
Studying Software Engineers: Data Collection
Techniques for Software Field Studies

TIMOTHY C. LETHBRIDGE tcl@site.uottawa.ca

School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

SUSAN ELLIOTT SIM ses@ics.uci.edu

Department of Informatics, University of California, Irvine, 444 Computer Science, Irvine, CA 92697-3425,

USA

JANICE SINGER janice.singer@nrc-cnrc.gc.ca

National Research Council Canada, Institute for Information Technology, Montreal Rd, Building M-50,

Ottawa, Ontario K1A 0R6, Canada

Editor: Marv Zelkowitz

Abstract. Software engineering is an intensely people-oriented activity, yet too little is known about how

designers, maintainers, requirements analysts and all other types of software engineers perform their work. In

order to improve software engineering tools and practice, it is therefore essential to conduct field studies, i.e., to

study real practitioners as they solve real problems. To do so effectively, however, requires an understanding of

the techniques most suited to each type of field study task. In this paper, we provide a taxonomy of techniques,

focusing on those for data collection. The taxonomy is organized according to the degree of human intervention

each requires. For each technique, we provide examples from the literature, an analysis of some of its ad-

vantages and disadvantages, and a discussion of how to use it effectively. We also briefly talk about field study

design in general, and data analysis.

Keywords: Field studies, work practices, empirical software engineering.

1. Introduction

Software engineering involves real people in real environments. People create software,

people maintain software, people evolve software. Accordingly, to truly understand

software engineering, it is imperative to study peopleVsoftware practitioners as they

solve real software engineering problems in real environments. This means conducting

studies in field settings.

But how does one attain this admirable goal? What techniques are available for

gathering data and analyzing the results? In what situations are each of these techniques

suitable? What difficulties might the software researcher encounter when performing

field studies? To begin to address these questions, in this paper we make a first attempt at

providing a taxonomy of data collection techniques for performing field studies. We

illustrate the discussion with examples from our own work as well as numerous studies

reported in the literature.

The authors appear in alphabetical order and contributed equally.

Empirical Software Engineering, 10, 311–341, 2005.
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

The techniques we talk about have primarily been adapted from fields such as

sociology, psychology, and humanYcomputer interaction. In particular, these methods

rely heavily on the use of field study techniques. Field study techniques are a group of

methods that can be used individually or in combination to understand different aspects

of real world environments.

The results of such studies can be applied when one has several different types of research

goals. First, they can be used to derive requirements for software tools and environments.

For example, we have performed field studies where we learned about software design

and maintenance, and then successfully applied our results to tool design and integra-

tion (Singer et al., 1997, 1998). Second, the results can be used to improve software

engineering work practices. For example, one of us (Sim) was able to make useful recom-

mendations following a study of how newcomers adapt to a software team (Sim and Holt,

1998). Third, analysis of the results can yield new theories or hypotheses that can then be

subjected to controlled experimental validation (Seaman and Basili, 1998; Singer, 1998).

The taxonomy we have created is based on the degree of human intervention each data

collection technique requires. We begin in the next section by providing an overview of

the taxonomy and describing how the taxonomy can be used in selecting a technique for

a field study. In Section 3, we talk about each of the techniques individually, providing

examples from research where it was applied, and giving advantages and disadvantages

of its use. We talk briefly in Section 4 about study design and recording and present a

brief discussion of data analysis. We conclude the paper with a discussion of how to use

these techniques in the most appropriate fashion.

2. Data Collection Methods

When conducting field studies it is important to obtain accurate and reliable information

about the phenomenon under study. Interviews and questionnaires are the most

straightforward instruments, but the data they produce typically present an incomplete

picture. For example, assume your goal is to assess which programming language

features are most error-prone. A developer can give you general opinions and anecdotal

evidence about this; however you would obtain far more accurate information by

recording and analyzing the developer_s work practicesVtheir efforts at repeatedly

editing and compiling code. Methods such as think-aloud protocols and work diaries are

used for this type of research.

To learn about different aspects of a phenomenon, it is often best to use multiple data

collection methods. One then analyzes the resulting data to triangulate the work practice.

In the remainder of this section we survey the range of techniques that can be used in this

triangulation process, and discuss some of the criteria that can be used to choose

techniques.

2.1. A Taxonomy

In Table 1, we present a taxonomy for the data collection techniques. Each technique is

categorized according to the degree of human contact it requires. First degree contact

312 LETHBRIDGE, SIM AND SINGER

requires direct access to a participant population. Second degree contact requires access

to participants_ environment as they work, but without requiring either direct access to

participants, or for participants and researchers to interact. Finally, third degree contact

requires access only to work artifacts, such as source code or documentation.1

This taxonomy is informative because the degree of contact reflects the kinds of data

that can be collected, the resources required, the flexibility available to the researcher,

and the reliability of the resulting information. Close contact with subjects will require a

stronger working relationship than unobtrusive archival research. Given this cost, lower

degree techniques should only be selected when they are the only way to produce the data

needed to answer the research question, i.e., when you need to know what software engi-

neers are thinking. These trade-offs will be explored further in the next two subsections.

In Section 3, each technique is presented, followed by a list of advantages and dis-

advantages, and is illustrated, where possible, using an example taken from the software

engineering literature. The example is given in the context of the questions the re-

searchers were trying to answer and how the particular technique allowed them to do so.

All the methods, from the simplest to the most complex, need to be applied with care

and respect. Questions, observation sessions and other activities must be planned

carefully to ensure that the data collected is meaningful. A poorly-worded question

results in ambiguous responses that cannot be interpreted or analyzed. Additionally,

participants must be treated with respect because they are, first and foremost, human

beings in social situations. Researchers need to be sensitive to the disruptions the

researcher_s presence can cause (see Singer and Vinson for more on research ethics in

software engineering studies).

The set of available methods is constantly evolving. A good place to look for new data

gathering and analysis methods is in the humanYcomputer interaction literature (e.g.,

Table 1. Data collection techniques suitable for field studies of software engineering.

Category Technique

Inquisitive techniques

First Degree

(direct involvement of software engineers)

& Brainstorming and Focus Groups

& Interviews

& Questionnaires

& Conceptual Modeling

Observational techniques

& Work Diaries

& Think-aloud Protocols

& Shadowing and Observation Synchronized Shadowing

& Participant Observation (Joining the Team)

Second Degree

(indirect involvement of software engineers)

& Instrumenting Systems

& Fly on the Wall (Participants Taping Their Work)

Third Degree (study of work artifacts only) & Analysis of Electronic Databases of Work Performed

& Analysis of Tool Use Logs

& Documentation Analysis

& Static and Dynamic Analysis of a System

DATA COLLECTION METHODS 313

(Kensing, 1998; Snelling and Bruce-Smith, 1997); there is much in common between

trying to improve a software system so users can use it more effectively, and trying to

improve software engineering practices.

2.2. Situating the Data Collection Method

Selection of a data collection method should be done in the context of a research goal or

question. We propose that the research method should be chosen in a similar way to

metrics in software engineering, i.e., following a method analogous to Basili_s GQM

(Goals Questions Metrics) approach (Basili, 1992).

The first step in designing any study is to establish a set of well-understood goals,

because many of the subsequent design decisions depend on them. The goals should

describe the phenomenon being studied and the purpose of the study, i.e., how the results

will be used. Field studies in software engineering have had a variety of goals. Some of

them try to develop tool requirements by studying software engineers (Sim et al., 1998;

Singer, 1998; Singer et al., 1998). Others aim to develop a better understanding of how

software engineers perform some particular activity such as maintenance (Jørgensen,

1995; Kemerer and Slaughter, 1997); many seek to go beyond mere understanding and

derive recommendations for improved procedures or processes (Perry et al., 1994;

Seaman and Basili, 1998; Sim and Holt, 1998; Wolf and Rosenblum, 1993).

The goals of the research drive the formulation of the research questions, which in turn

drive the research design, which in turn dictate the choice of data collection technique(s).

We suggest that there are three factors to consider in selecting a technique: the degree of

access required to software engineers, volume of data produced, and type of research

question.

Table 2 presents a summary of the data collection techniques; the second column

shows the kinds of questions each can answer. The researcher can choose a set of tech-

niques that will together answer the required questions. The third column in Table 2,

indicates the amount of data. It should be noted that the degree of contact is not directly

related to the amount of data collected.

These three considerations, degree of contact, type of research question, and volume

of data produced, taken together suggest which type of study will be most appropriate.

Case studies can be performed where the questions are broad, there is little background

knowledge, and little data to comparatively analyze. Research that focuses on data

analysis is suited towards quantifying a phenomenon, such as how many programmers

there are and what languages they know. Many of the field studies in software en-

gineering tend to be exploratory in nature, because we are still gathering basic knowl-

edge about the human factors surrounding software development and maintenance. As a

result, a case study design is commonly used and the study results in a theory or model

that can be tested later. As our knowledge base grows, we can employ designs that test

these theories or models.

Section 4 provides additional guidance on selecting and applying a data collection

method. In particular, issues in record-keeping and analysis of data are considered

briefly. It is important to keep in mind how the goals and questions of software engi-

314 LETHBRIDGE, SIM AND SINGER

T
a

b
le

2
.

Q
u

es
ti

o
n
s

as
k

ed
b

y
so

ft
w

ar
e

en
g

in
ee

ri
n

g
re

se
ar

ch
er

s
(c

o
lu

m
n

2
)

th
at

ca
n

b
e

an
sw

er
ed

b
y

fi
el

d
st

u
d

y
te

ch
n

iq
u
es

.

T
ec

h
n

iq
u

e
U

se
d

b
y

re
se

ar
ch

er
s

w
h

en
th

ei
r

g
o

al
is

to
u

n
d

er
st

an
d

:
V

o
lu

m
e

o
f

d
at

a

A
ls

o
u

se
d

b
y

so
ft

w
ar

e

en
g

in
ee

rs
fo

r:

F
ir

st
O

rd
er

T
ec

h
n

iq
u

es

B
ra

in
st

o
rm

in
g

an
d

F
o

cu
s

G
ro

u
p

s
Id

ea
s

an
d

g
en

er
al

b
ac

k
g

ro
u
n

d
ab

o
u

t
th

e
p

ro
ce

ss
an

d
p

ro
d

u
ct

,

g
en

er
al

o
p

in
io

n
s

(a
ls

o
u

se
fu

l
to

en
h

an
ce

p
ar

ti
ci

p
an

t
ra

p
p

o
rt

)

S
m

al
l

R
eq

u
ir

em
en

ts
g

at
h
er

in
g

,

p
ro

je
ct

p
la

n
n

in
g

S
u

rv
ey

s
G

en
er

al
in

fo
rm

at
io

n
(i

n
cl

u
d

in
g

o
p

in
io

n
s)

ab
o

u
t

p
ro

ce
ss

,

p
ro

d
u

ct
,

p
er

so
n

al
k

n
o

w
le

d
g

e
et

c.

S
m

al
l

to
L

ar
g

e
R

eq
u

ir
em

en
ts

an
d

ev
al

u
at

io
n

C
o
n
ce

p
tu

al
m

o
d
el

in
g

M
en

ta
l

m
o
d
el

s
o
f

p
ro

d
u
ct

o
r

p
ro

ce
ss

S
m

al
l

R
eq

u
ir

em
en

ts

W
o

rk
D

ia
ri

es
T

im
e

sp
en

t
o

r
fr

eq
u
en

cy
o

f
ce

rt
ai

n
ta

sk
s

(r
o
u

g
h

ap
p

ro
x
im

at
io

n
,

o
v

er
d

ay
s

o
r

w
ee

k
s)

M
ed

iu
m

T
h

in
k

-a
lo

u
d

se
ss

io
n

s
M

en
ta

l
m

o
d

el
s,

g
o

al
s,

ra
ti

o
n

al
e

an
d

p
at

te
rn

s
o

f
ac

ti
v

it
ie

s
M

ed
iu

m
to

la
rg

e
U

I
ev

al
u
at

io
n

S
h
ad

o
w

in
g

an
d

O
b
se

rv
at

io
n

T
im

e
sp

en
t

o
r

fr
eq

u
en

cy
o
f

ta
sk

s
(i

n
te

rm
it

te
n
t

o
v
er

re
la

ti
v
el

y

sh
o
rt

p
er

io
d
s)

,
p
at

te
rn

s
o
f

ac
ti

v
it

ie
s,

so
m

e
g
o
al

s
an

d
ra

ti
o
n
al

e

S
m

al
l

A
d

v
an

ce
d

ap
p

ro
ac

h
es

to
u

se

ca
se

o
r

ta
sk

an
al

y
si

s

P
ar

ti
ci

p
an

t
o
b
se

rv
at

io
n

(j
o

in
in

g
th

e
te

am
)

D
ee

p
u
n
d
er

st
an

d
in

g
,

g
o
al

s
an

d
ra

ti
o
n
al

e
fo

r
ac

ti
o
n
s,

ti
m

e
sp

en
t

o
r

fr
eq

u
en

cy
o

v
er

a
lo

n
g

p
er

io
d

M
ed

iu
m

S
ec

o
n
d

O
rd

er
T

ec
h

n
iq

u
es

In
st

ru
m

en
ti

n
g

sy
st

em
s

S
o
ft

w
ar

e
u
sa

g
e

o
v
er

a
lo

n
g

p
er

io
d
,

fo
r

m
an

y
p
ar

ti
ci

p
an

ts
L

ar
g
e

S
o
ft

w
ar

e
u
sa

g
e

an
al

y
si

s

F
ly

in
th

e
w

al
l

T
im

e
sp

en
t

in
te

rm
it

te
n
tl

y
in

o
n
e

lo
ca

ti
o
n
,

p
at

te
rn

s
o
f

ac
ti

v
it

ie
s

(p
ar

ti
cu

la
rl

y
co

ll
ab

o
ra

ti
o
n
)

M
ed

iu
m

T
h
ir

d
O

rd
er

T
ec

h
n
iq

u
es

A
n

al
y
si

s
o

f
w

o
rk

d
at

ab
as

es
L

o
n

g
-t

er
m

p
at

te
rn

s
re

la
ti

n
g

to
so

ft
w

ar
e

ev
o

lu
ti

o
n
,

fa
u

lt
s

et
c.

L
ar

g
e

M
et

ri
cs

g
at

h
er

in
g

A
n

al
y
si

s
o

f
to

o
l

u
se

lo
g

s
D

et
ai

ls
o

f
to

o
l

u
sa

g
e

L
ar

g
e

D
o

cu
m

en
ta

ti
o

n
an

al
y
si

s
D

es
ig

n
an

d
d

o
cu

m
en

ta
ti

o
n

p
ra

ct
ic

es
,

g
en

er
al

u
n

d
er

st
an

d
in

g
M

ed
iu

m
R

ev
er

se
en

g
in

ee
ri

n
g

S
ta

ti
c

an
d

d
y

n
am

ic
an

al
y

si
s

D
es

ig
n

an
d

p
ro

g
ra

m
m

in
g

p
ra

ct
ic

es
,

g
en

er
al

u
n

d
er

st
an

d
in

g
L

ar
g

e
P

ro
g

ra
m

co
m

p
re

h
en

si
o

n
,

m
et

ri
cs

,
te

st
in

g
,

et
c.

DATA COLLECTION METHODS 315

neering researchers differ from those of the software engineers themselves: software

engineers_ goals include improving quality of a specific product, reducing cost, and

reducing time-to-market, etc. On the other hand, the goals of software engineering

researchers are to understand the general principles that will help all software engineers

achieve these goals. The right column in Table 2 illustrates that many of the techniques

presented in this paper are in widespread use by software practitioners to help define and

manage their specific project; however, researchers use the techniques to answer sig-

nificantly different types of questions.

2.3. Trade-offs Between Data Collection Methods

Before describing the individual methods in the next section, some general guidelines

will be provided here on choosing among them. The three categories of data collection

methods vary in terms of the cost of resources required to collect the data, their re-

liability, their flexibility, and the phenomenon addressed. The relative merits of the dif-

ferent categories are shown in Figure 1.

Cost is a function of the effort required to collect the data, the record-keeping tech-

nique used, the amount of data produced, and the effort required to analyze the data. In

general, lower degree techniques are more expensive to use because they require more

time and effort from researchers and study participants.

Methods that produce more data require more time to analyze that data. Computer-

based records are easier to analyze because software can be brought to bear on the data,

more so than other data sources, such as videotapes. Some exceptions may arise when

working with very large bodies of code or tool logs.

Humans tend not to be reliable reporters, as they often do not remember past events

with a high degree of accuracy. Records of activities, such as tapes, work products, and

repositories, tend to be more reliable. However, care must be taken when interpreting

these data sources as they may not be consistent, internally or with each other.

Despite their drawbacks, first degree techniques are invaluable because of their

flexibility and the phenomenon they can be used to study. Existing logs and repositories

are easy to use but the data available is highly constrained. Software engineers, on the

other hand, can be asked about a much wider range of topics. Second degree techniques

Figure 1. Cost, reliability, flexibility, and phenomena addressed.

316 LETHBRIDGE, SIM AND SINGER

lie somewhere in between. However, all of these techniques can still be used for

exploratory questions.

Finally, some contact with software engineers is necessary to find out what they think

or feel. More removed techniques can only tell you what they were doing, however, this

is not a problem if actions or work practice is the main interest of the study. Some

inferences can be made regarding cognition from behavior, but they need to be con-

firmed with direct inquiries.

In summary, each category of technique has its drawbacks, so it is necessary to use the

appropriate combination to provide the data necessary to provide evidence to answer the

research questions. First and second degree techniques are more complex than third

degree techniques, but in many situations this is an argument in their favor.

3. Survey of Data Collection Methods

In this section, we describe the data collection techniques listed in Table 1. We use the

taxonomy to organize the presentation of the techniques, beginning with first degree

techniques (direct involvement of subjects), moving on to second degree techniques

(indirect involvement of subjects), and concluding with third degree techniques (study of

work artifacts only). Each of the techniques is described in the same way. First the

technique is outlined. Then its advantages and disadvantages are identified. Finally, one

or more examples of its use in software engineering research are given.

3.1. First Degree Techniques: Direct Involvement of Software Engineers

The first five techniques listed in Table 1 are what we call inquisitive techniques, while

the remaining ones are primarily observational. Each type is appropriate for gathering

different types of information from software engineers.

Inquisitive first-degree techniques allow the experimenter to obtain a general

understanding of the software engineering process. Such techniques are probably the

only way to gauge how enjoyable or motivating certain tools are to use or certain

activities to perform. However, they are often subjective, and additionally do not allow

for accurate time measurements.

Observational first-degree techniques provide a real-time portrayal of the studied

phenomena. However, it is more difficult to analyze the data, both because it is dense

and because it requires considerable knowledge to interpret correctly. Observational

techniques can be used at randomly chosen times or when a software engineer is engaged

in a specific type of activity (such as whenever she is using a debugger). Observational

techniques always run the risk of changing the process simply by observing it; the

Hawthorne effect was first identified when a group of researchers found that output was

not related to environmental conditions as expected, but rather to whether or not workers

were being observed (Draper, 2004; Robbins, 1994). Careful consideration of this effect

is therefore warranted in implementing the research and explaining its purpose and

protocol to the research participants.

DATA COLLECTION METHODS 317

3.1.1. Brainstorming and Focus Groups

In brainstorming, several people get together and focus on a particular issue. The idea is

to ensure that discussion is not limited to Fgood_ ideas or ideas that make immediate

sense, but rather to work together to uncover as many ideas as possible. Brainstorming

works best with a moderator because the moderator can motivate the group and keep it

focused. Brainstorming works best when there is a simple Ftrigger question_ to be

answered and everybody is given the chance to contribute whatever comes to their mind,

initially on paper. A good seminal reference for this process, called Nominal Group

Technique, is the work of Delbecq et al. (1975). Trigger questions, such as, BWhat are

the main tasks that you perform?,’’ BWhat features would you like to see in software

engineering tools?,’’ or BWhat difficulties do you experience in your daily work?,’’ can

result in extensive lists of valuable ideas which can then be discussed in more detail,

ranked, and analyzed.

Focus Groups are similar to brainstorming. However, focus groups occur when groups

of people are brought together to focus on a particular issue (not just generate ideas).

They also involve moderators to focus the group discussion and make sure that everyone

has an opportunity to participate. There is a large volume of written material on how to

properly design and moderate focus groups. Nielsen wrote a short article which outlines

the process and some of its uses and misuses (Nielsen, 1997).

Advantages. Brainstorming and focus groups are excellent data collection techniques to

use when one is new to a domain and seeking ideas for further exploration. They are

good at rapidly identifying what is important to the participant population. Two im-

portant side benefits of brainstorming and focus groups are that they can introduce the

researchers and participants to each other and additionally give the participants more of a

sense of being involved in the research process. Conducting research in field environ-

ments is often stressful to the research participants; they are more likely to be willing

participants if they feel comfortable with the researchers and feel they are partners in

research that focuses on issues that they consider to be important.

Disadvantages. Unless the moderator is very well trained, brainstorming and focus

groups can become too unfocused. Although the nominal group technique helps people to

express their ideas, people can still be shy in a group and not say what they really think.

Just because a participant population raises particular issues, this does not mean the

issues are really relevant to their daily work. It is often hard to schedule a brainstorming

session or focus group with the busy schedules of software engineers.

Examples. Bellotti and Bly (1996) used brainstorming during an initial meeting with a

product design group. The goal of their research was to study the process of mobile

collaboration among design team members. The brainstorming meeting was held to

identify problems and possible solutions as seen by the team. This meeting gave the

researchers an initial understanding of the team_s work and additionally let the re-

searchers know how existing technology was either supporting or inhibiting the work.

A nice side effect of the meeting was that it gave the researchers an entry point for

318 LETHBRIDGE, SIM AND SINGER

communication about the design process with their colleagues in the design department

at Apple. One of us (Lethbridge) regularly uses brainstorming; we have described our

technique in more detail elsewhere (Lethbridge and Laganière, 2001).

Hall and her colleagues have published a number of papers based on a large study

involving focus groups to understand software process improvement (Baddoo and Hall,

2002a,b; Beecham et al., 2003; Rainer and Hall, 2003). In their study, they used 13

software companies and implemented 49 focus groups. The groups were comprised of

between 4 and 6 participants. The companies were chosen based on certain character-

istics, but overall were representative of the industry. Each session lasted 90 minutes.

There were three types of groups: senior managers, project managers, and developers.

The focus groups were moderated and tackled very specific questions aimed at under-

standing several factors leading to success and failure for software process improvement.

3.1.2. Interviews and Questionnaires

In this subsection, the strengths and drawbacks common to both interviews and ques-

tionnaires are discussed. Each technique is then described individually in the following

two subsections.

Both interviews and questionnaires are centered on asking a series of questions.

Questions can be closed-ended, i.e., multiple-choice, or they can be open-ended, i.e.,

conversational responses; it is best to always have at least some open-ended questions

to gain information that cannot be relayed by more specific information seeking

questions. To implement interviews and questionnaires effectively, questions and forms

must be crafted carefully to ensure that the data collected is meaningful (DeVaus,

1996; Foddy, 1994). A poorly worded question results in ambiguous responses that

cannot be interpreted or analyzed. It is highly advisable to pilot test the questions or

forms and then re-design them as you learn which questions unambiguously attack the

pertinent issues.

In order to generate good statistical results from interviews or a questionnaire, a sam-

ple must be chosen that is representative of the population of interest. This requirement is

particularly difficult in software engineering because we lack good demographic in-

formation about the population of developers and maintainers. However, this drawback

should not prevent us from using interviews and questionnaires to conduct field studies,

if we do not intend to perform statistical tests on the data or when the problem or

population is small and well-defined.

Interviews and questionnaires are often conducted in the same series of studies, with

the interviews providing additional information to the answers from the questionnaires.

Advantages. People are familiar with answering questions, either verbally or on paper,

and as a result they tend to be comfortable and familiar with this data collection method.

Participants also enjoy the opportunity to answer questions about their work.

Disadvantages. Interviews and questionnaires rely on respondents_ self-reports of their

behaviors or attitudes. This dependency can bias the results in a number of ways. People

DATA COLLECTION METHODS 319

are not perfect recorders of events around them; in particular, they preferentially re-

member events that are meaningful to them. For instance in one of our questionnaires,

participants reported that reading documentation was a time-consuming aspect of their

job, but in 40 hours of observation, we hardly saw anyone doing so.2

If the objective of interviews and questionnaires is to obtain statistics based on the

answers to fixed questions, then issues of sampling arise. Most studies in software

engineering have to use what is called convenience sampling, meaning that we involve

whoever is available and volunteers. This will result in various types of bias, such as

self-selection bias (those most interested in our work may have different characteristics

from the population as a whole). Results must always therefore be reported with an

acknowledgement of potential biases, and other threats to validity. And results should be

used keeping the biases in mind. In most cases, slightly biased data is still much more

useful than a complete lack of data.

3.1.3. Interviews

Face-to-face interviews involve at least one researcher talking, in person, to at least one

respondent at a time. Normally, a fixed list of carefully worded questions forms the basis

of the interview. Depending on the goal of the study, respondents may be encouraged to

elaborate on areas and deviate slightly from the script.

Telephone interviews are the middle ground between face-to-face interviews and

questionnaires. You have the interactivity of an interview at the cost and convenience of

a phone call. Telephone interviews are not as personal as face-to-face interviews, yet

they still provide researchers with opportunities to clarify questions and further probe

interesting responses. Although this technique is popular in opinion polling and market

research, it is little used in empirical software engineering.

Advantages. Interviews are highly interactive. Researchers can clarify questions for

respondents and probe unexpected responses. Interviewers can also build rapport with a

respondent to improve the quality of responses.

Disadvantages. Interviews are time and cost inefficient. Contact with the respondent

needs to be scheduled and at least one person, usually the researcher, needs to travel to

the meeting (unless it is conducted by phoneVbut this lessens the rapport that can be

achieved). If the data from interviews consists of audio or video tapes, this needs to be

transcribed and/or coded; careful note-taking may, however, often be an adequate

substitute for audio or video recording.

Examples. Interviews have been used in many studies because they fit well with many

types of inquiries. We have used interviews in longitudinal studies as an aid in

understanding how newcomers adapt to a development team and software system (Sim

and Holt, 1998). We interviewed newcomers once every three weeks over a number of

months to track their progress as maintenance team members. Since this was an

exploratory study, the questions were open-ended.

320 LETHBRIDGE, SIM AND SINGER

Curtis et al. (1988) used interviews to study the design process used on 19 different

projects at various organizations. They interviewed personnel from three different levels

of the participating projects, systems engineers, senior software designers and project

managers. The researchers conducted 97 interviews, which resulted in over 3000 pages

of transcripts of the audio recordings. They found three key problems common to the

design processes: communication and coordination breakdowns, fluctuating and con-

flicting product requirements, and the tendency for application domain knowledge to be

located in individuals across the company. They characterized the problems at each level

of a model they subsequently defined.

Damian et al. (2004) used interviews of experienced personnel and senior manage-

ment to examine how changes in the requirements engineering process affected soft-

ware development practice. Because there was limited historical data on the previous

requirements process, the interviews were key to provide information on how the

changes were affecting the current practice. In addition to the initial interviews, follow-

up interviews were conducted after a questionnaire to elucidate the responses. Overall,

Damian et al. found the improved requirements process was useful to the product

development team in that it resulted in better documentation of requirements, better

understanding of the market need, and better understood requirements. However, better

communication, collaboration and involvement of other stakeholder groups is still

required.

3.1.4. Questionnaires

Questionnaires are sets of questions administered in a written format. These are the most

common field method because they can be administered quickly and easily. However,

very careful attention needs to be paid to the wording of the questions, the layout of the

forms, and the ordering of the questions in order to ensure valid results. Pfleeger and

Kitchenham have published a six-part series on principles of survey research starting

with (Pfleeger and Kitchenham, 2001). This series gives detailed information about how

to design and implement questionnaires. Punter et al. (2003) further provides information

on conducting web-based surveys in software engineering research.

Advantages. Questionnaires are time and cost effective. Researchers do not need to

schedule sessions with the software engineers to administer them. They can be filled out

when a software engineer has time between tasks, for example, waiting for information

or during compilation. Paper form-based questionnaires can be transported to the re-

spondent for little more than the cost of postage. Web-based questionnaires cost even

less since the paper forms are eliminated and the data are received in electronic form.

Questionnaires can also easily collect data from a large number of respondents in geo-

graphically diverse locations.

Disadvantages. Since there is no interviewer, ambiguous and poorly-worded questions

are problematic. Even though it is relatively easy for software engineers to fill out ques-

tionnaires, they still must do so on their own and may not find the time. Thus, return rates

DATA COLLECTION METHODS 321

can be relatively low which adversely affects the representativeness of the sample. We

have found a consistent response rate of 5% to software engineering surveys, when

people are contacted personally by email and asked to complete a web-based survey. If

the objective of the questionnaire is to gather data for rigorous statistical analysis in

order to refute a null hypothesis, then response rates much higher than this will be

needed. However, if the objective is to understand trends, with reasonable confidence,

then low response rates may well be fine. The homogeneity of the population, and

the sampling technique used also affect the extent to which one can generalize the

results of surveys. In addition to the above, responses tend to be more terse than with

interviews.

Examples. One of us (Lethbridge) used questionnaires (Lethbridge, 2000) that were

partly web-based and partly paper-based to learn what knowledge software engineers

apply in their daily work, and how this compares to what they were taught in their formal

education. Respondents were asked four questions about each of a long list of topics. We

ran several pilot studies for the questionnaires, but nevertheless found upon analyzing the

data that a couple of the topics3 were interpreted in different ways by different respond-

ents. Despite this, we were able to draw many useful conclusions about how software

engineers should be trained.

Iivari used a paper-based questionnaire to test nine hypotheses about factors affecting

CASE tool adoption in 52 organizations in Finland (Iivari, 1996). The author contacted

organizations who had purchased CASE tools and surveyed key information systems

personnel about the use of the tool. Companies and individuals were more likely to use

CASE tools when adoption was voluntary, the tool was perceived to be superior to its

predecessor(s) and there was management support.

In the example cited above, Damian et al. (2004) also used questionnaires to obtain

information from the product team. All sources of information from the study were

combined to triangulate the data and thus contribute to greater internal validity.

One of us (Sim) used a web-based questionnaire to study source code searching behav-

iors (Sim et al., 1998). We solicited respondents from seven Usenet newsgroups from the

comp.* hierarchy to complete a questionnaire at a given web address. The questionnaire

used a two-page format. The first page informed the participants of the goals of the study

and their rights and the second page displayed the questions. Using a combination of

open- and closed-ended questions, we identified a set of eleven search archetypes.

3.1.5. Conceptual Modeling

During conceptual modeling, participants create a model of some aspect of their workV
the intent is to bring to light their mental models. In its simplest form, participants draw

a diagram of some aspect of their work. For instance, software engineers may be asked

to draw a data flow diagram, a control flow diagram or a package diagram showing the

important architectural clusters of their system. As an orthogonal usage, software engi-

neers may be asked to draw a physical map of their environment, pointing out who they

talk to and how often.

322 LETHBRIDGE, SIM AND SINGER

A more sophisticated version of conceptual modeling involves the use of a tool such as

a CASE tool, or a tool specially designed for conceptual modeling. The researchers may

ask the participants to create models from scratch, or they may create the diagrams and

then ask the participants to either confirm them or else suggest modifications.

Advantages. System illustrations provide an accurate portrayal of the user_s concep-

tion of his or her mental model of the system. Such models are easy to collect and require

only low-tech aids (pen and paper).

Disadvantages. The results of conceptual modeling are hard to interpret, especially if

the researcher does not have domain knowledge about the system. Some software

engineers are reluctant to draw, and the quality and level of details in diagrams can

vary significantly.

Examples. Scacchi (2003) describes an initial effort to formally model development

processes in an open source development project. Scacchi describes a rich picture model

of one type of open source project that links the various roles, artifacts and tools to the

development process overall. Additionally, Scacchi describes a formal model that was

built using a process modeling language. The model was built using a process meta-

model as its semantic foundation. The goal of the modeling was to provide a formal

computational understanding that could be analysed, shared, and compared within the

research and practice communities.

In one of our studies, we collected system maps from all members of the researched

group. Additionally, as we followed two newcomers to a system, we had them update

their original system maps on a weekly basis. We gave them a photocopy of the previous

week_s map, and asked them to either update it or draw a new one. The newcomers

almost exclusively updated the last week_s map.

In our group study, our instructions to the study participants were to Fdraw their

understanding of the system._ These instructions turned out to be too vague. Some

participants drew data flow diagrams, some drew architectural clusters, others listed the

important data structures and variables, etc. Not surprisingly, the manager of the group

subsequently noted that the system illustrations reflected the current problems on which

the various software engineers were working.

We learned from this exercise that for illustration data to be useful, it is important to

specify to the greatest extent possible the type of diagram required. It is next to im-

possible to compare diagrams from different members of a group if they are not drawing

the same type of diagram. Of course, this limits researchers in the sense that they will

not be getting unbiased representations of a system. Specifying that data-flow diagrams

are required means that software engineers must then think of their system in terms of

data-flow.

In another project (Sayyad-Shirabad et al., 1997), we wanted to discover the concepts

and terminology that several software engineers use to describe a software system. We

extracted a set of candidate technical terms (anything that was not a common English

word) from source code comments and documentation. Then we designed a simple

program that would allow software engineers to manipulate the concepts, putting them

DATA COLLECTION METHODS 323

into groups and organizing them into hierarchies. We presented the combined results to

the software engineers and then iteratively worked with them to refine a conceptual

hierarchy. Although there were hundreds of concepts in the complex system, we learned

that the amount of work required to organize the concepts in this manner was not large.

3.1.6. Work Diaries

Work diaries require respondents to record various events that occur during the day. It

may involve filling out a form at the end of the day, recording specific activities as they

occur, or noting whatever the current task is at a pre-selected time. These diaries may be

kept on paper or in a computer. Paper forms are adequate for recording information at

the end of the day. A computer application can be used to prompt users for input at

random times.

Advantages. Work diaries can provide better self-reports of events because they record

activities on an ongoing basis rather than in retrospect. Random sampling of events gives

researchers a way of understanding how software engineers spend their day without

undertaking a great deal of observation or shadowing.

Disadvantages. Work diaries still rely on self-reports; in particular, those that require

participants to recall events can have significant problems with accuracy. Another

problem with work diaries is that they can interfere with respondents as they work. For

instance, if software engineers have to record each time they go and consult a colleague,

they may consult less often. They may also forget or neglect to record some events and

may not record at the expected level of detail.

Examples. Wu et al. (2003) were interested in collaboration at a large software

company. In addition to observations and interviews, they asked software engineers to

record their communication patterns for a period of one day. The researchers were

interested in both the interaction between the team members, and the typical

communication patterns of developers. They found that developers communicate

frequently and extensively, and use many different types of communication modalities,

switching between them as appropriate. They also found that communication patterns

vary widely amongst individual developers.

As another example, Jørgensen randomly selected software maintainers and asked

them to complete a form to describe their next task (Jørgensen, 1995). These reports were

used to profile the frequency distribution of maintenance tasks. Thirty-three hypotheses

were tested and a number of them were supported. For example, programmer produc-

tivity (lines of code per unit time) is predicted by the size of the task, type of the change,

but it is not predicted by maintainer experience, application age, nor application size.

As a slight modification of the work diary, Shull et al. (2000) asked students to submit

weekly progress reports on their work. The progress reports included an estimate of

the number of hours spent on the project, and a list of functional requirements begun

and completed. Because the progress reports had no effect on the students_ grades,

324 LETHBRIDGE, SIM AND SINGER

however, Shull et al. found that many teams opted to submit them only sporadically or

not at all.

3.1.7. Think-Aloud Protocols

In think-aloud protocol analysis (Ericcson and Simon, 1984), researchers ask participants

to think out loud while performing a task. The task can occur naturally at work or be

predetermined by the researcher. As software engineers sometimes forget to verbalize,

experimenters may occasionally remind them to continue thinking out loud. Other than

these occasional reminders, researchers do not interfere in the problem solving process.

Think-aloud sessions generally last no more than two hours.

Think-aloud protocol analysis is most often used for determining or validating a cog-

nitive model as software engineers do some programming task. For a good review of this

literature, see von Mayrhauser and Vans (1995).

Advantages. Asking people to think aloud is relatively easy to implement. Additionally,

it is possible to implement think-aloud protocol analysis with manual record keeping

(Miles, 1979) obliterating the need for transcription. This technique gives a unique view

of the problem solving process and additionally gives access to mental model. It is an

established technique.

Disadvantages. Think aloud protocol analysis was developed for use in situations where

a researcher could map out the entire problem space. It_s not clear how this method

translates to other domains where it is impossible to know a priori what the problem space

is. However, Chi (1997) has defined a technique called Verbal Analysis that does address

this problem. In either case, though, even using manual record keeping, it is difficult and

time-consuming to analyze think-aloud data.

Examples. Von Mayrhauser and Vans (1993) asked software developers to think aloud

as they performed a maintenance task which necessitated program comprehension. Both

software engineers involved in the experiment chose debugging sessions. The think-

aloud protocols were coded to determine if participants were adhering to the FIntegrated

meta-model_ of program comprehension these researchers have defined. They found

evidence for usage of this model, and were therefore able to use the model to suggest

tool requirements for software maintenance environments.

As another example of think-aloud protocol analysis, Seaman et al. (2003) were in-

terested in evaluating a user interface for a prototype management system. They asked

several subjects to choose from a set of designated problems and then solve the problem

using the system. The subjects were asked to verbalize their thoughts and motivations

while working through the problems. The researchers were able to identify positive

and negative aspects of the user interface and use this information in their evolution of

the system.

Hungerford et al. (2004) adopted an information processing framework in using

protocol analysis to understand the use of software diagrams. The framework assumes

DATA COLLECTION METHODS 325

that the human cognitive processes are represented by the contents of short term memory

which is then available to be verbalized during a task. The verbal protocols were coded

using a pre-established coding scheme. Intercoder reliability scores were used to ensure

consistency of codings across raters and internal validity of the coding scheme. Hungerford

et al. found individual differences in search strategies and defect detection rates across

developers. They used their findings to suggest possible training and detection strategies

for developers looking for defects.

3.1.8. Shadowing/Observation

In shadowing, the experimenter follows the participant around and records their

activities. Shadowing can occur for an unlimited time period, as long as there is a

willing participant. Closely related to shadowing, observation occurs when the expe-

rimenter observes software engineers engaged in their work, or specific experiment-

related tasks, such as meetings or programming. The difference between shadowing and

observation is that the researcher shadows one software engineer at a time, but can

observe many at one time.

Advantages. Shadowing and observation are easy to implement, give fast results, and

require no special equipment.

Disadvantages. For shadowing, it is often hard to see what a software engineer is doing,

especially when they are using keyboard shortcuts to issue commands and working

quickly. However, for the general picture, e.g., knowing they are now debugging,

shadowing does work well. Observers need to have a fairly good understanding of the

environment to interpret the software engineer_s behavior. This can sometimes be offset by

predefining a set of categories or looked-for behaviors. Of course, again, this limits the

type of data that will be collected.

Examples. We have implemented shadowing in our work in two ways (Singer et al.,

1997). First, one experimenter took paper-and-pencil notes to indicate what the

participant was doing and for approximately how long. This information gave us a good

general picture of the work habits of the software engineers. We also developed a

method we call synchronized shadowing. Here we used two experimenters and, instead

of pencil and paper, used two laptop computers to record the software engineer_s actions.

One of us was responsible for ascertaining the participants_ high level goals, while the

other was responsible for recording their low-level actions. We used pre-defined

categories (Microsoft Word macros) to make recording easier. Wu et al. (2003) also used

pre-defined categories to shadow software engineers. However, they used a PDA based

database that was easy to use and record actions.

Perry et al. (1994) also shadowed software engineers as they went about their work.

They recorded continuous real-time non-verbal behavior in small spiral notebooks.

Additionally, at timed intervals they asked the software engineers BWhat are you doing

now?’’ At the end of each day, they converted the notebook observations to computer

326 LETHBRIDGE, SIM AND SINGER

files. The direct observations contributed to Perry et al._s understanding of the software

process. In particular, shadowing was good for observing informal communication in the

group setting.

As an example of observation, Teasley et al. (2002), were interested in whether co-

locating team members affects development of software. In addition to interviews and

questionnaires, they observed teams, conference calls, problem solving, and photo-

graphed various artifacts. The researchers found that satisfaction and productivity

increased for co-located teams.

3.1.9. Participant Observation (Joining the Team)

In the Participant-Observer method, the researcher essentially becomes part of the team

and participates in key activities. Participating in the software development process

provides the researcher with a high level of familiarity with the team members and the

tasks they perform. As a result, software engineers are comfortable with the researcher_s
presence and tend not to notice being observed.

Advantages. Respondents are more likely to be comfortable with a team member and to

act naturally during observation. Researchers also develop a deeper understanding of

software engineering tasks after performing them in the context of a software engi-

neering group.

Disadvantages. Joining a team is very time consuming. It takes a significant amount of

time to establish true team membership. Also, a researcher who becomes too involved

may lose perspective on the phenomenon being observed.

Examples. Participant-Observer was one of the methods used by Seaman and Basili in

their studies of how communication and organization factors affect the quality of software

inspections (Seaman and Basili, 1998). One of the authors (Seaman) was integrated into a

newly formed development team. Over seventeen months, Seaman participated in

twenty-three inspection meetings. From her participation, Seaman and Basili developed a

series of hypotheses on how factors such as familiarity, organizational distance, and

physical distance are related to how much time is spent on discussion and tasks.

Porter et al. also used the participant-observer method (Porter et al., 1997). One of the

researchers, a doctoral student, joined the development team under study as a means of

tracking an experiment_s progress, capturing and validating data, and observing in-

spections. Here, the field study technique was used in the service of more traditional

experimental methods.

3.2. Second Degree Techniques: Indirect Involvement of Software Engineers

Second degree techniques require the researcher to have access to the software

engineer_s environment. However, the techniques do not require direct contact between

DATA COLLECTION METHODS 327

the participant and researcher. First the data collection is initiated, then the software

engineers go about their normal work, and finally the researchers return to collect the

data that has been automatically gathered. As a result, these techniques require very little

or no time from the software engineers and are appropriate for longitudinal studies.

3.2.1. Instrumenting Systems

This technique requires Binstrumentation’’ to be built into the software tools used by the

software engineer. This instrumentation is used to record information automatically

about the usage of the tools. Instrumentation can be used to monitor how frequently a

tool or feature is used, patterns of access to files and directories, and even the timing

underlying different activities. This technique is also called system monitoring.

In some cases, instrumentation merely records the commands issued by users. More

advanced forms of instrumentation record both the input and output in great detail so that

the researcher can effectively play back the session. Others have proposed building a

new set of tools with embedded instruments to further constrain the work environment

(Buckley and Cahill, 1997).

Advantages. System monitoring requires no time commitment from software engineers.

Since, people tend to be very poor judges of factors such as relative frequency and

duration of the various activities they perform, this method can be used to provide such

information accurately.

Disadvantages. It is difficult to analyze data from instrumented systems meaningfully;

that is, it is difficult to determine software engineers_ thoughts and goals from a series of

tool invocations. The instrumentation might tell one what a software engineer was doing,

but they do not expose the thinking behind that action. This problem is particularly

relevant when the working environment is not well understood or constrained. For

example, software engineers often customize their environments by adding scripts and

macros (e.g., in emacs). One way of dealing with this disadvantage is to play back the

events to a software engineer and ask them to comment. Although in many jurisdictions,

employers have the right to monitor employees, there are ethical concerns if researchers

become involved in monitoring software engineers without their knowledge.

Examples. Budgen and Thomson (2003) used a logging element when assessing how

useful a particular CASE tool was. The logger element recorded data whenever an event

occurred. Events were predetermined before. Textual data was not recorded. The re-

searchers found that recording events only was a shortcoming of their design. It would

have been more appropriate to collect information about the context of the particular

event.

As another example, Walenstein (2003) used VNC (Virtual Network Computing) to

collect verbatim screen protocols (continuous screen captures) of software developers

engaged in software development activities. Walenstein also collected verbal protocols

and used a theory-based approach to analyse the data.

328 LETHBRIDGE, SIM AND SINGER

3.2.2. Fly on the Wall (Participants Recording Their Own Work)

BFly on the Wall’’ is a hybrid technique. It allows the researcher to be an observer of an

activity without being present. Participants are asked to video- or audiotape themselves

when they are engaged in some predefined activity.

Advantages. The fly-on-the-wall method requires very little time from the participants

and is very unobtrusive. Although there may be some discomfort in the beginning, it

fades quickly.

Disadvantages. The participants may forget to turn on the recording equipment at the

appropriate time and as a result the record may be incomplete or missing. The camera is

fixed, so the context of what is recorded may be hard to understand. There is a high cost

to analyzing the resulting data.

Examples. Berlin asked mentors and apprentices at a software organization to audiotape

their meetings in order to study how expertise is passed on (Berlin, 1993). She later

analyzed these recordings for patterns in conversations. She found that discussions

were highly interactive in nature, using techniques such as confirmation and re-statement

to verify messages. Mentors not only explain features of the system; they also provide

design rationale. While mentoring is effective, it is also time-consuming, so Berlin

makes some suggestions for documentation and proposes short courses for apprentices.

Walz et al. had software engineers videotape team meetings during the design phase of

a development project (Walz et al., 1993). Researchers did not participate in the

meetings and these tapes served as the primary data for the study. The goal of the study

was to understand how teamwork, goals, and design evolved over a period of four

months. Initially the team focused on gathering knowledge about the application domain,

then on the requirements for the application, and finally on design approaches. The

researchers also found that the team failed to record much of the key information; as a

result they re-visited issues that had been settled at earlier meetings.

Robillard et al. (1998) studied interaction patterns among software engineers in

technical review meetings. The software engineers merely had to turn on a videotape

recorder whenever they were conducting a meeting. The researchers analyzed tran-

scripts of the sessions and modeled the types of interactions that took place during the

meetings. Their analysis led to recommendations for ways in which such meetings can

be improved.

3.3. Third Degree Techniques: Analysis of Work Artifacts

Third degree techniques attempt to uncover information about how software engineers

work by looking at their output and by-products. Examples of their output are source

code, documentation, and reports. By-products are created in the process of doing work,

for example work requests, change logs and output from configuration management

and build tools. These repositories, or archives, can serve as the primary information

DATA COLLECTION METHODS 329

source. Sometimes researchers recruit software engineers to assist in the interpretation or

validation of the data. There are some advantages and disadvantages that are common to

all third degree techniques.

Advantage. Third degree techniques require almost no time commitment from software

engineers.

Disadvantages. The data collected is somewhat removed from the actual development

process; older data may relate to systems or processes that have since been significantly

changed, and recent data only captures a very narrow view of software development.

Also, it may be difficult to interpret the data meaningfullyVdocumentation can be hard

to understand, and logs tend to contain cryptic abbreviations and comments that were

only expected to form a consistent picture in the minds of the software engineers who

originally wrote and read them. Due to the above, third degree techniques must normally

be supplemented by other techniques to achieve research goals.

3.3.1. Analysis of Electronic Databases of Work Performed

In most large software engineering organizations, the work performed by developers is

carefully managed using problem reporting, change request and configuration manage-

ment systems. The copious records normally left by such systems are a rich source of

information for software engineering researchers. Some of the information is recorded

automatically, e.g., whenever modules are checked in and out of a library; the remainder

of the information is descriptions and comments entered manually by the software

engineers.

Advantages. A large amount of data is often readily available. The data is stable and is

not influenced by the presence of researchers.

Disadvantages. There may be little control over the quantity and quality of information

manually entered about the work performed. For example, we found that descriptive

fields are often not filled in, or are filled in different ways by different developers. It is

also difficult to gather additional information about a record, especially if it is very old or

the software engineer who worked on it is no longer available.

Examples. Work records can be used in a number of ways. Pfleeger and Hatton analyzed

reports of faults in an air traffic control system to evaluate the effect of adding formal

methods to the development process (Pfleeger and Hatton, 1997). Each module in the

software system was designed using one of three formal methods or an informal method.

Although the code designed using formal methods tended to have fewer faults, the results

were not compelling even when combined with other data from a code audit and unit

testing.

Kemerer and Slaughter wanted to test a model of relationships between types of

repairs performed during maintenance and attributes of the modules being changed

330 LETHBRIDGE, SIM AND SINGER

(Kemerer and Slaughter, 1997). Their analysis was based on the change history that

contained information about creation date and author, the function of the module, the

software engineer making the change, and a description of the change. They found

support for their regression models and posit that software maintenance activity follows

predictable patterns. For example, modules that are more complex, relatively large and

old need to be repaired more often, whereas, modules with important functionality tend

to be enhanced more often.

Researchers at NASA (1998) studied data from various projects in their studies of now

to effectively use COTS (commercial off-the-shelf software) in software engineering.

They developed an extensive report recommending how to improve processes that use

COTS.

In our research, we are analyzing change logs to build models of which sections of

code tend to be changed together: When a future maintainer changes one piece of code,

this information can be used to suggest other code that perhaps ought also be looked at

(Sayyad Shirabad et al., 2003).

Mockus et al. (2002) used data from email archives (amongst a number of different

data sources) to understand processes in open source development. Because the dev-

elopers rarely, if ever, meet face-to-face, the developer email list contains a rich record

of the software development process. Mockus, et al. wrote Perl scripts to extract in-

formation from the email archives. This information was very valuable in helping to

clarify how development in open source differs from traditional methods.

A researcher can use change requests to help guide first-degree research. For example,

a researcher can review a recently completed work request with the software engineer to

document problems encountered or strategies used along the way.

3.3.2. Analysis of Tool Logs

Many software systems used by software engineers generate logs of some form or

another. For example, automatic building tools often leave records, as do license servers

that control the use of CASE tools. Some organizations build sophisticated logging into a

wide spectrum of tools so they can better understand the support needs of the software

engineers.

Such tool logs can be analyzed in the same way tools that have been deliberately

instrumented by the researchersVthe distinction is merely that for this third-degree

technique, the researchers don_t have control over the kind of information collected. This

technique is also similar to analysis of databases of work performed, except that the latter

includes data manually entered by software engineers.

The analysis of tool logs has become a very popular area of research within software

engineering. Besides the examples provided below, see Hassan, et al._s (2004) report on

the International Workshop on Mining Software Repositories.

Advantages. The data is already in electronic form, making it easier to code and

analyze. The behaviour being logged is part of software engineers normal work routine.

DATA COLLECTION METHODS 331

Disadvantage. Companies tend to use different tools in different ways, so it is difficult

to gather data consistently when using this technique with multiple organizations.

Examples. Wolf and Rosenblum (1993) analyzed the log files generated by build tools.

They developed tools to automatically extract information from relevant events from

these files. This data was input into a relational database along with the information

gathered from other sources.

In one of our studies (Singer et al., 1997) we looked at logs of tool usage collected by

a tools group to determine which tools software engineers throughout the company (as

opposed to just the group we were studying) were using the most. We found that search

and Unix tools were used particularly often.

Herbsleb and Mockus (2003) used data generated by a change management system to

better understand how communication occurs in globally distributed software develop-

ment. They used several modeling techniques to understand the relationship between the

modification request interval and other variables including the number of people in-

volved, the size of the change, and the distributed nature of the groups working on the

change. Herbsleb and Mockus also used survey data to elucidate and confirm the findings

from the analysis of the tool logs. In general they found that distributed work introduces

delay. They propose some mechanisms that they believe influence this delay, primarily

that distributed work involves more people, making the change requests longer to

complete.

3.3.3. Documentation Analysis

This technique focuses on the documentation generated by software engineers, including

comments in the program code, as well as separate documents describing a software

system. Data collected from these sources can also be used in re-engineering efforts,

such as subsystem identification. Other sources of documentation that can be analyzed

include local newsgroups, group e-mail lists, memos, and documents that define the

development process.

Advantages. Documents written about the system often contain conceptual information

and present a glimpse of at least one person_s understanding of the software system.

They can also serve as an introduction to the software and the team. Comments in the

program code tend to provide low-level information on algorithms and data. Using the

source code as the source of data allows for an up-to-date portrayal of the software

system.

Disadvantages. Studying the documentation can be time consuming and it requires some

knowledge of the source. Written material and source comments may be inaccurate.

Examples. The ACM SIGDOC conferences contain many studies of documentation. In

the conceptual modeling project mentioned earlier (Sayyad-Shirabad et al., 1997), we

created our initial list of concepts in part by processing documentation. The result was

332 LETHBRIDGE, SIM AND SINGER

used to build a code exploration system in which the technical terms became hyperlinks.

This enabled people to find similar code and relevant documentation.

3.3.4. Static and Dynamic Analysis of a System

In this technique, one analyzes the code (static analysis) or traces generated by running

the code (dynamic analysis) to learn about the design, and indirectly about how software

engineers think and work. One might compare the programming or architectural styles of

several software engineers by analyzing their use of various constructs, or the values of

various complexity metrics.

Advantages. The source code is usually readily available and contains a very large

amount of information ready to be mined.

Disadvantages. To extract useful information from source code requires parsers and

other analysis tools; we have found such technology is not always matureValthough

parsers used in compilers are of high quality, the parsers needed for certain kinds of

analysis can be quite different, for example they typically need to analyze the code

without it being pre-processed. We have developed some techniques for dealing with this

surprisingly difficult task (Somé and Lethbridge, 1998). Analyzing old legacy systems

created by multiple programmers over many years can make it hard to tease apart the

various independent variables (programmers, activities etc.) that give rise to different

styles, metrics etc.

Examples. Keller et al. (1999) use static analysis techniques involving template-

matching to uncover design patterns in source codeVthey point out, B. . . that it is these

patterns of thought that are at the root of many of the key elements of large-scale

software systems, and that, in order to comprehend these systems, we need to recover

and understand the patterns on which they were built.’’

Williams et al. (2000) were interested in the value added by pair programming over

individual programming. As one of the measures in their experiment, they looked at the

number of test cases passed by pairs versus individual programmers. They found that the

pairs generated higher quality code as evidence by a significantly higher number of test

cases passed.

We are using both static and dynamic analysis to discover various ways in which a

system can be more easily understood. We analyze the source code to create clusters

which can help the maintainer visualize a poorly structured system (Anquetil and

Lethbridge, 1999; Lethbridge and Anquetil, 2000).

4. Applying the Methods

In the previous section, we described a number of diverse techniques for gathering

information in a field study. The utility of data collection techniques becomes apparent

DATA COLLECTION METHODS 333

when they can help us to understand a particular phenomenon. In this section, we explain

how these methods can be effectively applied in an empirical study of software engi-

neering. Some of the issues we deal with are: how to choose a data collection method,

how to record the data, and how to analyze the data.

4.1. Record-Keeping Options

First degree contact generally involves one of the following three data capture methods:

videotape, audiotape, or manual record keeping. These methods can be categorized as

belonging to several related continua. First, they can be distinguished with respect to the

completeness of the data record captured. Videotape captures the most complete record,

while manual record keeping captures the least complete record. Second, they can be

categorized according to the degree of interference they invoke in the work environment.

Videotaping invokes the greatest amount of interference, while manual recording keep-

ing invokes the least amount of interference. Finally, these methods can be distinguished

with respect to the time involved in using the captured data. Again, videotape is the most

time-intensive data to use and interpret, while manual record keeping is the least time-

intensive data to use and interpret.

The advantage of videotape is that it captures details that would otherwise be lost,

such as gestures, gaze direction, etc.4 However, with respect to video recording, it is

important to consider the video camera_s frame of reference. Videotape can record only

where a video camera is aimed. For instance, consider videotaping a software engineer to

follow his eye movements. To accomplish this, it is necessary to have coordinated

videotaping: one camera capturing the software engineer_s back and computer screen5;

the other camera capturing his eye movements as he or she looks at the screen. Moving

the video camera a bit to the right or a bit to the left may cause a difference in the

recorded output and subsequently in the interpretation of the data. Another difficulty with

videotape is that video formats are generally of far poorer resolution than that of

computer screensVthus it is hard to capture enough of what happens on the screen.

Audiotape allows for a fairly complete record in the case of interviews, however

details of the physical environment and interaction with it will be lost. Audiotape does

allow, however, for the capture of tone. If a participant is excited while talking about a

new tool, this will be captured on the audio record.

Manual record keeping is the most data sparse method and hence captures the least

complete data record, however manual record keeping is also the quickest, easiest, and

least expensive method to implement. Manual record keeping works best when a well-

trained researcher identifies certain behaviors, thoughts, or concepts during the data

collection process. Related to manual record keeping, Wu et al. (2003) developed a data

collection technique utilizing a PDA. On the PDA they had predetermined categories of

responses that were coded each time a particular behaviour was observed. The data were

easily transported to a database on a PC for further analysis.

All three data capture methods have advantages or disadvantages. The decision of

which to use depends on many variables, including privacy at work, the participant_s
degree of comfort with any of the three measures, the amount of time available for data

334 LETHBRIDGE, SIM AND SINGER

collection and interpretation, the type of question asked and how well it can be for-

malized, etc. It is important to note that data capture methods will affect the information

gained and the information that it is possible to gain. But again, these methods are not

mutually exclusive. They can be used in conjunction with each other.

4.2. Coding and Analyzing the Data

Field study techniques produce enormous amounts of dataVa problem referred to as an

Battractive nuisance’’ (Miles, 1979). The purpose of this data is to provide insight into

the phenomenon being studied. To meet this goal, the body of data must be reduced to a

comprehensible format. Traditionally, this is done through a process of coding. That is,

using the goals of the research as a guide, a scheme is developed to categorize the data.

These schemes can be quite high level. For instance, a researcher may be interested in

noting all goals stated by a software engineer during debugging. On the other hand the

schemes can be quite specific. A researcher may be interested in noting how many times

grep was executed in a half-hour programming session.

Audio and videotape records are usually transcribed before categorization, although

transcription is often not necessary. Transcription requires significant cost and effort, and

may not be justified for small, informal studies. Having made the decision to transcribe,

obtaining an accurate transcription is challenging. A trained transcriber can take up to 6

hours to transcribe a single hour of tape (even longer when gestures, etc. must be

incorporated into the transcription). An untrained transcriber (especially in technical

domains) can do such a poor job that it takes researchers just as long to correct the

transcript. While transcribing has its problems, online coding of audio or videotape can

also be quite time inefficient as it can take several passes to produce an accurate

categorization. Additionally, if a question surfaces later, it will be necessary to listen to

the tapes again, requiring more time.

Once the data has been categorized, it can be subjected to a quantitative or qualitative

analysis. Quantitative analyzes can be used to provide summary information about the

data, such as, on average, how often grep is used in debugging sessions. Quantitative

analyzes can also determine whether particular hypotheses are supported by the data,

such as whether high-level goals are stated more frequently in development than in

maintenance.

When choosing a statistical analysis method, it is important to know whether your data

is consistent with assumptions made by the method. Traditional, inferential statistical

analyzes are only applicable in well-constrained situations. The type of data collected in

field studies often requires nonparametric statistics. Nonparametric statistics are often

called Bdistribution-free’’ in that they do not have the same requirements regarding the

modeled distribution as parametric statistics. Additionally, there are many nonparametric

tests based on simple rankings, as opposed to strict numerical values. Finally, many

nonparametric tests can be used with small samples. For more information about non-

parametric statistics, Seigel and Castellan (1988) provide a good overview. Briand et al.

(1996) discuss the disadvantages of nonparametric statistics versus parametric statistics

in software engineering; they point out that a certain amount of violation of the

DATA COLLECTION METHODS 335

assumptions of parametric statistics is legitimate, but that nonparametric statistics should

be used when there are extreme violations of those assumptions, as there may well be in

field studies.

Qualitative analyzes do not rely on quantitative measures to describe the data. Rather,

they provide a general characterization based on the researchers_ coding schemes. For

example, after interviewing software engineers at 12 organizations, one of us (Singer,

1998) found characteristics common to many of the organizations, such as their reliance

on maintenance control systems to keep historical data. Again, the different types of

qualitative analysis are too complex to detail in this paper. See Miles and Huberman,

(1994) for a very good overview.

In summary, the way the data is coded will affect its interpretation and the possible

courses for its evaluation. Therefore it is important to ensure that coding schemes reflect

the research goals. They should tie in to particular research questions. Additionally,

coding schemes should be devised with the analysis techniques in mind. Again, different

schemes will lend themselves to different evaluative mechanisms. However, one way to

overcome the limitations of any one technique is to look at the data using several

different techniques (such as combining a qualitative and quantitative analyzes). A trian-

gulation approach (Jick, 1979) will allow for a more accurate picture of the studied

phenomena. Bratthall and Jørgensen (2002) give a very nice example of using multiple

methods for data triangulation. Their example is framed in a software engineering con-

text examining software evolution and development. In fact, many of the examples cited

earlier, among them (Beecham et al., 2003; Budgen and Thomson, 2003; Seaman et al.,

2003; Shull et al., 2000; Wu et al., 2003), use multiple methods to triangulate their

results.

As a final note, with any type of analysis technique, it is generally useful to go back to

the original participant population to discuss the findings. Participants can tell re-

searchers whether they believe an accurate portrayal of their situation has been achieved.

This, in turn, can let researchers know whether they used appropriate coding scheme and

analysis techniques.

5. Conclusions

In this paper we have discussed issues that software engineering researchers need to

consider when studying practitioners in the field. Field studies are one of several com-

plementary approaches to software engineering research and are based on a recognition

that software engineering is fundamentally a human activity: Field studies are particu-

larly useful when one is gathering basic information to develop theories or understand

practices.

The material presented in this paper will be useful to both the producer and consumer

of software engineering research. Our goal is give researchers a perspective on how they

might effectively collect data in the fieldVwe believe that more such studies are needed.

The material presented here will also help others evaluate published field studies: For

example, readers of a field study may ask whether appropriate data gathering or analysis

techniques were used.

336 LETHBRIDGE, SIM AND SINGER

In this paper, we divided the set of field study techniques into three main catego-

ries. First-degree techniques such as interviewing, brainstorming, and shadowing place

the researcher in direct contact with participants. Second-degree techniques allow

researchers to observe work without needing to communicate directly with partici-

pants. Third-degree techniques involve retrospective study of work artifacts such as

source code, problem logs, or documentation. Each technique has advantages and

disadvantages that we described in Section 2 and answers specific questions, as listed in

Table 2.

To perform good field studies, a researcher must first create effective plans. The plans

should describe the study techniques and also how various practical issues are to be

handled. To choose study techniques, we espouse a modification of the GQM meth-

odology, originally developed to choose metrics, but described here to choose data

collection techniques. The researcher must have firm goals in mind, choose study

questions that will help achieve the goals, and then choose one or more techniques that

are best suited to answer the questions.

In addition to deciding which techniques to use, the researcher must also determine the

level of detail of the data to be gathered. For most first degree techniques one must

typically choose among, in increasing order of information volume and hence difficulty

of analysis: manual notes, audio-taping and videotaping. In all three cases, a key

difficulty is encoding the data so that it can be analyzed.

Regardless of the approach to gathering and analyzing data, field studies also raise

many logistical concerns that should be dealt with in the initial plan. For example: How

does one approach and establish relationships with companies and employees in order to

obtain a suitable sample of participants? Will the research be considered ethical,

considering that it involves human participants? And finally, will it be possible to find

research staff who are competent and interested, given that most of the techniques

described in this paper are labor intensive but not yet part of mainstream software

engineering research?

Researchers wishing to learn about field studies in more depth can investigate

literature on the topic in the social sciences. The purpose of this paper has been to raise

awareness among software engineers of the options availableVmost software engineer-

ing researchers would not think of these techniques until their awareness is raised.

However, there are some differences between the way social scientists would apply the

techniques and the way software engineer researchers would apply them: The key

difference is that the goal of software engineering researchers is to improve the software

engineering process, as opposed to learning about social reality for its own sake. Sec-

ondly, software engineering researchers normally are software engineers as well, and are

therefore part of the population they are studyingVthis impacts the depth of technical

understanding those researchers can rapidly achieve, and the types of interactions they

can have with study participants.

In conclusion, field studies provide empirical studies researchers with a unique

perspective on software engineering. As such, we hope that others will pursue this ap-

proach. The techniques described in this paper are well worth considering to better

understand how software engineering occurs, thereby aiding in the development of

methods for improving software production.

DATA COLLECTION METHODS 337

Acknowledgements

This work is supported by NSERC and sponsored by the Consortium for Software

Engineering Research (CSER).

Notes

1. Second degree contact is distinguished from third degree contact in that second degree contact

requires data acquisition when work is occurring, while third degree contact requires only work

artifacts and has no requirements with respect to when data is acquired.
2. However, please note that our observational data could be incomplete due to the Hawthorne

effect, discussed earlier.
3. For example, we intended _formal languages_ to be the mathematical study of the principles of

artificial languages in general, yet apparently some respondents thought we were referring to

learning how to program.
4. It is often felt that videotaping will influence the participants actions. However, while

videotaping appears to do so initially, the novelty wears off quickly (Jordan and Henderson,

1995).
5. System logging of the computer screen may provide an alternative in this situation, but it is still

necessary to consider the video frame from the perspective of what data is required.

References

Anquetil, N., and Lethbridge, T. C. 1999. Recovering software architecture from the names of source files.

Journal of Software Maintenance: Research and Practice 11: 201Y221.

Baddoo, N., and Hall, T. 2002. Motivators of software process improvement: An analysis of practitioners_
views. Journal of Systems and Software 62: 85Y96.

Baddoo, N., and Hall, T. 2002. De-motivators of software process improvement: An analysis of practitioners_

views. Journal of Systems and Software 66: 23Y33.

Basili, V. R. Software modeling and measurement: The Goal/Question/Metric paradigm, Tech. Rep. CS-TR-

2956, Department of Computer Science, University of Maryland, College Park, MD 20742, Sept. 1992.

Beecham, S., Hall, T., and Rainer, A. 2003. Software process improvement problems in twelve software

companies: An empirical analysis. Empirical Software Engineering 8: 7Y42.

Bellotti, V., and Bly, S. 1996. Walking Away from the Desktop Computer: Distributed Collaboration and

Mobility in a Product Design Team. Cambridge, MA: Conference on Computer Supported Cooperative

Work, pp. 209Y219.

Berlin, L. M. 1993. Beyond Program Understanding: A Look at Programming Expertise in Industry. Empirical

Studies of Programmers. Palo Alto: Fifth Workshop, 6Y25.

Bratthall, L., and Jørgensen, M. 2002. BCan you trust a single data source exploratory software engineering case

study?^ Empirical Software Engineering: An International Journal 7(1): 9Y26.

Briand, L., El Emam, K., and Morasca, S. 1996. On the application of measurement theory in software

engineering. Empirical Software Engineering 1: 61Y88.

Buckley, J., and Cahill, T. 1997. Measuring Comprehension Behaviour Through System Monitoring, Int.

Workshop on Empirical Studies of Software Maintenance, Bari, Italy, 109Y113.

Budgen, D., and Thomson, M. 2003. CASE tool Evaluation: Experiences from an empirical study. Journal of

Systems and Software 67: 55Y75.

Chi, M. 1997. Quantifying qualitative analyzes of verbal data: A practical guide. The Journal of the Learning

Sciences 6(3): 271Y315.

Curtis, B., Krasner, H., and Iscoe, N. 1988. A field study of the software design process for large systems.

Communications of the ACM 31(11): November, 1268Y1287.

338 LETHBRIDGE, SIM AND SINGER

Damian, D., Zowghi, D., Vaidyanathasamy, L., and Pal, Y. 2004. An industrial case study of immediate benefits

of requirements engineering process improvement at the australian center for unisys software. Empirical

Software Engineering: An International Journal 9(1Y2): 45Y75.

Delbecq, A. L., Van de Ven, A. H., Gustafson, D. H. 1975. Group Techniques for Program Planning. Scott.

Glenview, IL: Foresman & Co.

DeVaus, D. A. 1996. Surveys in Social Research. 4th edition. London: UCL Press.

Draper, S. 2004. The Hawthorne Effect. http://www.psy.gla.ac.uk/~steve/hawth.html.

Ericcson, K., and Simon, H. 1984. Protocol Analysis: Verbal Reports as Data. Cambridge, MA: The MIT Press.

Foddy, W. 1994. Constructing Questions for Interviews and Questionnaires: Theory and Practice in Social

Research. Cambridge, MA: Cambridge University Press.

Hassan, A., Holt, R., and Mockus, A. 2004. MSR 20004: The international workshop on mining software repo-

sitories. Proc. ICSE 2004: International Conference on Software Engineering, Scotland, UK, May, pp. 23Y28.

Herbsleb, J., and Mockus, A. 2003. An empirical study of speed and communication in globally distributed

software development. IEEE Transactions Software Engineering 29(6): 481Y494.

Hungerford, B., Hevner, A., and Collins, R. 2004. Reviewing software diagrams: A cognitive study. IEEE,

Transactions Software Engineering 30(2): 82Y96.

Iivari, J. 1996. Why are CASE tools not used? Communications of the ACM 39(10): October, 94Y103.

Jick, T. 1979. Mixing qualitative and quantitative methods: Triangulation in action. Administrative Science

Quarterly 24(4): December, 602Y611.

Jordan, B., and Henderson, A. 1995. Interaction analysis: Foundations and practice. The Journal of the Learning

Sciences 4(1): 39Y103.

Jørgensen, M. 1995. An empirical study of software maintenance tasks. Software Maintenance: Research and

Practice 7: 27Y48.

Keller, R., Schauer, R., Robitaille, S., and Page, P. 1999. Pattern-based reverse engineering of design com-

ponents. In Proc, Int. Conf. Software Engineering, Los Angeles, CA, pp. 226Y235.

Kemerer, C. F., and Slaughter, S. A. 1997. Determinants of software maintenance profiles: An empirical

investigation. Software Maintenance: Research and Practice 9: 235Y251.

Kensing, F. 1998. Prompted Reflections: A Technique for Understanding Complex Work. interactions, January/

February, 7Y15.

Lethbridge, T. C. 2000. Priorities for the education and training of software engineers. Journal of Systems and

Software 53(1): 53Y71.

Lethbridge, T. C., and Anquetil, N. 2000. Evaluation of approaches to clustering for program comprehension

and remodularization. In H. Erdogmus and O. Tanir, (eds.), Advances in Software Engineering: Topics in

Evolution, Comprehension and Evaluation, New York: Springer-Verlag.

Lethbridge, T. C., and Laganière, R. 2001. Object-Oriented Software Engineering: Practical Software Devel-

opment Using UML and Java. London: McGraw-Hill.

Miles, M. B. 1979. Qualitative data as an attractive nuisance: The problem of analysis. Administrative Science

Quarterly 24(4): 590Y601.

Miles, M. B., and Huberman, A. M. 1994. Qualitative Data Analysis: An Expanded Sourcebook. 2nd edition.

Thousand Oaks, CA: Sage Publications.

Mockus, A., Fielding, R. T., and Herbsleb, J. D. 2002. Two case studies of open source software development:

Apache and mozilla. ACM Trans. on Software Engineering and Methodology 11(3) 209Y246.

NASA. SEL COTS Study Phase 1 Initial Characterization Study Report, SEL-98-001, August 1998, http://

sel.gsfc.nasa.gov/website/documents/online-doc.htm.

Nielsen, J. 1997. The Use and Misuse of Focus Groups. http://www.useit.com/papers/focusgroups.html.

Perry, D. E., Staudenmayer, N., and Votta, L. 1994. People, organizations, and process improvement. IEEE

Software July, 37Y45.

Pfleeger, S. L., and Hatton, L. 1997. Investigating the influence of formal methods. Computer February, 33Y43.

Pfleeger, S., and Kitchenham, B. 2001. Principles of survey research Part 1: Turning lemons into lemonade.

Software Engineering Notes 26(6) 16Y18.

Porter, A. A., Siy, H. P., Toman, C. A., and Votta, L. G. 1997. An experiment to assess the cost-benefits of code

inspections in large scale software development. IEEE Transactions Software Engineering 23(6): 329Y346.

Punter, T., Ciolkowski, M., Freimut, B., John, I. 2003. Conducting on-line surveys in software engineering.

Proceedings Int. Symp. on Empirical Software Eng. F03, pp. 80Y88.

DATA COLLECTION METHODS 339

Rainer, A., and Hall, T. 2003. A quantitative and qualitative analysis of factors affecting software processes.

Journal of Systems and Software 66: 7Y21.

Robbins, S. P. 1994. Essentials of Organizational Behavior. 4th edition. Englewood Cliffs, NJ: Prentice Hall.

Robillard, P. N., d_Astous, P., Détienne, D., and Visser, W. 1998. Measuring cognitive activities in software

engineering. Proc. 20th Int. Conf. Software Engineering, Japan, pp. 292Y300.

Sayyad-Shirabad, J., Lethbridge, T. C., and Lyon, S. 1997. A little knowledge can go a long way towards

program understanding. Proc. 5th Int. Workshop on Program Comprehension. Dearborn, MI: IEEE, pp.

111Y117.

Sayyad-Shirabad, J., Lethbridge, T. C., and Matwin, S. 2003. Applying data mining to software maintenance

records. Proc CASCON 2003, Toronto, October, IBM, in ACM Digital Library, pp. 136Y148.

Scacchi, W. 2003. Issues and experiences in modeling open source software processes. Proc. 3rd. Workshop on

Open Source Software Engineering, Portland, OR: 25th. Int. Conf. Software Engineering, May.

Seaman, C. B., and Basili, V. R. 1998. Communication and organization: An empirical study of discussion in

inspection meetings. IEEE Transactions on Software Engineering 24(7): July, 559Y572.

Seaman, C., Mendonca, M., Basili, V., and Kim, Y. 2003. User interface evaluation and empirically-based

evolution of a prototype experience management tool. IEEE Transactions on Software Engineering 29:

838Y850.

Seigel, S., and Castellan, N. J. 1988. Nonparametric Statistics for the Behavioral Sciences. 2nd edition.

Boston, MA: McGraw-Hill.

Shull, F., Lanubile, F., and Basili, V. 2000. Investigating reading techniques for object-oriented framework

learning. IEEE Transactions on Software Engineering 26: 1101Y1118.

Sim S. E., and Holt, R. C. 1998. The ramp-up problem in software projects: A case study of how software

immigrants naturalize. Proc. 20th Int. Conf. on Software Engineering, Kyoto, Japan, April, pp. 361Y370.

Sim, S. E., Clarke, C. L. A., and Holt, R. C. 1998. Archetypal source code searches: A survey of software

developers and maintainers. Proc. Int. Workshop on Program Comprehension, Ischia, Italy. pp. 180Y187.

Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N. 1997. An examination of software engineering work

practices. Proc. CASCON. IBM Toronto, 209Y223, October.

Singer, J. 1998. Practices of software maintenance. Proc. Int. Conf. on Software Maintenance. Washington, DC,

November, pp. 139Y145.

Singer, J., Lethbridge, T. C., and Vinson, N. 1998. Work practices as an alternative method to assist tool design

in software engineering. Proc. International Workshop on Program Comprehension. Ischia, Italy, pp. 173Y179.

Singer, J., and Vinson, N. 2002. Ethical issues in empirical studies of software engineering. IEEE Transactions

on Software Engineering, 28: 1171Y1180.

Snelling, L., and Bruce-Smith, D. 1997. The work mapping technique. Interactions 25Y31, July/August.

Somé, S. S., and Lethbridge T. C. 1998. Parsing minimizing when extracting information from code in the

presence of conditional compilation. Proc. 6th IEEE International Workshop on Program Comprehension.

Italy, June pp. 118Y125.

Teasley, S., Covi, L, Krishnan, M., and Olson, J. 2002. Rapid software development through team collocation.

IEEE Transactions on Software Engineering 28: 671Y683.

von Mayrhauser, A., and Vans, A. M. 1993. From program comprehension to tool requirements for an industrial

environment. Proc. of the 2nd Workshop on Program Comprehension, Capri, Italy, July, pp. 78Y86.

von Mayrhauser, A., and Vans, A. M. 1995. Program understanding: Models and experiments. In M. C. Yovita

and M. V. Zelkowitz, (eds.), Advances in Computers, Vol. 40, Academic Press, pp. 1Y38.

Walenstein, A. 2003. Observing and measuring cognitive support: Steps toward systematic tool evaluation and

engineering. Proc. the 11th IEEE Workshop on Program Comprehension.

Walz, D. B., Elam, J. J., and Curtis, B. 1993. Inside a software design team: Knowledge acquisition, sharing,

and integration. Communications of the ACM 36(10): October, 62Y77.

Williams, L., Kessler, R. R., Cunningham, W., and Jeffries, R. 2000. Strengthening the case for pair-

programming, IEEE Software July/Aug , 19Y25.

Wolf, A., and Rosenblum, D. 1993. A study in software process data capture and analysis. Proc. 2nd

International Conference on Software Process February, pp. 115Y124.

Wu, J., Graham, T., Smith, P. 2003. A study of collaboration in software design. Proc. Int. Symp. Empirical

Software Eng. _03.

340 LETHBRIDGE, SIM AND SINGER

Dr. Janice Singer currently heads the HCI research programme at the National Research Council Canada, a

group of nine researchers investigating collaboration, privacy, and 3D navigation from a human-centred

perspective. She is additionally a member of the Software Engineering Group. Dr. Singer_s research interests

include empirical software engineering, navigation in software spaces, collaborative software development, and

research ethics from a software engineering perspective. Dr. Singer received her Ph.D. in Cognition and

Learning from the Learning Research and Development Center of the University of Pittsburgh. Before coming

to the NRC, she worked for Tektronix, IBM, and Xerox PARC.

Timothy C. Lethbridge is an Associate Professor at the University of Ottawa, Canada. His research applies

empirical methods in the context of software tools for manipulating complex information, as well as software

engineering education. His main research partner is currently IBM Ottawa. He is the author of a textbook on

object-oriented software engineering, and helped develop SE2004, The IEEE/ACM guidelines for software

engineering curricula.

Susan Elliott Sim is an Assistant Professor at University of California, Irvine. She has worked with a range of

empirical methods, including experiments, case studies, ethnography, surveys, and benchmarks. She has

conducted empirical studies at several software companies, including IBM. Sim is also a co-creator of GXL

(Graph eXchange Language), an XML-based standard exchange format for software data. Her research interests

include program comprehension, research methodology, and software process for small business.

DATA COLLECTION METHODS 341

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

