=0.515.

Class c1 in our example is the one which has highest values of CoCC and CoCCm

metrics, whereas class c2 has the lowest conceptual coupling.

4 Comparing Structural and Conceptual Coupling Measures

As CoCC and CoCCm are new coupling measures, we evaluated them accordingly. In our
previous work (Poshyvanyk and Marcus 2006) we analyzed theoretical properties of the
proposed measures, such as, non-negativity, null value, monotonicity, merging of classes,
and merging of unconnected classes. Additionally, we compared the conceptual coupling
with existing structural coupling measures on ten different open source software systems.
The key findings of those studies are presented in the following sub-sections.

4.1 Principal Component Analysis of Metrics Data

We compared the following set of coupling measures: nine structural (CBO, RFC, MPC,
DAC, ICP, ACAIC, OCAIC, ACMIC, and OCMIC) and two conceptual coupling measures
(CoCC and CoCCm). In order to identify the causal, orthogonal dimensions captured by the
coupling measures we performed Principal Component Analysis (PCA) (Jolliffe 1986) on
the metrics measured on the set of 979 classes in ten open-source software systems. All
studied measures were subjected to an orthogonal rotation. The results of the PCA revealed
that the CoCC and CoCCm measures defined two new dimensions on their own (they were
two separate significant factors in identified principal components). These results clearly
indicated that conceptual coupling measures capture different types of coupling between
classes, than those captured by the structural metrics. This unique result derives from the
fact that CoCC and CoCCm are coupling measures that are based on completely different
ideas and measurements than the existing coupling measures; CoCC and CoCCm are based
on the semantic information obtained from the source code encoded in identifiers and
comments, whereas the existing metrics use the structure of the software as the basis for
measurement. In addition, we compared the results of the PCA with those reported
elsewhere in the literature (Briand et al. 1998; 2000). Although the PCs and loadings
obtained in our case and those reported in the literature do not completely overlap, they
were relatively similar (Poshyvanyk and Marcus 2006).

4.2 Differences Between Conceptual and Structural Coupling Measures

To obtain more insights into how the conceptual coupling metrics differ from the
structural ones, we chose several classes from different software systems for detailed
analysis. As the cases where the two sets of metrics agree are of little interest, we were
interested in those cases with different values of conceptual and structural metrics, e.g.,
high conceptual metric values and low structural metrics values, and vice versa. We
considered both the CoCC and CoCCm measures that capture the coupling of the classes to
the rest of the system. In this subsection, we present some of the noted differences between
the conceptual coupling measures (CoCC and CoCCm) and the CBO and RFC structural
coupling measures.

14 Empir Software Eng (2009) 14:5–32

The classes chosen for detailed analysis are from the WinMerge2 and TortoiseCVS3

systems (Table 2). We selected these classes based on high values of CoCC and CoCCm

and low values of CBO and RFC metrics.
The IVSSItems, IVSSUsers, and IVSSCheckouts classes from WinMerge show high

conceptual and low structural coupling to the rest of the system. Closer inspection of these
classes revealed that these classes are part of a larger cluster of related classes, which
contribute to the implementation of a feature related to accessing functions of other
ActiveX objects; they all implement the COleDispatchDriver interface. All the classes in
the cluster have several common characteristics—they are all wrappers; the majority of the
methods in these classes call the InvokeHelper() function to execute specific functionality
in the ActiveX object; the majority of pairs of classes from the cluster have high conceptual
similarities. The “IVSS” cluster consists of eleven classes wrapping similar functionalities.
This explains the high values for CoCC and CoCCm since these classes are conceptually
related to the other classes from the cluster, as well as other classes in the system. Their
construction as wrappers and their main usage explains the low structural cohesion.

The classes ConflictParser and ConflictListDialog from the TortoiseCVS system
implement important domain concepts—identifying conflicts in the working version of
the file and current file revision as well as dialog to list the conflicts in the file. These
concepts are important in the system, which extends the file system’s interface to support
collaborative software development with CVS. The high values of CoCC and CoCCm

metrics for these classes from TortoiseCVS can be explained by the fact that these classes
use domain concept terms like “parse” and “conflict”, which are spread across many
methods of this system. These terms have high global frequencies, meaning that they
frequently occur as parts of identifiers or comments across different methods in the system
compared to the other 1,915 unique terms indexed in this system. The terms “conflict” and
“parse” occur more than a thousand times in 679 methods of TortoiseCVS system.

The classes analyzed in this section implement domain concepts, which relate to the rest
of the system, yet they are loosely coupled to the rest of the system. It is important to
identify these classes from a maintenance point of view. The loose structural coupling may
indicate a low architectural importance, but the high conceptual coupling indicates that
these classes are most likely contributing to the implementation of the main domain
concepts. The classes which relate conceptually to the majority of classes in the system may

2 WinMerge is a visual text file differencing and merging tool for Windows and can be found at http://
sourceforge.net/projects/winmerge (verified at 27/06/08)
3 TortoiseCVS is a concurrent versions system (CVS) tool for Windows and can be found at http://
sourceforge.net/projects/tortoisecvs(verified at 27/06/08)

Table 2 Classes with highest conceptual coupling in WinMerge and TortoiseCVS according to CoCC and
CoCCm

System Class CoCC CoCCm CBO RFC

WinMerge IVSSItems 0.215 0.326 0 5
WinMerge IVSSUsers 0.215 0.326 0 5
WinMerge IVSSCheckouts 0.215 0.326 0 5
TortoiseCVS ConflictListDialog 0.106 0.176 1 5
TortoiseCVS ConflictParser 0.07 0.135 0 1

Empir Software Eng (2009) 14:5–32 15

http://sourceforge.net/projects/winmerge
http://sourceforge.net/projects/winmerge
http://sourceforge.net/projects/tortoisecvs
http://sourceforge.net/projects/tortoisecvs

exhibit a form of dependency, called hidden dependency (Yu and Vaclav 2001), which is
not always expressed by structural coupling measures. Modifications in these classes may
trigger special types of ripple effects, which are currently not captured by existing coupling
measures (Briand et al. 1999a).

4.3 Conceptual Coupling Between Pairs of Classes

From the impact analysis point of view, even more important are pairs of classes that relate
conceptually, yet not structurally. To better understand the pair-wise conceptual coupling
measures and how they can be used to rank classes during impact analysis, we also
analyzed the CCBC and CCBCm measures, computed for pairs of classes in WinMerge and
TortoiseCVS software systems. For illustration purposes, we selected several pairs of
classes with highest CCBC and CCBCm values (see Table 3).

It came as no surprise that pairs of classes, mentioned in Section 4.2 as part of the
“IVSS” cluster, were among those with highest CCBC values. These classes implement
different, but related tasks, which are all based on implementation of client side of Object
Linking and Embedding (OLE) automation. Detailed inspection of the source code for these
classes has shown that they are not directly connected structurally, meaning that they do not
use each other’s services. On the other hand after inspecting the history of co-changes for
these files (using CVS data for WinMerge project) we noticed that these classes are not only
strongly conceptually coupled together, but they also have a history of common changes
(i.e., they were changed and submitted to the repository at the same time).

Another pair of classes MergeDlg and UpdateDlg from TortoiseCVS system has high
conceptual coupling values for CCBC and CCBCm metrics. This is once again not
surprising, since both classes implement similar concepts—front end dialogs for merging
and updating file revisions. Both classes share similar terms which come from names of
classes used to create elements of user interface: “button”, “static text”, “check box”, etc.,
as well as terms more specific to the concepts which are implemented in these classes:
“fetch”, “revision”, “tag”, “branch”, etc. Again these classes do not have direct structural
dependencies between them. This is a case of unconnected classes, which implement
similar functionality (Marcus and Maletic 2001).

5 Using Coupling Measures for Impact Analysis

The coupling measures can help order (rank) classes in software systems, based on different
types of dependencies among classes, captured by the coupling measures (Briand et al.
1999a). Such coupling measures and derived ranks of classes can be computed
automatically. The next section describes probabilistic decision models based on coupling
measurement to support impact analysis.

Table 3 Pairs of classes from WinMerge and TortoiseCVS with highest CCBC values

System Class Class CCBC CCBCm

WinMerge IVSSVersion IVSSCheckout 0.776 0.964
WinMerge IVSSItems IVSSUsers 0.770 0.974
WinMerge IVSSDatabase IVSSCheckout 0.585 0.954
TortoiseCVS MergeDlg UpdateDlg 0.375 0.891

16 Empir Software Eng (2009) 14:5–32

5.1 Ranking Classes Using Coupling Measures

For a given class c ∈ C (which may be the starting point of a change, identified by the
programmer based on his experience, or automatically with some feature location
technique), the other classes in a software system are ranked according to their strength
of coupling to the class c, based on a coupling measure or a combination of such measures
(Briand et al. 1999a). The list of ranked classes is provided to the developer for further
inspection. Since software systems may be large, sometimes containing thousands of
classes, focusing impact analysis on strongly coupled classes may significantly reduce the
burden on the developer.

In Section 2.1 we summarized the best known structural coupling measures. In the
literature, these coupling measures are defined and used at the system level (classic
definitions of coupling measures), meaning that they count, for a given class c, all
dependencies (connections) from c to all other classes in the system. In order to use the
coupling measures for impact analysis, they need to be modified to account for coupling
between pairs of classes only. Table 4 shows how we redefined some of the structural
coupling measures. More details on how other structural coupling measures are redefined
on a class pair-wise basis are provided by Briand et al. (Briand et al. 1999a). Section 3.1
provides details on how we defined conceptual coupling measures on pair-wise basis.

5.2 An Example of Using Coupling Measures for Impact Analysis in Mozilla

The following example illustrates how conceptual and structural coupling metrics are used
to rank classes to focus impact analysis. The bug #2325704 reports some problems
associated with ‘ldap2.server.position values for ab pane and search order’ in Mozilla. In
order to fix the bug, the developer needs to find and change the classes in the source code
containing this bug. Assume that the starting point of this change, the class nsAbDir-
ectoryQuery, is identified via some available feature location technique. Given the starting
point, the developer needs to perform impact analysis to identify the remaining classes in
order to complete the change. In our approach, we compute the set of pair-wise coupling
measures for all possible pairs between nsAbDirectoryQuery and other classes. Using these
coupling measures, all the classes in Mozilla are ranked based on the strength of coupling

Table 4 Examples of redefined structural coupling measures used to rank classes during impact analysis

Name of the measure Definition

CBO (coupling between
object classes)

Two classes ci ∈ C and di ∈ C are coupled to one another, if methods
of one class use methods or attributes of the other, or vice versa. CBO is
computed as a binary indicator, yielding 1 if ci and di are coupled, else 0.

ICP (information-flow
based coupling)

The number of method invocations in a class ci ∈ C, of methods in a class
di ∈ C, weighted by the number of parameters of the invoked methods.
The measure also takes polymorphism into account.

DAC (data abstraction
coupling)

The number of attributes in a class ci ∈ C that has class di ∈ C as their type.

4 The bug can be accessed in Bugzilla at https://bugzilla.mozilla.org/show_bug.cgi?id=232570 (verified at
27/06/08)

Empir Software Eng (2009) 14:5–32 17

http://bugzilla.mozilla.org/show_bug.cgi?id=232570

(different type of couplings are captured by different measures) to the nsAbDirectoryQuery
class. The idea is that the strongly coupled classes to the given class are more likely to
change (Briand et al. 1999a). In our example, Table 5 provides the list of top classes ranked
by the values of two coupling metrics, CCBCm and ICP. These measures provide the
quantitative estimation of the strength of coupling between the class nsAbDirectoryQuery
and the classes in Table 5. In order to determine the number of candidate classes suggested
for inspection during impact analysis, different strategies can be used. The most common
approaches are to use a cut point cp (i.e., select the top n classes from the list or the top n%)
or a threshold t (i.e., select all classes that have a coupling value higher/lower than some
metric value t). Combinations of the two approaches are also used. For example the top n%
classes will be retrieved if they have a coupling value higher or lower than t.

In this example, for each metric, a cut point strategy is used (e.g., the top five classes
from each rank list are retrieved).

While using CCBCm for ranking conceptually similar classes to nsAbDirectoryQuery
class, we retrieve five out of 4,853 (see Table 5). Two of these classes, nsAbMDBDirectory
and nsAbLDAPDirectory, are among those ten classes in the official patch that were
changed to fix this bug (nsAbAutoCompleteSession, nsAbBSDirectory, nsAbCardProperty,
nsAbDirProperty, nsAbDirectoryDataSource, nsAbDirectoryProperties, nsAbDirectory-
Query, nsAbLDAPDirectory, nsAbMDBDirectory, nsMsgCompose). However, when ICP
metric is used with this cut point, only two classes are suggested and none of them is
among the changed classes. The precision and recall for these two metrics is computed as
the following. Precision for CCBCm is 2/5*100%=40%, while recall is 2/9*100=22% (we
use nine classes instead of ten in the denominator, since one of the changed classes,
nsAbDirectoryQuery, is already identified and used as a starting point in impact analysis).
None of the changed classes has structural dependencies, which are captured by ICP
coupling measure, with nsAbDirectoryQuery class and thus precision and recall for ICP
measure is zero.

6 Case Study on Using Coupling Measures to Support Impact Analysis

In this section we present a case study, where we empirically investigated how conceptual
coupling metrics can be used during impact analysis as well as compared them to a set of
existing structural coupling measures used for the same task.

Table 5 Classes strongly coupled with nsAbDirectoryQuery and ranked according to CCBCm and ICP
coupling measures

Rank CCBCm ICP

Classes Values Classes Values

1 nsAbQueryLDAPMessageListener 0.86 nsDebug 123
2 nsAbMDBDirectory 0.81 nsAFlatString 121
3 nsAbDirectoryQuerySimpleBoolExpression 0.79
4 nsAbLDAPDirectory 0.76
5 nsAbView 0.72

The top five classes are listed for CCBCm. Only two top classes are listed for ICP measure, since only these
two classes are structurally connected to nsAbDirectoryQuery according to ICP measure. The classes in bold
are those that actually changed together with class nsAbDirectoryQuery to fix the bug# 232570

18 Empir Software Eng (2009) 14:5–32

6.1 Design of the Case Study

The case study is designed in a similar fashion to the one presented in the work by Briand
et al. (Briand et al. 1999a), where a set of structural coupling metrics was used to rank
classes during impact analysis in an OO system. While designing and conducting the case
study, we followed the guidelines in two papers written by Yin and by Flyvbjerg,
respectively (Yin 2003; Flyvbjerg 2006).

6.1.1 Objectives and Methodology

In this case study, the CCBC and CCBCm measures are compared with nine existing
structural coupling measures (i.e., PIM, ICP, CBO, MPC, OCMIC, DAC, OCAIC, ACMIC,
and ACAIC) to evaluate whether they provide better support for impact analysis or not. The
premise is that given the nature of the captured information (e.g., textual information in
identifiers and comments) and the counting mechanism employed by CoCC and CoCCm,
these measures should capture different aspects of coupling among classes as compared to
the nine existing coupling metrics, which utilize only structural information.

In the case study, we used the source code of Mozilla v1.6, which is an open-source web
browser ported on almost all known software and hardware platforms. It is large enough to
represent a real-world software system and it comes with an available history of changes.
The source code of Mozilla consists of 4,853 classes implemented in approximately four
million lines of source code (including 738,180 lines of comments).

Our case study addresses the following question: Do CCBC and CCBCm provide better
support for ranking classes during impact analysis than any of the following structural
coupling measures: PIM, ICP, CBO, MPC, OCMIC, DAC, OCAIC, ACMIC and ACAIC?

6.1.2 Settings of the Case Study

All the structural coupling measures, including pair-wise versions of coupling measures,
were computed using Columbus (Ferenc et al. 2002). The conceptual coupling measures
were computed with the IRC2M tool (Poshyvanyk and Marcus 2006), which can be used
with several settings for the underlying LSI-based analysis. In the case studies, we used the
following common settings.

We used a method level granularity, to construct the corpus for Mozilla, meaning that the
implementation (source code) of every method from the software system was extracted and
represented as a separate document in the corpus. We extracted all types of methods from
classes in the source code, including constructors, destructors, and accessors. Comments
and identifiers were extracted from each method as well. The resulting text from source
code is pre-processed as the following: some of the tokens are eliminated (e.g., operators,
special symbols, some numbers, keywords of the C++ programming language, standard
library function names including standard template library, etc.); the identifier names in the
source code are split into parts based on observed coding standards and naming
conventions. For example, all the following identifiers are broken into separate words
‘coupling’ and ‘measures’: ‘coupling_measures’, ‘Coupling_measures’, ‘CouplingMeas-
ures’, etc. Given that we did not consider n-grams, the order of words in text passages is of
no significance. In this process, LSI does not use a predefined vocabulary, or a predefined
grammar, therefore no morphological analysis or transformations are required, such as
stemming or abbreviation expansion. We believe that such methods may even improve the
results. Based on our previous experience with LSI on corpus of similar size (Marcus and

Empir Software Eng (2009) 14:5–32 19

Poshyvanyk 2005; Poshyvanyk et al. 2007; Marcus et al. 2008), we used a reduction factor
of 500 for the Mozilla software system corpus.

6.1.3 Collecting Change Data in Mozilla for Evaluation

In order to compare conceptual and structural coupling measures for identifying classes that
change together (i.e., changes related to the same bug report and having the same
identification number in the configuration management system) during impact analysis, we
utilized the history of changes in Mozilla. We used Bugzilla5, a bug-tracking system used in
the development of Mozilla and collected the bugs between two versions of Mozilla (i.e.,
1.6 and 1.7) and correlated each bug with specific classes. The Bugzilla database contained
around 256,613 different bug entries for all the versions of the system, however, we
restricted the scope of mining only to the bugs which appear between versions 1.6 and 1.7
and were fixed, meaning that the bug was officially closed and contained an official patch
file with modifications). In our analysis we did not consider bug reports for accessory
software systems such as Bonsai, Tinderbox, etc. We extracted 1,021 different bug entries
which satisfied all the aforementioned requirements. By analyzing the patch files,
associated with bug reports, we assigned bugs to particular intervals in the source code.
This was possible to complete automatically, since each patch file contained the name of the
changed file and it described how many lines were deleted from a given line number and
how many lines were inserted at a given line number. Using this line-level information
about changes, we determined intervals of actual changes in the file and localized the bugs
to implementations in the source code of specific classes. To ensure that the files in the
patch were changed at the same time, we searched and checked log messages in the
configuration management system to ensure that check-in messages for those files
contained the same identification number, assigned by the Bugzilla system.

After collecting a set of bug reports and sets of changed classes respectively, we filtered
the data to eliminate those bugs which contained only one modified class. After the filtering
we ended up with 391 bug reports, containing on average 7.3 modified classes (standard
deviation: 14.6). However, we also removed some outliers in the data. For example, one of
the removed outliers, the patch in the bug report #2264396, contained the record number of
modified classes (149) to fix this bug.

6.1.4 Evaluation Methodology

Our evaluation strategy is to utilize the history of changes, observed in Mozilla, to
determine whether existing structural and conceptual coupling measures can be used during
impact analysis to identify classes with common changes (i.e., changes in classes related to
the same bug report and having the same bug identification number in the configuration
management system). The history of changes can be used to evaluate rankings of classes
produced with different coupling measures against actual changes in the software system.
We expect that the conceptual coupling measures, namely CCBC and CCBCm, will be at

5 Bugzilla is a web-based general-purpose bug-tracking tool originally developed and used by the Mozilla
project, and licensed under the Mozilla Public License. Bugzilla can be fount at http://bugzilla.mozilla.org/
(verified at 27/06/08)
6 The bug can be accessed in Bugzilla at https://bugzilla.mozilla.org/show_bug.cgi?id=226439 (verified at
27/06/08)

20 Empir Software Eng (2009) 14:5–32

http://bugzilla.mozilla.org/
https://bugzilla.mozilla.org/show_bug.cgi?id=226439

least as effective as the nine existing coupling measures in ranking classes during impact
analysis.

The evaluation methodology can be summarized in the following steps:

& For a given software system, a set of bug reports B={b1, b2…bn} is mined from the
bug tracking system. The set of classes, which had been changed to fix each bug (e.g.,
c(b1)={c1, c2…cn}) are mined from the configuration management system. Specific
details on how the bug reports and changed classes are identified are provided in
Section 6.1.3.

& For each class in c(bi), pair-wise structural and conceptual coupling metrics are
computed. The values of each metric are used to compute ranks of the remaining classes
in the software system.

& Using a specific cut point criteria (which ranges anywhere from 10 to 500 classes),
defined as cp, select top n classes in each ranked list of results generated by every
metric. For every class in c(bi), which is used in the evaluation, we assess the
effectiveness of identifying relevant classes (i.e., the other classes in c(bi)) via rankings
of specific coupling metric.

& In order to evaluate each coupling measure and compare all the coupling measures used
in the case study, the suggested ranked lists of classes are compared against classes that
were actually changed. Average precision (P), recall (R), and F-measure (F) for each
class in c(bi) for each i=1..|B| are computed for every metric. In our case, precision is
the percentage of classes suggested by a metric that are actually changed together with
the given class according to the bug report. Recall is the percentage of the classes that
are changed together with the given class and are successfully retrieved using the
coupling measures (see Section 5.2 for an example on how precision and recall values
are computed). The F-measure is a weighted harmonic mean of precision and recall and
calculated as (2 × precision × recall) / (precision+recall) and can be used as a
comprehensive indicator of combined precision and recall values. The F-measure is
better suited than techniques like averaging, since it weights the lower measure more
heavily. For example, a coupling measure producing 80% precision but only 20% recall
provides only a few suggested classes, but most of these classes are relevant. The F-
measure for this case is 32%, whereas the average of precision and recall is 50%. Thus
F-measure (32%) better reflects a coupling measure’s effectiveness, since the measure
helps to identify only 20% of the relevant classes. For each measure, a higher value is
more desirable.

The complete results on using conceptual and structural coupling measures to rank
classes for all mined bug reports are presented and discussed in Section 6.2.

6.2 Comparing Conceptual and Structural Coupling Metrics for Impact Analysis

In order to compare the coupling measures, we followed the evaluation methodology
presented in Section 6.1.4. We computed precision and recall values for each coupling
metric for every class in each of the 391 bug reports. We computed 1,490 precision and
recall values for eleven coupling measures. In addition, we studied the impact of different
cut points, on precision, recall and F-measure values for particular coupling measures. We
computed precision, recall and F-measure values for each cut point for each coupling
metric.

The results of using nine structural and two conceptual coupling measures to rank
classes during impact analysis in Mozilla are presented in Tables 6, 7, 8. The values of the

Empir Software Eng (2009) 14:5–32 21

computed coupling metrics for classes in Mozilla can be downloaded from http://www.cs.
wayne.edu/~severe/CoCC/Mozilla_coupling_metrics.zip. The results in Tables 6, 7, 8 contain
precision and recall values for using CCBCm, ICP, PIM, CCBC, CBO, MPC, OCMIC,
OCAIC, DAC, ACMIC and ACAIC coupling measures with different cut points ranging
from 10 classes to 500 classes.

Only two of the coupling metrics, CCBC and CCBCm, are normalized (see Section 3.2),
thus we could compute precision, recall, and F-measure values for various thresholds
within the complete specter of metric values (see Fig. 2). The other coupling metrics are not
normalized as they count the total number of coupling connections of a class with other
classes in the system (the larger the metric value, the stronger the coupling between two
classes). The only exception is CBO coupling measure, which has a binary value indicating
if two classes have a coupling connection or not. In case of CBO, we based our evaluation

Table 6 Precision (Pre) and recall (Rec) values for using conceptual and structural coupling measures to
rank classes during impact analysis based on different cut points from 10 to 50 classes

Cut point=10 Cut point=20 Cut point=30 Cut point=40 Cut point=50

Pre Rec Thr Pre Rec Thr Pre Rec Thr Pre Rec Thr Pre Rec Thr

CCBCm 27.8 14.6 0.64 24.7 22.1 0.61 22.4 27.7 0.60 20.3 31.7 0.59 18.36 34.5 0.59
ICP 11.9 6.9 268 10.1 9.7 268 9.3 12.0 268 8.8 14.2 268 8.6 16.5 268
PIM 11.3 6.60 138 9.84 9.56 138 9.13 11.7 138 8.66 13.8 138 8.52 16.3 138
CCBC 10.8 5.6 0.47 9.5 8.9 0.45 8.1 11.1 0.45 7.2 12.8 0.44 6.7 14.1 0.44
CBO 7.2 6.2 10 5.4 9.4 20 4.1 10.4 30 3.3 10.9 40 2.8 11.3 50
MPC 6.6 5.7 3 3.9 6.7 0 2.8 7.0 0 2.1 7.0 0 1.7 7.0 0
OCMIC 2.0 2.1 2 1.1 2.2 0 0.8 2.3 0 0.6 2.3 0 0.5 2.3 0
OCAIC 1.7 2.0 0 1.0 2.1 0 0.6 2.1 0 0.5 2.1 0 0.4 2.1 0
DAC 1.8 2.0 0 1.0 2.1 0 0.6 2.1 0 0.5 2.1 0 0.4 2.1 0
ACMIC 0.9 0.4 0 0.5 0.4 0 0.3 0.4 0 0.2 0.4 0 0.2 0.4 0
ACAIC 0.8 0.3 0 0.4 0.3 0 0.3 0.3 0 0.2 0.3 0 0.2 0.3 0

The values of pair-wise conceptual and structural coupling measures taken at each cut point are provided in
Threshold (Thr) column

Table 7 Precision (Pre) and recall (Rec) values for using conceptual and structural coupling measures to
rank classes during impact analysis based on different cut points from 60 to 100 classes

Cut point=60 Cut point=70 Cut point=80 Cut point=90 Cut point=100

Pre Rec Thr Pre Rec Thr Pre Rec Thr Pre Rec Thr Pre Rec Thr

CCBCm 16.6 36.5 0.58 15.3 38.6 0.58 14.2 40.2 0.57 13.4 41.8 0.57 12.62 43.1 0.57
ICP 8.5 18.8 268 7.9 20.1 157 7.3 20.9 69 6.8 21.8 29 6.5 22.8 22
PIM 8.43 18.7 138 7.82 19.9 69 7.23 20.6 30 6.81 21.6 13 6.52 22.6 11
CCBC 6.3 15.5 0.43 5.9 16.5 0.43 5.6 17.7 0.43 5.4 18.8 0.43 5.2 19.8 0.42
CBO 2.4 11.6 60 2.1 11.7 70 1.9 11.8 80 1.7 11.9 90 1.6 12.0 100
MPC 1.4 7.1 0 1.3 7.2 0 1.1 7.2 0 1.0 7.2 0 0.9 7.2 0
OCMIC 0.4 2.4 0 0.4 2.5 0 0.3 2.5 0 0.3 2.5 0 0.3 2.5 0
OCAIC 0.3 2.2 0 0.3 2.3 0 0.3 2.3 0 0.3 2.3 0 0.2 2.3 0
DAC 0.3 2.2 0 0.3 2.3 0 0.3 2.3 0 0.3 2.3 0 0.2 2.3 0
ACMIC 0.2 0.5 0 0.2 0.6 0 0.2 0.6 0 0.2 0.6 0 0.1 0.6 0
ACAIC 0.1 0.4 0 0.2 0.5 0 0.2 0.5 0 0.1 0.5 0 0.1 0.5 0

The values of pair-wise conceptual and structural coupling measures taken at each cut point are provided in
Threshold (Thr) column

22 Empir Software Eng (2009) 14:5–32

http://www.cs.wayne.edu/~severe/CoCC/Mozilla_coupling_metrics.zip
http://www.cs.wayne.edu/~severe/CoCC/Mozilla_coupling_metrics.zip

on choosing n coupled classes to a given class instead of using actual metric values (as it is
done in cases of other structural coupling measures).

In case of each coupling measure we varied a cut point from 10 to 500 classes. For
instance, in case of using CCBCm metric (see Table 6), with a cut point of 10 classes,
obtained precision was 27.80%, recall was 14.6% and F-measure was 19.1%. Increasing a
cut point to 20 classes provides more candidate classes, thus decreasing precision to 24.7%,
but significantly increasing recall values to 22.1% and increasing F-measure to 23.3%. Also
notice that while using a cut point of 10 classes, the CCBCm value for a class taken at a cut
point is 0.64, however while using a cut point of 20 classes the class at a cut point has a
smaller CCBCm value of 0.61, meaning that conceptual similarities for ten of the candidate
classes are within [0.61 and 0.64] interval of CCBCm metric values.

Analysis of the results, presented in Tables 6, 7, 8, 9 reveals that CCBCm conceptual
coupling metric is the best coupling measure for ranking classes during impact analysis (in
terms of precision, recall and F-measure). None of the other coupling metrics achieves the
same value of F-measure (i.e., maximum of 24.8% for a cut point of 30/40 classes and
19.0% on average across all the cut points) for any given cut point. For example, when
using a cut point of 30 classes, using CCBCm, around 28% of actually changed classes are
recovered (recall) and one in five suggested classes is correct (precision). These are
encouraging results as the source code of Mozilla consists of 4,853 classes and focusing
developers on a set of relevant classes can significantly reduce amount of time developers
spend on impact analysis.

The results for using structural coupling measures for the same task are less encouraging.
The second best metric after CCBCm is the structural coupling measure ICP (based on the
average F-measure, see Table 9), which captures information flow based coupling. This
coupling measure captures the number of invocations in a class ci ∈ C, of methods in a class
di ∈ C, weighted by the number of parameters of the invoked methods. This coupling
measure also takes polymorphism into account. While using the cut point of 20 classes, the
precision of identifying relevant classes using ICP is 10.1%, recall is 9.7% and F-measure
is 9.89%. The best value of F-measure for ICP metric, which is 11.7%, is obtained while
using a cut point of 60 classes (see Table 9).

Table 8 Precision (Pre) and recall (Rec) values for using conceptual and structural coupling measures to
rank classes during impact analysis based on different cut points from 200 to 500 classes

Cut point=200 Cut point=300 Cut point=400 Cut point=500

Pre Rec Thr Pre Rec Thr Pre Rec Thr Pre Rec Thr

CCBCm 8.39 52.4 0.55 6.47 58.2 0.54 5.35 62.1 0.53 4.61 65.1 0.52
ICP 4.13 27.3 22 3.26 31.1 22 2.89 34.9 22 2.63 39.0 22
PIM 4.12 27.1 11 3.25 30.8 11 2.88 34.8 11 2.62 38.9 11
CCBC 3.99 27.0 0.41 3.44 33.3 0.39 3.16 39.1 0.38 2.98 44.8 0.36
CBO 1.05 13.2 200 1.01 16.1 300 1.00 20.4 400 0.99 26.5 500
MPC 0.72 8.56 0 0.81 11.7 0 1.07 16.3 0 1.22 22.7 0
OCMIC 0.47 4.25 0 0.67 7.98 0 0.97 12.8 0 1.19 20.2 0
OCAIC 0.45 4.15 0 0.66 7.89 0 0.96 12.5 0 1.18 19.9 0
DAC 0.19 2.4 0 0.18 2.41 0 0.18 2.41 0 0.17 2.42 0
ACMIC 0.40 2.41 0 0.64 6.36 0 0.94 11.1 0 1.17 18.5 0
ACAIC 0.40 2.38 0 0.64 6.32 0 0.94 11.1 0 1.17 18.5 0

The values of pair-wise conceptual and structural coupling measures taken at each cut point are provided in
Threshold (Thr) column

Empir Software Eng (2009) 14:5–32 23

The next metric after ICP is PIM (see Table 9), which captures the number of method
invocations in class ci ∈ C of methods in class di ∈ C. The measure also takes
polymorphism into account. For example, when using the first twenty classes with the
highest PIM values as a cut point, the precision of identifying relevant classes is 9.84%,
achieved recall is 9.56 while F-measure is only 9.7%. The best value of F-measure for PIM
metric, which is 11.6%, is obtained while using a cut point of 60 classes (see Table 9). PIM
has been shown to be a relatively effective coupling measure (as compared to other
structural measures) to rank classes during impact analysis in other case studies (Briand et
al. 1999a).

CCBC

0

10
20

30

40
50

60

70
80

90

0.
9

(2
)

0.
85

 (
2)

0.
8

(2
)

0.
75

 (
2)

0.
7

(2
)

0.
65

 (
2)

0.
6

(4
)

0.
55

 (
8)

0.
5

(2
2)

0.
45

 (
64

)

0.
4

(1
75

)

0.
35

 (
39

8)

0.
3

(7
28

)

0.
25

 (
10

87
)

0.
2

(1
40

9)

Threshold (average number of classes retrieved)

R
ec

al
l a

n
d

 P
re

ci
si

o
n

CCBCm

0

10

20

30

40

50

60

70

80

90

0.
9

(2
)

0.
85

 (
3)

0.
8

(5
)

0.
75

 (
8)

0.
7

(1
7)

0.
65

 (
41

)

0.
6

(1
06

)

0.
55

 (
23

3)

0.
5

(4
48

)

0.
45

 (
73

1)

0.
4

(1
02

4)

0.
35

 (
12

99
)

0.
3

(1
52

8)

Threshold (average number of classes retrieved)

R
ec

al
l a

n
d

 P
re

ci
si

o
n

Precision
Recall
F-measure

Precision
Recall
F-measure

Fig. 2 Precision, recall and F-measure values for using CCBCm and CCBC conceptual coupling measures
to rank classes during impact analysis. The values are based on different thresholds (pertinent to each metric).
The number of actually retrieved classes for every threshold is given in parenthesis

24 Empir Software Eng (2009) 14:5–32

The MPC coupling measure shows higher precision values as compared to other
coupling measures in some cases (more than 7%), however it has low recall (around 2% on
average) for all of the studied cut points.

The other coupling measures, such as CBO, DAC, ACAIC, ACMIC, OCAIC and
OCMIC have low precision and recall values (less than 10%) for all of the computed cut
points.

While CCBC coupling measure uses the same type of information as CCBCm, it uses
a different counting mechanism based on average similarities as opposed to CCBCm, which
is based on the strongest coupling link between classes. According to the results (see
Tables 6, 7, 8, 9), CCBCm significantly outperforms CCBC. Moreover CCBC is
outperformed by some of the structural coupling measures such as ICP and PIM.

The results show that CCBCm is a useful (the best among the studied coupling
measures) indicator of an external property of classes in OO systems-change proneness.
This coupling measure can be effectively used to rank relevant classes during impact
analysis in OO systems. The measure performed better on average than any of the structural
metrics we compared it to. While we do not investigate to which extent structural and
conceptual coupling measures complement each other in this case study, there is a
noticeable potential in combining these coupling measures for ranking classes during
impact analysis. As it has been observed in several examples in Section 4.2 there are cases
where high conceptual coupling metric values capture dependencies between classes,
which are not structurally connected and vice versa. Thus, combining conceptual and
structural coupling measures may lead to significant reduction of programmer’s efforts
during impact analysis via increasing precision (and recall) of identifying relevant
classes.

6.3 Testing Statistical Significance of Differences Among Precision and Recall Values

In order to compare values of precision and recall for the coupling measures for each of the
cut points and conclude whether or not the difference is statistically significant, we
executed the Kruskal–Wallis’s test, which is a nonparametric alternative to the one-way
analysis of variance (ANOVA) in those cases when more than three independent samples
are present. In our case, the Kruskal–Wallis’s test is an appropriate alternative to ANOVA

Table 9 F-measure values for using conceptual and structural coupling measures to rank classes during
impact analysis based on different cut points from 10 to 500 classes

10 20 30 40 50 60 70 80 90 100 200 300 400 500 Avg

CCBCm 19.1 23.3 24.8 24.8 23.9 22.9 21.9 21.1 20.3 19.5 14.5 11.6 9.86 8.62 19.0
ICP 8.77 9.89 10.5 10.8 11.3 11.7 11.3 10.8 10.4 10.1 7.19 5.91 5.34 4.93 9.22
PIM 8.35 9.70 10.3 10.7 11.2 11.6 11.2 10.7 10.4 10.1 7.15 5.89 5.33 4.93 9.12
CCBC 7.34 9.18 9.38 9.24 9.05 8.94 8.71 8.51 8.39 8.27 6.95 6.24 5.85 5.59 7.97
CBO 6.70 6.85 5.92 5.05 4.45 3.95 3.61 3.28 3.01 2.77 1.96 1.90 2.28 2.54 3.88
MPC 6.16 4.97 3.99 3.24 2.73 2.36 2.15 1.93 1.74 1.59 1.34 1.52 2.01 2.33 2.72
OCMIC 2.06 1.48 1.15 0.92 0.77 0.67 0.68 0.61 0.55 0.50 0.85 1.23 1.80 2.25 1.11
OCAIC 1.85 1.32 0.98 0.78 0.65 0.56 0.59 0.53 0.48 0.43 0.82 1.23 1.79 2.24 1.02
DAC 1.88 1.34 0.93 0.81 0.67 0.53 0.53 0.53 0.53 0.37 0.35 0.33 0.33 0.32 0.68
ACMIC 0.56 0.43 0.35 0.29 0.25 0.23 0.29 0.26 0.24 0.22 0.69 1.16 1.73 2.20 0.64
ACAIC 0.43 0.33 0.27 0.23 0.20 0.19 0.26 0.23 0.21 0.20 0.69 1.15 1.73 2.20 0.60

The coupling measures are ranked in descending order based on the average value of F-measures computed
at each cut point. The largest F-measures for each metric are italicized

Empir Software Eng (2009) 14:5–32 25

test, because we have eleven independent samples of precision and recall values for each of
the coupling measures.

We executed Kruskal–Wallis’s test separately for precision and recall values for all of the
coupling measures (see Table 10). For more details on the Kruskal–Wallis’s test, the reader
is referred to the work of Siegel and Castellan (Siegel and Castellan 1988).

In the both tests, at the level of significance for alpha=0.05, the decision was to reject
the null hypothesis of absence of differences between even metric values. In other words,
both tests have shown that the differences between precision (first test) and recall (second
test) values for eleven coupling metrics were statistically significant.

6.4 Threats to Validity

We identify several issues that affected the results of our case study and limited our
interpretations.

In the case study we considered only structural metrics that were based on the static
information obtained from the source code. The results can differ to some extent if dynamic
coupling measures are used (Arisholm et al. 2004; Mitchell and Power 2006).

The conceptual coupling measures depend on rational naming conventions for identifiers
and comments in source code. When these are missing, the only hope for measuring any
aspects of coupling rests on the structural coupling measures.

CoCC, CoCCm, CCBC and CCBCm measures, as currently defined, do not take into
account polymorphism and inheritance. The measures only consider methods of a class
that are implemented or overloaded in the class. One of the solutions, which accounts for
inheritance, consists of extending the measures to include the source code of inherited
methods into the documents of derived classes, as it is currently done by Kuhn et al.
(Kuhn et al. 2007).

In our case study we used one large software system, however, to allow for
generalization of results, large-scale evaluation is necessary, which should take into
account several releases of software systems from different domains, developed using
different programming languages.

Also, our evaluation is based on the changed classes extracted from patches in related
bug reports. This could have impacted evaluation procedure as these patches may contain
incomplete information about actually changed classes or these changes could have
introduced other bugs. We alleviate this issue by considering only patches which are
officially approved by module owners in Mozilla.

Table 10 The results of running two Kruskal–Wallis tests for precision (test 1) and recall (test 2) values of
eleven coupling metrics across the different cut points

Test 1 precision Test 2 recall

H (observed value) 126.55 110.905
H (critical value) 18.31 18.307
DF (degrees of freedom) 10 10
One-tailed p-value <0.0001 <0.0001
Alpha 0.05 0.05

26 Empir Software Eng (2009) 14:5–32

7 Conclusions and Future Work

The paper defines a novel set of operational measures for the conceptual coupling of classes,
based on IR, which are theoretically valid and empirically studied. These new metrics capture
new dimensions in coupling measurement, compared to existing structural metrics. Moreover,
one of the conceptual coupling measures, CCBCm measure, appears to be a superior indicator
of change ripple effects as compared to existing structural coupling measures and can be
effectively used to rank classes in the course of impact analysis in a large OO system.

The paper lays the foundation for a wealth of work that makes use of the coupling
metrics which use lexical (textual) information in software. The proposed metrics could be
further extended and refined, for example by taking into account inheritance in
measurement. The IRC2M tool will be adapted to compute conceptual coupling measures
in other programming languages such as Java or C#. We are also planning on comparing
and combining the conceptual coupling metrics with the evolutionary based coupling (Gall
et al. 2003). Since conceptual coupling measures use textual information, we are
considering including external documentation in the corpus. This will allow extending
the context in which words are used in the software and identifying inconsistencies between
source code and external documentation.

More importantly, we will investigate combinations of the conceptual and structural
coupling measures for impact analysis and detection of hidden dependencies. In addition, we
will use these metrics to extend prior work on software clustering (Kuhn et al. 2007), concept
location (Marcus et al. 2004; Marcus et al. 2005b; Poshyvanyk and Marcus 2007), and
high-level concept clone detection (Marcus and Maletic 2001). We are also planning on
investigating how changes in the structure and lexicon of software during software evolution
(Antoniol et al. 2007) are reflected in structural and conceptual coupling measures.

Acknowledgements This research was supported in part by grants from the U.S. National Science
Foundation (CCF-0438970 and CCF-0820133), by the Hungarian national grants GVOP-3.3.1.-2004-04-
0024/3.0 and GVOP-3.1.1.-2004-05-0345/3.0 and by the János Bolyai Research Scholarship of the
Hungarian Academy of Sciences. We would like to thank the anonymous reviewers for their pertinent and
helpful comments.

References

Abreu F, Pereira G, Sousa P (2000) A Coupling-Guided Cluster Analysis Approach to Reengineer the
Modularity of Object-Oriented Systems. Conference on Software Maintenance and Reengineering
(CSMR'00). IEEE Computer Society, Zurich Switzerland, pp 13–22

Allen EB, Khoshgoftaar TM, Chen Y (2001) Measuring coupling and cohesion of software modules: an
information-theory approach. 7th International Software Metrics Symposium (METRICS'01), 124–134.

Antoniol G, Fiutem R, Cristoforetti L (1998) Using Metrics to Identify Design Patterns in Object-Oriented
Software. 5th IEEE International Symposium on Software Metrics (METRICS'98), Bethesda, MD, 23–34.

Antoniol G, Canfora G, Casazza G, Lucia A (2000) Identifying the Starting Impact Set of a Maintenance
Request: A Case Study. 4th European Conference on Software Maintenance and Reengineering
(CSMR2000), Zurich, Switzerland, 227–231.

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002) Recovering traceability links between code
and documentation. IEEE Trans Softw Eng 28(10):970–983

Antoniol G, Gueheneuc Y-G, Merlo E, Tonella P (2007) Mining the Lexicon Used by Programmers during
Software Evolution. 23rd IEEE International Conference on Software Maintenance (ICSM'07). IEEE
Computer Society, Paris, France, pp 14–23

Arisholm E, Briand LC, Foyen A (2004) Dynamic coupling measurement for object-oriented software. IEEE
Trans Softw Eng 30(8):491–506

Empir Software Eng (2009) 14:5–32 27

Bohner S (1996) Impact analysis in the software change process: A year 2000 perspective. International
Conference on Software Maintenance (ICSM '96), Monterey, CA, 42–51

Bohner SA, Gracanin D (2003) Software impact analysis in a virtual environment. Software Engineering
Workshop, 143–151.

Briand L, Wüst J, Louinis H (1999a) Using Coupling Measurement for Impact Analysis in Object-Oriented
Systems. IEEE International Conference on Software Maintenance (ICSM'99), IEEE Computer Society
Press, 475–482

Briand LC, Devanbu P, Melo WL (1997) An investigation into coupling measures for C++. International
Conference on Software engineering (ICSE'97). ACM, Boston, pp 412–421

Briand LC, Daly JW, Porter V, Wüst J (1998) A Comprehensive Empirical Validation of Design Measures for
Object-Oriented Systems. 5th International Software Metrics Symposium (METRICS'98), Bethesda,
MD, IEEE Computer Science, 43–53

Briand LC, Daly J, Wüst J (1999b) A unified framework for coupling measurement in object oriented systems.
IEEE Trans Softw Eng 25(1):91–121

Briand LC, Wüst J, Daly JW, Porter VD (2000) Exploring the relationship between design measures and
software quality in object-oriented systems. J Syst Softw 51(3):245–273

Canfora G, Cerulo L (2005) Impact Analysis by Mining Software and Change Request Repositories. 11th
IEEE International Symposium on Software Metrics (METRICS'05), 20–29.

Chen K, Rajlich V (2000) Case Study of Feature Location Using Dependence Graph. 8th IEEE International
Workshop on Program Comprehension (IWPC'00), Limerick, Ireland, 241–249.

Chidamber SR, Kemerer CF (1991) Towards a Metrics Suite for Object Oriented Design. Conference on
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA'91), SIGPLAN
Notices, 197–211.

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng 20
(6):476–493

Clelang-Huang J, Settimi R, Duan C, Zou X (2005) Utilizing Supporting Evidence to Improve Dynamic
Requirements Traceability. International Requirements Engineering Conference (RE'05), Paris, France,
135–144.

Cubranic D, Murphy GC, Singer J, Booth KS (2005) Hipikat: a project memory for software development.
IEEE Trans Softw Eng 31(6):446–465

De Lucia A, Fasano F, Oliveto R, Tortora G (2007) Recovering Traceability Links in Software Artefact
Management Systems. ACM Transactions on Software Engineering and Methodology 16(4).

Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by Latent Semantic
Analysis. J Am Soc Inf Sci 41:391–407

Di Lucca GA, Di Penta M, Gradara S (2002) An Approach to Classify Software Maintenance Requests.
IEEE International Conference on SoftwareMaintenance (ICSM'02), Montréal, Québec, Canada, 93–102.

Eaddy M, Aho AV, Antoniol G, Guéhéneuc YG (2008) CERBERUS: Tracing Requirements to Source Code
Using Information Retrieval, Dynamic Analysis, and Program Analysis. 17th IEEE International
Conference on Program Comprehension (ICPC'08), Amsterdam, The Netherlands.

El-Emam K, Melo K (1999) The Prediction of Faulty Classes Using Object-Oriented Design Metrics. NRC/
ERB-1064 NRC 43609.

Etzkorn L, Delugach H (2000) Towards a semantic metrics suite for object-oriented design. 34th
International Conference on Technology of Object-Oriented Languages and Systems, 71–80.

Etzkorn LH, Davis CG (1997) Automatically identifying reusable OO legacy code. IEEE Computer 30
(10):66–72

Etzkorn LH, Gholston S, Hughes WE (2002) A semantic entropy metric. Journal of Software Maintenance:
Research and Practice 14(5):293–310

Ferenc R, Beszédes Á, Tarkiainen M, Gyimóthy T (2002) Columbus—Reverse Engineering Tool and
Schema for C++. 18th IEEE International Conference on Software Maintenance (ICSM'02), Montréal,
Canada, 172–181.

Fischer B (1998) Specification-Based Browsing of Software Component Libraries. 13th ASE, 74–83.
Flyvbjerg B (2006) Five misunderstandings about case-study research. Qual Inq 12(2):219–245
Gall H, Jazayeri M, Krajewski J (2003) CVS Release History Data for Detecting Logical Couplings. Sixth

International Workshop on Principles of Software Evolution (IWPSE'03):13–23.
Gyimóthy T, Ferenc R, Siket I (2005) Empirical validation of object-oriented metrics on open source

software for fault prediction. IEEE Trans Softw Eng 31(10):897–910
Hassoun Y, Johnson R, Counsell S (2004) A Dynamic Runtime Coupling Metric for Meta-Level

Architectures. 8th IEEE European Conference on Software Maintenance and Reengineering (CSMR'04),
339–346

28 Empir Software Eng (2009) 14:5–32

Hayes JH, Dekhtyar A, Sundaram SK (2006) Advancing candidate link generation for requirements tracing:
the study of methods. IEEE Trans Softw Eng 32(1):4–19

Helm R, Maarek YS (1991) Integrating information retrieval and domain specific approaches for browsing
and retrieval in object-oriented class libraries. Conference proceedings on Object-oriented programming
systems, languages, and applications. Phoenix, Arizona, United States ACM, New York, 47–61

Hill E, Pollock L, Vijay-Shanker K (2007) Exploring the Neighborhood with Dora to Expedite Software
Maintenance. 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE'07),
14–23

Jolliffe IT (1986) Principal Component Analysis. Springer, New York
Kawaguchi S, Garg PK, Matsushita M, Inoue K (2006) MUDABlue: an automatic categorization system for

open source repositories. J Syst Softw 79(7):939–953
Kosara R, Healey CG, Interrante V, Laidlaw DH, Ware C (2003) Visualization viewpoints. Comput Graph

and Appl 23(4):20–25
Kramer S, Kaindl H (2004) Coupling and cohesion metrics for knowledge-based systems using frames and

rules. ACM Trans Softw Eng Methodol 13(3):332–358
Kuhn A, Ducasse S, Gîrba T (2007) Semantic clustering: identifying topics in source code. Inf Softw

Technol 49(3):230–243
Lawrie DJ, Feild H, Binkley D (2006) Leveraged Quality Assessment using Information Retrieval

Techniques. 14th IEEE International Conference on Program Comprehension (ICPC'06), 149–158.
Lee JK, Jung SJ, Kim SD, Jang WH, Ham DH (2001) Component identification method with coupling and

cohesion. Eighth Asia-Pacific Software Engineering Conference (APSEC'01), 79–86.
Lee YS, Liang BS, Wu SF, Wang FJ (1995) Measuring the Coupling and Cohesion of an Object-Oriented

Program Based on Information Flow. International Conference on Software Quality, Maribor, Slovenia.
Li W, Henry S (1993) Object-oriented metrics that predict maintainability. J Syst Softw 23(2):111–122
Linstead E, Rigor P, Bajracharya S, Lopes C, Baldi P (2007) Mining Eclipse Developer Contributions via

Author-Topic Models. 4th IEEE International Workshop on Mining Software Repositories (MSR'07),
Minneapolis, MN, 30–33

Lo KK, Chan MK, Baniassad E (2006) Isolating and Relating Concerns in Requirements using Latent
Semantic Analysis. ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA'06), 383–396

Lormans M, Van Deursen A (2006) Can LSI help Reconstructing Requirements Traceability in Design and
Test? 10th European Conference on Software Maintenance and Reengineering (CSMR'06), 47–56.

Maarek YS, Berry DM, Kaiser GE (1991) An information retrieval approach for automatically constructing
software libraries. IEEE Trans Softw Eng 17(8):800–813

Maletic JI, Marcus A (2001) Supporting Program Comprehension Using Semantic and Structural
Information. 23rd International Conference on Software Engineering (ICSE'01), Toronto, Ontario,
Canada, IEEE, 103–112.

Marcus A, Maletic JI (2001) Identification of High-Level Concept Clones in Source Code. Automated
Software Engineering (ASE'01), San Diego, CA, 107–114.

Marcus A, Poshyvanyk D (2005) The Conceptual Cohesion of Classes. 21st IEEE International Conference
on Software Maintenance (ICSM'05), Budapest, Hungary, 133–142.

Marcus A, Sergeyev A, Rajlich V, Maletic J (2004) An Information Retrieval Approach to Concept Location
in Source Code. 11th IEEE Working Conference on Reverse Engineering (WCRE'04), Delft, The
Netherlands, 214–223.

Marcus A, Maletic JI, Sergeyev A (2005a) Recovery of traceability links between software documentation
and source code. Int J Softw Eng Knowl Eng 15(4):811–836

Marcus A, Rajlich V, Buchta J, Petrenko M, Sergeyev A (2005b) Static Techniques for Concept
Location in Object-Oriented Code. 13th IEEE International Workshop on Program Comprehension
(IWPC'05), 33–42.

Marcus A, Poshyvanyk D, Ferenc R (2008) Using the conceptual cohesion of classes for fault prediction in
object oriented systems. IEEE Trans Softw Eng 34(2):287–300

Michail A, Notkin D (1999) Assessing software libraries by browsing similar classes, functions and
relationships. IEEE International Conference on Software Engineering (ICSE'99), 463–472.

Mitchell A, Power JF (2006) A study of the influence of coverage on the relationship between static and
dynamic coupling metrics. Sci Comput Program 59:4–25

Mockus A, Votta LG (2000) Identifying reasons for software changes using historic databases. IEEE
International Conference on Software Maintenance (ICSM'00), 120–130.

Offutt J, Harrold MJ, Kolte P (1993) A software Metric System for module coupling. J Syst Softw 20
(3):295–308

Empir Software Eng (2009) 14:5–32 29

Olague H, Etzkorn L, Gholston S, Quattlebaum S (2007) Empirical validation of three software metrics
suites to predict fault-proneness of object-oriented classes developed using highly iterative or agile
software development processes. IEEE Trans Softw Eng 33(6):402–419

Orme AM, Yao H, Etzkorn LH (2006) Coupling metrics for ontology-based systems. IEEE Softw 23:102–108
Orso A, Apiwattanapong T, Law J, Rothermel G, Harrold MJ (2004) An empirical comparison of dynamic

impact analysis algorithms. IEEE/ACM International Conference on Software Engineering (ICSE'04),
776–786.

Pan Y, Wang L, Zhang L, Xie B, Yang F (2004) Relevancy based semantic interoperation of reuse
repositories. 12th ACM SIGSOFT 12th International Symposium on Foundations of Software
Engineering (FSE12), Newport Beach, CA, 211–220.

Patel S, Chu W, Baxter R (1992) A Measure For Composite Module Cohesion. International Conference on
Software Engineering (ICSE'92), 38–48.

Poshyvanyk D, Marcus A (2006) The Conceptual Coupling Metrics for Object-Oriented Systems. 22nd IEEE
International Conference on Software Maintenance (ICSM'06), Philadelphia, PA, 469–478.

Poshyvanyk D, Marcus D (2007) Combining Formal Concept Analysis with Information Retrieval for
Concept Location in Source Code. 15th IEEE International Conference on Program Comprehension
(ICPC'07), Banff, Alberta, Canada, 37–48.

Poshyvanyk D, Guéhéneuc YG, Marcus A, Antoniol G, Rajlich V (2007) Feature location using probabilistic
ranking of methods based on execution scenarios and information retrieval. IEEE Trans Softw Eng 33
(6):420–432

Queille J-P, Voidrot J-F, Wilde N, Munro M (1994) The Impact Analysis Task in Software Maintenance: A
Model and a Case Study. International Conference on Software Maintenance, 234–242.

Robillard M (2005) Automatic Generation of Suggestions for Program Investigation. Joint European
Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Lisbon, Portugal, 11–20

Rountev A, Milanova A, Ryder BG (2001) Points-to analysis for Java using annotated constraints.
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA'01),
Tampa Bay, FL, USA, 43–55.

Runeson P, Alexandersson M, Nyholm O (2007) Detection of Duplicate Defect Reports Using Natural
Language Processing. 29th IEEE/ACM International Conference on Software Engineering (ICSE'07),
Minneapolis, MN, 499–510.

Salton G, McGill M (1983) Introduction to Modern Information Retrieval, McGraw-Hill.
Siegel S, Castellan NJ (1988) Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New York
Stein C, Etzkorn LH, Cox GW, Farrington PA, Gholston S, Utley DR, Fortune J (2004) A New Suite of

Metrics for Object-Oriented Software. Software Audit and Metrics, 49–58.
Wang X, Zhang L, Xie T, Anvik J, Sun J (2008) An Approach to Detecting Duplicate Bug Reports using

Natural Language and Execution Information. 30th International Conference on Software Engineering
(ICSE’08), Leipzig, Germany, 461–470.

Wilkie FG, Kitchenham BA (2000) Coupling measures and change ripples in C++ application software. J
Syst Softw 52:157–164

Yang HY, Tempero E, Berrigan R (2005) Detecting indirect coupling. Australian Software Engineering
Conference, 212–221.

Ye Y, Fischer G (2005) Reuse-conducive development environments. Journal Automated Software
Engineering 12(2):199–235

Yin RK (2003) Applications of Case Study Research. Sage Publications Inc., CA, USA
Yu P, Systa T, Muller H (2002) Predicting fault-proneness using OO metrics. An industrial case study. 6th

European Conference on Software Maintenance and Reengineering (CSMR'02), 99–107
Yu Z, Vaclav R (2001) Hidden Dependencies in Program Comprehension and Change Propagation. Ninth

International Workshop on Program Comprehension (IWPC'01), Toronto, Canada, 293–299.
Zhao J (2004) Measuring Coupling in Aspect-Oriented Systems. 10th IEEE International Software Metrics

Symposium (METRICS'04), Chicago, USA.
Zhao W, Zhang L, Liu Y, Sun J, Yang F (2006) SNIAFL: towards a static non-interactive approach to feature

location. ACM Trans Softw Eng Methodol (TOSEM) 15(2):195–226
Zou L, Godfrey MW, Hassan AE (2007) Detecting Interaction Coupling from Task Interaction Histories. 15th

IEEE International Conference on Program Comprehension (ICPC'07), Banff, Alberta, Canada, 135–144

30 Empir Software Eng (2009) 14:5–32

Denys Poshyvanyk is an Assistant Professor at the College of William and Mary in Virginia. He received his
Ph.D. degree in Computer Science from Wayne State University in 2008. He also obtained his MS and MA
degrees in Computer Science from the National University of Kyiv-Mohyla Academy, Ukraine and Wayne
State University in 2003 and 2006, respectively. His research interests are in software engineering, software
maintenance and evolution, program comprehension, reverse engineering, software repository mining, source
code analysis and metrics. He is member of the IEEE and ACM.

Andrian Marcus is currently an Assistant Professor at the Department of Computer Science at Wayne State
University, Detroit. His research interests include software evolution, program understanding, and software
visualization, in particular using information retrieval techniques to support software engineering tasks. Since
2005, he has been serving on the steering committee of the IEEE International Conference on Software
Maintenance (ICSM) and he will be Program Co-Chair for the 17th IEEE International Conference on
Program Comprehension (ICPC 2009) and the 26th IEEE International Conference on Software Maintenance
(ICSM 2010). He is the recipient of a Fulbright Junior Research Fellowship in 1997.

Empir Software Eng (2009) 14:5–32 31

Rudolf Ferenc is an Assistant Professor at the University of Szeged in Hungary. His research interests
include source code analysis, modeling, measurement and design pattern recognition. He is also interested in
software quality assurance and open source software development. He is Program Co-Chair of the 13th
European Conference on Software Maintenance and Reengineering (CSMR 2009).

Tibor Gyimóthy is the head of the Software Engineering Department at the University of Szeged in
Hungary. His research interests include program comprehension, slicing, reverse engineering and compiler
optimization. He has published over 70 papers in these areas and was the leader of several software
engineering R&D projects. He was the Program Co-Chair of the 21th International Conference on Software
Maintenance (ICSM 2005).

32 Empir Software Eng (2009) 14:5–32

	Using information retrieval based coupling measures for impact analysis
	Abstract
	Introduction
	Related Work
	Coupling Measurement
	The Use of IR Methods in Program Comprehension
	Impact Analysis Approaches

	Using IR Methods for Coupling Measurement
	System Representation and Coupling Measures
	The Conceptual Coupling of a Class
	An Example of Measuring the Conceptual Coupling of a Class

	The Maximum Conceptual Coupling of a Class

	Comparing Structural and Conceptual Coupling Measures
	Principal Component Analysis of Metrics Data
	Differences Between Conceptual and Structural Coupling Measures
	Conceptual Coupling Between Pairs of Classes

	Using Coupling Measures for Impact Analysis
	Ranking Classes Using Coupling Measures
	An Example of Using Coupling Measures for Impact Analysis in Mozilla

	Case Study on Using Coupling Measures to Support Impact Analysis
	Design of the Case Study
	Objectives and Methodology
	Settings of the Case Study
	Collecting Change Data in Mozilla for Evaluation
	Evaluation Methodology

	Comparing Conceptual and Structural Coupling Metrics for Impact Analysis
	Testing Statistical Significance of Differences Among Precision and Recall Values
	Threats to Validity

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

