
Requirements Engineering and Downstream
Software Development: Findings from a
Case Study

DANIELA DAMIAN DanielaD@uvic.ca

Department of Computer Science, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6, Canada

JAMES CHISAN Chisan@uvic.ca

Department of Computer Science, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6, Canada

LAKSHMINARAYANAN VAIDYANATHASAMY Lnv.Samy@unisys.com

Unisys Australia Limited, 1C Homebush Bay Drive, Rhodes, NSW 2138, Australia

YOGENDRA PAL Yogendra.Pal@unisys.com

Unisys Australia Limited, 1C Homebush Bay Drive, Rhodes, NSW 2138, Australia

Editor: Lionel Briand

Abstract. Requirements management is being recognized as one of the most important albeit difficult phases in

software engineering. The literature repeatedly cites the role of well-defined requirements and requirements

management process in problem analysis and project management as benefiting software development

throughout the life cycle: during design, coding, testing, maintenance and documentation of software.

This paper reports on the findings of an investigation into industrial practice of requirements management

process improvement and its positive effects on downstream software development. The evidence reveals a

strong relationship between a well-defined requirements process and increased developer productivity,

improved project planning through better estimations and enhanced ability for stakeholders to negotiate project

scope. These results are important since there is little empirical evidence of the actual benefits of sound

requirements practice, in spite of the plethora of claims in the literature. An account of these effects not only

adds to our understanding of good requirements practice but also provides strong motivation for software

organizations to develop programs for improvement of their requirements processes.

Keywords: Empirical studies of software process, industrial experience in process improvement, requirements

management and practice, software productivity.

1. Introduction

Improving the software process to improve overall software development has been an

on-going endeavor for both industrial practitioners and academics for many years. In

software engineering, and in particular the software process area, issues relating to

requirements engineering (RE) have been repeatedly cited. Requirements specification

is regarded as a critical stage of software development, with the claim that software de-

velopment problems could be better addressed with Bgood^ RE practice (Brooks, 1987;

Curtis et al., 1988; Sommerville, 1996).

Empirical Software Engineering, 10, 255–283, 2005.
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

While software engineering is benefiting from the development of models and standards

for software process improvement and assessment such as the ISO 9001 standard for

quality management systems (Quality Standards, 1987), and the Software Engineering

Institute’s Capability Maturity Model for Software (CMM) (CMM, 1991; Paulk et al.,

1993; SEI, 1995), the relatively new field of RE does not enjoy well-established, proven

strategies for improving or assessing the requirements process. This leads to a strong

need for assessment and measurement of effects of rigorous RE practice in software

development. Many Fpractical guides_ naturally focus on the RE process within the larger

software development process, but deliberately present their material vaguely, reminding

practitioners that good requirements engineering [process] depends on the organization,

its development process, its tools and particular circumstances (Sommerville and Sawyer,

1997), or even that Fevery project needs a different process_ (Robertson and Robertson,

1999). These sentiments offer little comfort to the practitioner. These same guides warn

that revolutionary change is not practical; that instead careful evolutionary improvements

are more fruitful. Practitioners are encouraged to measure results to gauge effectiveness,

but topics on empirical assessment are largely left to the imagination, as an exercise for

the reader. Further, the role of requirements engineering in software development has

been discussed in the literature as important in planning activities such as: determining

the nature of the problem, exploring solutions through feasibility studies, and ultimately

Fdeciding precisely what to build._ Brooks (1987) further notes the opportunity for RE to

improve all subsequent stages of the development life-cycle, ultimately leading to

broader improvements in software quality and user satisfaction.

Industrial case studies that investigate the role and effects of Bgood^ RE process and

practice in improving software development are thus very important in providing evidence

that is useful to practitioners and furthering research in this area. In this paper, we present

findings from a case study of a software development organization that is undergoing

process improvement with particular focus on improving the requirements engineering

activities. The goal of the case study was to observe the improvements in the RE process

and practice, and to empirically assess the impact on the product software downstream

development. The organization’s software process improvement was investigated over

a period of 18 months (over the full life-cycle of a project) and the benefits of the

improvement with a focus on RE process are reported. The findings in this paper

complement the evidence we collected in an earlier assessment of the same RE practice

(6 months after process improvement was initiated), evidence to which we referred to as

Bimmediate benefits^ at the ISESE 2002 conference (Damian et al., 2002) and which was

published in the Journal of Empirical Software Engineering (Damian et al., 2004).

We report here the findings of the second part of the case study, which examined what

we refer to as long-term benefits of improved requirements process throughout the

software development life cycle, during design, coding, testing and documentation of

software. The evidence reveals a strong relationship between a well-defined requirements

process and increased developer productivity, improved project planning through better

estimations, as well as an enhanced ability for stakeholders to negotiate project scope.

These results are important since there is little empirical evidence of the actual benefits

of sound requirements practice, in spite of the claims in the literature (e.g. Brooks, 1987;

Curtis et al., 1988; Sommerville and Sawyer, 1997; The Chaos report, 1997). An account

256 DAMIAN ET AL.

of these effects not only adds to our understanding of good requirements practice but also

provides strong motivation for software organizations to develop programs for im-

provement of their requirements processes.

The paper is structured as follows. Background information on the case study

describes the company, its challenges in requirements practice and its process

improvement initiative (Section 3.1). This is followed by a description of our empirical

investigation into the role of Bgood RE practice^ in Section 3.2, the research method

(Section 3.3) and a detailed account of the aspects that we investigated in Section 3.3.2.

The findings on each of these aspects are briefly outlined in Section 4 and discussed in

detail in Section 5. Furthermore, an important note is that the RE process improvements

at ACUS occurred in parallel with initiatives for improvement in other processes in the

organization, such as software quality assurance, project planning and project tracking.

The possibility of limitations in our study as a result of the interaction between the

requirements engineering process and other processes is discussed in Section 7, where

we outline our plan for future research to overcome these limitations. The paper con-

cludes by presenting limitations of the case study and avenues for future research.

2. Related Work

A review of existing literature on requirements engineering and software process im-

provement (SPI) reveal several models to incrementally improve requirements

engineering process and the purported benefits reaped by such improvements. Three

predominant improvement models are the CMM, ISO/IEC 15504 and the process

capability model developed by Sommerville and Sawyer (1997). These models all

describe (or imply) increases in productivity, enhanced quality, improved risk man-

agement and other benefits to the software development process.

The Capability Maturity Model (CMM), developed by the Software Engineering

Institute (SEI), defines a key process area (KPA) that specifically addresses requirements

management. Its goals are to establish a baseline for software engineering and manage-

ment used to guide software plans, products and activities that are consistent with system

requirements. Paulk et al. (1993), describing CMM, cite hypothesized benefits in: (1)

productivity: cost decrease, shorter development time, and increased quality; and (2)

project performance management: more accurate, less variable project performance

forecasts. The International Standards Organization (ISO) also provides the ISO/IEC

15504, a standard that describes therein the BDevelop software requirements^ process.

This process, given successful implementation, promises that requirements will be

congruent with customers’ stated and implied needs, correct and testable. Although ISO

suggests that assessment results indicate an organization’s ability to achieve productivity,

it is ambiguous whether this can be achieved via individual processes alone, or whether a

combination of processes is required (El Emam et al., 1998). Furthermore, ISO is said to

rely heavily on the expertise and training of assessors rather than its prescribed standards

(Paulk, 1994). Finally, Sommerville and Sawyer (1997) define a process capability

model for requirements engineering that provides a detailed set of implementation-ready

industrial practices to improve the RE process. Sommerville and Sawyer argue that

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 257

higher maturity in this model will yield improved consistency in project risk and

software quality and a Fcapability to solve unforeseen requirements problems._
Unfortunately, empirical evidence on these benefits in the software industry is more

challenging to find and categorize. Case studies that report on concrete effects of specific

RE processes improvements that illustrate direct relationships between RE improvements

are limited. In what follows, we consider existing related work; where necessary, when

evidence relates to the benefits of SPI in general, we have attempted to infer a relationship

to the RE process specifically. Further, to provide a rationale for the aspects we inves-

tigated in this study, the following section is largely organized according to the prevailing

effects that other work has identified (i.e., productivity, quality, risk management). Where

available, information on respective empirical methodologies is included.

A study conducted by El Emam and Birk (2000) examined whether requirements

analysis process capability assessment measures (in this case the ISO/IEC 15504

standard) predict development performance among a variety of projects. The study

assessed project performance by considering only the broad project-wide issues by

defining performance in terms of post-mortem factors such as customer satisfaction,

productivity, requirements satisfaction and morale. Although the study does indicates

that REP capability assessment is related to project performance, particularly among

large companies, it does not provide evidence on the specific impact of a requirements

process throughout a project, such as the impact on developer decision making or project

communication.

Productivity can take many forms, but essentially falls into two camps: increased

development effectiveness as might be envisioned from the use of a new tool or process,

or increases in efficiency, such as preventing rework (i.e., unwanted features) or lowering

the cost of development. Lauesen and Vinter (2001) conducted a field experiment that

considered RE performance primarily in terms cost-efficacy or hours saved, although

they also found significant impact on software quality and the ability to meet schedule

commitments. They report that particular techniques, such as user scenarios and early

usability testing were clearly superior to others techniques, according to their metrics.

Wohlwend and Rosenbaum (1993), in their account of long-term SPI improvements at

Schlumberger, found that a successful experience can simply be a matter of on-time

software delivery.

Next, there are many claims about improved quality realized through RE process

improvement. Herbsleb and Goldenson (1996) conducted a survey among SEI assessed

organizations and found that mature organizations, according to CMM, exhibited sig-

nificant improvements in self-assessed product quality and customer satisfaction.

Following software improvement initiatives at Schlumberger, engineering teams that

had formally been plagued with delivering incomplete functionality, began to ship

software that was Fcomplete_ and Fcorrect_ (Wohlwend and Rosenbaum, 1993).

While productivity and quality are critical factors in the development of software,

Broadman and Johnson (1996) surveyed and interviewed 35 companies to find that, in

fact, many companies look to implement SPI primarily as a means of reducing their

exposure to risk. The companies they surveyed expressed a keen interest in the accurate

assessment of costs and scheduling while decreasing variability in project success and/or

performance. Although costs and scheduling can be considered productivity concerns,

258 DAMIAN ET AL.

forecasting in the initial stages of a project is clearly a matter of risk management

(Humphrey et al., 1991) and tightly related to activities of requirements management. In

Paulk’s (1994) comparison of ISO 9001 with the CMM, he notes that both CMM and

ISO share the same common goal to Fconsistently improve project performance_
(emphasis added), implying reduced variability across projects.

There are other beneficial collateral effects that have been documented from

successful SPI initiatives. For example, Wohlwend and Rosenbaum (1993), notes that

after successful improvement developer morale improved markedly. Others (Broadman

et al., 1996) suggest that companies have also observed less overtime, improved con-

fidence, less turnover and increased intra-organizational co-operation. Hall et al. (2002)

conducted a case study to understand the challenges organizations face regarding

requirements processes and confirmed Herbsleb and Goldenson’s (1996) findings that

such challenges are often organizational in nature. In terms of REP effects they suggest

that companies with higher-software maturity assessments enjoy better staff retention

rates. Humphrey et al. (1991) in their case study of SPI at Hughes Aircraft, found that

FPride [from continuous improvement] feeds on itself_ and leads to success.

3. Case Study Description

3.1. The Company, Challenges in Requirements Practice,

and Process Improvement Initiatives

The study of Requirements Engineering practice and process improvement was con-

ducted at the Australian Center for Unisys Software (ACUS). ACUS is the software

development group within an international multi-site organization with headquarters and

marketing divisions in the US. The software product developed is product line software,

where current releases provide enhanced functionality of the releases deployed to the

customers, and which are integrated with hardware devices developed at other business

units worldwide. Thus features for new software product releases are a result of the

agreement between the US (marketing) business unit and ACUS, and consider both

market needs (representing current as well as potential customer needs) and product

strategy requirements (representing technology and engineering direction in line with the

organizational strategy).

One of the significant challenges ACUS was facing when we started our study was the

lack of experience with a formal requirements management process. This was

exacerbated by the fact that the major stakeholders (i.e., Product managers, end-users)

are geographically distributed across several continents. Before a RE process im-

provement initiative began, the situation could be summarized as follows (more details

could be found in (Damian et al., 2002, 2004) and which was published in the Journal of

Empirical Software Engineering (Damian et al., 2004):

� Requirements were communicated from product management and marketing in the US

to ACUS in the form of one-line statements of Brequired features.^ There was not a

well-defined or direct line of communication with the software clients or end-users.

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 259

� The features were not clearly defined or documented, did not provide sufficient

information and thus were not fully understood by developers. They were ambiguous

in stating the required functionality, making it difficult to plan for change.

� Individual designs were built for these features, depending heavily on designers’

interpretation of those feature requests.

� The problem was compounded by inadequate change management practice and no

record of the reasoning behind requests of particular features (referred to as

Brequirements rationale^), which should have been accessible via traceability links

within requirements.

As a result, the software development projects at ACUS always experienced sig-

nificant requirements creep. The requirements negotiations between the development and

US product management unit were ineffective because ACUS management had difficulty

in (1) understanding the requested features and (2) providing reasonably accurate esti-

mates of development effort.

In August 2001 software process improvement was initiated at ACUS and Require-

ments Engineering was one of the key areas of improvement. The RE process was

revised to include:

� Requirements analysis sessions to refine the feature requests and derive more detailed

technical requirements (referred to simply as requirements). These sessions involved:

(1) cross-functional team participation, (2) group analysis sessions, (3) high-level

design sessions attempting to understand the impact of the requested features on the

architecture of the existing release, (4) well-defined specification of requirements to

include a more structured description of the requirements in a requirements document

and (5) the definition of traceability links to test scenario were conceived during the

Box 1: Requirement example from ACUS, including rationale and test scenario

Initial Feature: Scriptable Interface

Requirement Description: EA Developer shall provide a version of the D2L utility

that allows the exchange of affected screen definitions from Graphical Interface

Workbench to EA Developer.

Rationale: Customers may already have painted versions of the affected screens in

GIW. They will likely wish to keep those existing painted screens, and be able to

enhance them in the future.

Test Scenario: Enhance screens in a GIW environment. Load the provided model into

EA Developer. Use D2L to transfer the enhanced screens from the GIW environment to

EA Developer, into the installed model. Verify that the enhanced screens are available

in EA Developer and can be further enhanced in EA Developer Painter.

260 DAMIAN ET AL.

sessions; these links were later stored with the requirements in Requisite Pro, a

requirement management tool. An example of a requirement is provided in Box 1

together with its rationale and test scenario. This requirement is one of many de-

composed from the initial feature request (i.e., BScriptable Interface^). A sentence

template was used to structure the description of each requirement; this is illustrated in

Box 2 with an unrelated requirement.

� Revised change management process. Those problems, identified by development or

management, which affected requirements or other functional areas, were formally

recognized in a change request document. This document described the nature of the

change, its extent and an estimation of effort of implementation. These factors were

to be considered by other engineers and decision makers who were expected to

review and approve the requested change. Once approvals were given by all the

mandatory approvers, the Project Manager authorized the change and it proceeded to

implementation.

3.2. Study Motivation: An Empirical Assessment of the Impact of Improved

Requirements Engineering Practice on Downstream Software Development

We conducted an initial empirical assessment of the improvements in the requirements

practice before design commenced, in March 2002, and at that time the organization had

shown visible improvement. As reported in the ISESE 2002 paper (Damian et al., 2002),

our findings indicated tangible benefits as well as perceived long-term benefits during

design and testing. We found that due to more clearly defined, specified, and better

Box 2: Sentence template constructs (in bold) and an

example of a full text requirement parsed with the sentence

template (used with the permission of Halligan, R. (2000))

Full text requirement: When in full operation the computer

system shall provide thirty per cent reserve in channel

capacity.

Initiator of Action: The computer system

Conditions for Action:

Action:
in full operation

Constraints for Action:

Object of Action:
shall provide

Refinement/Source of

Object

Refinement/Destination of
reserve in channel capacity

Action: of 30%

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 261

understood requirements, ACUS showed an enhanced ability to address the market needs

and product strategy requirements. The catalyst behind these improvements included

project management leadership, managing the human dimension, collaboration among

stakeholders and senior management support.

However, our early empirical assessment was insufficient in providing evidence of

improvement beyond an initial enthusiasm with the revised requirements practice.

Developers had been so frustrated by poorly defined feature requirements that additional

study was necessary to determine whether their enthusiasm was well placed or if they

were merely hoping for the best. An assessment at the end of the development life-cycle

was needed to address the long-term benefits of the improved RE practice such as higher

software quality and productivity in software development.

Therefore an assessment was conducted to verify whether the perceived long-term

benefits (identified in the earlier phase of the study) were realized. The results of this

second empirical assessment are the topic of this paper.

3.3. Design of the Case Study

3.3.1. Data Collection Procedures

Thirty-one project members from several functional departments (i.e., software engi-

neering, documentation and management) participated in this stage of the study. They

were invited to participate in the study based on their knowledge of the product,

development process and practice. ACUS is a company with low employee turnover so

most of these participants were very familiar with the history of the product and, most

importantly, of the requirements management process in the last 15 years.

The data collection methods included a questionnaire, interviews, and document in-

spection. All interviews, open-ended and semi-structured, were recorded and informally

analyzed for patterns in responses. The requirements process documentation was studied,

as well as other (current and historical) project information. Additionally, some project

artifacts were considered including, requirements specifications, change requests and

entries within the requirements management tool. This being the first time the require-

ments process was rigorously defined, historical data was very limited and instead we

relied on the extensive professional experience of ACUS engineers at ACUS to provide

comparison to previous practice.

The majority of our evidence was collected anonymously to protect respondents from

the scrutiny of the organization. In particular, the names of participants involved were

largely unknown to ACUS senior management, to remove the possibility of apprehension

to provide accurate information. To further avoid the risk of a perceived apprehension

towards job loss if confidential data is provided to the senior management, the ques-

tionnaires were administered in paper copies and collected individually by the first

author.

Furthermore, respondents were encouraged to be critical of their experiences with the

new processes in an effort to further improve them. We are confident that these answers

and opinions are relatively objective.

262 DAMIAN ET AL.

3.3.2. Aspects Investigated

Below we describe the aspects of the process improvement that we investigated. Initial

data gathering on these aspects was conducted through a questionnaire (see Appendix)

and followed up through interviews. In the text below, each section describes a category

of questionnaire items, together with the underlying rationale.

General Feedback About the Role of Revised RE Process at ACUS. Given that this

was a follow-up of the initial assessment of the RE practice at ACUS (immediately after

the Frequirements phase_), we wanted to obtain general feedback on longer-term effects

of the revised RE process in the software development life-cycle, after the design, coding

and testing phases were completed. In particular, to obtain the project members’

judgment on how important the revised requirements process was, how it affected the

work of the individual project members and whether the time spent on the Frequirements

phase_ was sufficient. We also wanted to obtain insights into which individual

components of the revised RE process had greater effect in the software development

than others to be able to frame advice for practitioners who wish to adopt only parts of

the RE practice used at ACUS.

More Specific Aspects: Better Definition of the Problem and Potential Benefits. As

Brooks (1987) indicates, the purpose of the early development stages is Bdetermining

what to build.^ The role of Requirements Engineering within the Software Development

process is to define the problem and to describe the functional features of the envisioned

solution to solve that problem. At ACUS, this activity included a detailed account of

the nature of required system features, how they function, their dependencies and inter-

dependencies on other features in the system architecture. The description also included

qualifiers to describe non-functional characteristics of how features should behave, such as

performance, portability and so on. One purpose of exploring requirements was to sys-

tematically explore the problem space while attempting to define functional characteristics

of the software system to address this problem space.

To understand the effects of improved feature refinement during subsequent develop-

ment activities, we asked engineers to comment whether they felt the process had revealed

further feature details and how important that information was depending on the

development activity (design, implementation, testing and documentation). One effect

that we anticipated was less rework conducted during development as a tangible

manifestation of better problem understanding and more detailed feature definition, since

dependence on guesswork and arbitrary invention was potentially reduced. Evidence on

how developers used the information about requirements during later stages is important

and we investigated which tasks were improved by an increased understanding of

requirements. Building on the evidence from the early assessment we investigated whether

the revised RE process enabled developers to make more informed decisions, improve

their sense of ownership, and improve their sense of accountability.

Additionally, we investigated whether better definition of features upfront improved

communication and in particular whether or not it helped resolve common complaints

of excessive communication and consultation that was necessary to clarify ambiguous

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 263

features as experienced in previous projects. Of special interest was finding out whether

this Bimproved^ communication improved productivity and product quality.

More Specific Aspects: Estimation. The investigation of planning, scheduling and

resource allocation is important in understanding whether the revised requirements

practice had longer term effects in the project development. These activities are con-

ducted throughout the software development process and rely heavily on estimations that

can be enriched by the fruits of requirements engineering. They are particularly

important in the early stages of development, precisely when there is a distinct scarcity

of information to support meaningful, accurate estimations. These estimations serve to

approximate the extent of required effort, inherent risk and time needed to fulfill project

objectives. Requirements engineering provides critical information by providing a

vehicle with which to consider the extent of features and their complexity. In addition,

these estimations are often separated by feature and by development phase: design,

implementation and so on, driving demand for further detailed information.

To investigate the extent by which requirements engineering process improved the

estimations conducted at ACUS, team-leaders and managers were asked how important

they felt the RE process was to estimation in general and to estimations made according

to development phase. Additionally, we were interested in understanding the effects of

the more thorough analysis of features and their refinement into technical requirements.

We compared the accuracy of the estimations of effort performed before the require-

ments analysis (referred to Bpre-analysis estimations^ henceforth) with those made after

the requirements analysis sessions (referred to Bpost-analysis estimations henceforth).

Furthermore, we asked participants to comment on why estimations may have been

inaccurate and how they might improve the accuracy of those estimations in the future.

Beyond exploring the issue, this questioning was meant to consider how the RE process

effects might be impeded by practical matters.

More Specific Aspects: Change Management. Change management concerns an orga-

nization’s ability to address change. New requirements can emerge and existing require-

ments can change throughout the development process (Sommerville and Sawyer, 1997).

Not only is it important to control change, but it is important to address those changes

as soon as possible as it has been shown that it is far more costly to correct require-

ments errors later rather than earlier (Boehm, 1988). Changes are responsible for quietly

altering the context of the software problem in fundamental ways; studies of software

projects (The Chaos report, 1997) have found that changing requirements and specifi-

cations were often blamed as significant challenges to project success.

At ACUS we performed a detailed analysis on change management artifacts, primarily

change request documents. In particular an examination was made to determine the

extent of the analysis of impact when a change was requested. This was complemented

by an investigation of change management’s effect on the software development process

at ACUS, by asking managers and engineers whether or not the revised requirements

process enhanced their ability to assess the impact of requirements changes (i.e.,

Whether communication with other important stakeholders during the decision making

process was helpful).

264 DAMIAN ET AL.

4. Case Study Findings

The findings of the case study are summarized in the sections that follow and are organized

by the aspects investigated. Some participants chose not to answer all questions on their

questionnaire, thus the number of responses received for each question is also reported.

Themes that emerged from these findings are discussed in detail in Section 5 that follows.

4.1. General Feedback on the Role of the Revised RE Process in the Project

At ACUS the revised RE process required a cultural shift in the mind set of the engineers

as they moved from a silo and solo based requirements analysis model to a cross

functional and team based model. This is typified by the considerable amount of time

that was spent in group requirements analysis meetings. 92% of 24 participants felt that

the revised requirements process was important (Q1) and 71% of 17 engineers would

spend even more time on the requirements phase in the future (Q3). In participants’

words (Q2), it was as simple as helping to Bdiscover goals more easily,^ Bmake the

boundaries of features clearer^ or Bunderstand what needed to be done.^ For some the

important effect is to broaden developer thought to a more comprehensive perspective:

B[improvement] made me more aware of the impact in other areas, it made me think of

the total package,^ B[requirements] formed a useful framework which underscored the

whole design.^

4.2. Better Definition of the Problem and Potential Benefits

4.2.1. Improved Understanding of Details, Dependencies and Complexities of Features

Engineers unanimously agreed (100% of respondents) that the requirements process

revealed further details, dependencies and complexities of features (Q5). Chart 1 (23

respondents, Q6) shows the percentage of responses on the importance of understanding

requirements in later phases of development, indicating that many engineers felt that

the revised RE process was particularly productive and worthwhile use of resources.

Chart 1. Importance of understanding requirements during design, coding, testing and documentation.

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 265

The requirements analysis sessions Bhelped to identify dependencies between require-

ments very early,^ and Bidentify features that would have otherwise been unaccounted

for until much later.^

4.2.2. Reduced Wasted Effort

In terms of tangible benefits evident in reduced rework results were also very positive.

While a majority of respondents (see Chart 2, 64%, 23 respondents, Q8) felt that there

had been less rework under the revised process, 30% indicated there was more. Some

respondents qualified their choice: Bthere is always some level of rework due to in-

evitable technical issues.^

4.2.3. Intangible Benefits: Improved Communication

In the earlier assessment intra-team and inter-team communication was perceived to be

improved due to revised RE process. When asked whether this effect continued beyond

requirements and into later stages of development most developers agreed (Chart 3, 24

Chart 2. Amount of rework needed in the project as compared to previous projects.

Chart 3. Extent to which improved communication continued beyond requirements phase.

266 DAMIAN ET AL.

respondents, Q10). Of those who responded neutrally and negatively to this question half

were from test and documentation departments within the organization. This significant

representation is explained by comments made by managers that indicate that testing and

documentation were sometimes left out of communication during analysis sessions.

When asked about communication respondents felt that Fclarification_ communication

had been reduced, but that confirmations were still sought (Q10). The requirements

provided broader perspective and answered questions relating to rationale. As Chart 4

(23 responses, Q7) shows, requirements were used extensively by developers, most

significantly to re-familiarize themselves with the characteristics of the feature (86%),

indicating that developers sought re-iteration of information on features and that they

were able to utilize the requirements artifacts to aid them in that task; and to validate

coverage of features (90%). This confirms requirements’ role as a means to checklist

system functionality during testing and review. Engineers responded favorably in other

areas too, reporting that requirements had impact on deepening understanding, facil-

itating rational designs and providing feature rationale.

4.2.4. Intangible Benefits: Informed Decisions

Further, data (see Chart 5, 21 respondents, Q9) indicates that improved feature under-

standing contributed significantly to developers’ ability to make informed decisions. A

somewhat less convincing though still positive result was with respect to the process

helping to foster a sense of accountability (66% of responses). Creativity and ownership

enhancements were less sure, but as one manager suggested this may have been due to the

perception that the more rigorously defined requirements provided less room for creativity

among designers and implementers. Improved understanding of the features also enabled

ACUS to negotiate with its US-based product managers from a position of strength, given

that the negotiations were based on firm data. These negotiation sessions were shorter

given that the discussions were centered on tangible information. The scope creep was

Chart 4. Agreement that requirement artefacts enabled post-requirement activities.

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 267

minimized as the requirements analysis sessions helped ACUS to understand and define

very clearly what is being captured.

4.3. Estimations

The responses from 15 team leaders and managers provide evidence of strong agreement

that the requirements were an important element of estimation. In particular, Chart 6 (13

respondents, Q14) illustrates that over 80% of respondents found that the thorough

analysis of features was important in estimating effort required during design and

implementation. Respondents were appreciative of the more thorough feature definitions

and the added focus that the requirements process reaped, ultimately preventing the need

for extensive guessing and unwarranted commitment to feature development. Managers

attributed fewer estimation errors to systematic estimation of smaller units (i.e., technical

requirements), a benefit of the improved requirements process.

We also analyzed the quantitative data available on estimations in the project. At

ACUS, estimations of effort required for design, coding, test and documentation were

prepared (1) during an initial feasibility study, before starting the new RE process and

Chart 6. Importance of requirements in estimation for design, implementation, testing and documentation.

Chart 5. Agreement that requirements had intangible benefits.

268 DAMIAN ET AL.

before requirements analysis, and (2) after requirements analysis when features were

detailed into more manageable requirements, using the revised RE process. Finally,

actual values were calculated at the end of the project. These estimates and actual values

were collected for each of the project’s 26 features. Chart 7 shows the difference be-

tween actual expended efforts and the effort estimations made before and after require-

ments analysis. Values above the x-axis correspond to optimistic estimations that are

lower than actual required effort (ie., actual Y estimate > 0).

Chart 7 shows that the estimations made after requirements analysis were closer to

final effort, while the estimations before requirements analysis were predominantly

pessimistic. Further, Chart 8 below ignores Fthe-direction_ of error, instead showing

absolute estimation error on the left-hand y-axis (referred to as Bdelta pre- and post-

analysis^), and cumulative [absolute] estimation error (shown by horizontal dotted-lines)

on the right-hand y-axis. In particular, the cumulative error clearly indicates the superior

accuracy of the post-analysis estimations as compared to the pre-analysis estimations.

Chart 8. Estimation (absolute) error per feature and total cumulative error (in person-hours).

Chart 7. Difference between actual effort expended and estimations. (In person-hours per feature, for 26

features in the project.)

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 269

While it is true that one would expect estimations to improve as the project progresses,

no development effort occurred between these estimates except for the requirements

analysis phase itself. This leads us to conclude that the improvement in estimation can be

primarily attributed to an enhanced ability to use the requirements in the estimation

process.

4.4. Change Management

The results of this investigation provided some strong insights. 77 change requests were

recorded throughout the development life-cycle (2 during requirements definition, 37

during design, 31 during coding and unit testing and 7 during integration testing).

Change management artifacts cited documents that those changes would affect. As

shown in Table 1, out of 158 documents cited over 50 involved modifications to the

requirements specification. This suggests that the team had often accessed the documents

and artifacts affected by change. Finally, it may be worth noting that while these change

requests may have affected the source code, the organization did not collect this data

since relationships between requirements and code were not being maintained.

Approximately seven (on average 7.06) engineers and managers were involved in

every change request. As shown in Table 2, almost all change requests involved wide

participation including engineering managers, program manager, project managers and

perhaps most significantly, consistent involvement from testing (40%) and documenta-

tion groups (49%).

Table 2. Proportion of change requests involving particular roles.

Functional role of participants

Proportion of requests

in which the role participated

Engineering Manager 100%

Product Manager 65%

Project Manager 91%

Testing 40%

Documentation 49%

Table 1. Change effects on artefacts.

Artifacts affected by change Number

Requirements specifications 50

Functional specifications 50

Design specifications 16

Documentation 13

Test plans 6

Other (e.g., project plans) 23

270 DAMIAN ET AL.

The revised RE process was positively assessed in providing a mechanism for

controlling change: Bchange control process made changes more documented . . . it made

people analyze about the changes before they were approved.^ In particular, 7 out of

8 team-leads indicated that the requirements process provided them with enhanced

ability to assess impact of changing requirements, the only dissenting neutral response

indicated that B[it was] difficult to say, from my perspective. The particular area I

worked on was unaffected by any of the change requests.^

5. Discussion

5.1. Increased Productivity Through Increased Understanding of Features

The evidence in this study indicates that the revised Requirements practice had

significant positive impact affecting the later stages in the development, beyond merely

providing definition and refinement of the features during the Frequirements stage._
Compared to previous projects, productivity increased: rework lessened, communication

effectiveness increased and capacity for informed decision making improved.

In the absence of a well defined measure, we believe that productivity has been

increased, in part, by helping engineers, as a few mentioned, Bfocus on individual work

items.^ The cross-functional involvement during analysis sessions achieved more

thorough up-front thinking and Bmutually agreed understanding of what was required

to be done,^ and further served as an Bice-breaker^ such that developers were more

willing to discuss issues with their counterparts during later stages of development: BThis

improved coding efficiency many-fold.^
The increased effectiveness of the communication can be discussed from two

perspectives. On the one hand, the findings indicate that the improved understanding

of details, dependencies and complexities of features significantly decreased the volume

of Bclarifications,^ often redundant communication. The requirements served as a means

for low-cost, broad-based knowledge dissemination. In fact, the better-defined and

structured RS served as a tool to propagate information about the features and their

interdependencies. Project members used it as a persistent resource in their daily activ-

ities, as a Bsolid foundation^ to seek information on requirements and on which they

based their designs and programming decisions on, avoiding unnecessary and redundant

communication. We believe that the enhanced ability to make more informed decisions

at the micro level led to less time spent fixing bugs and ultimately resulted in higher

developer productivity.

On the other hand, the requirements specification increased the quality of the com-

munication, the other dimension along which effectiveness of communication can be

considered. Project members could more effectively reference detailed descriptions of

features and requirements and test scenarios (documented in RS) when ambiguities

had to be removed. The quality of the communication was further increased because

the requirements analysis sessions involved extensive cross-functional interaction. This

way different departments were brought together to communicate collectively on the

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 271

particular requirement, providing an opportunity for engineers to understand the respon-

sibilities and concerns of other functional roles in the larger development team.

5.2. Estimations

This study presents a clear indication of the role of requirements practice in improving

estimation in software development and project management. At ACUS, the estimation

process required team leaders, in consultation with their engineers, to make effort

estimates for particular features. The overwhelming response from those involved in the

estimations suggests improvement in estimation due to improved RE practice. The fact

that the post-analysis estimates were much closer to the actual efforts strongly indicate

that the requirements analysis sessions that generated technical requirements were

important in enabling more accurate estimations.

Although pre-analysis estimates are expectedly inaccurate, due to the ambiguity of

Fone-statement_ feature requests, one might expect those estimates to be optimistic, due

to easily overlooked technical detail, rather than the decidedly pessimistic estimations

made at ACUS. This is likely because ACUS had, in past projects, over-committed to

features causing severe schedule overruns. Furthermore, it appears that engineers were

unsure of the requirements’ usefulness in making estimations for documentation and

especially testing, as manager comments suggest that involvement from different

functional units in the estimation process was a new phenomenon. Managers felt test and

documentation departments did not fully grasp how requirements could be used to

improve estimations. Pre-analysis estimates also included a component of rework, which

to some extent did not eventuate, given the improvements resulting from earlier

definition of the work scope. This added to the volatility of the pre-analysis estimates,

given that pre-analysis estimates were Fbest guesses_ without the benefit of a clear

understanding of the requirements.

When asked why discrepancies might exist between estimations and actuals, participant

opinions varied widely. A common complaint was simply the lack of information,

originating from natural uncertainty one would expect in the early phases of development.

They suggested that more extensively detailed requirements would have contributed to

more accurate estimations alluding to the inevitable challenge in striking a balance

between information gathering and estimation accuracy. Other problems included:

complexity of the project, unfamiliarity with new technology and tools, and poor

understanding of individual skill levels.

In summary, ACUS’ estimation ability was enhanced largely because of their ability to

use the more detailed information on features analyzed as part of the revised RE process.

Managers in particular were very positive with these results compared to relatively poor

estimates in past projects, especially when considering the lack of training in estimation

methods provided to some project areas. Additionally, more accurate estimations were

useful during change management, discussed in the next section. Improved estimates

enabled early identification of resource constraints motivating the early revision of

project commitments to accommodate these constraints. As the project manager noted:

272 DAMIAN ET AL.

Bthe revised RE practice enabled us to conduct better estimates and project planning and

as a result, cull functionality for which we did not have adequate resources. In prior

releases, we would have attempted to deliver more functionality as we would have had a

poorer understanding of the requirements and their scope.^

5.3. Change Management

Managing change is one of the most significant challenges in software development. In

particular, changes in requirements often arise from external events originating outside

the organization, for example: unpredictable market conditions or customer demands.

Change can also originate internally from within the organization, typically from the

natural refinement of requirements as the solution space is more thoroughly explored

during design or implementation. ACUS has reported that past projects have exhibited

very poor ability to react to change resulting in uncontrolled feature creep. In this study,

evidence suggests that the revised practice in requirements had a positive effect on the

ability to control change. It resulted in an increased level of stakeholder involvement that

provided a more thorough analysis of impact and more informed reactions in face of

change.

The fact that 50 modifications to the Requirements Specification (RS) were made as a

result of 77 change requests (the majority during design and coding) suggests that

engineers were by and large successfully able to leverage traceability links back to

requirements, thus facilitating more accurate impact analysis. Further, the fact that only

4 modifications to the RS were initiated during integration testing (as a result of 7 change

requests) suggests that most of the requirements-related changes were addressed before

integration testing. Assuming that integration testing exhibited similar rigor as testing in

earlier phases, this is a very positive result.

The process of managing requirements changes also facilitated an open channel for

communication and decision making. During change requests, the consistent simulta-

neous involvement by senior management and developers, designers and testers has an

important implication: change requests served to bring together not only the functional

organization horizontal alignment (designers, developers, testers and documenters), but

also vertical alignment of organizational responsibility (engineers, teams leads, technical

managers and executive management). Essentially these change requests can be seen to

provide a precisely focused forum in which developers and decision makers could more

openly communicate. In the face of requests for change, ACUS senior management no

longer had to make decisions without thorough information on the impact of change. The

involvement of several organizational layers (e.g., designers, team leaders) provided for

more informed decisions and an increased ability to reject changes that could not be

accommodated.

At the same time, revisions in the RE practice need to be considered along with the

improvements in the change management process at ACUS when heightened ability to

control change is discussed. Defining and enforcing a strict change management protocol

not only provided infrastructure for assessing change requests, it also demanded additional

effort from developers initiating change. This additional cost to introduce change was seen

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 273

to help prevent ad hoc changes altogether. Those changes that were considered important

(enough so that the change process is initiated) were rigorously scrutinized for impact

through the reviewer comments provided by engineering roles that participated in the

change request document V not only with respect to design and implementation, but also

testing and documentation. It is likely that the cross-functional communication and

involvement evident in change artifacts, as described above, contributed significantly to

their more holistic assessment.

In summary, improved requirements change management at ACUS provided project

members and senior project stakeholders enhanced ability to negotiate any requests for

changes and thus to prevent feature creep throughout the development life-cycle.

6. Advice for Process Improvement Practitioners

Our investigation of perceived benefits of the various components of the RE process

improvement at ACUS provide evidence about the usefulness of individual RE

components in the software development. Although everyone agreed that the process

was important overall, it is clear from the results shown in Chart 9 that some aspects of

the process were far more critical than others, at least according to engineer perception.

Parts of the requirements process at ACUS that were clearly identified as having

considerable positive effect include team involvement, analysis sessions and test

scenarios. The practical consequence of this result is of particular importance for

organizations that are optimizing their exposure to new process initiatives, namely those

organizations looking to initiate a RE process revision, or those endeavoring to stream-

line an existing RE process. This latter issue has already become relevant for ACUS in

their efforts to curtail costs. In particular, we note that team involvement is largely

accomplished through participation in the analysis sessions, amplifying their importance.

This makes analysis sessions an attractive prospect for process analysts and leads us to

advise on their minimal inclusion in RE process improvement.

Chart 9. Percentage of affirmative responses to importance of components of the revised RE process in the

software development.

274 DAMIAN ET AL.

Acknowledging that these recommendations are based on a single case study, it is not

our intention to claim that they are general results. We do believe however, that

organizations that exhibit similar characteristics as ACUS could greatly benefit from

these recommendations. In particular, the following are critical organizational character-

istics that are likely to have contributed to these significant improvements: ACUS is a

product line development organization that had suffered from inadequate communication

with their customer representatives who had routinely requested very high-level product

features. These features were highly ambiguous and in many cases required deep

technical understanding of the system to fully appreciate and understand. The

development culture bred highly factional teams that tended to work in isolation rather

than in open cooperation.

Finally, practitioners should be aware that although ACUS implemented a whole set of

changes to the requirements process, it may seem premature to recommend only a subset

of that process. However, while there is no particular reason why these components

should be separable, there is also no particular reason why they should not. In fact, some

of these components do appear to be disjoint, for example, the language template appears

quite independent from developing test scenarios during requirements, or recording

traceability information. Therefore, we feel confident in making these recommendations

despite this caveat.

For all of the above reasons, analysis sessions involving participants from cross-

functional teams are very helpful because they would involve people that understand the

language and come together to achieve the shared understanding of the feature.

7. Limitations

Limited quantitative historical data was available from past projects, and thus an

evaluation of improvement through experimental comparisons to previous projects at

ACUS was impossible. As a result, we had to rely on the input from project participants

and knowledge of past practice at ACUS. This input emerged as a valuable resource

since the majority of these people have been employed at ACUS for the last 5Y15 years,

bringing a wealth of anecdotal information about weaknesses of the software process.

Thus, from a practical perspective, not being able to quantify the similarities or

differences of performance in past projects, and the reliance on opinions of expert

software engineers, has minimum consequence when discussing the advantages afforded

to the practicing researcher or practitioner. Due to the nature of their former process,

objective measurements would have been impossible to make. For example, metrics on

change management could not be developed or maintained in the absence of a well-

defined change management process. In contrast, the effort re-estimation conducted after

the analysis phase of development enabled us to analyze improvements in the estimation

as reported in this study.

Furthermore, there is a strong claim that could be argued discounting our reliance on

human perspective, given the inherent bias that could exist in the study subjects. While

their enthusiasm for the process improvement initiative could highly influence their

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 275

perspective, self-assessment toward optimism or even their productivity, as a result of the

Hawthorne Effect (Mayo, 1933), there are compelling reasons to rely on their testimony

nevertheless. First, much of the enthusiasm detected early in the study and reported

earlier (Damian et al., 2002) appeared to have waned considerably as the project

continued to proceed under the new processes. Secondly, for many engineers, additional

process can be viewed as a restriction on the freedom to conduct development in their

preferred manner, for this reason it is just as reasonable to expect indifference, if not

opposition, to affect their responses.

Finally, the RE process improvements at ACUS occurred in parallel with initiatives

for improvement in other process areas such as software quality assurance, project

planning and project tracking. We recognize that it is very difficult to ascertain to what

extent those other improvements have confounded the effects we observed in this study.

Or, for that matter, to evaluate the interaction between the requirements engineering

process and other processes, in particular to assess whether the RE process was of help or

of hindrance to these processes and vice-versa. One could consider this to be the

strongest limitation of our study and in general of assessing improvements in RE practice

in an organization that is involved in a larger improvement initiative. Stronger evidence

could have been brought by an assessment that designed an experiment that compared

similar projects where only RE process differed, however this is a difficult ideal to

achieve in an industrial, empirical investigation when organizations are motivated to

improve their productivity rather than conduct scientific experimentation. In lieu of

this, we are left to rely on the expert opinion of practitioners within the organization to

identify individual effects of RE process changes. Although the potential for

unpredictable process interaction exists even within more stable, well-established

environments, we acknowledge that this interaction requires further study. It is the topic

of our future research to achieve a better understanding of the interaction between

improvements in the RE process and the other processes in this organization. In

particular, we plan on gathering data about the extent to which improvements in the

requirements process enabled or hindered improvements in other process areas. This will

allow us to develop a map of interaction between the requirements process and other

processes in the organization and to identify which other processes were most affected

by improvements in requirements engineering.

8. Conclusion

This paper reported the results of a case study that investigated the role of Bgood RE^
practice in software process improvement. Data from the 18 month software devel-

opment project was analyzed for effects of more rigorous RE practice in later stages of

the development such as design, coding and testing, as well as other project related

activities such as project planning and scope management. Evidence was found to

confirm claims in the literature of the role of requirements processes in increasing pro-

ductivity, improving project planning, better problem definition and more effective

communication in project development.

276 DAMIAN ET AL.

The study adds to the scarce evidence on the role of improvements in the requirements

management practice, invaluable for researchers to define areas for further research and

for practitioner to define similar improvements and their appropriate benefits. The study

provides an example of how practitioners can analyze their process improvement besides

other more general ways of assessing software process improvement. ACUS achieved

CMM Level 2 at the time of this empirical assessment. Requirements Managements was

a Key Process Area that scored an improvement from 5.4 to 7.4. This suggests that the

revised RE practice also contributed to software process improvement in the context of

CMM assessment. While CMM identifies that there was a good process in place and it

was practiced, the assessment here sheds light on the effectiveness of the revised RE

process and hence its role in software process improvement. It is also important to

consider the assessment of process improvement at ACUS over a long term period

spanning multiple projects. This study provides an early indication that a shift in culture

has begun at ACUS. The most significant effect of the revised RE practice at ACUS was

the transition from the Bsilo culture^ to the cross-functional and team involvement in

activities of requirements analysis, which had tangible effects during design, coding and

testing. However, culture change is a long term process, and this initial improvement has

at best created a foundation for assessment of future changes, measurement and

ultimately continued improvement. The new methods introduced in this project (such as

different components of the RE process, change management) can continue to be used

to collect historical data and conduct quantitative comparative analysis of this data,

providing evidence beyond the participants’ anecdotal evaluation of improvement

initiatives. Actual change in the organization’s culture with respect to the attitude

towards rigorous RE processes will have to be assessed in the future, and forthcoming

projects will indicate whether this strong beginning has materialized in culture change at

ACUS.

Acknowledgments

Many thanks go to the study participants, software engineers and other project members

at ACUS. Financial assistance was made through NSERC.

Appendix: Questions in the Questionnaire

General Feedback About the Role of Revised RE Process at ACUS (Section 4.1 in

paper)

1. How important do you feel the revised requirements process was at ACUS? Why?

Very Important Important Indeterminate Somewhat Important Not Important at all

Ì Ì Ì Ì Ì

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 277

2. How did the revised RE process help YOU in your work?

3. With respect to the Frequirements phase,_ in the future would you spend more or less

time and/or effort on this phase of development: (Why?)

4. The revised RE process consisted of several components, as shown below. Please

indicate, which ones were most important/useful in your work, in activities such as

design, condign implementation or documentation.

More Specific Aspects: Better Definition of the Problem and Potential Benefits

(Section 2.4.2 in paper)

5. Do you feel that the improved requirements process revealed further details, inter-

dependences and complexities of features?

6. In your design, coding, testing, or documentation activities, how important was it to

understand the features and technical requirements?

7. Have you, during design, implementation, testing, or documentation, made use of the

technical requirements that motivated particular features?

Components of the RE process Design Implementation Testing Documentation

Involvement from multiple teams Ì Ì Ì Ì

Group analysis sessions Ì Ì Ì Ì

Sentence template in writing req’s to

achieve consistency, in the capture sessions

Ì Ì Ì Ì

Use of a structured RS Ì Ì Ì Ì

Traceability links to requirements rationale Ì Ì Ì Ì

Traceability links to test scenario Ì Ì Ì Ì

Definition of the test scenario at RE stage Ì Ì Ì Ì

Use of context diagram in the capture

sessions

Ì Ì Ì Ì

Strongly Agree Agree No Effect Disagree Strongly Disagree

Ì Ì Ì Ì Ì

Very Important Important Indeterminate Somewhat Important

Not Important

at all

Design Ì Ì Ì Ì Ì

Coding Ì Ì Ì Ì Ì

Testing Ì Ì Ì Ì Ì

Documentation Ì Ì Ì Ì Ì

Far More More About the same Less Far Less

Ì Ì Ì Ì Ì

278 DAMIAN ET AL.

8. Compared to projects in the past: has there been more or less rework during develop-

ment (but before deployment):

9. Did understanding help with:

10. Based on an early assessment, the requirements process improved communication

among developers. Did communication generated by these sessions continue outside

the sessions and in later stages of development?

11. In an earlier assessment, it was reported that engineers often only vaguely

understood the requirements and often had to Bwalk to others’ cubicles (or phone)

and ask clarifications.^ To what extent do you believe the revised RE process

removed that in the current project?

Far More More About the Same Fewer Far Fewer

Ì Ì Ì Ì Ì

Strongly

Agree Agree Neutral Disagree

Strongly

Disagree Don’t Know

. . . facilitating more informed

accurate decisions?

Ì Ì Ì Ì Ì Ì

. . . improving your sense

of ownership?

Ì Ì Ì Ì Ì Ì

. . . improving your sense

of accountability?

Ì Ì Ì Ì Ì Ì

. . . inspiring you to be more

creative in providing a solution?

Ì Ì Ì Ì Ì Ì

. . . improving the communication

with the customers (BI)

Ì Ì Ì Ì Ì Ì

Very Improved Improved Unsure No Improvement

Ì Ì Ì Ì

Strongly

Agree Agree Neutral Disagree

Strongly

Disagree

In which activities

listed above?

To re-familiarize yourself

with the feature

Ì Ì Ì Ì Ì

To gain deeper understanding

of the feature

Ì Ì Ì Ì Ì

To facilitate Frational_ designs Ì Ì Ì Ì Ì

To understand the motivation

behind the feature

Ì Ì Ì Ì Ì

To ensure complete coverage/

compliance with requirements

Ì Ì Ì Ì Ì

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 279

12. How do you believe the communication inspired by the requirements sessions

improved or deteriorated (a) productivity or (b) product quality.

More Specific Aspects: Estimation (Section 2.4.3 in paper)

13. How important was the use of features and technical requirements in the estimation

process?

14. How important was the use of technical requirements in the estimation for:

15. What was the source of failure or inaccuracy, if any, in the above-mentioned areas

(resource allocation and planning)?

16. In thinking about your estimates, can you think of reasons for discrepancies? With

respect to (a) Design, (b) Implementation, (c) Testing and (d) Documentation

17. How could you have improved your estimations?

18. Should those estimates have been improved? How?

More Specific Aspects: Change Management (Section 2.4.4 in paper)

19. Did the revised requirements process provided you with enhanced ability to assess

impact of changing requirements?

References

Boehm, B. 1988. A spiral model of software development and enhancement. IEEE Computer 21(2): May,

61Y72.

Broadman, J., and Johnson, D. 1996. Return on investment from software process improvement as measured by

U.S. industry. Crosstalk 9(4): 23Y29.

Brooks, F. 1987. No silver bullet: Essence and accidents of software engineering. Computer 20(4): April,

10Y19.

CMM, Capability Maturity Model for Software, 1991: CMU/SEI-91-TR-24, Software Engineering Institute,

Carnegie Mellon University.

Very important Important Indeterminate

Not really

important

Not important

at all

Design Ì Ì Ì Ì Ì

Implementation Ì Ì Ì Ì Ì

Testing Ì Ì Ì Ì Ì

Documentation Ì Ì Ì Ì Ì

Very important Important Indeterminate Not really important Not important at all

Ì Ì Ì Ì Ì

280 DAMIAN ET AL.

Curtis, B., Krasner, H., and Iscoe, N. 1988. A field study of the software design process for large systems.

Communications of the ACM 31(11): November, 1268Y1287.

Damian, D., Zowghi, D., Vaidyanathasamy, L., and Pal, Y. 2004. An industrial case study of immediate benefits

of requirements engineering process improvement at the Australian Center for Unisys Software. International

Journal of Empirical Software Engineering 9(1Y2): March, 45Y75.

El Emam, K., and Birk, A. 2000. Validating the ISO/IEC 15504 measure of software requirements analysis

process capability. IEEE transactions on Software Engineering 26(6): June, 544Y566.

El Emam, K., Dourin, J., and Melo, W. 1998. In: K. El Emam, J. Dourin and W. Melo, (eds.), SPICE: The

Theory and Practice of Software Process Improvement and Capability Determination. IEEE CS Press.

Hall, T., Beecham S., and Rainer, A. 2002. Requirements problems in twelve software companies: An empirical

analysis. IEE Proceedings-Software 149(5): 153Y160.

Halligan, R. 2000. TAA’s SE Training Courseware. Halligan Corporation Pty Ltd.

Herbsleb, J., and Goldenson, D. 1996. A systematic survey of CMM experience and results. In Proceedings of

the International Conference on Software Engineering. ACM Press, pp. 323Y330.

Humphrey W., Snyder, T., and Willis, R. 1991. Software process improvement at hughes aircraft. IEEE

Software 8(4): 11Y23.

Lauesen, S., and Vinter, O. 2001. Preventing requirement defects: An experiment in process improvement.

Requirements Engineering Journal 6: 37Y50.

Mayo, E. 1933. The Human Problems of an Industrial Civilization. New York, NY: Macmillan Co.

Paulk, M. 1994. A comparison of ISO 9001 and the capability maturity model for software. TR: CMU/SEI-94-

TR-12.

Paulk, M., Curtis, B., Chrissis, M. B., and Weber, C. V. 1993. Capability Maturity Model Version 1.1. IEEE

Software 10(4): 18Y27.

Quality standards: Quality management and quality assurance standards. 1987. Int. Org. for Standardization.

Robertson, S., and Robertson, J. 1999. Mastering the Requirements Process. London: Addison-Wesley.

SEI, 1995: Software Engineering Institute: The Capability Maturity Model: Guidelines for Improving the

Software Process. Addison Wesley.

Sommerville. 1996. Software Engineering. England: Addison-Wesley.

Sommerville, and Sawyer, P. 1997. Requirements Engineering: A Good Practice Guide. England: John Wiley

& Sons.

The Standish Group. Chaos. 1997. At http://www.standishgroup.com/chaos.html.

Wohlwend, H., and Rosenbaum, S. 1993. Software process improvement in an international company. In

Proceedings of the International Conference on Software Engineering, pp. 212Y220.

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 281

Dr. Daniela Damian is an Assistant Professor in the Department of Computer Science at the University of

Victoria, where she holds the NSERC University Faculty Award. Her research lies in the areas of Software

Engineering, Human-Computer Interaction and Computer-Supported Cooperative Work. While interested in

studying collaborative software engineering in geographically distributed software teams in general, her

particular research focus is on requirements management activities and process improvement in global software

projects. Daniela leads SEGAL (Software Engineering Global interAction Laboratory), where together her

research group she is researching methodological as well as technological support for collaborative tasks (and in

particular requirements management) in global software development. Her goal is to achieve an understanding

of the challenges that software companies face because of geographical, temporal and cultural differences

between software stakeholder groups, and to design and evaluate potential solutions to overcome these

challenges.

James Chisan I am a Master’s student currently conducting research at the Software Engineering Global

interActions Lab (SEGAL) at the University of Victoria. My interests are primarily in requirements engineering

as it pertains to improving software engineering. I endeavour to improve our understanding of how

requirements engineering affects software development and then how to optimize and tailor requirements

processes to address particular business objectives. I am also investigating the use of awareness in enhancing

the efficacy and efficiency of requirements engineering by leveraging the intermediate artifacts of software

development to provide developers up-to-date requirements information.

Lakshminarayanan Vaidyanathasamy (LNV Samy) is the Director of Australian Centre of Unisys Software,

which is a Unisys Organisation and has over 20 years experience in IT and Software Engineering. LNV Samy

has a Bachelor of Engineering - Honours from University of Madras, India, Master of Technology in Software

Engineering from Macquarie University, Australia and Master of Business Administration from Macquarie

Graduate School of Management, Australia. LNV Samy is a member of Australian Computer Society,

American Society for Quality and IEEE. LNV Samy has published many papers in Software Engineering.

282 DAMIAN ET AL.

Yogendra Pal is a Senior Project Manager at the Australian Centre of Unisys Software responsible for the

research and development of the Enterprise Application Environment products for global distribution. Yogendra

has a Bachelor of Engineering from RMIT and is a member of IE Aust. He has been involved in Project

Management of development projects in Defence and Commercial sectors for the past 15 years and has been at

the forefront of introducing and managing Process Improvement Initiatives within the SEI-CMM Framework

for various organisations. Yogendra has conducted research on Process Improvement and published papers on

this research, primarily in the area of introduction of Requirements Management processes in the commercial

R&D world.

REQUIREMENTS ENGINEERING AND DOWNSTREAM SOFTWARE DEVELOPMENT 283

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

