
Empir Software Eng (2008) 13:601–643
DOI 10.1007/s10664-008-9073-9

Empirical evaluation of clone detection
using syntax suffix trees

Raimar Falke · Pierre Frenzel · Rainer Koschke

Published online: 22 July 2008
© Springer Science + Business Media, LLC 2008
Editors: Massimiliano Di Penta and Susan Sim

Abstract Reusing software through copying and pasting is a continuous plague in
software development despite the fact that it creates serious maintenance problems.
Various techniques have been proposed to find duplicated redundant code (also
known as software clones). A recent study has compared these techniques and shown
that token-based clone detection based on suffix trees is fast but yields clone candi-
dates that are often not syntactic units. Current techniques based on abstract syntax
trees—on the other hand—find syntactic clones but are considerably less efficient.
This paper describes how we can make use of suffix trees to find syntactic clones in
abstract syntax trees. This new approach is able to find syntactic clones in linear time
and space. The paper reports the results of a large case study in which we empirically
compare the new technique to other techniques using the Bellon benchmark for
clone detectors. The Bellon benchmark consists of clone pairs validated by humans
for eight software systems written in C or Java from different application domains.
The new contributions of this paper over the conference paper are the additional
analysis of Java programs, the exploration of an alternative path that uses parse trees
instead of abstract syntax trees, and the investigation of the impact on recall and
precision when clone analyses insist on consistent parameter renaming.

Keywords Software clone detection · Redundancy · Duplication ·
Software maintenance · Software evolution · Program analysis

R. Falke · P. Frenzel · R. Koschke (B)
University of Bremen, Bremen, Germany
e-mail: koschke@informatik.uni-bremen.de

R. Falke
e-mail: rfalke@informatik.uni-bremen.de

P. Frenzel
e-mail: saint@informatik.uni-bremen.de

602 Empir Software Eng (2008) 13:601–643

1 Introduction

It is still a common habit of programmers to reuse code through copy and paste. Even
though copy and paste is an obvious strategy of reuse and avoidance of unwanted side
effects, this strategy is only a short-term win. The interests of these strategies must be
paid back later by increased maintenance. Changes in all copies must be replicated if
the original code must be corrected or adapted.

Although some researchers report that programmers argue not to remove clones
because of the associated risks (Cordy 2003), there is a consensus that clones need to
be detected at least. Detection is necessary to find the place where a change must be
replicated and is also useful to monitor development in order to stop the increase of
redundancy before it is too late.

Detecting duplicated code (also known as software clones) is an active research
area. A recent study has compared these techniques and shown that token-based
clone detection based on suffix trees is fast but yields clone candidates that are often
not syntactic units (Bellon 2002; Bellon et al. 2007). Current techniques based on
abstract syntax trees (AST; Baxter et al. 1998)—on the other hand—find syntactic
clones but are considerably less efficient.

There are additional reasons to use AST-based clone detection beyond better
precision. Because most refactoring tools are based on ASTs, they need to access
clones in terms of nodes in the AST if they support clone removal. Furthermore,
ASTs offer syntactic knowledge which can be leveraged to filter certain types of
clones. For instance, one could exclude clones in declarative code or strictly sequen-
tial assignments as in constructors, which are often unavoidable. From a research
point of view, it would also be interesting to categorize and see where redundancy
occurs most frequently in syntactic terms (Kapser and Godfrey 2003a). Such empiri-
cal studies could also help to identify programming language deficiencies.

Contributions. This paper describes how we can make use of suffix trees to find
duplicates in abstract syntax trees. This new approach is able to find syntactic dupli-
cates in linear time and space. The paper reports the results of a case study in
which we empirically and quantitatively compare the new technique to many other
techniques using the Bellon benchmark for clone detectors. As a side effect of our
case study, we extend the Bellon benchmark by additional reference clones.

The additional contributions over the conference paper (Koschke et al. 2006) are
as follows. Whereas we were able to analyze only C systems for the previous paper,
we are now in the position to handle Java as well. Hence, we can take full advantage
of the Bellon benchmark, which consists of C and Java systems. Furthermore, our
earlier tool is based on an abstract syntax tree using a full fledged front end for C
with the overhead of semantic analysis, that is, name resolution, type binding etc.
Because this kind of information is not needed for our analysis and because parsing
is relatively cheap compared to semantic analysis, we implemented another tool that
generates a parse tree by syntactic analysis. This tool allows us to compare efficiency
regarding space and time consumption of our analysis for ASTs and parse trees.
To take full advantage of the availability of syntactic information, we implemented
syntactic filters for patterns of spurious clones, such as long array initializations,
in order to improve the results. Last but not least, we investigate the impact on
recall and precision when clone analyses insist on consistent parameter renaming

Empir Software Eng (2008) 13:601–643 603

and extended the section on related research considerably, where we summarize
empirical studies in clone detection.

Overview. The remainder of this paper is organized as follows. Section 2 delves
into the notion of duplication, redundancy, and clones in software. Section 3 sum-
marizes related empirical research. Techniques for automated clone detection are
described in Section 4. In particular, this section describes clone detection based on
suffix trees and abstract syntax trees in detail as they form the foundation of our new
technique. Section 5 introduces the new technique. In Section 7, we compare the new
technique to other techniques based on the Bellon benchmark for clone detectors.
Section 8 concludes.

2 Code Cloning

There are different forms of redundancy in software. Software comprises both
programs and data. In the database community, there is a clear notion of redundancy
that has lead to various levels of normal forms. A similar theory does not yet exist
for computer programs.

In computer programs, we can also have different types of redundancy. N-version
programming and redundancy in programming languages to allow for type checking
are examples for purposeful redundancy. Cloning is another type of redundancy that
is often due to copy and paste programming. Unlike in data base theory, however,
there is no agreement in the research community on the exact notion of redundancy
in general and cloning in particular. Ira Baxter’s definition of clones expresses this
vagueness:

Clones are segments of code that are similar according to some definition of
similarity. Ira Baxter, 2002

According to this definition, there can be different notions of similarity. They can
be based on text, lexical or syntactic structure, or semantics. They can even be similar
if they follow the same pattern, that is, the same building plan. Instances of design
patterns and idioms are similar in that they follow a similar structure to implement a
solution to a similar problem.

Semantic similarity relates to the observable behavior. A piece of code, A, is
semantically similar to another piece of code, B, if B subsumes the functionality of A,
in other words, they have “similar” pre and post conditions. Unfortunately, detecting
such semantic redundancy is undecidable in general. Because of that, automatic clone
detectors focus on program-text similarity.

Program-text similarity is most often the result of copy and paste; that is, the
programmer selects a code fragment and copies it to another location. Sometimes,
these programmers are forced to copy because of limitations of the programming
language. In other cases, they intend to reuse code. Sometimes these clones are
modified slightly to adapt them to their new environment or purpose. Several authors
report on 7–23% code duplication (Baker 1995; Kontogiannis et al. 1996; Lague et al.
1997); in one extreme case even 59% (Ducasse et al. 1999).

In this study, we adopt the following notion of a clone. Two segments of code
are considered clones if they follow a similar code pattern and if one segment is

604 Empir Software Eng (2008) 13:601–643

changed, the other one might need a similar change as well. In the absence of an
agreed precise definition, we adopt this still somewhat vague definition. Yet, in the
case study reported in Section 7, we will compare clones as proposed by automated
tools to those accepted by human intuition.

Program-text clones can be compared on the basis of the program text that has
been copied. We can distinguish the following types of clones accordingly:

• Type 1 (exact clone) is an exact copy without modifications (except for white-
space and comments when insignificant from the perspective of the language
definition).

• Type 2 (parameter-substituted clone) is a copy where only parameters (variable,
type, function identifiers or literals) have been changed; given a suitable parame-
ter substitution, the transformed copy is a type-1 clone

• Type 3 (near-miss clone) is a copy with further modifications, additions, or
removals.

The clone detectors we evaluate in this paper are comparing tokens rather
than text directly. A lexical analyzer processes indivisible sequences of characters
(a token) to categorize them according to type. The token type tells whether the
characters form a particular keyword of the programming language, an identifier,
a punctuation, or a certain type of literal (e.g., integer, float, character, string
literals). A token has an image, that is, a textual appearance (e.g., 0x10 in C) and
an associated value in the domain of its meaning (e.g., the integer 16 in the case
of 0x10).

For our tools, we decided to consider token values rather than images for the
comparison because the meaning can be the same even though the images are
different for two different tokens (e.g., 16 versus 0x10 in C). Type-1 clones in the
following are, hence, identical token sequences where both types and values are the
same. Type-2 clones are token sequences with the same types, where both identifiers
and literals are summarized in a common token type parameter. Type-3 clones finally
are token sequences where one sequence could be transformed into the other by
adding or removing tokens to obtain a type-2 clone (the number of such additions
and removing is of course limited so that two sequences can be considered sufficiently
similar).

Baker further distinguishes so called parameterized clones (Baker 1992), which
are a subset of type-2 clones. Two code fragments A and B are a parameterized
clone pair if there is a bijective mapping from A’s identifiers onto B’s identifiers that
allows an identifier substitution in A resulting in A′ and A′ is a type-1 clone to B
(and vice versa).

While type-1 and type-2 clones are precisely defined, the definition of type-3
clones is inherently vague. Some researchers consider two consecutive type-1 or
type-2 clones together forming a type-3 clone if the gap in between is below a certain
threshold of lines (Baker 1995; Li et al. 2006). Another precise definition could be
based on a threshold for the Levenshtein Distance, that is, the number of deletions,
insertions, or substitutions required to transform one string into another. There is no
consensus on a suitable similarity measure for type-3 clones yet.

The above category of clone types is sufficient for our evaluation. We note that
other authors have elaborated more distinguished categorizations useful to identify

Empir Software Eng (2008) 13:601–643 605

the type of refactoring to remove a clone (Balazinska et al. 1999, 2000) or to charac-
terize the scope and syntactic structure of clones (Kapser and Godfrey 2003a, b).

3 Related Empirical Research

This section summarizes related research in empirical studies in root causes, conse-
quences, evolution of clones, and comparisons of clone detectors.

3.1 The Root Causes for Code Clones

A recent ethnographic study by Kim et al. (2004) has shed some light on why
programmers copy and paste code. By observing programmers in their daily practice,
they identified the following reasons:

Language Limitations Sometimes programmers are simply forced to duplicate code
because of limitations of the programming language being used. Analyzing these root
causes in more detail could help to improve the language design.

Explorative Programming Furthermore, programmers often delay code restructur-
ing until they have copied and pasted several times. Only then, they are able to
identify the variabilities of their code to be factored out. Creating abstract generic
solutions in advance often leads to unnecessarily flexible and hence needlessly
complicated solutions. Moreover, the exact variabilities may be difficult to foresee.
Hence, programmers tend to follow the idea of extreme programming in the small
by not investing too much effort in speculative planning and anticipation. This is
supported by modern IDEs which have rich methods to support the programmers in
these tasks.

Cross-cutting concerns Systems are modularized based on design principles
such as information hiding, minimizing coupling, and maximizing cohesion. In
the end—at least for systems written in ordinary programming languages—
the system is composed of a fixed set of modules. Ideally, if the system
needs to be changed, only a very small number of modules need to be ad-
justed. Yet, there are very different change scenarios and it is not unlikely
that the chosen modularization forces a change to be repeated for many modules.
The triggers for such changes are called cross-cutting concerns. For instance, logging
is typically a feature that must be implemented by most modules. Another example
is parameter checking in defensive programming where every function must check its
parameters before it fulfills its purpose (Bruntink et al. 2004). Then copy and paste
dependencies reflect important underlying design decisions, namely, cross-cutting
concerns. Aspect-oriented language help to factor out such cross-cutting concerns,
but in ordinary languages a programmer is forced to inline the concern at many places
in the program.

Templating Another important root cause is that programmers often reuse the
copied text as a template and then customize the template in the pasted context.

Kapser et al. have investigated clones in large systems (Kapser and Godfrey 2006).
They found what they call patterns of cloning where cloning is consciously used as

606 Empir Software Eng (2008) 13:601–643

an implementation strategy. In their case study, they found the following cloning
patterns:

Forking is cloning used to bootstrap development of similar solutions, with the
expectation that the evolution of the code will occur somewhat independently, at
least in the short term. The assumption is that the copied code takes a separate
evolution path independent of the original. In such a case, changes in the copy may
be made that have no side effect on the original code.

Templating is used as a method to directly copy behavior of existing code where
appropriate abstraction mechanisms are unavailable. It was also identified as a main
driver for cloning in Kim and Notkin’s case study (Kim et al. 2004). Templating is
often found when a reused library has a relatively fixed protocol (that is, a required
order of using its interface items) which manifests as laying out the control flow of
the interface items as a fixed pattern.

Customization occurs when currently existing code does not adequately meet a
new set of requirements. The existing code is cloned and tailored to solve this new
problem.

Very likely other more organizational aspects play a role, too. Time pressure,
for instance, does not leave much time to search for the best long-term solution.
Unavailable information on the impact of code changes leads programmers to create
copies in which they make the required enhancement; such changes then are less
likely to affect the original code negatively. Inadequate performance measures of
programmers’ productivity in the number of lines of code they produce neither invite
programmers to avoid duplicates.

3.2 Consequences of Cloning

There are plausible arguments that code cloning increases maintenance effort.
Changes must be made consistently multiple times if the code is redundant. Often
it is not documented where code has been copied. Manual search for copied code
is infeasible for large systems. Furthermore, during analysis, the same code must be
read over and over again, then compared to the other code just to find out that this
code has already been analyzed. Only if you make a detailed comparison, which can
be difficult if there are subtle differences in the code or its environment, you can be
sure that the code is indeed the same. This comparison can be fairly time-consuming.
If the code would have been implemented only once in a function, this effort could
have been avoided completely.

For these reasons, code cloning is number one on the stink parade of bad smells
by Fowler (1999). But there are also counter arguments. In Kapser and Godfrey’s
study (Kapser and Godfrey 2006), code cloning is a purposeful implementation
strategy which may make sense under certain circumstances. Moreover, it is not
clear when you have type-3 clones whether the unifying solution would be easier
to maintain than several copies with small changes. Generic solutions can become
overly complicated. Maintainability can only be defined in a certain context with
controlled parameters. That is, a less sophisticated programmer may be better off
maintaining copied code than a highly parameterized piece of code. Moreover,
there is a risk associated with removing code clones (Cordy 2003). The removal

Empir Software Eng (2008) 13:601–643 607

requires deep semantic analyses, and it is difficult to make any guarantees that the
removal does not introduce errors. There may be even organizational reasons to copy
code. Code cloning could, for instance, be used to disentangle development units
(Cordy 2003).

The current debate lacks empirical studies of the costs and benefits of code
cloning. There are very few empirical studies that explore the interrelationship of
code cloning and maintainability. Monden et al. (2002) analyzed a large system
consisting of about 2,000 modules written in 1 MLOC lines of COBOL code over
a period of 20 years. They used a token-based clone detector to find clones that were
at least 30 lines long. They searched for correlations of maximal clone length with
change frequency and number of errors. They found that most errors were reported
for modules with clones of at least 200 lines. They also found many errors in modules
with shorter clones up to 50 lines. Yet, interestingly enough, they found the lowest
error rate for modules with clones of 50 to 100 lines. Monden et al. have not further
analyzed why these maintainability factors correlate in such a way with code cloning.

Chou et al. (2001) investigated the hypothesis that if a function, file, or directory
has one error, it is more likely that is has others. They found in their analysis
of the Linux and OpenBSD kernels that this phenomenon can be observed most
often where programmer’s ignorance of interface or system rules combines with
copy and paste. They explain the correlation of bugs and copy and paste primarily
by programmer ignorance, but they also note that—in addition to ignorance—the
prevalence of copy and paste error clustering among different device drivers and
versions suggests that programmers believe that “working” code is correct code.
They note that if the copied code is incorrect, or it is placed into a context it was
not intended for, the assumption of goodness is violated.

Li et al. (2006) use clone detection to find bugs when programmers copy code but
rename identifiers in the pasted code inconsistently. On average, 13% of the clones
flagged as copy and paste bugs by their technique turned out to be real errors for the
systems Linux kernel, FreeBSD, Apache, and PostgreSQL. The false positive rate is
73% on average, where on average 14% of the potential problems are still under
analysis by the developers of the analyzed systems.

3.3 Clone Evolution

There are a few empirical studies on the evolution of clones. Antoniol et al. propose
time series derived from clones over several releases of a system to monitor and
predict the evolution of clones fairly reliably (Antoniol et al. 2001). In another
case study for the Linux kernel, they found that the scope of cloning is limited
to certain subsystems (Antoniol et al. 2002). Only few clones can be found across
subsystems; most clones are completely contained within a subsystem. The expla-
nation for this phenomenon is that newer modules are often derived from existing
similar ones. The relative number of clones, on the other hand, seems to be rather
stable, that is, cloning does not occur in peaks. This last result was also reported by
Godfrey and Tu who noticed that cloning is common and steady practice in the Linux
kernel (Godfrey and Tu 2001). However, the cloning rate does increase steadily
over time as observed by Li et al. (2006) for the Linux kernel and FreeBSD, where
again only certain subsystems closer to the hardware show a higher rate of copy and
paste code.

608 Empir Software Eng (2008) 13:601–643

Kim et al. analyzed the clone genealogy for two open-source Java systems using
historical data from a version control system (Kim et al. 2005). A clone genealogy
forms a graph that shows how clones derive in time over multiple versions of a
program from common ancestors. Beyond that, the genealogy contains information
about the differences among siblings. Their study showed that many code clones
exist for only a short time. Kim et al. conclude that extensive refactoring of such
short-lived clones may not be worthwhile if they likely diverge from one another
very soon. Moreover, many clones, in particular those with a long lifetime that have
changed consistently with other elements in the same group cannot easily be avoided
because of limitations of the programming language.

3.4 Comparison of Clone Detection Algorithms

The abundance of clone detection techniques calls for a thorough comparison so
that we know the strengths and weaknesses of these techniques in order to make an
informed decision if we need to select a clone detection technique for a particular
purpose.

Clone detectors can be compared in terms of recall and precision of their findings
as well as suitability for a particular purpose. There are several evaluations along
these lines based on qualitative and quantitative data.

Bailey and Burd compared three clone and two plagiarism detectors (Bailey
and Burd 2002). Among the clone detectors were three of the techniques later
evaluated by a subsequent study by Bellon et al. (2007), namely, the techniques by
Kamiya et al. (2002), Baxter et al. (1998), and Mayrand et al. (1996). For the last
technique, Bailey used an own re-implementation; the other tools were the original
ones. The plagiarism detectors were JPlag (Prechelt et al. 2000) and Moss (Schleimer
et al. 2003).

The clone candidates of the techniques were validated by Bailey, and the accepted
clone pairs formed an oracle against which the clone candidates were compared.
Several metrics were proposed to measure various aspects of the found clones, such
as scope (i.e., within the same file or across file boundaries), and the findings in terms
of recall and precision.

The syntax-based technique by Baxter had the highest precision (100%) and the
lowest recall (9%) in this experiment. Kamiya’s technique had the highest recall and
a precision comparable to the other techniques (72%). The re-implementation of
Merlo’s metric-based technique showed the least precision (63%).

Fig. 1 Participating scientists
Participant Tool Comparison

Brenda S. Baker (1995) DUP Token
Ira D. Baxter (1998) CLONEDR AST
Toshihiro Kamiya (2002) CCFINDER Token
Jens Krinke (2001) DUPLIX PDG
Ettore Merlo (1996) CLAN Function Metrics
Matthias Rieger (1999) DUPLOC Text

Empir Software Eng (2008) 13:601–643 609

Fig. 2 Results from the Bellon
and Koschke study (a question
mark indicates that data were
not reported from the
participant)

Although the case study by Bailey and Burd showed interesting initial results, it
was conducted on only one relatively small system (16 KSLOC). However, because
the size was limited, Bailey was able to validate all clone candidates.

A subsequent larger study was conducted by Bellon (2002) and Bellon et al.
(2007). Their quantitative comparison of clone detectors was conducted for 4 Java
and 4 C systems in the range of totalling almost 850 KSLOC. The participants and
their clone detectors evaluated are listed in Fig. 1.

Figure 2 summarizes the findings of Bellon and Koschke’s study. Row clone type
lists the type of clones the respective clone detector finds (for clone types, see
Section 2). The next two rows qualify the tools in terms of their time and space
consumption. The data is reported at an ordinal scale −, −, +, + + where − is worst
(the exact measures can be found in the paper of this study (Bellon 2002; Bellon
et al. 2007)). Recall and precision are determined as in Bailey and Burd’s study by
comparing the clone detectors’ findings to a human oracle. The same ordinal scale is
used to qualify the results.

Interestingly, Merlo’s tool performed much better in this experiment. However,
the difference in precision of Merlo’s approach in this comparison to the study by
Bailey and Burd can be explained by the fact that Merlo compared not only metrics
but also the tokens and their textual images to identify type-1 and type-2 clones in
the study by Bellon and Koschke.

While the Bailey/Burd and Bellon/Koschke studies focus on quantitative evalua-
tion of clone detectors, other authors have evaluated clone detectors for the fitness
for a particular maintenance task. Van Rysselberghe and Demeyer (2004) compared
text-based (Ducasse et al. 1999; Rieger 2005), token-based (Baker 1995), and metric-
based (Mayrand et al. 1996) clone detectors for refactoring. They compare these
techniques in terms of suitability (can a candidate be manipulated by a refactoring
tool?), relevance (is there a priority which of the matches should be refactored first?),
confidence (can one solely rely on the results of the code cloning tool, or is manual
inspection necessary?), and focus (does one have to concentrate on a single class or
is it also possible to assess an entire project?). They assess these criteria qualitatively
based on the clone candidates produced by the tools. Figure 3 summarizes their
conclusions.

Bruntink et al. use clone detection to find cross-cutting concerns in C programs
with homogeneous implementations (Bruntink et al. 2005). In their case study, they
used CCFinder—Kamiya’s (Kamiya et al. 2002) tool evaluated in other case studies,
too—one of the Bauhaus1 clone detectors, namely ccdiml, which is a variation of

1http://www.axivion.com.

http://www.axivion.com

610 Empir Software Eng (2008) 13:601–643

Fig. 3 Assessment by
Rysselberghe and Demeyer

Baxter’s technique (Baxter et al. 1998), and the PDG-based detector PDG-DUP
by Komondoor and Horwitz (2001). The cross-cutting concerns they looked for
were error handling, tracing, pre and post condition checking, and memory error
handling like range and null-pointer checking. The study showed that the clone
classes obtained by Bauhaus’ ccdiml can provide the best match with the range
checking, null-pointer checking, and error handling concerns. Null-pointer checking
and error handling can be found by CCFinder almost equally well. Tracing and
memory error handling can best be found by PDG-DUP.

4 Automated Clone Detection

Several techniques have been proposed to find clones. This section summarizes pro-
posed techniques according to the type of information they are based on.

Textual comparison: whole lines are compared to each other textually (Johnson
1993). The result may be visualized as a dotplot, where each dot indicates a pair
of cloned lines. Ducasse et al. detect clones as consecutive duplicated lines as
uninterrupted diagonals or displaced diagonals in the dotplot for textual similarity
(Ducasse et al. 1999).

Marcus and Maletic use latent semantic indexing (an information retrieval tech-
nique) to identify fragments in which similar names occur (Marcus and Maletic 2001).

Token comparison: Baker’s technique is also a line-based comparison where the
token sequences of lines are compared efficiently through a suffix tree (Baker 1995).
First, each token sequence for whole lines is summarized by a so called functor and
its parameters. The functor characterizes the token sequence uniquely. Identifiers
and literals therein are the functor’s parameter. An encoding of these parameters
abstracts from their concrete values but not from their order so that code fragments
may be detected that differ only in systematic renaming of parameters. Two lines are
clones if they match in their functors and parameter encoding.

The functors and their parameters are summarized in a trie2 that represents all
suffixes of the program in a compact fashion. Every branch in this trie represents
program suffixes with common beginnings, hence, cloned sequences. A more detailed
description follows in Section 4.1.

Kamiya et al. increase recall for superficially different, yet equivalent sequences
by normalizing the token sequences (Kamiya et al. 2002).

2A trie is an ordered tree data structure that is used to store an associative array where the keys are
strings.

Empir Software Eng (2008) 13:601–643 611

Because syntax is not taken into account, the reported clones may overlap differ-
ent syntactic units, which cannot be replaced through functional abstraction. Either
in a preprocessing (Cordy et al. 2004; Gitchell and Tran 1999) or post-processing
(Higo et al. 2002; Kamiya et al. 2002) step, clones that completely fall in syntactic
blocks can be found if block delimiters are known.

Metric comparison: Merlo et al. gather different metrics for code fragments and
compare these metric vectors instead of comparing code directly (Laguë et al. 1997;
Kontogiannis et al. 1996; Di Lucca et al. 2002; Lanubile and Mallardo 2003). A low
distance (for instance, Euclidean distance) between these metric vectors can be used
as a hint for similar code.

Comparison of abstract syntax trees (AST): Baxter et al. partition subtrees of the
abstract syntax tree of a program based on a hash function and then compare subtrees
in the same partition through tree matching (allowing for some divergences) (Baxter
et al. 1998). A similar approach was proposed earlier by Yang (1991) using dynamic
programming to find differences between two versions of the same file.

Comparison of program dependency graphs (PDG): control and data flow dependen-
cies of a function may be represented by a program dependency graph; clones may
be identified as isomorphic subgraphs (Krinke 2001; Komondoor and Horwitz 2001).

Other techniques: Leitao (2003) combines syntactic and semantic techniques through
a combination of specialized comparison functions that compare various aspects
(similar call subgraphs, commutative operators, user-defined equivalences, transfor-
mations into canonical syntactic forms). Each comparison function yields an evidence
that is summarized in an evidence-factor model resulting in a clone likelihood. Walter
et al. (2004) and Li et al. (2004) cast the search for similar fragments as a data mining
problem. Statement sequences are summarized to item sets. An adapted data mining
algorithm searches for frequent item sets.

In the following section, we will go into details of token-based clone detection
and AST-based clone detection as they build the foundation for our own algorithm.
In Section 4.3, we will compare them.

4.1 Token-Suffix-Tree Based Detection

Efficient token-based clone detection is based on suffix trees3, originally used for
efficient string search (McCreight 1976). Brenda Baker has extended the original
algorithm to parameterized strings for clone detection (Baker 1995). Baker’s
approach offers the advantage of finding cloned token sequences with consistent
renaming of parameters (variables and literals can be treated as parameters). We
will first describe the original string-based approach and then Baker’s extension for
parameterized strings. We will use the program in Fig. 4 as a simple example. We
would not consider such simple statements clones in practice; but we want to keep
the example simple.

3An alternative to suffix trees are suffix arrays, which offer the advantage of less space consumption
(Manber and Myers 1991) but at the cost of more runtime.

612 Empir Software Eng (2008) 13:601–643

Fig. 4 Program fragment

For computer programs, we apply the suffix tree construction to tokens of the
program. The tokens for the program in Fig. 4 are as shown in Fig. 5 where the
unique character ⊥ denotes the end token.

A suffix tree is a representation of all suffixes of a string, S = s1s2 . . . sn ⊥, over
an alphabet � of characters including ⊥ (si ∈ �) as a trie, where every suffix
Si = sisi+1 . . . sn ⊥, is presented through a path from the root to a leaf. The edges are
labeled with non-empty substrings. Paths with common prefixes share edges. Suffix
trees are linear in space with respect to the string length (the edge labels are stored
as indexes of start and end token of a substring) and there are linear-time algorithms
to compute them (McCreight 1976; Ukkonen 1995).

The suffix tree for our running example is shown in Fig. 6. Each path from the
root to a leaf represents a suffix Si. We label the leaves with the corresponding suffix
index i.

A clone can be identified in the suffix tree as an inner node of the trie (see Fig. 6).
The length is the number of characters from the root to this inner node. We use the
notation (a, b , l) to denote a matching clone pair starting at token index a and b ,
respectively, with length l. The number of occurrences of the clone is the number
of leaves that can be reached from it. For instance, = id occurs three times and
has length 2, denoted by (2, 6, 2), (2, 9, 2) and (6, 9, 2). The sequence id = id three
times, too, with length 3, denoted by (1, 5, 3), (1, 8, 3) and (5, 8, 3).

As shown in the suffix tree, there are twelve cloned token sequences in the
example program, but we notice, too, that many of them (namely, id and = id)
are subsumed by the longest ones, namely, id = id. We are not interested in all
those clones, but only in the maximally long ones. A maximally long clone can be
defined as follows (Baker 1996) (S(a, b) denotes string sasa+1 . . . sb):

Definition 1 Suppose S(i, i + k) and S(j, j + k) are a match, i.e., S(i, i + k) =
S(j, j + k), where 1 ≤ i ≤ i + k ≤ n and 1 ≤ j ≤ j + k ≤ n and i �= j. We say this
match is left-extensible if S(i − 1, i + k) and S(j − 1, j + k) are a match, and right-
extensible if S(i, i + k + 1) and S(j, j + k + 1) are a match. If the match is neither
left-extensible nor right-extensible and is not the trivial match (1, 1, n), we say it is a
maximal match.

We have three maximal clones of the token sequence id = id in Fig. 6 corre-
sponding to line 1, 3, and 4 in Fig. 4, although line 3 is an inconsistent renaming
of the variable names. For this reason, Baker’s extension to suffix trees excludes

Fig. 5 Token table for Fig. 4

Empir Software Eng (2008) 13:601–643 613

Fig. 6 Suffix tree for Fig. 4
treated as string

inconsistent renaming. In this extension, tokens are divided into two alphabets, �

of constant symbols for parameter tokens and all other tokens, �. Parameter tokens
can be identifiers and literals and even operators such as + or -. In order to abstract
from the concrete textual appearance of the parameter but not from its order of
occurrence, parameters are represented by indexes in N0 (the set of non-negative
integers including 0), where the index 0 denotes the first occurrence of a parameter,
and any later occurrence is represented by the number of tokens to the closest left
occurrence. Hence, strings of the earlier suffix tree approach are generalized to so
called parameterized strings, short p-strings, this way. For instance, the p-strings for
lines 1 and 4 in Fig. 4 are both 0 = 0 whereas the p-string for line 3 is 0 = 2.

Maximal matches (including parameterized maximal matches; see below) can be
identified efficiently by an algorithm proposed by Baker (1996).

Two p-strings are clones with consistent renaming if they are a p-match
(Baker 1996):

Definition 2 A sequence of symbols S′ in (� ∪ N0)∗ is called a parameterized string
or p-string for a string S constructed as follows: for each symbol s at position i ∈ N of
S, there is a corresponding symbol s′ at position i in S′ where:

s′ =

⎧
⎪⎨

⎪⎩

s s ∈ �

0 s ∈ � ∧ i is the first left occurrence of s

i − j s ∈ � ∧ j is the left-most previous occurrence of s

Two p-strings are a parameterized match, or p-match, if one p-string can be
transformed into the other by renaming the parameters via a one-to-one function
whose domain is the set of parameter symbols occurring in one p-string and whose
range is the set of parameter symbols occurring in the other p-string.

The p-suffix tree contains all p-strings for all suffixes of the program. It is shown in
Fig. 7 for Fig. 4. Note that it differs structurally from the one in Fig. 6. The difference
comes from the fact that, unlike normal strings, p-strings change from one suffix to
the other not only in their first character. For instance, the p-string for suffix S1 is
0 = 0 break 4 = 2 0 = 7 ⊥ whereas the p-string for suffix S2 is = 0 break
0 = 2 0 = 7 ⊥; once the first occurrence of a parameter is removed, the second
one becomes the first one and, hence, receives reference 0. That is why the algorithms

614 Empir Software Eng (2008) 13:601–643

Fig. 7 Suffix tree for Fig. 4
treated as p-string

for constructing suffix trees for normal strings must be adjusted. Baker (1996) found
a linear-time extension to the algorithm by McCreight (1976).

Beyond the extended algorithm to construct a p-suffix tree, she describes a linear-
time algorithm to retrieve all clone pairs from the suffix tree that are neither both
left-extensible nor both right-extensible. The clones are reported as pairs because
the maximal match relation is not an equivalence relation, because it is not transitive
(Baker 1996). This can be observed in our example of Fig. 5. According to the
corresponding p-suffix tree in Fig. 7, (2, 6, 2)4 and (6, 9, 2) are maximal matches,
but (2, 9, 2) is not maximal because it is subsumed by the larger clone (1, 8, 3).
Because p-matches do not form an equivalence class, pairs of p-substrings rather
than equivalence classes of p-strings must be reported.

A filter on minimal length can be used to exclude short clones, where we can
measure length in terms of lines of code or tokens.

Baker has an additional preprocessing step in her technique that summarizes all
tokens of the same line as a so called functor. The functor is a one-to-one mapping
from all non-parameter tokens of the same line onto a representing symbol. It can
be viewed as a perfect hashing function for token subsequences onto symbols of
alphabet �. The advantage of this summary is that the number of tokens for the
suffix tree is reduced. The disadvantage is that the layout influences the results. If a
programmer copies code and adds lines breaks, the clones can no longer be found.
To overcome sensitivity to layout, one could pretty-print the code or simply not
summarize several tokens to one functor.

4.2 AST-Based Detection

Because our algorithm is more similar to the token-suffix-tree approach, this section
is briefer. Baxter et al. have proposed a clone detection technique based on abstract
syntax trees (AST). An AST is a more compact representation of a parse tree. The
abstract syntax abstracts from chain rules and peculiarities of the concrete grammar
(often due to the underlying parsing technology). Left and right recursive grammar
rules are typically represented explicitly as sequences in the AST.

4Please be reminded that (a, b , l) denotes a clone pair starting at token index a and b , respectively,
with length l.

Empir Software Eng (2008) 13:601–643 615

To find clones in the AST, we need—in principle—to compare each subtree to
each other subtree in the AST. Because this approach would not scale, Baxter et al.
use a hash function that first partitions the AST into similar subtrees. Because such a
hash function cannot be perfect (there is an infinite number of possible combinations
of AST nodes), it is necessary to compare all subtrees within the same partition in
a second step. This comparison is a tree match, where Baxter et al. use an inexact
match based on a similarity metric. The similarity metric measures the fraction of
common nodes of two trees. Cloned subtrees that are themselves part of a complete
cloned subtree are combined to larger clones. Special care is taken of chained nodes
that represent sequences in order to find cloned subsequences.

4.3 Token Based Versus AST Based

Clone detection methods based on token-suffix trees offers several advantages over
other techniques. It scales very well because of its linear complexity in both time and
space, which makes it attractive for large systems. Moreover, no parsing is necessary
and, hence, the code may be even incomplete and syntactically incorrect. Another
advantage for a tool builder is that a token-based clone detector can be adjusted to a
new language in short time (Rieger 2005). A scanner for a programming language
is typically developed in one or two days. As opposed to text-based techniques,
the token-based analysis is independent of layout (this argument is not quite true
for Baker’s technique, which is line based; however, if one uses the original string-
based technique, line breaks do not have any effect). Also, token-based analysis
may be more reliable than metrics because the latter are often very coarse-grained
abstractions of a piece of code; furthermore, the level of granularity of metrics is
typically whole functions rather than individual statements.

Two independent quantitative studies by Bellon/Bellon et al. (Bellon 2002; Bellon
et al. 2007) and Bailey/Burd (Bailey and Burd 2002) have shown that token-based
techniques have a high recall but suffer from many false positives, whereas Baxter’s
technique has a higher precision at the cost of a lower recall.

In both studies, a human analyst judged the clone candidates produced by various
techniques. One of the criteria of the analysts was that the clone candidate should be
something that is relatively complete syntactically, which is often not true for token-
based candidates as they do not always form syntactic units. For instance, the two
program fragments left and right in Fig. 8 are considered a clone by a token-based
analysis because their token sequence is identical:

return id ; } int id () { int id ;

Although from a lexical point of view, these are in fact clones, a maintenance
programmer would hardly consider this finding useful.

Syntactic clones can be found to some extent by token-based techniques if the
candidate sequences are split by a postprocessing step into ranges where opening
and their corresponding closing tokens are completely contained in a sequence.
For instance, by counting matching opening and closing brackets, we could exclude
many spurious clones such as the one in Fig. 8. However, programming languages
may have many types of delimiting tokens beyond brackets. The if, then, else,
and end if all constitute syntax delimiters in Ada. In particular, end if is an
interesting example as two consecutive tokens form one delimiter, of which both

616 Empir Software Eng (2008) 13:601–643

Fig. 8 Spurious clones

can be each individual delimiters in other syntactic contexts. If one wants to handle
these delimiters reliably, one is about to start imitating a parser by a lexer.

The AST-based technique, on the other hand, yields syntactic clones. And it was
Baxter’s AST-based technique with the highest precision in the cited experiment.
Moreover, the AST-based clone detection offers many additional advantages. Most
refactoring tools are based on ASTs. Hence, they need to access clones in terms of
nodes in the AST if they support clone removal. Furthermore, ASTs offer syntactic
knowledge which can be leveraged to filter certain types of clones, such as long array
initializers.

Unfortunately, Baxter’s technique did not match up with the speed of token-
based analysis. Even though partitioning the subtrees in the first stage helps a
lot, the comparison of subtrees in the same partition is still pairwise and hence
requires quadratic time. Moreover, the AST nodes are visited many times both in
the comparison within a partition and across partitions because the same node could
occur in a subtree subsumed by a larger clone contained in a different partition.

Another point is that developing a syntactic analyzer requires considerable more
effort than writing a lexical analyzer. There are complicated languages that need to
be parsed using back-tracking which leads to expensive parsing. And with a post
processing step, the token-based approach may lead to similar results in the area of
eliminating syntactic incomplete clones. On the other hand, in many cases, the syntax
tree is already available, so no extra costs incur. Such is the case when a syntactic
clone detection is to be integrated into a modern development environment with
refactoring support (for instance, Eclipse).

It would be valuable to have an AST-based technique at the speed of token-based
techniques. In the next section, we show how a linear-time analysis can be achieved.

5 New Approach Using Suffix Trees for Syntax Trees

Our new algorithm to detect clones in ASTs or parse trees (further on referred to as
syntax tree) consists of the following steps:

1. Parse program and generate syntax tree
2. Serialize syntax tree
3. Apply suffix-tree detection
4. Decompose resulting type-1/type-2 token sequences into complete syntactic

units

Subsequent type-1 and type-2 clones can be combined to larger type-3 clones
using a threshold of maximal gap in between. Baker describes a technique based
on dynamic programming (Baker and Giancarlo 2002) to combine type-1 and type-2
clones. (Our implementation currently does not support that.) Step (1) is a standard

Empir Software Eng (2008) 13:601–643 617

Fig. 9 Sequence of if statements in C

procedure which will not be discussed further. Step (3) has been described in
Section 4.1. We will primarily explain the details of step (4). We will first explain
the serialization of the syntax tree of step (2) and then present the algorithm to
decompose the cloned token sequences into syntactic units.

5.1 Serializing the Syntax Tree

We will use the example in Fig. 9 as an example to illustrate the algorithm. The syntax
tree corresponding to Fig. 9 is shown in Fig. 10.

Because the suffix-tree based clone detection is based on a token stream, we need
to transform the syntax tree into such a stream. We serialize the syntax tree by a
preorder traversal. The nodes will then form the token stream. For each visited
syntax tree node N, we emit N as root and associate the number of arguments
(number of syntax tree nodes transitively derived from N) with it (in the following
presented as subscript).

Note that we assume that we traverse the children of a node from left to right
according to their corresponding source locations so that their order corresponds to
the textual order.

The serialized syntax tree nodes produced in step (2) for the example are shown
in Fig. 11.

The serialized form is isomorphic to the original syntax tree. Hence, no clones are
lost and no artificial syntactic clones are introduced.

5.2 Suffix Tree Detection

The original suffix tree clone detection is based on tokens. In our application of suffix
trees, the syntax tree node type plays the role of a token (we will continue to use
token instead of syntax tree node in the following as token was used in Section 4.1).
Because we use the syntax tree node type as distinguishing criterion, the actual values
of identifiers and literals (their string representation) do not matter because they are
treated as syntax tree node attributes and hence are ignored. The actual values of
identifiers and literals become relevant in a postprocessing step where we make the
distinction between type-1 and type-2 clones by iterating over the parameters in two

Fig. 10 Example AST

618 Empir Software Eng (2008) 13:601–643

Fig. 11 Serialized syntax tree nodes

sequences and compare whether their values are the same. We omit the details for
this simple step.

We can use both Ukkonen’s algorithm for strings (Ukkonen 1995) or Baker’s
algorithms for parameterized strings (Baker 1992) to construct the suffix tree.
Because the suffix tree does not contain the information of token values, the retrieval
of clones on the suffix tree returns sets of clones that contain both type-1 and type-2
clones.

The results of the step described in this section are returned as a set of fragment
sets. A fragment identifies a piece of code. Every fragment in a fragment set is alike to
every other fragment in the fragment set. For instance, in the example of Fig. 11, the
resulting two fragment sets are Fig. 12 (with two elements corresponding to line 3
and to line 4 in Fig. 11) and Fig. 13 (with three elements corresponding to line 2
column 4–9 and line 3 and line 4 in Fig. 11).

The token sequence in Fig. 12 is a complete syntactic unit whereas the sequence
in Fig. 13 is not a single syntactic unit and, hence, needs to be decomposed into three
syntactic subsequences as follows: <id0>, <=2 id0 id0>, and <call1 id0>.

5.3 Decomposing into Syntactic Clones

The previous step has produced a set of clone sets of maximally long equivalent
syntax tree node sequences. These sequences may or may not be syntactic clones. In
the next step—described in this section—these sequences will be decomposed into
syntactic clones. This step is the main difference between our algorithm and purely
token-based approaches.

The main algorithm is shown in Fig. 14 where inset is the input set of cloned
fragment sets as determined in the previous step. For each set in inset, we
select an arbitrary fragment. Because all fragments of a set are alike—since they
are clones—we call the selected fragment the representative. We decompose the
representative into syntactic sequences. The algorithm make_pattern does this job
for the representative. It creates the indices at which the clones in set are to be
cut into syntactic subsequences. The resulting pattern, hence, is a list of pairs; each
pair consists of a start and end index identifying a subsequence of the representative
of set. For instance, the pattern for the example in Fig. 13 is {(1, 1), (2, 4), (5, 6)}

Fig. 12 Cloned token sequence of Fig. 11

Empir Software Eng (2008) 13:601–643 619

Fig. 13 Cloned token sequence of Fig. 11

denoting the subsequences <id0>, <=2 id0 id0>, and <call1 id0>. We will
shortly describe make_pattern in more detail.

Then this pattern is applied to each element of the set in order to decompose each
clone fragment into syntactic subclones. The output of decompose_all is denoted
by outset and incrementally produced by decompose. The result is again a set of
fragment sets, but the difference here is that each element in outset is a syntactic
unit. Hence, outset is a refinement of inset.

Function decompose receives the list of pairs and successively decomposes
a token sequence into subsequences described by the pairs. More precisely, let
s = s1 . . . sn be a token sequence and p = {(l1, r1), . . . , (lm, rm)} a pattern; then the
result of decompose is {[sl1 . . . sr1], . . . , [slm . . . srm]}.

Procedure emit is used to report clones based on the representative. It filters
clones based on various additional criteria such as length, type of clone, syntactic
type (e.g., it may ignore clones in declarative code), it differentiates the clone set
elements into type-1 and type-2 clones, and finally it reports all clones of a set to the
user. We omit the details of emit here.

To ease the presentation, we will first ignore series of consecutive syntactic units
that could be combined into one clone subsequence. We will come back to this issue
after the presentation of the basic algorithm.

Finding Syntactic Token Sequences (Basic): The underlying observation for our
basic algorithm is as follows. Let ts be the clone token sequence returned by the
token-based clone detection that we use as a representative. A syntax subtree is a
complete clone if all its tokens are completely contained in a cloned token sequence.
The test whether the tokens of a syntax subtree, rooted by N, are contained in the
cloned token sequence ts is simple: its root N must be contained and the number
of its arguments tokens(N)(number of transitive successor syntax tree nodes
reachable from N excluding N itself) must not exceed the end of ts. More precisely,
let 1 be the first index and ts’last denote the last index in this sequence,then the

Fig. 14 Decomposing into syntactic clones

620 Empir Software Eng (2008) 13:601–643

following condition must hold for a complete syntactic unit: n + tokens (N) ≤
ts’last where n is the index of N in ts.

Figure 15 shows the basic algorithm. It traverses the whole cloned token sequence
ts. As an example, let ts be as follows:

token type call1 id0 while14 =2 id0 id0

index 1 2 3 4 5 6

Variables le and ri indicate the currently handled range of tokens for the current
syntactic clone subsequence within the representative. If a root, indexed by le, is
found to be complete (lines 8–10), the search continues after the last token of the
rooted tree. The tokens up to the last token are part of the cloned rooted tree and
we are interested only in maximal clones. For this reason, they may be skipped. In
our example, we find that the token at index 1 is the root of a tree with one ancestor.
This subtree is completely contained in the cloned token sequence. Hence, the search
continues with the token at index 3.

If the current rooted tree is not completely contained in the cloned token
sequence, we continue with its left-most child, which is the next token in the sequence
(line 6 in Fig. 15). In our example, the while token at index 3 has 14 ancestors but
only three of them are part of ts. So we skip token 3 and continue with token 4. This
way, we descend into subtrees of a root to identify additional clones contained in an
incomplete rooted tree. In our example, we would descend into the condition of the
while loop. Descending into subtrees is necessary only at the end of a cloned token
sequence, but it may be necessary to descend recursively. The recursion shows up in
the traversal by increasingly smaller steps in the traversal.

Handling Sequence Tree Nodes: The basic algorithm finds syntactic units in the
cloned token sequence. Yet, it misses subsequences of subtrees that together form
a maximal clone. As an example, consider Fig. 16a and its corresponding syntax tree
in Fig. 16b. The example consists of a statement sequence represented by a node type

Fig. 15 Pattern for syntactic clones; the first index is assumed to be 1

Empir Software Eng (2008) 13:601–643 621

Fig. 16 Example with nested sequences in C; clones are in range 2–4 and 7–9; nodes in the tree are
labeled ln if they represent a subtree corresponding to line n

seq with another nested sequence. The cloned token sequence representative for the
example clone in lines 2–4 and 7–9 is as follows:

token type =2 id0 id0 =2 id0 id0 seq5 call1 id0

index 1 2 3 4 5 6 7 8 9

As you can see, the sequence runs into the nested sequence without covering
it completely. The basic algorithm would, hence, generate a pattern {(1, 3), (4, 6),

(8, 9)} corresponding to syntactic clone subsequences as follows: <=2 id0 id0>

(x=a), once more <=2 id0 id0> (y=b), and <call1 id0> (bar()). However,
the two consecutive assignments together form a maximal clone sequence. The
basic algorithm misses this maximal clone sequence because only parts of the outer
sequence are part of the cloned token sequence. Whereas other syntax tree node
types require that all parts are present to form a complete clone, consecutive
successors of a sequence node may together form a maximal clone.

The extended algorithm in Fig. 17 considers sequence nodes. The extension is
found in lines 8–16. Predicate is_seq is true if a node represents a sequence in the
syntax tree. In that case, we collect all syntactic cloned token subsequences (line 12)
as long as they are completely contained in the cloned token sequence (line 13) and
have the same parent (lines 14). Function parent(N) returns the parent syntax tree
node of N.

The result of applying this step to the example in Fig. 16a is the pattern {(1, 6),

(8, 9)} corresponding to the two cloned code fragments in line range 2–3 and 7–8 and
in line 4 and 9 in Fig. 16a.

6 Tools

In order to compare the approaches not only in terms of precision and recall but
also in runtime, we implemented several variations of the approaches (cf. Fig. 18).
Because these tools are built on a common infrastructure of ours and were executed
on the same hardware, the runtime comparison is more meaningful than the reports
in the Bellon study (Bellon 2002).

622 Empir Software Eng (2008) 13:601–643

Fig. 17 Pattern considering sequence nodes

This section describes our infrastructure and how the tools we will evaluate in
our case study are composed of the infrastructure. We will give a more detailed
description of the infrastructure so that one can understand the detailed performance
measurements in the evaluation.

6.1 Infrastructure

Figure 19 shows the common infrastructure of the tools we implemented. A tokenizer
(T) transforms the source text into a stream of tokens. Our tokenizers for Java and

Fig. 18 Feature combinations (tools above line are syntactic, those below are lexical); the abbrevia-
tion is a mnemonic combination of the three distinguishing features. The right-most column lists the
real-life names of the tools that were used in previous papers

Empir Software Eng (2008) 13:601–643 623

Fig. 19 Tools Architecture

C are generated by a scanner generator based on the token definitions specified by
regular expressions. Tokens are stored in a token table (TT). Because different tools
use different types of tokens (scanner tokens, parse tree nodes, abstract syntax tree
nodes), the token table is implemented as a generic unit and instantiated for each
type of token sets. The suffix tree constructor (STC) creates the suffix tree (ST). Our
infrastructure provides two types of tree constructors, one for parameterized strings
using Baker’s algorithm and one for non-parameterized strings using Ukkonen’s
algorithm. Once constructed, the suffix tree is traversed and clones are identified.
There are different possible criteria to retrieve clones from the suffix tree. We adopt
Baker’s search for maximally long token sequences using her linear-time algorithm
(Baker 1996) (denoted as duplication finder DFBaker in Fig. 19).

The clone list (CL) contains all found clone pairs. Various filters can be applied to
it such as the length of the clone pair (measured by either lines of code or number
of tokens), Flength. This filter removes also sparse clones, that is, clones which have a
low number of tokens per line where a line-based threshold would not help. Sparse
clones are typically not relevant because they consist of very few tokens. A sparse
clone is one that fulfills the following criterion (where T is the number of tokens and
L is the number of lines of the clone):

(
T
L

< 1 ∧ T ≤ 5

)

∨ T
L

≤ 0.5

The definition of a sparse clone is due to the following reasoning. A clone with
only five tokens is sparse from our point of view, because, normally, a line has about
10 tokens on average. Our threshold in the experiment for clone length is six lines.
The value of six comes from the earlier study by Bellon et al. (2007) and was an
agreement among all participating researchers. We reused six lines for consistency
in our experiment. This number includes empty lines. However, we found several
instances of clones that fulfill the line criterion but have only very few tokens because
they contain blank lines. These clone candidates were all spurious. That is, we are not
completely convinced that the six-line limit is a good criterion if programs contain

624 Empir Software Eng (2008) 13:601–643

blank lines or lines with only one delimiter such as a bracket. If we have six lines, but
not all lines contain tokens (i.e., T/L < 1), we would likely have at least five tokens
resembling the idea of six with respect to lines with some tolerance. If we do have
more than five tokens, code that contains only one token on every second line on
average is typically spurious, too, according what we have seen. The threshold of 0.5
in T/L ≤ 0.5 comes from our experience.

The algorithm we presented in Section 5.3 can be considered a filter, too, that
decomposes token sequences into sequences completely contained in a syntactic unit
(denoted by Fsyntax in Fig. 19). In order to do so, the tokens must be annotated with
the number of their transitive syntactic successors as described in Section 5.1. If such
an annotation is not available, a heuristic approach can be taken based on counting
opening and closing scope delimiters such as curly brackets in C and Java. This filter
is denoted by Fscope in Fig. 19.

Decomposing into syntactically complete subsequences by filter Fsyntax requires
a second test for maximal p-matches even if the original sequences were maximal.
Out of two maximal p-matches p1 and p2 consisting of sequences αβγ and δεζ ,
respectively, i.e., αβγ = δεζ , we could decompose into β and ε where β subsumes
ε. So the clone pair consisting of ε would not be maximal. As a consequence, we
need to test subsumption once again. The problem is that we have to compare all
clones for subsumption. We have not yet invested much time to optimize this step,
as our main concern was the suffix-tree related issues. Our subsumption problem is
related to selection problems for which so called sweep-line algorithms can be used.
Sweep-line algorithms solve the following problem: given a set S of n closed segments
in the plane, report all intersection points among the segments in S. A first sweep-
line algorithm was proposed by Bentley and Ottmann (1979). The algorithm requires
O(n × log(n)) time in the worst case where n is the number of clone sets.

The filter denoted by Fsub removes all non-maximal clones. We note that although
Baker’s algorithm to retrieve maximal p-matches from the suffix tree checks whether
a p-match is left or right extensible, it does not check whether one fragment can be
extended to the left and the other one to the right. For this reason, we use filter Fsub

immediately after the duplication finder DF and once more at the end on clone list
CL if necessary.

The tool ccdiml, which implements an Baxter-like AST-based clone detection,
uses an additional filter relevant only to trees, which can be filtered by depth of the
tree and number of nodes.

We note that filters can be combined to a filter pipeline where the order matters
only for performance and that we use some filters also at earlier stages in order to
decrease the volume of data as soon as possible.

Other paths of clone detection can be taken for syntax trees using either a tree
matcher (denoted by M in Fig. 19) as described in Section 4.2 or the suffix-tree
detection for serialized tree nodes (our new approach described in Section 5). The
abstract syntax trees are built by language-specific front ends. In our case, we use the
commercial front end by Edison Design Group5 for C and C++ and the IBM open-
source compiler jikes for Java. We extended both front ends in order to generate

5http://www.edg.com.

http://www.edg.com

Empir Software Eng (2008) 13:601–643 625

our own unified abstract syntax tree (Koschke et al. 1998), which represents both
languages among other languages such as Ada.

There is a lot of overhead in full-fledged language front ends to compute semantic
information on the program that we do not need actually. For our use of the
abstract syntax tree, we need only the syntactic structure but no semantic information
such as name resolution and type binding. Moreover, our extensions to these front
ends map a language-specific syntax tree onto a generalized abstract syntax tree
for many languages. Although this step allows us to reuse our syntax-tree based
clone detection across different languages, this extra step requires additional runtime
resources.

In order to avoid this extra overhead, we implemented another tool based on our
infrastructure that performs only lexical and syntactic analysis and then outputs a
parse tree (PT) which contains every token of the program unlike the abstract syntax
tree. The parsers for C and Java are generated using the parser generator yacc.
The parser (P) creates a tree that resembles the parse tree but has certain additional
transformations applied to it. The transformations have different purposes. One kind
of transformations replaces subtrees derived through left or right recursive grammar
rules by explicit sequence nodes, which are a necessity for our algorithm to work.
Another type of transformations replaces chained-rule derivations by lifting the leaf
node. These transformations are optional but reduce the number of tokens.

One other optional type of transformations is used to implement alternative
views on the parse tree from a user’s perspective. The advantage of syntactic tools
is that it is relatively simple to define patterns for spurious clones that should be
ignored or viewed differently for the analysis. Kapser and Godfrey (2005) use this
type of filter to improve results, but are basically mimicking a syntactic analysis
through a combination of lexical patterns. To take full advantage of the availability
of syntactic information, we implemented syntactic transformations for patterns
of spurious clones in order to improve the results. Using syntactic patterns, the
serializer can ignore very long array initializations, which occur frequently in systems
with graphical user interfaces as XPM files. Additionally, another transformation
refactors structured switch statements into if-then-else cascades. A structured
switch statement is one whose labels are all at top-level and whose case branches
are all ended by a break. Then we can model a user’s logical point of view. A
user might want to see only clones that completely fall into such a structured case-
break region, for instance. To achieve this view, we can transform the tree such that
the statements subsequent to the case label become syntactic children of the case
node. Because the original grammar is much more liberal for switch statements
and allows case labels and breaks at any nested level and also case branches with
no corresponding break, this transformation is not always applicable. Only through
syntactic analysis, we can distinguish structured switch statements from unstructured
ones. A clone detector based only on tokens cannot handle this case reliably. We use
this transformation as a prototype for the use of user-defined syntactic views.

Both syntax trees and parse trees can be serialized as described in Section 5.1
in order to use the suffix-tree based approach. The serializer component is denoted
by S in Fig. 19. The main difference between parse trees and abstract syntax trees
here is that parse trees contain many more nodes in general. Figure 21 gives an
overview on the number of nodes for each type of syntax tree for the systems we
studied.

626 Empir Software Eng (2008) 13:601–643

Fig. 20 Tools and
components; the abbreviations
relate to Fig. 19; components
CL and Flength are used for all
tools

Figure 20 shows how the tools are composed of the components of our infrastruc-
ture. asp, asn, psp, and psn implement the technique that we describe in this paper.
The closest techniques to our approach are the token-based and syntax-tree based
techniques. That is why we chose these techniques as a point of comparison.

6.2 Syntax-based Tools

The tool amn is a variation of Baxter’s CloneDR also based on ASTs. The two
tools asp/asn and amn share the same AST as intermediate representation, whereas
psp/psn uses parse trees. The main differences between amn and CloneDR are as
follows:

• Baxter et al. have not published their hashing function, hence, amn is likely using
a different one

• amn does not use a similarity metric to compare trees but requires that trees are
isomorphic (abstracting from parameter values to detect type-2 clones)

• CloneDR checks for consistent renaming while amn currently does not do this
• amn is based on our AST unified for different programming languages; Baxter et

al.’s infrastructure is targeting at program transformations where typically less
abstraction in the syntax trees is feasible (for instance, the position of every
bracket needs to kept here, whereas we do not represent such minor tokens in
our AST)

• furthermore, our AST has explicit representations for sequences; Baxter et al.’s
infrastructure is grammar-driven, that is, the abstract syntax tree is determined
by the grammar of the language to parse; iterative constructs are specified as left
or right recursive grammar rules leading to left or right leaning syntax trees; such
parts of the tree need special care in the algorithm by Baxter et al.; our explicit
sequence representations eases the detection

• amn hashes only nodes of interest and omits AST nodes that do not directly map
onto a source element (such nodes are introduced because we normalize our
ASTs), thus reducing the amount of subtrees in the hash buckets

The tools amn and CloneDR have in common the partitioning by way of the hash
function and the pairwise comparison of subtrees in the same partition. Because
the pairwise comparison leads to a complexity of O(n2) where n is the size of the
largest partition, amn offers a threshold that allows to ignore all partitions whose
number of entries is greater than the threshold, which bounds the run time at the
expense of a potential loss of clones. Bellon, the author of amn, states that such

Empir Software Eng (2008) 13:601–643 627

large partitions typically contain trivial AST subtrees and the likelihood that more
interesting subtrees are in the same partition is low. He has not found any practical
indication to the contrary testing this hypothesis on various systems6.

To generate the candidates of amn evaluated in this paper, we used 400 as the
threshold to ignore very large buckets. In order to explore the effect of the threshold
on runtime, we will report runtime measurements for the selected threshold of 400
and for a larger threshold.

6.3 Token-based Tools

tsp is a variation of Baker’s technique with the difference that it is not based on lines
but solely on tokens. tsn varies from tsp in that it uses non-parameterized suffixes.
The advantage of non-parameterized suffixes is that tsn can find clones where a
programmer has changed parameters inconsistently. These inconsistent changes are
often hints for errors (Li et al. 2006). The disadvantage is that more spurious clones
are reported.

As already discussed in Section 4.3, token-based techniques can be extended so
that they attempt to find syntactic clones to a certain extent as well by splitting
cloned token sequences into subsequences with a balanced set of opening and closing
scope delimiters in a postprocessing step. For this reason, we compare our new
techniques also to a token-based technique applying this strategy. tsns implements
this postprocessing step and searches for balanced brackets of type {. . . }, (. . .),
and [. . .]. As a matter of fact, tsns is not a new tool but just an additional feature
built into tsn that can be turned on via a command line switch.

It is worth to note that our suffix tree implementation is generic and is used in
asp/asn, psp/psn, tsp/tsn, and tsns identically.

We must also note that the token-based techniques work on the non-preprocessed
code, that is, preprocessor directives are also considered tokens. Another relevant
technical detail is that we considered only identifiers as parameters for the parame-
terized clone detection. In practice, one could also use literals or even operators as
parameters.

All our tools find only type-1 and type-2 clones except for amn, which also finds
type-3 clones; but type-3 detection has been disabled in this experiment.

7 Empirical Evaluation

In this section, we evaluate our new technique empirically by comparing it to alter-
native techniques. We first describe the experimental layout.

7.1 Bellon Benchmark

The basis for this comparison is the Bellon benchmark that has been developed
and used for the most comprehensive quantitative comparison of software clone
detectors to date (Bellon 2002; Bellon et al. 2007). In that study, six different tools

6Personal communication; March 2007.

628 Empir Software Eng (2008) 13:601–643

(cf. Fig. 1) have been compared based on several Java and C systems. This section
describes the oracle, the systems analyzed, and the metrics to measure recall and
precision.

The Oracle: From the Bellon benchmark the oracling process and tools for valida-
tion and evaluation were re-used.

The results of the tools are evaluated by a human oracle. We rely on human
intuition because there is no accepted operational definition of a clone yet. One
author of this paper (Pierre Frenzel) played the role of the oracle in our study. To
avoid bias, the human oracle did not know which tool produced the clone candidates.
They were presented to him by a selection process that was automated, blind, fair,
and random:

• Automated: an algorithm selected the clone candidates to be presented to the
human oracle

• Blind: the human oracle had no idea from which tool’s candidates the presented
clone candidate was drawn

• Fair: the algorithm made sure that the relative number of selected presented
candidates was even across all tools; i.e., the same percentage of each tool’s
candidates was selected for presentation

• Random: the candidates were selected randomly from the tool’s pool of candi-
dates; the order of presentation of candidates was random, in other words, the
human oracle could not infer from the order of presentation from which tool the
candidate stemmed

The tools report their findings as clone pairs uniformly; clone pairs are two code
fragments identified by their filename, starting and ending line. Both code fragments
need to be at least 6 lines long to be considered.

The human oracle validated the clone pairs of the mentioned tools. Each clone
pair suggested by a tool will be called a candidate and each clone pair validated
and accepted by the human analyst will be called a reference in the following.
The candidates examined but rejected are false positives and are used to measure
precision. Those accepted (possibly with slight modification in range) form the
reference corpus and are used to measure recall.

In the earlier experiment by Bellon, Stefan Bellon has taken the role of the human
oracle. At least two percent of each tool’s clone pairs have been judged by him.
Although 2% sounds like a small fraction, in absolute terms 2% sums up to a large
number for large systems because of the many clones reported. The validation of
these fractions of candidates for all systems took him 77 h in total. Anticipating this
problem in the design of the experiment, one evaluation was done after 1% of the
candidates had been “oracled”. Then another percent was “oracled”. The interesting
observation was that the relative quantitative results are almost the same.

Because we wanted to evaluate the candidates of the tools using the framework
of the benchmark, we had to validate the new candidates. We developed a shared
notion of what constitutes a clone, which we wrote down as guidelines for our
oracling. Then one of the authors, Pierre Frenzel, validated the candidates of all
tools. We selected only one human analyst to limit the chances of inconsistency of
the human oracle (that could arise despite our common upfront guidelines) as much
as possible.

Empir Software Eng (2008) 13:601–643 629

Fig. 21 Analyzed programs with different measures of size; SLOC source lines of code, PTN number
of parse tree nodes, ASTN abstract syntax tree nodes, and T number of tokens; all figures are
reported in the unit of thousand

Because Bellon validated only candidates of the tools of the earlier experiment
and Frenzel validated only candidates from the new tools, we refrain from comparing
our tools against the candidates validated by Bellon. As a consequence, we do not
report the results of the other tools. The interested reader is referred to the paper by
Bellon et al. (2007).

Subject Systems: The subject systems of this benchmark are listed in Fig. 21. The
size of these systems is described by different measures in this table.

Some files of the Benchmark systems are generated files (like parsers) that we
excluded from the benchmark because such code tends to be regular and appears as
spurious clone candidates.

Frenzel spent about eleven working days on the validation to obtain the coverage
shown in Fig. 22 for the evaluated tools. Despite considerable effort, we were able
to validate only one C and one Java system, namely, SNNS and eclipse-jdtcore.
These are the two second largest systems. We note that the earlier experiment by
Bellon did not show any significant differences in terms of recall and precision of the
tools among the systems; that is, they behaved consistently across different subject
systems.

Although we are not able to present the charts for recall and precision for all
systems of the Bellon benchmark due to lack of space, we will at least give runtime
measurements for all systems demonstrating that our new tools ran successfully for
all systems in Fig. 21.

Metrics: The Bellon benchmark comes with a set of tools to oracle and evaluate
the clone detectors, which we reused. In order to compare candidates to references,
a two-step process is used. First, the evaluation tool attempts to find a matching
reference for each candidate. There are two types of matches. A good match is
one in which reference and candidate overlap to at least 70% of their fragments.

Fig. 22 The absolute and relative numbers of seen candidates

630 Empir Software Eng (2008) 13:601–643

The fragments need not be exactly the same because there were some off-by-one
differences in the way code lines are reported by the tools. An OK match is one in
which a candidate is contained to at least 70% of its lines in a reference or vice versa.
In this evaluation, we will focus on only good matches due to reasons of space.

The match classifies candidates and references as follows. Detected references are
those for which a good match exists. Rejected candidates are candidates for which no
good match exists with any reference.

After matches are found, percentages as well as recall and precision are measured
as follows where T is a variable denoting one of the participating tools, P is a variable
denoting one of the analyzed programs, and τ is a variable denoting the clone type.

Recall(P, T, τ) = |DetectedRefs(P, T, τ)|
|Refs(P, τ)|

Rejected(P, T, τ) = |RejectedCands(P, T, τ)|
|SeenCands(P, T, τ)|

Yet, because we have only seen about 2% of all submitted clones for each tool and
because there could be clones that no tool found, we do not know the complete set of
clones to be found. As a consequence, these figures are to be interpreted accordingly.

Selected Features: Our infrastructure allows various compositions of clone detectors
with different features. For our experiment, we are mostly interested in comparisons
with respect to the following features:

1. use of AST suffix tree versus AST matching
2. parse tree versus AST
3. syntax versus lexical
4. parameterized versus non-parameterized

To address all these questions economically, we investigate only the combinations
listed in Fig. 18. As already mentioned, tsns has a postprocessing step to decompose
clones that are not completely contained between corresponding brackets. A com-
parison of amn and asp addresses question (1) and one for psn and asn addresses
question (2). Comparing tsns to the other tools investigates question (3). The effect
of parameterized versus non-parameterized, that is, question (4), can be seen by
comparing psp to psn.

A comparison of tsns and tsn would allow us to assess the difference in pure
token-based analysis and token-based analysis with some attempt to find syntactic
completeness. Yet, we do not evaluate tsp here because this question is not in the
focus of this paper and it would have been too much effort. Our experimentation
with tsns and tsn showed that the latter produces about 2–3.5 times more candidates
than tsns. Nevertheless, we will report runtime measures for tsp as well. Moreover,
Baker has commented on this difference in her assessment of the Bellon study
(Baker 2007).

7.2 Results

This section discusses the above mentioned feature differences in terms of number
of candidates generated by the tools (cf. Fig. 23a and 24a), recall (cf. Figs. 23c and

Empir Software Eng (2008) 13:601–643 631

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

AMN ASN PSN PSP TSNS

11649

17828

10189
12398

88499
Type 2

Type 1

a Number of candidates

0

0.2

0.4

0.6

0.8

1

AMN ASN PSN PSP TSNS

0.
6 0.

7

0.
58

0.
5

0.
94

0.
08

0.
29

0.
08 0.

13

0.
5

0.
7

0.
73

0.
65

0.
57

0.
95

Type 2
Type 1
total

b Percentage of rejected candidates

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

AMN ASN PSN PSP TSNS

0.
71

0.
89

0.
85

0.
85

0.
850.
86 0.

9

0.
9

0.
91

0.
8

0.
67

0.
88

0.
83

0.
83 0.

87

Type 2
Type 1
total

c Recall

Fig. 23 Results for SNNS

24c), percentage of seen and rejected candidates (cf. Fig. 23b and 24b), and runtime
measurements (cf. Fig. 26). We will briefly mention runtime performance in the
course of the discussion of the above questions; a detailed discussion of runtime
follows at the end of this section.

Number of Candidates. Figures 23a and 24a show the number of candidates
generated by the tools. These two graphs confirm results from earlier experiments

632 Empir Software Eng (2008) 13:601–643

0

50000

100000

150000

200000

250000

AMN ASN PSN PSP TSNS

16072
22140

32458 33913

224297

Type 2

Type 1

a Number of candidates

0

0.2

0.4

0.6

0.8

1

AMN ASN PSN PSP TSNS

0.
61

0.
72 0.

81 0.
84

0.
97

0.
13

0.
3

0.
16 0.

21

0.
63

0.
64

0.
75 0.

85

0.
86

0.
98

Type 2
Type 1
total

b Percentage of rejected candidates

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

AMN ASN PSN PSP TSNS

0.
52

0.
77

0.
74

0.
74

0.
72

0.
66

0.
78 0.

84

0.
84

0.
81

0.
49

0.
77

0.
71

0.
71

0.
7 Type 2

Type 1
total

c Recall

Fig. 24 Results for eclipse-jdtcore

that syntax-based tools yield substantially less clone candidates than token-based
techniques, and the vast majority of candidates is reported as type-2 clones.

psp finds more clones than psn. On one hand, parameterized clone detection
uses a stricter constraint on the token sequences and, hence, tends to exclude more
sequences. On the other hand, longer sequences with inconsistent renaming that non-
parameterized clone detection finds may contain shorter sequences with consistent
renaming detected by parameterized detection. As a consequence, the number of
found candidates may increase.

Empir Software Eng (2008) 13:601–643 633

The two AST-based tools amn and asn yield fewer candidates for eclipse-jdt-
core than for SNNS in relation to the other tools. The reason here is that declarative
information is stored in symbol tables for the AST and not subject to clone detection.
The Java system has many more declarations than the C system as it is based on many
other libraries where only class declarations and not executable code is available.

The reason for the discrepancy in the number of clone candidates between psn
and asn is a combination of our AST design and the programming style in which the
two analyzed systems are written. The idea of our AST is to represent everything
exectuable. The declarative code is not contained in the AST but in symbol tables,
whereas the parse tree contains both declarative and executable statements. For this
reason, asn cannot find clones consisting of only parameter declarations spread over
several lines, which are found by psn in the Java system. On the other hand, variable
declarations containing initializations are executable and are contained in the AST.
If a fragment starts and ends with an initialization and in between contains only
simple declarations and if this fragment is long enough, asn may propose it as a clone
even though the simple declarations in the midst of the fragment are different. We
observed this phenomenon in the C system.

Use of AST Suffix Tree Versus AST Matching. amn has a lower rejection rate than
asn for both subject systems; on the other hand, the recall of asn is better. Moreover,
asn requires only half the time of amn on average.

Parse Tree Versus AST. psp/psn have a lower rejection rate than the AST-based
tools for the C system but a substantial higher rate for the Java system. This may
have to do with characteristics particular to this system but is also because of import
sequences in Java. Imports lead to type-2 clones, which were always rejected by our
human analyst. The AST-based tools are not affected because import statements are
represented only as symbolic information and are not part of the AST; that is, the
AST-based tools do not find import sequences as clones.

Import sequences have less effect on rejection rate for token-based tools even
though token-based tools should find the same import sequences as parse-tree based
tools. The reason is as follows. The number of import sequences is limited by the
number of files, and token-based tools find many more additional spurious clones.
As a consequence, the likelihood that the random selection process picks an import
sequence from the candidate set of token-based tools is lower than for parse-tree
based tools. Consequently, the likelihood that an import sequence is among the
rejected candidates decreases.

The counterpart of import in C is the preprocessor directive include. Yet, all
syntax-based tools analyze the preprocessed code where the include statements
are already resolved.

In terms of runtime performance, psp/psn lie in between asn and amn for the C
system, but in case of the Java system, psp/psn is faster than asn and amn by a factor
of 2 and 3.8, respectively.

Syntax Versus Lexical. Overall we see a much higher rejection rate for token-based
techniques even though tsns attempts to find syntactically complete clones, which
indicates that the simple heuristic of using brackets as syntactic delimiters is not
sufficient. The high rejection rate for tsns questions its practical use where high
precision is required.

634 Empir Software Eng (2008) 13:601–643

Often, one needs to make a trade-off between recall and precision; less precision
yields often better recall in many applications. Interestingly, the recall of lexical clone
detection is not higher than those of syntactic analyses even though the precision
is lower.

Parameterized Versus Non-parameterized. The difference of parameterized and
non-parameterized detection is visible by comparing psp with psn for the rejection
rate. Small differences may exist because of the incomplete and random candidate
selection. In only one case, there is a difference between the rejection rates above
5% at the advantage of parameterized detection.

The computational effort of parameterized clone detection is lower than for non-
parameterized clone detection as can be seen by comparing phase construct in Fig. 25,
the phase that constructs the suffix tree. Although both algorithms have linear
asymptotic time complexity, McCreight’s algorithm (upon which Baker’s algorithm
is based) is slightly faster than Ukkonen’s algorithm in practice as is generally
known. Yet, this part of the detection process is negligible. The overall difference
in performance is due to different numbers of detected clones.

Runtime Comparison. The runtime for each tool is given in Fig. 25, determined
on a 64bit Intel architecture with four processors (3.0 GHz) and 16 GB RAM
running Linux (Suse), where only one CPU was used. The runtime for the AST-based
tools contains loading the AST from disk; i.e., the time excludes parsing. The
time to parse the sources and to generate our unified AST took 31 minutes for
eclipse-jdtcore and 5 minutes for SNNS. The time for the token-based tools
contains reading and tokenizing source text.

The AST generation of eclipse-jdtcore took so much longer because of
the many libraries upon which eclipse-jdtcore depends. Even though these
libraries are precompiled to byte code, their declarations at least are represented
in the AST.

The runtime of amn is dominated by comparing the abstract syntax subtrees, re-
moving trees that are subsumed by larger clones, and to some extent the combination
of found ASTs into sequences. As already mentioned, amn provides a parameter to
limit runtime by ignoring overly large buckets. The chosen threshold for bucket size
in the experiment was 400. To see the effect on different values on runtime, we mea-
sured the number of necessary comparisons depending upon different thresholds.
Figure 26 lists these values. If the cutoff threshold were increased to 1,000, phase
comparing would need about three times longer. If it were infinite, it would need 16
times longer for SNNS and 102 times longer for eclipse-jdtcore.

The techniques based on suffix tree are dominated by the phases find, Fsub, and
decompose. Phase find detects clones in the suffix tree (which requires only linear

�Fig. 25 Runtime by phases in seconds. The phases are: “token” for token generation (includes lexical
analysis for token-based, and both lexical and syntactic analysis for syntax-based techniques), “con-
struct” the construction of the suffix-tree, “find” finding clones in the suffix-tree, subsumption filter
Fsub, decomposing into syntactic clones (based on scopes or on syntactic information), “loading” the
tree, “hashing” the nodes, “comparing” subtrees in the buckets, “removing” subclones, “splitting”
into clone lists, “finding clone sequences”, “others” operations like printing, “all” the total runtime

Empir Software Eng (2008) 13:601–643 635

636 Empir Software Eng (2008) 13:601–643

Fig. 26 Number of
comparisons (in thousands) in
relation to bucket size limit

time), checks them for length using filter Flength (see Section 6.1), and then puts them
in the clone pair list.

The filter Flength that checks whether a clone is long enough is quite expensive. The
most expensive operation for this check is the determination of the line number for
a token. Although this operation is trivial at first sight, the number of corresponding
assembler instructions is 40 and relatively high. Because the token table is a very
large array but the accesses to this array are not local, many cache misses can
be expected. What makes it worse is the fact that this operation is called very
often.

The line test in asn is even more demanding. For all other tools it is sufficient
to retrieve the line information for the first and last token in the sequence because
the tokens appear in the original order for these tools. Because we use various
normalizations in our AST, the AST node sequence is not necessarily monotonic
so that we need to check each element of the sequence, which handicaps asn.

A simpler test can be made based on number of tokens rather than lines because
the length of a sequence is stored and can be accessed without further indirections.
To check whether this alternative test makes a difference in runtime, we ran the
analysis once using the token length test for all subject systems. We used 60 tokens
as the lower threshold based on the rule of thumb that one line typically has about
10 tokens and the line-based criterion was minimal 6 lines. The improvement for all
tools but asn was about 30% saved effort only for the filtering step. In case of asn,
the savings in effort was a factor between 2 and 3.5.

Filter Fsub checks whether clones subsume each other. Only the larger clones
should be reported. This check is performed right after the clones are retrieved
from the suffix tree as early as possible. It is repeated after clone sequences are
decomposed into syntactically complete sequences, but the costs of this call to Fsub

are accounted in phase decompose. The exceptional high costs for filter Fsub that tests
for clone subsumption for the tool asn in the case of j2sdk1.4.0-javax-swing
is a result of the many clones it finds. The number of clones reaches about 18 millions
at this stage and is extraordinarily high.

Phase decompose decomposes the clone sequences into syntactically complete
subsequences. At first sight, the costs of this step contradicts its theoretical linear
time complexity. We note that the runtime for this step subsumes other necessary
activities. Two other activities filter by subsumption and length once more. Another
one is imposed by the layout of the experiment. The benchmark requires us to
present an exhaustive list of clone pairs (i.e., also transitive clones need to be
reported because the oracle is based on clone pairs). To achieve this goal, the
additional activity forms the equivalence classes for clone pairs after clone sequences
have been decomposed. It is necessary because decomposed clones become shorter
and may fall in the same equivalence with other clones that were decomposed from

Empir Software Eng (2008) 13:601–643 637

completely different clones. Consequently, an expensive pairwise comparison is used
to collect all clones for all equivalence classes.

Threats to Validity: There are potential threats to validity in our study that we will
discuss in this section. One major threat is the subjectivity of the human validation of
clones. The content of the benchmark is the result of the judgement of one person,
and, hence, the results depend upon his judgement. At least, we have developed
common guidelines for the oracle. Moreover, because the benchmark is publicly
available, his judgement can be inspected.

Because one of the authors served as human oracle evaluating our own tools, one
could suspect a bias for a particular tool. However, our experimental design is using
a selection process which is automated, blind, fair, and random (see Section 7.1).
These characteristics should exclude the potential bias. Moreover, we reused this
experimental design from an earlier experiment by Bellon et al. (2007) that was
conducted at a time when we did not develop clone detection tools ourselves. Hence,
the experimental design was not geared towards favoring one of our own tools.

A further threat to validity relates to the selection of sample systems. Although
we chose two systems of different languages, size, and application domain, we do not
know whether these systems are a representative sample. In particular, all systems
are open source. Closed-source systems or systems written in older programming
languages such as COBOL might have totally different characteristics.

Because we did not validate all candidates, we rely on whether those candidates
we have seen are representative for a tool. Yet, we have chosen the candidates by
an automated random selection process and evaluated many candidates at least in
absolute terms so that the threat of a non-representative selection should be limited.
Moreover, not the absolute numbers of precision and recall should be considered,
but the relative differences among the tools.

We must also note that there is some room for accidental differences in this
evaluation. Because we were not able to validate all candidates and the candidates
were selected randomly, there is a chance that this random selection picked the
“best” clones from one tool and the “worst” clones from another tool. The chances
decrease by the number of candidates picked of course, but a few percentages might
be accounted on this random selection.

We should also be aware that we are comparing primarily tools. The same
approach can be implemented differently affecting in particular required runtime
resources. We note that we have put in considerable engineering effort to optimize
our tools so that our measurements become meaningful. Some of the details of
the original methods are not specified, such as thresholds or what to consider a
parameter (every type of identifier, literals, or even operators?). Fixing these degrees
of freedom in a concrete implementation may affect the results.

8 Conclusions

This paper has described a way to use suffix-tree based clone detection for syntax
trees. We compared different techniques empirically addressing the different choices
of features in clone detection:

Use of AST Suffix Tree Versus AST Matching: Detecting cloned subtrees in ASTs
via suffix trees has the same detection quality as AST matching by and large. AST

638 Empir Software Eng (2008) 13:601–643

matching has a somewhat lower rejection rate, but also a lower recall. Detection
based on suffix trees turned out to be 60–80% faster. We note that the suffix tree
performs a complete search whereas our AST-based technique uses a heuristic to
limit the inherent quadratic complexity at the cost of potential loss of clones; if a full
search is performed, the AST match is drastically slower.

Parse Tree Versus AST: Parse trees are easier to obtain than ASTs but have
typically more tokens. In terms of recall, precision, and runtime for detection, they
are comparable to detection based on ASTs.

Syntax Versus Lexical Analysis: Our experiment has confirmed the earlier result
that token-based techniques tend to have lower precision. Unlike earlier exper-
iments, however, they did not have higher recall in our study. Also in terms
of runtime, there is no longer an argument for token-based techniques as the
same linear-time search algorithm in those techniques can be used for tree-based
techniques as well. The real advantage of a token-based technique is that it is
easier to implement a lexer than a parser in general, that token-based program
representation requires less space than ASTs, that preprocessor directives are no
burden, and that the code does not even need to be complete or correct to conduct
an analysis. The advantage of syntactic techniques, on the other hand, is its ability
to find syntactic clones. The lightweight approach—checking for balanced brackets
as syntactic delimiters integrated in the token-based analysis—could not compete
with the syntactic approach in this regard. Another advantage of the syntactic
approach is the ability to write syntactic filters to ignore syntactic structures of little
interest. We used this ability prototypically for long array initializations, for instance.
During oracling we detected many more opportunities for such filters, as for instance
ignoring long import statement sequences.

Parameterized Versus Non-parameterized: Although in some cases, checking for
consistent renaming helped to improve precision, the results were not as good as
expected. We speculate that the longer the clones, the less important this test for
parameterized clones becomes. Longer equal statement sequences are very often
actual clones. It is unlikely that somebody has written a syntactically identical long
fragment independently. If someone has copied and pasted a fragment, then the
parameters are consistent in most cases. For error detection, it would even be a
disadvantage to insist on parameterized clones because inconsistencies in parameter
renaming would go unnoticed.

Our experiment showed that overall the acceptance for type-1 clones is much
higher than those for type-2 clones. By definition, type-2 clones are more dissimilar
than type-1 clones. Often we find common structurally equivalent statements (e.g.,
sequences of assignments) which refer to totally different concepts and, hence, are
just spurious clones (e.g., the assignments assign very different variables which have
nothing in common with the variables in the other fragment). Because most clones
are of type 2, it would be helpful if we had a metric to measure the similarity between
two type-2 segments. The metric could be used to rank the candidates. This metric
could be based on the length, the diversity of identifiers between the two code
segments, and the general frequency of the other constructs that occur. Shannon
information content (Shannon 1984) would be a candidate to measure how significant
syntactic structures are. Type information would also be helpful, which is currently

Empir Software Eng (2008) 13:601–643 639

not used by clone detectors. For instance, a short sequence of assignments occurs
frequently in a program and is less likely a clone if the identifiers and their types
differ a lot.

Because no tool offers both high recall and precision, one must make a choice. The
choice for a tool with either high recall or high precision depends upon a concrete
task. In case of automated clone removal, one would select a precise clone detector.
If one searches for copies of a particular piece of code that needs to be changed, one
would likely prefer a tool with high recall instead.

Another point of improvement that relates to the benchmark is to use token
counts instead of lines as a measure of clone size. We often found clones that con-
tained two statements separated by several blank or commented lines. Last but not
least, the benchmark should be extended to capture who rated a clone (at varying
levels of confidence, not just binary) and to allow for inter-rater comparisons.
Jim Cordy proposed an experiment in which different raters validate the same
candidates7. If a tool’s discrepancy of proposed and accepted candidates with respect
to every rater is not greater than the inter-rater difference, it can be considered
useful. We plan to conduct such multi-rater experiments.

Acknowledgements We would like to thank Stefan Bellon for providing us with his benchmark
and ccdiml, his support in the evaluation, and for comments on this paper. We also like to thank
Felix Beckwermert for his support in the evaluation and Thilo Mende for comments on this paper.
We would also like to thank the anonymous reviewers for their valuable comments.

References

Antoniol G, Casazza G, Penta MD, Merlo E (2001) Modeling clones evolution through time series.
In: International conference on software maintenance. IEEE CS Press, pp 273–280

Antoniol G, Villano U, Merlo E, Penta M (2002) Analyzing cloning evolution in the linux kernel.
Inf Softw Technol 44(13):755–765

Bailey J, Burd E (2002) Evaluating clone detection tools for use during preventative maintenance.
In: SCAM

Baker BS (1992) A program for identifying duplicated code. In: Computer science and statistics 24:
Proceedings of the 24th symposium on the interface

Baker BS (1995) On finding duplication and near-duplication in large software systems. In: Working
conference on reverse engineering. IEEE CS Press

Baker BS (1996) Parameterized pattern matching: algorithms and applications. JCSS
Baker BS (2007) Finding clones with Dup: analysis of an experiment. IEEE Trans Softw Eng

33(9):608–621 (September)
Baker BS, Giancarlo R (2002) Sparse dynamic programming for longest common subsequence from

fragments. J Algorithms 42(2):231–254 (February)
Balazinska M, Merlo E, Dagenais M, Lague B, Kontogiannis K (1999) Measuring clone

based reengineering opportunities. In: IEEE symposium on software metrics. IEEE CS Press,
pp 292–303 (November)

Balazinska M, Merlo E, Dagenais M, Lague B, Kontogiannis K (2000) Advanced clone-analysis
to support object-oriented system refactoring. In: Working conference on reverse engineering,
IEEE CS Press, pp 98–107 (October)

Baxter ID, Yahin A, Moura L, Sant’Anna M, Bier L (1998) Clone detection using abstract syntax
trees. In: ICSM

Bellon S (2002) Vergleich von Techniken zur Erkennung duplizierten Quellcodes. Master’s thesis,
University of Stuttgart, Germany

7Personal communication at Dagstuhl, July 2006.

640 Empir Software Eng (2008) 13:601–643

Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E (2007) Comparison and evaluation of clone
detection tools. IEEE Trans Softw Eng 33(9):577–591 (September)

Bentley JL, Ottmann TA (1979) Algorithms for reporting and counting geometric intersections.
IEEE Trans Comput C-28:643–647

Bruntink M, van Deursen A, Tourwe T, van Engelen R (2004) An evaluation of clone detection
techniques for crosscutting concerns. In: International conference on software maintenance,
pp 200–209

Bruntink M, van Engelen R, Tourwe T (2005) On the use of clone detection for identifying crosscut-
ting concern code. IEEE Trans Softw Eng 31(10):804–818

Chou A, Yang J, Chelf B, Hallem S, Engler DR (2001) An empirical study of operating system errors.
In: Symposium on operating systems principles, pp 73–88

Cordy JR (2003) Comprehending reality—practical barriers to industrial adoption of software main-
tenance automation. In: International workshop on program comprehension, IEEE CS Press

Cordy JR, Dean TR, Synytskyy N (2004) Practical language-independent detection of near-miss
clones. In: CASCON, IBM Press

Di Lucca G, Di Penta M, Fasolino, A (2002) An approach to identify duplicated web pages.
In: COMPSAC

Ducasse S, Rieger M, Demeyer S (1999) A language independent approach for detecting duplicated
code. In: ICSM

Fowler M (1999) Refactoring: improving the design of existing code. Addison Wesley, Boston, MA,
USA

Gitchell D, Tran N (1999) Sim: a utility for detecting similarity in computer programs. In: SIGCSE,
ACM Press

Godfrey M, Tu Q (2001) Growth, evolution and structural change in open source software.
In: Workshop on principles of software evolution (September)

Higo Y, Ueda Y, Kamiya T, Kusumoto S, Inoue K (2002) On software maintenance process improve-
ment based on code clone analysis. In: International conference on product focused software
process improvement. Lecture notes in computer science, vol 2559. Springer

Johnson JH (1993) Identifying redundancy in source code using fingerprints. In: CASCON,
IBM Press

Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: a multi-linguistic token-based code clone detec-
tion system for large scale source code. IEEE Trans Softw Eng 28(7):654–670

Kapser C, Godfrey M (2003a) A taxonomy of clones in source code: the reengineers most wanted
list. In: Working conference on reverse engineering. IEEE CS Press

Kapser C, Godfrey MW (2003b) Toward a taxonomy of clones in source code: a case study.
In: Evolution of large scale industrial software architectures

Kapser C, Godfrey M (2005) Improved tool support for the investigation of duplication in software.
Proceedings of the 21st IEEE international conference on software maintenance

Kapser C, Godfrey MW (2006) “Clones considered harmful” considered harmful. In: Working
conference on reverse engineering

Kim M, Bergman L, Lau T, Notkin D (2004) An ethnographic study of copy and paste programming
practices in OOPL. In: International symposium on empirical software engineering. IEEE CS
Press, pp 83–92

Kim M, Sazawal V, Notkin D, Murphy GC (2005) An empirical study of code clone genealo-
gies. In: European software engineering conference and foundations of software engineering
(ESEC/FSE)

Komondoor R, Horwitz S (2001) Using slicing to identify duplication in source code. In: Proc. int.
symposium on static analysis

Kontogiannis K, Mori RD, Merlo E, Galler M, Bernstein M (1996) Pattern matching for clone and
concept detection. Autom Softw Eng 3(1/2):79–108

Koschke R, Girard JF, Würthner M (1998) Intermediate representations for reverse engineering.
In: Working conference on reverse engineering. IEEE CS Press, pp 241–250

Koschke R, Falke R, Frenzel P (2006) Clone detection using abstract syntax suffix trees. In: Working
conference on reverse engineering. IEEE CS Press, pp 253–262

Krinke J (2001) Identifying similar code with program dependence graphs. In: WCRE
Lague B, Proulx D, Mayrand J, Merlo E, Hudepohl J (1997) Assessing the benefits of incorporating

function clone detection in a development process. In: International conference on software
maintenance, pp 314–321

Laguë B, Proulx D, Mayrand J, Merlo EM, Hudepohl J (1997) Assessing the benefits of incorporating
function clone detection in a development process. In: ICSM

Empir Software Eng (2008) 13:601–643 641

Lanubile F, Mallardo T (2003) Finding function clones in web applications. In: Conference on
software maintenance and reengineering

Leitao AM (2003) Detection of redundant code using R2D2. In: Workshop source code analysis and
manipulation. IEEE CS Press

Li Z, Lu S, Myagmar S, Zhou Y (2004) Cp-miner: a tool for finding copy-paste and related bugs in
operating system code. In: Operating system design and implementation, pp 289–302

Li Z, Lu S, Myagmar S, Zhou Y (2006) Copy-paste and related bugs in large-scale software code.
IEEE Trans Softw Eng 32(3):176–192 (March)

Manber U, Myers G (1991) Suffix arrays: a new method for on-line string searches. SIAM J Comput
22(5):935–948 (October)

Marcus A, Maletic J (2001) Identification of high-level concept clones in source code. In: Conference
on automated software engineering

Mayrand J, Leblanc C, Merlo EM (1996) Experiment on the automatic detection of function clones
in a software system using metrics. In: ICSM. IEEE Computer Society Press

McCreight E (1976) A space-economical suffix tree construction algorithm. J ACM 32(2): 262–272
Monden A, Nakae D, Kamiya T, Sato S, Matsumoto K (2002) Software quality analysis by code

clones in industrial legacy software. In: IEEE symposium on software metrics, pp 87–94
Prechelt L, Malpohl G, Philippsen M (2000) Jplag: finding plagiarisms among a set of programs.

Technical report, University of Karlsruhe, Department of Informatics
Rieger M (2005) Effective clone detection without language barriers. Dissertation, University of

Bern, Switzerland
Schleimer S, Wilkerson DS, Aiken A (2003) Winnowing: local algorithms for document fingerprint-

ing. In: Proceedings of the SIGMOD, pp 76–85
Shannon CE (1984) A mathematical theory of communication. Bell Syst Tech J 27(379–423):

623–656
Ukkonen E (1995) On-line construction of suffix trees. Algorithmica 14(3):249–260
Van Rysselberghe F, Demeyer S (2004) Evaluating clone detection techniques from a refactoring

perspective. In: Conference on automated software engineering
Walter V, Seipel D, von Gudenberg JW, Fischer G (2004) Clone detection in source code by frequent

itemset techniques. In: Workshop source code analysis and manipulation
Yang W (1991) Identifying syntactic differences between two programs. Software Pract Ex 21(7):

739–755

642 Empir Software Eng (2008) 13:601–643

Raimar Falke received his degree in computer science from the Technische Universität Dresden in
Germany. He is currently working at the University of Bremen in Germany. His research includes
clone detection and application, program analysis and binary reverse engineering. His Ph.D. thesis
will be about clone detection.

Pierre Frenzel received his degree in computer science from the University of Bremen in Germany.
His current research includes architecture recovery, feature location and clone detection for product
lines. His Ph.D. will be about the consolidation of different variants to a product line.

Empir Software Eng (2008) 13:601–643 643

Rainer Koschke is a professor for software engineering at the University of Bremen in Germany.
His research interests are primarily in the fields of software engineering and program analyses.
His current research includes architecture recovery, feature location, program analyses, clone
detection, and reverse engineering. Rainer Koschke received his degree in computer science from
the University of Stuttgart and holds a doctoral degree in computer science from the University of
Stuttgart, Germany.

	Empirical evaluation of clone detection using syntax suffix trees
	Abstract
	Introduction
	Code Cloning
	Related Empirical Research
	The Root Causes for Code Clones
	Consequences of Cloning
	Clone Evolution
	Comparison of Clone Detection Algorithms

	Automated Clone Detection
	Token-Suffix-Tree Based Detection
	AST-Based Detection
	Token Based Versus AST Based

	New Approach Using Suffix Trees for Syntax Trees
	Serializing the Syntax Tree
	Suffix Tree Detection
	Decomposing into Syntactic Clones

	Tools
	Infrastructure
	Syntax-based Tools
	Token-based Tools

	Empirical Evaluation
	Bellon Benchmark
	Results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

