
Empir Software Eng (2008) 13:473–498
DOI 10.1007/s10664-008-9080-x

Theory of relative defect proneness
Replicated studies on the functional form
of the size-defect relationship

A. Güneş Koru · Khaled El Emam · Dongsong Zhang ·
Hongfang Liu · Divya Mathew

Published online: 5 September 2008
© Springer Science + Business Media, LLC 2008
Editor: Tim Menzies

Abstract In this study, we investigated the functional form of the size-defect rela-
tionship for software modules through replicated studies conducted on ten open-
source products. We consistently observed a power-law relationship where defect
proneness increases at a slower rate compared to size. Therefore, smaller modules
are proportionally more defect prone. We externally validated the application of
our results for two commercial systems. Given limited and fixed resources for code
inspections, there would be an impressive improvement in the cost-effectiveness, as
much as 341% in one of the systems, if a smallest-first strategy were preferred over a
largest-first one. The consistent results obtained in this study led us to state a theory
of relative defect proneness (RDP): In large-scale software systems, smaller modules

A. G. Koru (B) · D. Zhang · D. Mathew
Department of Information Systems, UMBC, 1000 Hilltop Circle, Baltimore, MD 21250, USA
e-mail: gkoru@umbc.edu

D. Zhang
e-mail: zhangd@umbc.edu

D. Mathew
e-mail: dmathew2@umbc.edu

K. El Emam
Childrens Hospital of Eastern Ontario, CHEO Research Institute,
E-Health Information Laboratory, 401 Smyth Road,
Ottawa, Ontario K1H 8L1, Canada
e-mail: kelemam@uottawa.ca

K. El Emam
Faculty of Medicine and School of Information Technology,
University of Ottawa, Ottawa, Ontario, Canada

H. Liu
Department of Biostatistics, Bioinformatics, and Biomathematics, School of Medicine,
Georgetown University, Suite 180, Building D, 4000 Reservoir Rd, NW,
Washington, DC 20057-1484, USA
e-mail: hl224@georgetown.edu

474 Empir Software Eng (2008) 13:473–498

will be proportionally more defect-prone compared to larger ones. We suggest that
practitioners consider our results and give higher priority to smaller modules in their
focused quality assurance efforts.

Keywords Software metrics · Software science · Size–defect relationship ·
Planning for software quality assurance · Open–source software ·
Software inspections · Software reviews · Software testing

1 Introduction

Size is one of the most important measures frequently used by the software engineer-
ing practitioners and researchers. For example, it is used to estimate the effort and
schedule for developing software modules and products; it is associated with defect
proneness – larger software modules and products typically have higher number of
defects. Because of its significance, size has been used as an adjustment factor when
evaluating quality (e.g. defect density measures), and it needs to be incorporated
in quality prediction models because of its significant confounding effect (El Emam
et al. 2001). However, the functional form of the crucial relationship between size
and defect proneness for software modules (henceforth, size-defect relationship) has
not been well investigated or understood thus far (El Emam et al. 2002; Fenton and
Neil 1999; Fenton and Ohlsson 2000).

In the PROMISE (2007) Workshop, we reported that the defect-proneness of
software classes in Mozilla1 increased by 44% with one unit of increase in the
natural logarithm of size (Koru et al. 2007). This finding suggests a nonlinear size-
defect relationship where defect proneness monotonically increases with module
size but at a slower rate. Consequently, smaller modules should be proportionally
more troublesome compared to larger ones. In an earlier study (Basili and Perricone
1984), defect densities of smaller and larger FORTRAN modules were compared,
which gave surprising results to the authors at that time because smaller modules had
higher defect densities. Later, it was shown that studying size versus its inverse, defect
density, inherently gives higher defect densities for smaller modules even when there
is no correlation in the original data set (El Emam et al. 2002). Nevertheless, it turns
out that the main conclusion drawn by Basili and Perricone was similar to ours in
the sense that smaller modules were judged to be proportionally more problematic
compared to larger ones.

The study reported in Koru et al. (2007) was conducted with the initial intent
of estimating the effect of module size on defect proneness. The insights gained
from that study motivated us to investigate the functional form of the size-defect
relationship by pursuing a much more extensive study with significant internal
replication of the results. The reason is that the observations presented in Koru
et al. (2007), and expressed earlier in Basili and Perricone (1984), suggest that under
certain plausible conditions software managers and developers should assign a higher
priority to smaller modules in their focused quality assurance activities, such as
software testing and inspections.

1Webcite link: http://www.webcitation.org/5RqqbCKKm (cached Sep. 14, 2007)

http://www.webcitation.org/5RqqbCKKm

Empir Software Eng (2008) 13:473–498 475

So far, recommendations from contemporary studies in this area have been that
the practitioners should focus on more complex and larger modules, as discussed
further in Section 2. Even some researchers assessed the net benefits of their defect
prediction models by taking a largest-first simplified prediction approach as their
baseline, e.g., (Briand et al. 2002; Ostrand et al. 2005), after seeing that size by itself
was the strongest explanatory variable in their data sets. Therefore, it is important to
ground the findings presented by Koru et al. (2007) with strong empirical evidence,
preferably from multiple products, before practitioners start to adjust their quality
assurance practices accordingly.

Building upon the earlier results and the observations made in Koru et al. (2007),
we further investigated the functional form of the size-defect relationship and tested
the hypothesis that smaller modules are proportionally more defect prone. For this
purpose, we collected and analyzed module-level size and defect data from ten open-
source software products (Koru et al. 2007). The open-source data used in this
research will be publicly available in the PROMISE data repository (Promise 2007).
Therefore, the analysis results will be reproducible and verifiable.

In the rest of this paper, we start by discussing the related work. Then, we explain
the methodology used in the study. After that, we present our results followed by
a discussion of the cost effectiveness of giving higher priority to smaller modules.
Then, we demonstrate the benefits of our recommendations by using size and defect
data from two commercial systems. We also discuss the limitations of the study and
mention the future research directions, after which we conclude the paper.

2 Related Work

There is a significant and growing body of work that predicts defect-proneness
using size and other structural measures. However, the studies in this area have not
explicitly examined the functional form of the size-defect relationship. In this section,
we discuss the other related studies to provide context.

A large number of studies directly built regression models by using size as the
predictor variable and defect count as the response variable. Sometimes, instead
of size, other code measures, e.g. McCabe’s cyclomatic complexity (McCabe 1976)
and Halstead measures (Halstead 1977), were used as predictors. Later, those
measures were found to be strongly correlated with size (Fenton and Pfleeger 1996;
Fenton and Neil 1999). The earlier studies often built linear regression models,
where the linearity of the size-defect relationship was implicitly accepted (Akiyama
1971; Funami and Halstead 1976; Shen et al. 1985). This approach was sometimes
defended for its practicality and sometimes for the availability of tool support
(Shen et al. 1985).

Some researchers derived models analytically first and then fit the data to vali-
date those models. Lipow’s logarithmic model (Lipow 1982) and Gaffney’s models
(Gaffney 1984) are such examples. However, in (Lipow 1982) defect density and
size were included together in the same model, which suffers from artificial ratio
correlations (Chayes 1971). In Gaffney (1984), the significance of the deviation from
linearity was not shown, and alternative (non-linear) models were not explored.

Another group of studies used defect density (defect count divided by size) in
order to adjust for size and reported that there was a U-shaped curve when defect

476 Empir Software Eng (2008) 13:473–498

density was plotted against size (Compton and Withrow 1990; Hatton 1997, 1998;
Withrow 1990). Defect density was observed to be high for smaller and larger
module sizes, and an optimal medium size minimizing defect density was reported.
Such observations are generally called the Goldilock’s conjecture (El Emam et al.
2002). As a result, developers were advised to produce medium size modules: not
too small, not too big. The early study of Basili and Perricone (1984) can be
put into this category too because the authors studied defect density against size
when they made quality comparisons. Recently, this group of studies was criticized
because of their analysis approach of plotting or studying size against defect density
(El Emam et al. 2002). Such an approach masks the original relationship between
size and defects, resulting in superior correlations and misleading conclusions, as also
stressed by Rosenberg (1997) and Fenton and Neil (1999). The reason is that, when
plotted against size, defect density will be almost always high (caused by using a small
denominator in the division operation); then, it will sharply drop hitting a minimum
value at a medium size and then, it will start to raise again. Consequently, the
U-shaped curves, threshold effects, and optimum module sizes observed by following
this approach are arithmetic artifacts (El Emam et al. 2002). Such observations could
be reported even if there was no particular relationship between size and defects.

More recently, machine learning and data mining techniques such as neural
networks (Khoshgoftaar et al. 1997), tree-based modeling (Koru and Tian 2003), and
optimal set reduction (Briand et al. 1993), were employed to create quality prediction
models. These models often use size as a predictor variable along with others. Such
models do not assume a functional form for the size-defect relationship. However,
it is often difficult to have a good understanding of the nature of the size-defect
relationship from the resulting models (e.g., from a neural network model).

Therefore, if we put our study in the context of the existing literature of software
engineering, focusing this research on the basic size-defect relationship is important
for several reasons:

1. As defect prediction models get larger and more complex (e.g. with many pre-
dictor variables and rules) and customized to specific environments, it becomes
more difficult to interpret them and generalize them to different environments.
Instead, smaller models can inform practitioners better about what kind of
functional relationships should be expected; they can become generalizable and
gain widespread use in practice.

2. Many earlier studies focused on predicting defects and improving the prediction
accuracy; however, they did not consider how the resulting models would be
used in a development context, which involves making business decisions about
how to allocate the limited quality assurance resources. For example, many
studies suggest that the practitioners focus the quality assurance activities on
more complex modules, which are also larger because of the now well-known
correlation between complexity metrics and size (El Emam et al. 2001; Fenton
and Pfleeger 1996; Meine and Miguel 2007). However, it is often overlooked
that inspecting or testing those modules will also consume more time and effort.
Knowing the nature of the size-defect relationship will enable the practitioners
to invest their resources in a more efficient and effective manner. Such benefits
will be further discussed in Section 5.

3. Even if it is only for descriptive purposes, understanding the size-defect re-
lationship is very important. Still, many practitioners are using defect density

Empir Software Eng (2008) 13:473–498 477

to make quality comparisons among software modules, which assumes a linear
size-defect relationship. However, if smaller modules are always proportionally
more defect-prone than larger modules, and if this phenomenon can be repeat-
edly observed by looking at different products, then using defect density for
quality comparison among software modules without considering the nature of
size-defect relationship will always penalize smaller modules. Therefore, better
understanding of the plain size-defect relationship is important because it will
enable us to make more informed quality comparisons among software modules.

3 Methods

The main objective of this study was to investigate the functional form of the size-
defect relationship and test the hypothesis that smaller modules are proportionally
more defect prone. We measured size in LOC (lines of code), and related it to defect-
proneness at the module level.

The size and defect data came from ten different products in the KOffice2 suite,
which were developed by different programmer teams with the support of an open-
source community surrounding them. The KOffice suite is an open-source alternative
to closed-source commercial office suites. All of the KOffice products studied were
written in C++. Therefore, rather than using files as modules, we considered each
class a module because, in object-oriented programs, a class represents a logically
cohesive software unit.

The development process for the KOffice products was similar to those in many
other open-source projects, which typically involves the identification of tasks (e.g.,
various enhancement and maintenance tasks), identification of volunteers, and task
execution (Mockus et al. 2002). Typically, open-source development processes are
loosely organized, where products are continuously evolved (Raymond 1999) as
opposed to better defined processes traditionally seen in the closed-source devel-
opment world, which can involve designated planning, analysis, and design phases
and activities.

In this section, we start with an overview of Cox proportional hazards modeling
(Cox modeling, henceforth), which is the analysis method used. We explain the
application of this method in this study where a different Cox model was created for
each product analyzed. Then, we explain the data used in this study and the specific
data collection procedures.

3.1 Cox Modeling

Cox modeling was proposed to understand the effects of covariates on the instan-
taneous relative risk for an event of interest (Cox 1972; Harrell 2001; Hosmer and
Lemeshow 1999; Therneau and Grambsch 2000). It is used frequently in epidemiol-
ogy to understand the effects of certain patient characteristics (e.g., age, medication,
sex) on the relative risk of death at any given time, which can be also subject to
some other unknown or uncontrollable effects. Data used for Cox models are called

2Webcite link: http://www.webcitation.org/5Rqr0BSz8 (cached Sep. 14, 2007)

http://www.webcitation.org/5Rqr0BSz8

478 Empir Software Eng (2008) 13:473–498

censored data because the event of interest may or may not occur for an observed
subject. Therefore, the event information must be attached to observations. The Cox
model was later connected to the counting process theory to accommodate recurrent
events (Andersen et al. 1993). Accommodating recurrent events (also called multiple
events) enables analysts to take the changes in the predictor variables, which can
take place over time, into account. In our research, we use this technique to model
recurrent defect fixes and changes in module size.

Cox modeling with recurrent events is especially suited to software quality model-
ing for non-traditional software development environments, where software modules
evolve, change in size, and experience non-corrective and corrective changes in a
concurrent and continuous fashion. Open-source and agile development projects are
good examples of such development environments.

In those environments, measuring software modules in a specific system snapshot
and relating those measurements to future defects could pose serious internal validity
threats mainly due to the size changes in modules and due to the modules deleted
over time. Indeed, the frequent daily changes in the KOffice projects studied in this
paper have been well recognized by the KOffice developers and documented by
researchers (Askari and Holt 2006). In this situation, we cannot make an assumption
that a module’s size will be fixed during its life time when it undergoes various
corrective, perfective, and adaptive maintenance work. One could obtain a sample
of non-deleted classes whose size does not change. However, this would significantly
reduce the amount of available data. Therefore, Cox modeling becomes necessary.

We obtained a complete size and change history of every class (module) intro-
duced to the KOffice products during our observation period. Each change made to
a class resulted in a new snapshot for that class. For each such change, we determined
the new class size, date and time of change, and whether the change was a corrective
change or not. An individual observation (data point) was created for each snapshot
of a class with the size and time data and added to the data set. For deleted classes,
no new observation was added after the last one.

In our research, an event corresponded to a defect fix made to a C++ class. Since
it is impossible to know defects ahead of time, defect fixes have been traditionally
used as an indicator of defect proneness in many studies in this area, e.g., (Basili
and Perricone 1984; Munson and Khoshgoftaar 1992; Troster and Tian 1995). The
instantaneous risk (probability) of experiencing an event, which is also called hazard,
at any time t was used as the indicator of defect-proneness. This hazard is modeled
by the following hazard function:

λi(t) = λ0(t)eβxi(t) (1)

where,

• xi(t): Size of class i at time t (class size is a time-dependent covariate)
• β: The coefficient for size
• λ0: Baseline hazard function, which is the hazard when there is no covariate effect

Taking the natural logarithm of both sides of (1), it can be seen that xi(t) should
be linearly related to log hazard. If not, a link function f (xi(t)), which provides a
transformation that is linearly related to the log hazard should be found and used
instead of xi(t).

Empir Software Eng (2008) 13:473–498 479

The baseline hazard is an unknown function, and it does not have to be specified.
This function is cancelled out when the relative risk between two classes is calculated,
which is the emphasis of Cox modeling. The relative risk (also called hazard ratio or
relative hazard) for two classes, i and j, at any time t, can be written as (using the link
function for the sake of generality):

λi/λ j = eβ(f (xi(t))− f (x j(t))) (2)

Therefore, the relative risk at any given time should depend only on the covariate
values. The coefficient, β, should be a constant over time. A Cox model must satisfy
this condition, which is called the proportional hazards assumption. As discussed
in Section 4.3, we checked all of our models to make sure that this assumption
was satisfied.

A nice characteristic of any Cox model is that it can accommodate multiple base-
line hazards. Still, a single coefficient estimate is produced for each covariate, which
applies to all baseline hazards. We take advantage of this characteristic and create
different baseline hazards for different observation categories. This stratification
helps preserve the proportionality in Cox models. The idea behind stratification in
Cox modeling is similar to the idea of stratification in other statistical methods. If
there is a factor that needs to be controlled because it is of secondary or no interest,
it can be used to divide the data set. As a result, the effect of more important
covariate(s) can be observed better.

The specific Cox models produced in this study using stratification are called
conditional models (Therneau and Grambsch 2000), which are a specialized form of
recurrent Cox models. In the conditional Cox models, the subjects start at an initial
state and can make certain state transitions. Each state corresponds to a different risk
set with a different baseline hazard. At any given time, a subject belongs to only one
particular risk set. The states in our study were identified according to the number
of prior events (defect fixes) experienced. We used four states corresponding to 0,
1–5, 6–25, and >25 prior events, labeled from 1 to 4, respectively. These states were
determined empirically by examining the range of the number of events per class
across products and by testing whether using those states preserve proportionality
for all models. A class starts at state 1, and can make a transition from state n to state
n + 1 (0 < n < 4) according to the number of events it has experienced. The state
information was also attached to each observation as a numeric field.

To summarize, we followed the steps below in our modeling for each product
analyzed:

1. We found the appropriate link function for size by using the restricted cubic
splines (Harrell 2001). This approach relaxes the linearity assumption for the
link function and plots size against the log-relative hazard by dividing size into
multiple ranges identified by knots and by fitting a cubic polynomial for each
individual size range. The advantage of using cubic splines over linear ones is
that they provide better fits by curving at the knot points (Harrell 2001).

2. We built a conditional Cox model using the identified link function of size, and
examined the significance of the covariate. We interpreted the models and what
they meant in terms of the size-defect relationship.

3. We applied a number of model diagnostics, which included checking whether
the model satisfied the proportional hazards assumption or not, examining the
overly influential points, and checking the overall fitness of the model.

480 Empir Software Eng (2008) 13:473–498

4. Finally, we obtained the functional form of the size-defect relationship and tested
whether smaller modules are proportionally more defect prone. This step is
further discussed in the results section because it uses the particular link function
identified in this study.

3.2 Data Description

The C++ classes in our study were those created during our observation window,
which was from April 18, 1998, when developers started to add source code to the
public code repository of the KOffice products, to January 19, 2006, the end date
of our data collection. For each of the ten KOffice products, a distinct data set was
created. All of the data sets had the same format shown in Table 1, which includes
hypothetical data for demonstration purposes.

The data was prepared according to the following rules:

1. A new observation was created when a class was first created, or whenever it
was modified. Therefore, each observation corresponding to a row in Table 1
belongs to a class snapshot with the creation time, Start. For the first observation
of any class, Start was set to zero. Note that, in modeling, we always use study
times, which are different from calendar times; two classes introduced at different
calendar times would both have zero as their Start time.

2. The time End was set with either the class’ next modification time, or the
time our observation period ended, or the deletion time, whichever applied or
came first.

3. Event was set to 1 if the change taking place at time End was a defect fix,
0 otherwise.

4. The State column included the state of a class (explained in Section 3.1) at the
time of Start.

5. Size was the class size at the time Start, as measured by LOC excluding blank and
comment lines.

The above rules allow modeling of class deletions and the changes in class size,
which is difficult to deal with using the traditional quality modeling methods. The
traditional approaches usually measure the modules in a single or limited number of
identified system snapshots, and associate the measurements with the future defect
count or with a binary variable.

Table 1 Format of the data
for KOffice products
(hypothetical data used)

Class name Size Start End Event State

C 100 0 20 1 1
C 300 20 40 0 2
D 250 0 30 1 1
D 150 30 40 1 2
D 100 40 80 1 2
D 170 80 100 1 2
D 200 100 130 1 2
D 300 130 180 1 2
D 450 180 200 0 3
.

Empir Software Eng (2008) 13:473–498 481

The data in the format shown in Table 1 was fed to the statistical analysis environ-
ment, R (R Development Core Team 2003) for Cox modeling. More specifically, we
used the Design Package (Harrell 2005) to obtain the Cox models. Then, we used the
Survival (Therneau 1999) package to obtain the robust standard error estimates of β

(not available in the Design package). These two packages require us to put the data
in the format seen in Table 1 (also known as conditional counting process format).

3.3 How Cox Modeling Works

At this point, it is useful to discuss how a data set that looks like Table 1 is used
for Cox recurrent event modeling purposes because this format is different from
what is typically seen in ordinary regression modeling. In ordinary regression, each
observed unit (in this case, each software class) corresponds to only one observation.
The data for each unit includes a response variable and a set of predictor variables,
which are represented across the row for each observed unit. In Cox recurrent event
modeling, each observed unit might have one or more observations, each observation
with its own corresponding row. Each observation includes time stamps (Start and
End), event data (Event), and covariates (in this case only one covariate, Size). The
covariate(s) are used as predictors; and, the time stamps and event columns are used
to derive the measure of interest, relative risk.

In order to see how Cox recurrent events modeling works, imagine that a new
table of event times was built from Table 1 by taking the distinct End values where
Event is 1. This new format can be seen in Table 2.

To simplify this presentation, let us assume that Size is transformed to a di-
chotomized variable Large by using a threshold value. That is:

Large =
{

1, if Size > Threshold
0, Otherwise

}
(3)

In this case, directly following (2), the relative risk of a large class, L (having
Large = 1), compared to a small one, S (having Large = 0), at any time can be simply
modeled with:

λL/λS = eβ (4)

In Table 2, at each event time, the number of classes experiencing an event and
those that are at risk can be noted for both large and small categories. Then, for both
categories, we can divide the number of classes experiencing an event by those that
are at risk. This will give us the hazard rates for large and small classes, λL and λS,
respectively for each event time. The estimate of the relative risk can be obtained

Table 2 Table of event times (fictitious data is included for demonstration purposes)

Event Large classes Small classes Point estimates
time Number Number Number Number Hazard Hazard

Relative

having an at risk having an at risk for large for small

risk (λ̂L/λ̂S)

event event classes (λ̂L) classes (λ̂S)

Time 1 10 450 20 2,500 0.02 0.008 2.5
Time 2 7 400 14 2,800 0.0175 0.005 3.5
. .

482 Empir Software Eng (2008) 13:473–498

by calculating λL/λS at each event time. Finally, we can empirically obtain a point
estimate of β by using (4) as the model and Table 2 as the data set. Note that, in a
table like Table 2, the number of classes at risk in each risk set (corresponding to
a State) will be most probably different at different times because of the added and
deleted classes.

In this study, a continuous covariate, Size, is used rather than a dichotomous one
(Large). The estimation of β is based on similar principles but is achieved by identi-
fying the value that maximizes a partial likelihood function. The explanation of this
method is substantially longer. Readers can find more information in Cox’s original
paper (Cox 1972) and (Hosmer and Lemeshow 1999; Therneau and Grambsch 2000).

3.4 Data Collection

The raw data, used to obtain our data set in the format shown in Table 1, were
collected from the CVS3 databases of the analyzed products. We used a reverse
engineering tool, Understand for C++ (Scientific Toolworks 2003), for measurement
purposes. We developed PERL4 scripts to examine the CVS check-ins that took
place during our observation period one by one. For each CVS check-in, our
programs asked Understand for C++ to identify the changed, added, and deleted
classes, and exported the size measurements for them. The lines that were only
comment lines or blank lines were excluded in size measurement. The Start and End
fields were calculated in minutes from the time tags of the CVS check-ins. The events
were detected by searching for the words ‘bug’, ‘fix’, and ‘defect’ in the CVS logs in
a non-case sensitive manner. Descriptive information about the products analyzed in
this study and about their data sets is shown in Table 3.

After the product name and functionality, Table 3 first presents the number of
classes created, observations made, and the number of events that took place during
our observation period. The number of observations (n) per product is equal to the
number of rows (in Table 1) for each data set. To give an idea about the size of
the products, Table 3 also shows the number of classes and the total size for each
product as they appeared in the KOffice 1.4.2, which was the last release before our
observation period ended. The sizes of those products ranged roughly from seven to
132 KLOC (thousand lines of code). Therefore, the products we studied provided a
large number of data points for our analysis. The external libraries and the libraries
shared among the KOffice products were excluded from the analysis.

4 Results

In this section, we present the results of the analysis steps enumerated in our Cox
modeling section (Section 3.1).

3CVS was the source code control system used by the KOffice developers. Webcite link: http://
www.webcitation.org/5RrT2BaV1 (cached Sep. 14, 2007)
4Perl is a stable, cross platform programming language. Webcite link: http://www.webcitation.org/
5RrTDEdYV (cached Sep. 14, 2007)

http://www.webcitation.org/5RrT2BaV1
http://www.webcitation.org/5RrT2BaV1
http://www.webcitation.org/5RrTDEdYV
http://www.webcitation.org/5RrTDEdYV

Empir Software Eng (2008) 13:473–498 483

T
ab

le
3

D
es

cr
ip

ti
ve

in
fo

rm
at

io
n

ab
ou

tt
he

da
ta

se
ts

us
ed

in
th

e
st

ud
y

P
ro

du
ct

F
un

ct
io

na
lit

y
D

ur
in

g
th

e
ob

se
rv

at
io

n
pe

ri
od

(A
pr

18
,1

99
8–

Ja
n

19
,2

00
6)

In
K

O
ffi

ce
1.

4.
2

(O
ct

.1
1,

20
05

)

N
um

be
r

of
cl

as
se

s
N

um
be

r
of

ob
se

rv
at

io
ns

N
um

be
r

of
ev

en
ts

N
um

be
r

of
cl

as
se

s
T

ot
al

L
O

C
cr

ea
te

d
m

ad
e

(n
)

(d
ef

ec
tfi

xe
s)

K
ar

bo
n

Sc
al

ab
le

ve
ct

or
dr

aw
in

g
38

2
5,

07
2

1,
24

2
17

9
24

,2
19

K
C

ha
rt

C
ha

rt
dr

aw
in

g
11

2
40

6
98

77
26

,7
87

K
ex

i
In

te
gr

at
ed

da
ta

25
0

61
3

10
6

50
7

60
,2

19
m

an
ag

em
en

t
K

F
ilt

er
C

on
ve

rs
io

n
am

on
g

va
ri

ou
s

1,
13

1
5,

04
5

1,
14

2
88

2
13

2,
22

6
fil

e
fo

rm
at

s
K

iv
io

D
ia

gr
am

m
in

g
an

d
19

1
1,

43
1

37
7

13
8

22
,1

84
flo

w
ch

ar
ti

ng
K

P
re

se
nt

er
P

re
se

nt
at

io
n

40
9

2,
38

0
60

8
17

5
47

,3
48

K
ri

ta
P

ai
nt

in
g

an
d

im
ag

e
ed

it
in

g
1,

21
0

9,
14

9
2,

96
1

51
3

47
,6

12
K

Sp
re

ad
Sc

ri
pt

ab
le

sp
re

ad
sh

ee
t

58
7

5,
33

9
1,

78
9

23
1

65
,3

73
K

ug
ar

T
oo

lf
or

ge
ne

ra
ti

ng
bu

si
ne

ss
12

9
60

2
11

2
58

7,
25

7
qu

al
it

y
re

po
rt

s
K

W
or

d
A

fr
am

e-
ba

se
d

w
or

d-
80

2
5,

95
3

1,
93

2
19

3
42

,9
00

pr
oc

es
si

ng
an

d
de

sk
to

p
pu

bl
is

hi
ng

pr
og

ra
m

484 Empir Software Eng (2008) 13:473–498

4.1 Identifying the Link Function

We started by identifying the appropriate link function for each product which
is achieved by plotting each covariate against log-relative risk (Therneau and
Grambsch 2000; Harrell 2001). Figure 1 shows the relationship between size and log-
relative hazard for each product using four knots placed at quartile size values and
restricted cubic splines. Usually, using four knots results in adequate fits as stressed
by Harrell (2001).

L
o

g
 R

el
at

iv
e

H
az

ar
d

L
o

g
 R

el
at

iv
e

H
az

ar
d

L
o

g
 R

el
at

iv
e

H
az

ar
d

L
o

g
 R

el
at

iv
e

H
az

ar
d

L
o

g
 R

el
at

iv
e

H
az

ar
d

L
o

g
 R

el
at

iv
e

H
az

ar
d

L
o

g
 R

el
at

iv
e

H
az

ar
d

L
o

g
 R

el
at

iv
e

H
az

ar
d

L
o

g
 R

el
at

iv
e

H
az

ar
d

L
o

g
 R

el
at

iv
e

H
az

ar
d

0 400 800 1200

–2
0

1
2

3

Karbona

0 1000 2000 3000

–2
0

1
2

KChartb

0 500 1500 2500

–3
–1

1
3

Kexic

0 1000 2000 3000

–2
–1

0
1

2

Kfilterd

0 500 1000 1500 2000

–2
0

1
2

3

Kivioe

0 2000 4000 6000

–2
0

1
2

KPresenterf

0 500 1500 2500

–1
0

1
2

Kritag

0 2000 4000 6000

–2
0

1
2

KSpreadh

0 200 400 600 800

–1
.5

0.
0

1.
0

Kugari

Size (LOC)

Size (LOC) Size (LOC) Size (LOC)

Size (LOC) Size (LOC) Size (LOC)

Size (LOC) Size (LOC) Size (LOC)

0 2000 4000 6000

–3
–1

1
3

KWordj

Fig. 1 Link functions for all KOffice products studied

Empir Software Eng (2008) 13:473–498 485

These plots show both the main curve and the 95% confidence intervals (dashed
curves). A log-relative hazard of zero was arbitrarily assigned to a class whose
observations were close to the mean size when all observations were taken into
account. The width between the dashed curves becomes zero at the point where the
log-hazard is zero. To have a plot less affected by the outliers, the smallest and largest
10 observations were omitted. The assignment of zero log-relative hazard and the
omission of the extreme values are standard procedures performed automatically by
the plotting function in the Design package (Harrell 2005).

After plotting Fig. 1, we visually examined the plots to find a generally applicable
link function as usually done (Therneau and Grambsch 2000). The nonlinearity of the
curves in Fig. 1 is very obvious. Generally speaking, the link function looks similar to
a logarithmic curve. Only in KFilter, there is a curve down showing less risk for very
large classes (for about 1% of the total number of classes). Because of this commonly
observed shape, we used natural logarithm as the link function. In our models, ln Size
was used as the predictor variable instead of Size.

Note that the shape of this link function reflects the relationship between
size and log-relative risk. The main purpose of identifying the link function is
to find a transformation of size so that the same differences in the transformed
covariate values will have the same multiplicative effect on the hazard, helping
preserve the proportionality assumption in the Cox models. Section 4.4 discusses
how we used this link function to obtain the functional form of the size-defect
relationship and test our hypothesis that smaller modules are proportionally more
defect prone.

In some of the medical problems, the important covariates affecting the hazard
function and their transformation are already known through prior research. For
example, for liver transplantation survival problems, the link function for bilirubin (a
substance related to liver function read from blood values) is known to take a roughly
logarithmic form (Therneau and Grambsch 2000). The shapes of the link function
observed in this paper and also in Koru et al. (2007) have started to accumulate
similar evidence in this domain showing that, in Cox models, the link function for
size is logarithmic.

4.2 Building Cox Models

Our next step was to build Cox models by using the logarithmic transformation of
size as the link function. We built ten different Cox models, each corresponding to
one of the ten products included in our study. The modeling results are summarized
in Table 4.

It can be noted that the point estimates of β were always above 0, showing the
positive effect of size on defect proneness. We also calculated the estimates of the
standard errors for β̂. To take the intra-subject correlations into account (multiple
observations per class), we also calculated the robust sandwich estimates for the
standard error of β̂ using grouped Jackknife as shown in Table 4. The models
presented in this table can be interpreted as follows:

One unit of increase in the natural logarithm of class size multiplies the rate of
experiencing a defect fix by eβ̂ .

486 Empir Software Eng (2008) 13:473–498

Table 4 Models for KOffice products

Product β̂ Standard Robust Non-proportionality Spearman’s ρ

error estimate of test (p-value) between actual
(SE) of β̂ SE for β̂ and expected

event count

Karbon 0.592 0.041 0.069 0.817 0.86
KChart 0.656 0.105 0.109 0.339 0.80
Kexi 0.843 0.107 0.100 0.691 0.73
KFilter 0.583 0.026 0.040 0.770 0.84
Kivio 0.786 0.067 0.075 0.780 0.92
KPresenter 0.590 0.040 0.051 0.402 0.93
Krita 0.414 0.019 0.026 0.061 0.87
KSpread 0.474 0.024 0.033 0.738 0.93
Kugar 0.555 0.096 0.091 0.492 0.74
KWord 0.740 0.026 0.037 0.285 0.96

4.3 Model Diagnostics

After creating the Cox models, we performed a test to see whether the propor-
tionality assumption of the Cox models was satisfied. This test can be performed
by checking whether time has a significant interaction with the effect of Size (i.e.
p < .05). If a covariate has disproportionate effects on hazard over time, it can be
detected by this test. A good example could be a drug, which is more effective in the
first weeks of a treatment. As noted in Therneau and Grambsch (2000), this test also
gives significant results when a wrong link function is used.

As seen in Table 4, the p-values for the time interaction test for all products
are well above 0.05. Therefore, there is no evidence for non-proportionality at all,
which shows that the proportional hazards assumption is satisfied for all Cox models
developed for all products.

After checking the proportional hazards assumption, we examined the overly
influential data points by plotting the dfbeta residuals for each product. An example
plotted for KWord can be seen in Fig. 2, where one observation at the bottom can
be considered overly influential. For all products, the influential data points were
identified, examined, and found to be valid data points. Removing them did not
change our coefficient estimates significantly due to the large number of data points
used in model building. Therefore, we decided to keep our original models.

Finally, we assessed model fitness by examining the Spearman correlation be-
tween the actual and expected number of events for classes. The expected number of
events for a class was calculated by taking the minus log of the value of the cumulative
hazard at the end of the period in which the class was observed. As seen in Table 4,
the Spearman’s correlation values obtained are high.

Therefore, each one of the produced models passed all of the diagnostic tests for
a good-fitting Cox model.

4.4 Obtaining the Functional Form and Hypothesis Testing

As discussed in Section 4.1, our visual examinations identified the link function to be
logarithm; therefore we used ln Size in our models (we denote that with ln x below

Empir Software Eng (2008) 13:473–498 487

Fig. 2 Influences for the
KWord data set

0 1000 2000 3000 4000 5000 6000

-0
.0

04
-0

.0
02

0.
00

0
0.

00
2

Observation (sorted by size from left to right)

In
flu

en
ce

 (
df

be
ta

 r
es

id
ua

l)

where x represents size). Note that the logarithmic transformation of size satisfied
the proportionality assumption in our Cox models seen in Table 4. In this section,
we first obtain the functional form of the size-defect relationship, and then test the
hypothesis that smaller modules are proportionally more defect prone.

Without loss of generality, following (2), the relative defect proneness (RDP) for
two classes j and k having x j > xk at any given time t can be written as (here we
exclude t for simplicity):

eβ(ln x j−ln xk) = eβ(ln(x j/xk)) = (x j/xk)
β (5)

The equation in (5) means that defect proneness (D) is related to module size (s)
raised to the power β. This functional form is a power law (Newman 2005) and it can
be generically written as:

D = α sβ + ε (6)

where α and ε represent a positive constant and a deviation term, respectively.
As a result, when the logarithm of defect-proneness (y-axis) is plotted against the
logarithm of size (on x-axis) using empirical data, it will result in a primarily linear
relationship.

To test our main hypothesis, i.e., smaller modules are proportionally more defect
prone, we need to examine the value of β because:

• β = 1 implies that size-defect relationship is linear, and smaller and larger
modules are, proportionally speaking, equally defect prone

• β > 1 implies that defect proneness increases faster than size, and larger modules
are proportionally more defect prone

• β < 1 implies that defect proneness increases slower than size, and smaller
modules are proportionally more defect prone

488 Empir Software Eng (2008) 13:473–498

Our main hypothesis can be supported only if the first two cases are rejected
strongly. We plotted the β estimates obtained from our models seen in Table 4 with
their 95% confidence intervals. The resulting plot is shown in Fig. 3.

Firstly, Fig. 3 shows that there is a positive effect of size on defect proneness
for all products (β̂ > 0 significantly). Therefore, as size increases, defect proneness
increases too, which shows that size-defect relationship is a monotonically increasing
relationship. Secondly, concerning the main hypothesis of this study, β̂ values and
their 95% confidence intervals are significantly smaller than 1 (shown by the dashed
horizontal line) for nine products. For Kexi, the same argument can be made with
85% confidence. Therefore, our hypothesis that smaller modules are proportionally
more defect prone is strongly supported. This means that when size-defect relation-
ship is plotted on a log-log graph, the slope of the linear fit will be less than 1.

Based on this observation, we can further refine the functional form of the size-
defect relationship: there is a power-law relationship between module size and defect
proneness where the latter increases at a slower rate.

5 Discussion

Our results based on the analysis of ten open-source products provide strong
evidence that smaller modules are proportionally more defect prone. The evidence
obtained supports the main hypothesis of this study.

Our findings have important implications on how to allocate resources for focused
quality assurance, such as testing and inspections, and how to prioritize those
activities. In real settings, there will be additional concerns in making such resource
allocation decisions, for example, which modules have higher business value, which
modules will be executed more frequently, which modules were referred to more
(e.g. library modules with higher fan-in), or which modules are logically related to
be examined together. Nevertheless, practitioners should also consider the results
presented in this paper. Let us demonstrate the implications of the models presented
in Table 4 on a hypothetical example.

B
et

a
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Karbon KChart Kexi KFilter Kivio KPresenter Krita KSpread Kugar KWord

Fig. 3 Coefficient estimates (β̂’s with their 95% confidence intervals)

Empir Software Eng (2008) 13:473–498 489

Imagine a scenario where each KOffice project is given a limited and fixed amount
of resources for code inspections, which is only enough to inspect 10,000 LOC. Let
us assume that the developers discussed their business concerns, operational profile,
etc., and decided that there are two inspection strategies each identifying a different
portfolio of C++ classes for inspection. The first strategy includes 80 classes of 100
LOC and 2 classes of 1,000 LOC; and, the second strategy includes 20 classes of 100
LOC and 8 classes of 1,000 LOC. The classes in this scenario are imaginary and they
are only used to demonstrate what information would be obtained from the models
presented in Table 4.

In this scenario, both strategies entirely consume the available inspection re-
sources. Understandably, the developers are trying to figure out which strategy would
be more cost effective in terms of detecting more defects. Here, for the sake of
simplicity, we also assume that there is a linear relationship between the inspection
resources spent and size for software modules, and all defects are equally detectable
(within and across modules).

According to our results, smaller modules are proportionally more defect prone.
Therefore, the first strategy including more classes of smaller sizes will be more cost
effective. To quantify the relative cost effectiveness of choosing the first strategy
over the second one, we can compare the defect proneness of the classes in the first
category to those included in the second category in a relative manner. The Cox
models developed in the study allow us to make such relative comparisons. Therefore
we define RDP as the relative risk (probability) of experiencing a defect fix.
In this case:

RDP = Probability of defect fix for all classes included in the first strategy
Probability of defect fix for all classes included in the second strategy

(7)

An RDP value of 1 means that the risk of experiencing a defect fix is equal for
the classes included in both strategies (no benefit of choosing one strategy over the
other one). If the RDP is greater than 1, this means that the risk of experiencing a
defect fix is greater for the classes included in the first strategy. If it is smaller than 1,
this means that the classes in the second strategy have a greater risk of experiencing
a defect fix. The derivation of the complete formula used to calculate the RDP is
provided in the Appendix. Note that, that formula can be used for any two portfolios
of modules. This flexibility enables practitioners to give higher priority to some other
concerns important for their business, and but still calculate the RDP with respect
to module size.

Table 5 shows what would be the RDP of the classes chosen by the first strategy
compared to those chosen by the second strategy by using the models presented
in Table 4. The 95% confidence intervals are also shown. As seen in Table 5, the
models strongly favor the first strategy over the second one. For example, in Krita,
choosing the first strategy is 2.09 times effective, in other words 109% more effective,
compared with the second one. This scenario demonstrates a potential for substantial
and important savings in real-life development efforts considering that software
developers usually work under tight deadlines, and they are typically in a rush to
deliver their products to market.

In real-life settings, developers might not have existing models similar to those
presented in Table 4. Could they simply use the general result of this study, which
is, smaller modules are proportionally more defect prone? In other words, would it

490 Empir Software Eng (2008) 13:473–498

Table 5 Relative
cost-effectiveness of the first
strategy choosing mostly
smaller classes compared with
the second one choosing
mostly larger classes

Product RDP (95% Confidence interval)

Karbon 1.71 (1.45–2.00)
KChart 1.58 (1.20–2.03)
Kexi 1.24 (0.95–1.60)
KFilter 1.73 (1.57–1.90)
Kivio 1.34 (1.10–1.62)
KPresenter 1.72 (1.56–1.88)
Krita 2.09 (2.01–2.17)
KSpread 1.96 (1.82–2.10)
Kugar 1.79 (1.43–2.17)
KWord 1.42 (1.29–1.56)

be advantageous to choose the smallest modules instead of the largest ones without
using any statistical or machine learning techniques? If such an approach were useful,
developers would only need a program implementing a simple sorting algorithm or a
spreadsheet program (e.g. Excel) to sort their classes according to their LOC value.

Note that, so far, practitioners have been always advised to focus on more complex
and larger modules because defect proneness generally increase with module size
and the other complexity metrics used in the prediction models are highly correlated
with module size (El Emam et al. 2001; Fenton and Pfleeger 1996; Meine and Miguel
2007). In fact, the perceived benefits of focusing on larger modules has been so
prevalent that even the researchers in this area assessed the benefits of their defect
prediction models by taking a simplified largest-first prediction approach as their
baseline, e.g., (Briand et al. 2001; Ostrand et al. 2005).

To externally validate the application of our results, we will use data from two
commercial software systems:

• The first system is called ACE, which is a telecommunications system developed
in C++, and remained in operation for more than fifteen years (Schmidt 1995).
The version we used consists of 174 different C++ classes each corresponding to
a data point in the ACE data set. Each data point includes the number of non-
comment and non-blank source LOC, and the number of post-release defects. In
the ACE data set, the total LOC was 11,195, and the total number of defects was
192. This data set was used in a previous study (El Emam et al. 2002).

• The second system is an IBM relational database management system (called
IBM-DB for short), which was developed using C++ at the IBM Software Solu-
tions Toronto Laboratory. Each data point in the IBM-DB data set corresponds
to a single class, and it includes the number of non-comment and non-blank
source LOC, and the number of all defects (pre and post release). In this data
set, the total LOC is 185,755 and the total number of defects is 7,824. The IBM-
DB data set was also used in the previous studies (Koru et al. 2003; Tian and
Troster 1998).

It is useful to first note that the ACE and IBM-DB data sets confirmed our finding
that there is a linear relationship between the logarithms of size and defects; the
Harvey-Collier test (Harvey and Collier 1977) found no evidence for nonlinearity
(p=0.48 for ACE and p=0.22 for IBM-DB).

Now, using the ACE and IBM-DB data, we can understand whether a smallest-
first or a largest-first strategy would potentially detect more defects for a limited and

Empir Software Eng (2008) 13:473–498 491

fixed amount of resource expenditure. We can assume that both projects are given
resources only enough to inspect around 20% of their code (it is generally known
that such resources are limited (El Emam 2005)). Then, we can compare the defect
proneness of the modules covered by both strategies using defect count as a measure.

The results presented in Fig. 4 show that the advantage of focusing the inspections
on the smallest modules is tremendous. Figure 4a shows that in ACE, given enough
resources to inspect 2,400 LOC, following the smallest-first strategy would cover a
group of modules that have 160% more defects compared to those covered by the
largest-first approach. The net gain of this approach, which is the extra number of
defects covered by the smallest-first strategy, is plotted in Fig. 4c. It is observable
that the benefit of the smallest-first strategy quickly increases even when a small
amount of code is inspected. Normally, the rate of increase in this benefit diminishes
as more code gets inspected. As seen in Fig. 4b, for IBM-DB, given enough resources

Inspected LOC (Total LOC = 11,195)

N
um

be
r

of
 D

ef
ec

ts

0 480 960 1,440 1,920 2,400

0 480 960 1,440 1,920 2,400

0
10

20
30

40
50

0
5.

21
10

.4
2

15
.6

2
20

.8
3

26
.0

4

P
er

ce
nt

ag
e

of
 T

ot
al

 D
ef

ec
ts

 (T
ot

al
 =

 1
92

)

ACEa IBM-DBb
Ericsson Telecommunications System in C++ IBM Relational Database Management System in C++

Smallest First Inspection
Largest First Inspection

Inspected LOC (Total LOC = 11,195) Inspected LOC (Total LOC = 185,755)

Inspected LOC (Total LOC = 185,755)

N
um

be
r

of
 E

xt
ra

 D
ef

ec
ts

N
um

be
r

of
 D

ef
ec

ts
N

u
m

b
er

 o
f

E
xt

ra
 D

ef
ec

ts

0
10

20
30

c ACE: Benefit of Choosing Smallest–First

0 8,000 16,000 24,000 32,000 40,000

0 8,000 16,000 24,000 32,000 40,000

0
50

0
10

00
15

00
20

00
25

00
30

00

0
7.

67
15

.3
4

23
.0

1
30

.6
7

38
.3

4

P
er

ce
nt

ag
e

of
 T

ot
al

 D
ef

ec
ts

 (T
ot

al
 =

 7
,8

24
)

0
50

0
10

00
15

00
20

00

d IBM–DB: Benefit of Choosing Smallest–First

Smallest First Inspection
Largest First Inspection

Fig. 4 Comparing the smallest-first and largest-first strategies by using ACE and IBM data. In a and
b, the number and percentage of defects covered by both strategies are plotted against the amount of
inspected code. In c and d, the benefit of the smallest-first strategy is shown in terms of the number
of extra defects it covers

492 Empir Software Eng (2008) 13:473–498

to inspect 40,000 LOC, the smallest-first strategy would be 441% as effective as
the largest-first strategy with the benefit of covering 2,394 extra defects. Again,
the smallest-first strategy would quickly start to pay off from the beginning of
the inspections.

To reiterate, in real settings there will be other criteria in prioritizing the testing
and inspection efforts. We are not suggesting that the smallest-first approach should
be strictly followed. However, the benefits demonstrated in Fig. 4 are huge gains in
cost effectiveness. Therefore, practitioners should consider giving a higher priority
to smaller modules in their focused quality assurance efforts.

6 Limitations

Our study has a number of limitations, some of which are similar to those typically
encountered in the empirical studies of software quality modeling.

Firstly, there might be other factors affecting the defect-proneness of software
modules, such as developers’ skill and training, amount of testing or peer-review
applied before source code commits, and reuse. At this point, we do not have such
data to include in our models. However, although one can speculate, there is no
evidence that such variables are unevenly distributed over size, which is a measure
consistently associated with defect proneness in the literature. Fortunately, the
modeling approach used in this study, Cox modeling, is a semi-parametric approach,
which quantifies the effect of size on relative defect-proneness when there are some
unknown or uncontrollable factors represented by the baseline hazard. It should be
also noted that we worked on a large number of products providing thousands of
data points. Surely, more complete models that include size among other variables
can be constructed and tested in the future research studies if the necessary data
become available.

Secondly, the defect fixes were used as an indicator of defect proneness. Tra-
ditionally, in the empirical studies of software engineering, defect fixes have been
frequently used as an indicator of defect-proneness for software modules, e.g.,
(Basili and Perricone 1984; Munson and Khoshgoftaar 1992; Troster and Tian 1995)
because, in real settings, defects cannot be known in advance. This approach is
similar to using patient treatment or hospital visits data to understand the extent of
certain diseases in epidemiology. It is possible that some defects will never surface,
or some will surface but they will not get fixed, or few defects could be fixed
multiple times. These are common and inherent problems in all research studies in
the software quality area (El Emam 2005), to which there is no general solution.
Still, defect fixes are good indicators of module quality, and they are important
because of their effect on the corrective maintenance costs. Also, some developers
may not write meaningful CVS logs. Nevertheless, in an earlier study (Koru and
Tian 2004), we found that defects were recorded with enough consistency and
completeness in the KDE projects (KOffice was initially a part of the KDE desktop,
which adopted similar defect handling practices). In this study, we identified defect
fixes by automatically parsing the CVS logs because a manual procedure would be
infeasible and, potentially, error prone. When we sampled 100 logs randomly to test
the effectiveness of our automated solution, the automated approach achieved 97%
accuracy with the manual approach used as the baseline for comparison.

Empir Software Eng (2008) 13:473–498 493

Thirdly, the hypothetical scenario presented in the discussion section made several
assumptions, among which, the most important one is that the inspection resource
spent for a module is linearly related to its size. If the future research studies
show otherwise, the presented results should be revised accordingly in terms of cost
effectiveness. However, the examples will still serve well in order to highlight the
advantages of giving priority to smaller modules in terms of being able to focus
on more defect-prone parts of a system, which can potentially reveal and fix more
defects improving the overall software quality and reliability.

Given that this study gave very consistent results across different products, we
have adequate confidence in their validity.

7 Future Work

At this stage, it is useful to speculate about the underlying reasons for our results.
As mentioned in our literature review, Basili and Perricone reached a similar
conclusion earlier (Basili and Perricone 1984). Their most plausible explanation of
the underlying mechanism was that the interface defects could have been distributed
over smaller and larger modules equally. The future research studies can investigate
the validity of this claim.

It could also prove useful to study whether there is a difference between smaller
and larger modules in terms of the resources and skills assigned to them during their
design, coding, review, and testing.

The future research studies building prediction models for software quality can
also benefit from our results by favoring smaller modules in their prediction mecha-
nism and by taking the cost-effectiveness issues discussed in this paper into account.

8 Conclusion

The nature of the relationship between module size and defect proneness is im-
portant because it can affect various decisions about how to apply focused quality
assurance activities.

The evidence obtained from this study using the module-level size and defect
data from ten different software products consistently showed that there is a power-
law relationship between size and defect proneness with the latter increasing at a
slower rate. This evidence clearly supports our hypothesis that smaller modules are
proportionally more defect prone. The earlier perception among practitioners and
researchers about a linear size-defect relationship could have been caused by the
fact that the functional form of this relationship was not investigated in depth earlier,
or because, they were more interested in or focused on only certain size ranges in the
entire size spectrum (e.g., only smaller modules). We suggest that the practitioners
take our findings into account in their testing and inspection prioritizations.

We have adequate confidence in the validity of our results considering that ten dif-
ferent products were analyzed in this replicated study, which confirmed the findings
from the Mozilla project presented in the PROMISE 2007 Workshop (Koru et al.
2007). In addition, for two commercial systems, we validated the cost effectiveness of

494 Empir Software Eng (2008) 13:473–498

focusing on smaller modules given limited and fixed resources for quality assurance.
Therefore, we state a theory of RDP for software modules:

In large-scale software systems, smaller modules will be proportionally more
defect prone compared to larger ones.

In addition to presenting interesting and significant results, this study also creates
a number of interesting future research directions, especially about investigating the
underlying reasons for the observed phenomenon and about building new prediction
mechanisms for software quality.

Finally, the KOffice results presented in this paper are verifiable. The raw data
used is publicly available in the KOffice project repository. The data sets prepared
and used for analysis has been made public by the first author in the PROMISE
repository. Our study is also repeatable, and it lends itself to future replicated studies
considering the current availability of publicly accessible source code, defect, and
data repositories.

Acknowledgements We would like to thank Frank E. Harrell for extending and modifying some
of the functionality in his Design package for us, Victor R. Basili for his helpful comments, Jeff
Tian for providing data, the associate editor, Tim Menzies, for his guidance and suggestions, and the
anonymous reviewers of this paper for their helpful and constructive feedback.

Appendix

In this appendix, we explain how to calculate the RDP of the modules chosen by one
inspection strategy with respect to those chosen by another inspection strategy. The
first inspection strategy chooses m modules having sizes (in LOC), s1, s2, ..., sm, and
the second one chooses n modules having sizes, S1, S2, ..., Sn.

First, let us take a reference module with size C. Since we observed a logarithmic
shape for the link function, following (2) and omitting the time parameter t to
simplify the notation, the RDP of an individual module of size s with respect to this
reference module at any time t would be eβ(ln s−lnC). For each inspection strategy, we
calculate the sum of the RDP of the selected individual modules with respect to the
reference module. To find the RDP, we simply take the ratio of these sums:

RDP =

m∑
i=1

eβ(ln si−ln C)

n∑
i=1

eβ(ln Si−ln C)

=

m∑
i=1

eβ ln si

eβ ln C

n∑
i=1

eβ ln Si

eβ ln C

=
�

�1
eβ ln C

m∑
i=1

eβ ln si

�
�1

eβ ln C

n∑
i=1

eβ ln Si

=

m∑
i=1

eβ ln si

n∑
i=1

eβ ln Si

. (8)

References

Akiyama F (1971) An example of software system debuggings. In: Information processing 71,
Proceedings of IFIP congress 71, vol 1. IFIP, Amsterdam, pp 353–359

Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting processes.
Springer, Heidelberg

Empir Software Eng (2008) 13:473–498 495

Askari M, Holt R (2006) Information theoretic evaluation of change prediction models for large-
scale software. In: Workshop on mining software repositories, MSR 2006, ICSE workshop,
Shanghai, 22–23 May 2006

Basili VR, Perricone BT (1984) Software errors and complexity: an empirical investigation. Commun
ACM 27(1):42–52

Briand LC, Basili VR, Hetmanski CJ (1993) Developing interpretable models with optimized
set reduction for identifying high-risk software components. IEEE Trans Softw Eng 19(11):
1028–1044

Briand LC, Bunse C, Daly JW (2001) A controlled experiment for evaluating quality guidelines on
the maintainability of object-oriented designs. IEEE Trans Softw Eng 27(6):513–530

Briand LC, Melo WL, Wüst J (2002) Assessing the applicability of fault-proneness models across
object-oriented software projects. IEEE Trans Softw Eng 28(7):706–720

Chayes F (1971) Ratio correlation: a manual for students of petrology and geochemistry. University
of Chicago Press, Chicago

Compton BT, Withrow C (1990) Prediction and control of ada software defects. J Syst Softw
12(3):199–207

Cox DR (1972) Regression models and life tables. J Royal Stat Soc 34:187–220
El Emam K (2005) The ROI from software quality. Auerbach Publications, Taylor and Francis

Group, LLC, Boca Raton
El Emam K, Benlarbi S, Goel N, Rai SN (2001) The confounding effect of class size on the validity

of object-oriented metrics. IEEE Trans Softw Eng 27(7):630–650
El Emam K, Benlarbi S, Goel N, Melo W, Lounis H, Rai SN (2002) The optimal class size for object-

oriented software. IEEE Trans Softw Eng 28(5):494–509
Fenton N, Pfleeger SL (1996) Software metrics: a rigorous and practical approach, 2nd edn.

PWS, Boston
Fenton NE, Neil M (1999) A critique of software defect prediction models. IEEE Trans Softw Eng

25(5):675–689
Fenton NE, Ohlsson N (2000) Quantitative analysis of faults and failures in a complex software

system. IEEE Trans Softw Eng 26(8):797–814
Funami Y, Halstead MH (1976) A software physics analysis of akiyama’s debugging data.

In: Proceedings of MRI XXIV international symposium on computer software engineering.
IEEE, Piscataway, pp 133–138

Gaffney JE (1984) Estimating the number of faults in code. IEEE Trans Softw Eng 10(4):459–465
Halstead MH (1977) Elements of software science. Elsevier, Amsterdam
Harrell FE (2001) Regression modeling strategies: with applications to linear modes, logistic regres-

sion, and survival analysis. Springer, Heidelberg
Harrell FE (2005) Design: design package. R package version 2.0–12. http://biostat.mc.vanderbilt.

edu/twiki/bin/view/Main/Design
Harvey AC, Collier P (1977) Testing for functional misspecification in regression analysis. J Econom

6(1):103–119
Hatton L (1997) Reexamining the fault density-component size connection. IEEE Softw 14(2):89–97
Hatton L (1998) Does oo sync with how we think? IEEE Softw 15(3):46–54
Hosmer DW, Lemeshow S (1999) Applied survival analysis: regression modeling of time to event

data. Wiley, New York
Khoshgoftaar TM, Allen EB, Hudepohl J, Aud S (1997) Applications of neural networks to software

quality modeling of a very large telecommunications system. IEEE Trans Neural Netw 8(4):
902–909

Koru AG, Tian J (2003) An empirical comparison and characterization of high defect and high
complexity modules. J Syst Softw 67(3):153–163

Koru AG, Tian J (2004) Defect handling in medium and large open source projects. Softw IEEE
21(4):54–61

Koru AG, Ma L, Li Z (2003) Utilizing operational profile in refactoring large scale legacy systems.
In: WCRE 2003: first IEEE international workshop on refactoring: achievements, challenges,
effects, Victoria, November 2003

Koru AG, Zhang D, Liu, H (2007) Modeling the effect of size on defect proneness for open-source
software. In: Predictor models in software engineering, PROMISE’07, 20–26 May 2007

Lipow M (1982) Number of faults per line of code. IEEE Trans Softw Eng 8(4):437–439
McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 2(6):308–320

http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/Design
http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/Design

496 Empir Software Eng (2008) 13:473–498

Meine JPvdM, Miguel AR (2007) Correlations between internal software metrics and software
dependability in a large population of small c/c++ programs. In: The 18th IEEE international
symposium on software reliability. IEEE, Trollhattan, pp 203–208

Mockus A, Fielding RT, Herbsleb J (2002) Two case studies of open source software development:
apache and mozilla. ACM Trans Softw Eng Methodol 11(3):309–346

Munson JC, Khoshgoftaar TM (1992) The detection of fault-prone programs. IEEE Trans Softw Eng
18(5):423–433

Newman MEJ (2005) Power laws, pareto distributions and zipf’s law. Contemp Phys 46:323
Ostrand TJ, Weyuker EJ, Bell RM (2005) Predicting the location and number of faults in large

software systems. IEEE Trans Softw Eng 31(4):340–355
Promise (2007) Promise data repository
R Development Core Team (2003) R: a language and environment for statistical computing. ISBN

3-900051-00-3
Raymond ES (1999) The Cathedral and the Bazaar: musings on Linux and open source by an

accidental revolutionary. O’Reilly, Sebastopol
Rosenberg J (1997) Some misconceptions about lines of code. In: METRICS ’97: Proceedings of the

4th international symposium on software metrics. IEEE Computer Society, Washington, DC,
pp 137–142

Schmidt DC (1995) Using design patterns to develop reusable object-oriented communication
software. Commun ACM 38(10):65–74

Scientific Toolworks I (2003) Understand for c++: user guide and reference manual, January.
I Scientific Toolworks, St. George

Shen VY, Yu TJ, Thebaut SM, Paulsen L (1985) Identifying error-prone software - an empirical
study. IEEE Trans Softw Eng 11(4):317–324

Therneau TM (1999) Survival: survival analysis package, including penalized likelihood. R package
v. 2.29. http://cran.r-project.org/web/packages/survival/index.html

Therneau TM, Grambsch PM (2000) Modeling survival data: extending the Cox model. Springer,
Heidelberg

Tian J, Troster J (1998) A comparison of measurement and defect characteristics of new and legacy
software systems. J Syst Softw 44(2):135–146

Troster J, Tian J (1995) Defect characteristics of legacy software: measurement, visualization,
regression analysis, and tree-based modeling. Technical report, IBM SWS Toronto Laboratory,
March

Withrow C (1990) Error density and size in ada software. IEEE Softw 7(1):26–30

A. Güneş Koru received a B.S. degree in Computer Engineering from Ege University, İzmir, Turkey
in 1996, an M.S. degree in Computer Engineering from Dokuz Eylül University, İzmir, Turkey in
1998, an M.S. degree in Software Engineering from Southern Methodist University (SMU), Dallas,
TX in 2002, and a Ph.D. degree in Computer Science from SMU in 2004. He is an assistant professor
in the Department of Information Systems at University of Maryland, Baltimore County (UMBC).
His research interests include software quality, measurement, maintenance, and evolution, open
source software, bioinformatics, and healthcare informatics.

http://cran.r-project.org/web/packages/survival/index.html

Empir Software Eng (2008) 13:473–498 497

Khaled El Emam is an Associate Professor at the University of Ottawa, Faculty of Medicine and the
School of Information Technology and Engineering. He is a Canada Research Chair in Electronic
Health Information at the University of Ottawa. Previously Khaled was a Senior Research Officer at
the National Research Council of Canada, and prior to that he was head of the Quantitative Methods
Group at the Fraunhofer Institute in Kaiserslautern, Germany. In 2003 and 2004, he was ranked as
the top systems and software engineering scholar worldwide by the Journal of Systems and Software
based on his research on measurement and quality evaluation and improvement, and ranked second
in 2002 and 2005. He holds a Ph.D. from the Department of Electrical and Electronics, King’s
College, at the University of London (UK). His labs web site is: http://www.ehealthinformation.ca/.

Dongsong Zhang is an Associate Professor in the Department of Information Systems at University
of Maryland, Baltimore County. He received his Ph.D. in Management Information Systems from
the University of Arizona. His current research interests include context-aware mobile computing,
computer-mediated collaboration and communication, knowledge management, and open source
software. Dr. Zhang’s work has been published or will appear in journals such as Communications
of the ACM (CACM), Journal of Management Information Systems (JMIS), IEEE Transactions on
Knowledge and Data Engineering (TKDE), IEEE Transactions on Multimedia, IEEE Transactions
on Systems, Man, and Cybernetics, IEEE Transactions on Professional Communication, among
others. He has received research grants and awards from NIH, Google Inc., and Chinese Academy
of Sciences. He also serves as senior editor or editorial board member of a number of journals.

http://www.ehealthinformation.ca/

498 Empir Software Eng (2008) 13:473–498

Hongfang Liu is currently an Assistant Professor in Department of Biostatistics, Bioinformatics,
and Biomathematics (DBBB) of Georgetown University. She has been working in the field of
Biomedical Informatics for more than 10 years. Her expertise in clinical informatics includes clinical
information system, controlled medical vocabulary, and medical language processing. Her expertise
in bioinformatics includes microarray data analysis, biomedical entity nomenclature, molecular
biology database curation, ontology, and biological text mining. She received a B.S. degree in
Applied Mathematics and Statistics from University of Science and Technology of China in 1994,
a M.S. degree in Computer Science from Fordham University in 1998, a PhD degree in computer
science at the Graduate School of City University of New York in 2002.

Divya Mathew received the BTech degree in computer science and engineering from Cochin
University of Science and Technology in 2005 and the MS degree in information systems from
the University of Maryland, Baltimore County in 2008. Her research interests include software
engineering and privacy preserving data mining techniques.

	Theory of relative defect proneness
	Abstract
	Introduction
	Related Work
	Methods
	Cox Modeling
	Data Description
	How Cox Modeling Works
	Data Collection

	Results
	Identifying the Link Function
	Building Cox Models
	Model Diagnostics
	Obtaining the Functional Form and Hypothesis Testing

	Discussion
	Limitations
	Future Work
	Conclusion
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

