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Abstract
This paper deals with the possibilities of designing optimal fiscal policy under 
uncertainty. First, different forms of uncertainty are discussed for economic pol-
icy analysis and design. For dynamic models under uncertainty, a stochastic opti-
mum control framework is presented. Algorithms for nonlinear models are briefly 
reviewed: OPTCON1 for open-loop control, OPTCON2 for open-loop feedback 
(passive learning) control, and OPTCON3 for dual control with active learning. The 
OPTCON algorithms determine approximately optimal fiscal policies. The results 
from calculating these policies for a small macroeconometric model for Slovenia 
serve to illustrate the applicability of the OPTCON algorithms and compare their 
solutions. The results show that the most sophisticated and time intensive active-
learning solution, which requires the use of an extremely small and simple model of 
the economy, is not necessarily superior to the simpler solutions. For actual policy 
design problems and policy advice, it will often be better to neglect the stochastic 
uncertainty and use deterministic optimization instead, especially since in practice, 
the most important forms of uncertainty are not stochastic but relate to the model 
specification, the behaviour of other policy makers or other agents, or fundamental 
uncertainty that cannot be dealt with at all.
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1 Introduction

Over the last 15 years or so, European economies have been confronted with 
a series of unexpected crises: the Great Recession, the financial and economic 
crisis of 2007–2010; the euro crisis, the banking, economic, and sovereign debt 
crisis of 2009–2013; the COVID-19 pandemic crisis 2020–2023; and the crisis 
due to the Russian invasion of Ukraine in 2022 (actually since 2014) followed by 
Hamas terrorist attack and the subsequent war between Hamas and Israel since 
October 2023. All of these events have had an impact on key macroeconomic 
variables in most European countries, causing severe challenges for policy mak-
ers in the European Union as well as for national governments and their poli-
cies. While the European Central Bank designed its monetary policy in relation 
to pan-EU problems, national fiscal policy makers had to deal with difficult trade-
offs in their own countries. This was aggravated by different, more local shocks. 
Slovenia, for instance, underwent a domestic crisis due to problems in its own 
banking sector from 2013 to 2017, with potential repercussions for other Central 
and Eastern European countries. The common feature of all of these crises was 
their unpredictability. In the Great Moderation of the 1990s, some economists 
even thought that most macroeconomic problems had been solved and no severe 
recession could happen again, e.g., Lucas (2003). The shaking of such beliefs 
also contributed to a more sceptical public attitude towards economists and main-
stream economic theories.

In this paper, we investigate how optimal fiscal policy can deal with some 
forms of uncertainty. We consider the example of Slovenia, which became a 
member of the Eurozone in 2007 and, hence, has no monetary policy of its own; 
fiscal policy remains the primary tool with which to react to macroeconomic 
disturbances. Actually, Slovenia was the first country among those from former 
communist ones to join the Eurozone after a relatively short period of having 
its own currency, the Slovenian tolar. Moreover, in a series of research projects, 
partly with colleagues from Ljubljana, we acquired a deeper knowledge of the 
economic problems of this country, and contributed to analysing them by build-
ing several versions of macroeconomic medium-sized econometric models and 
using them for economic policy problems and for the design of optimal fiscal 
policies. As these models were used for deterministic optimizations, we want to 
know how one could introduce uncertainty with which fiscal policy making is 
inevitably confronted.

The structure of the paper is as follows: In the next section, we provide a clas-
sification of uncertainties a country may have to deal with when designing its 
fiscal policy in the best way possible. We point out that the theory and practice of 
economic policy, especially quantitative economic policy, can, at best, cope with 
stochastic disturbances, that is with disturbances whose probability distribution is 
(at least: assumed to be) known ahead of the event. Even this case cannot be said 
to be solved exactly for an optimal design of (in our case: fiscal) policies. We then 
concentrate on this stochastic uncertainty and present the results for a very sim-
ple model of the Slovenian economy using the OPTCON algorithms for optimal 
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stochastic control of econometric models which we developed. The model is one 
of the well-known Phillips curve relation between inflation and unemployment 
(or the output gap).

Due to computational restrictions, our model is not in a position to give a com-
prehensive picture of the Slovenian economy; for a more realistic model, see, for 
instance, Weyerstrass et al. (2023) with results for the recent COVID-19 pandemic. 
We show that our results for the small model are relatively close to those obtained 
with a deterministic version of the same model. Finally, the relative advantages and 
disadvantages of the three versions of the OPTCON algorithm used are discussed 
and some conclusions drawn for fiscal policy design and for further research. We 
stress that the aim of this paper is not to derive results to be implemented by actual 
Slovenian fiscal policy makers. Instead, we explore whether the additional effort 
required to analyse stochastic uncertainty in the determination of an optimal fiscal 
policy is worthwhile given the restrictive assumptions it requires, especially about 
the model to be used. The answer is largely negative.

2  How to deal with different types of uncertainty

Ever since Brainard’s (1967) seminal paper, it has been well known that results 
derived from deterministic models of the theory of economic policy may have to be 
fundamentally modified when risk and uncertainty are taken into account. There-
fore, the question arises as to which consequences different forms of uncertainty 
have on the decisions of policy makers. In particular, we ask whether endeavours to 
determine (in some sense) “optimal” conceptions of macroeconomic policy may be 
doomed to failure in the presence of uncertainty, as some economists from the Mon-
etarist and the New Classical schools have claimed, e.g., Friedman (1948), Sargent 
and Wallace (1976). In particular, these authors assert that attempts at discretionary 
stabilization policy actions using optimizing procedures in the tradition of the theory 
of quantitative economic policy should be discarded when considerable uncertainty 
is present in the economy. Instead, they plead for fixed rules for economic policy 
instruments such as Friedman’s constant money stock rule for monetary policy or 
the rule of a permanently balanced budget for fiscal policy.

Several authors have argued against the prescription of fixed rules for policy mak-
ing. For more arguments on this topic, see e.g. Neck (1986). It should be stressed 
that the question under consideration does not mean that policy makers really fol-
low optimal stabilization policies but it is rather concerned with the possibility in 
principle that they can do so. For actual policy making, its explanation and evalua-
tion, a positive theory of government behaviour is required, for instance a political 
economy or public choice approach. In this paper, we ask whether economic policy 
makers who aim at reaching certain objectives can and should do so in an “optimal” 
way even in the presence of uncertainty.

This question can be examined within a decision-theoretic approach to the theory 
of economic policy. This theory of quantitative economic policy originates from Jan 
Tinbergen (1952, 1967) and was extended to the dynamic case by using optimal con-
trol theory by Chow (1975, 1981) and Kendrick (1981), among others. Here policy 
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makers have some instrument variables at their disposal whose values they can 
determine (within some limits). For fiscal policy, examples would include various 
categories of government expenditures and revenues or variables determining these 
components of the government budget. It is assumed that decisions about the values 
of these instrument variables have some effect on the policy makers’ objectives, such 
as low unemployment, low inflation, high output growth, sustainable public finance 
and balance of payments, environmental goals, etc. There some uncertainty at least 
regarding variables not under the control of a (national) policy maker, such as global 
developments or other unpredictable events, is present. Moreover, it is assumed that 
the policy makers have (more or less) well defined preferences about the values of 
the objective variables. In optimization approaches (Tinbergen’s so-called flexible-
targets policy approach), it is assumed that the preferences of the policy makers can 
be summarized by an objective function to be maximized (or minimized) under the 
constraints of a model showing the relations between the instrument and the objec-
tive variables under alternative assumptions about the non-controlled exogenous 
variables. This can be represented schematically as shown in Fig. 1.

It must be admitted that the assumption of an unambiguous and internally con-
sistent objective function of one (or even the aggregate of all) of the policy makers 
may require unrealistic postulates about their rationality and knowledge. Such an 
objective function should therefore be interpreted not as a social welfare function 
in the sense of welfare economics, for which problems of social choice invariably 
arise, but as an expression of the values of certain policy makers or some consensus 
among them as to what to aim at. For such a restricted problem, the theory of eco-
nomic policy and its decision-theoretic approach provide an adequate framework.

We may distinguish between three types of uncertainty in such a framework:

1. Stochastic uncertainty: Here probability distributions for the consequences of 
economic policy actions are known. These can either be objective ones, based 
on statistical frequencies, or subjective ones relating to the policy makers. An 

Fig. 1  Schematic representation of the approach of the theory of quantitative economic policy
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optimal policy is such that it maximize the expected utility of the results (in the 
dynamic case, the expected present value of the utility and costs of a time series 
of results).

2. Strategic uncertainty: This occurs when the results of economic policy actions 
are also determined by the actions of other decision makers and the interactions 
between them, where the other decision makers also follow (fully or boundedly) 
rational principles. The most interesting point here is the case of policy makers 
with different priorities in their objective functions. These fall under the subject 
of the theory of games (including dynamic games); they are not covered in this 
paper.

3. Fundamental uncertainty (nowadays often called “Black Swans”): In such situa-
tions, the policy makers know nothing about the probabilities of such events and 
do not have an idea how the event could come about, or even about the nature 
and the possibility of such an event. Such events can only be studied after they 
have occurred, although it may be possible to learn something about them as 
they evolve. The COVID-19 pandemic is an example of this type of uncertainty 
(although some scientists pointed out historical examples of similar pandemics 
ahead of the last one).

3  Approximate solutions to dynamic stochastic policy problems

Here we concentrate on the case of stochastic uncertainty. The framework is one 
of optimizing an intertemporal objective function with politically relevant variables 
(the rate of unemployment and the rate of inflation in our case) subject to constraints 
given by an estimated or calibrated dynamic econometric model. Such problems are 
the subject of stochastic control theory. The main source of uncertainty refers to the 
relations between different variables which are reflected in the probability distribu-
tions of the parameters of the econometric model of the economy. Unfortunately, 
stochastic optimal control theory has not been successful in deriving exact solu-
tions for even very simple analytical problems of this kind and even less so for com-
plex problems involving large models characterized by nonlinearities and a variety 
of sources of uncertainty. A famous example is Witsenhausen’s (1968) result that 
in a seemingly simple problem of (decentralized) control of a linear system with 
normally distributed error terms under a quadratic objective function, nonlinear 
solutions can be found that are superior to the optimal linear ones. This shows the 
impossibility of generalizing certainty equivalence (separation theorem) results for 
more complicated stochastic systems. A general solution for Witsenhausen’s coun-
terexample is still unknown (Ho 2008), although for some variations of the counter-
example a solution is known (Basar 2008); cf. also Yüksel and Basar (2024).

One reason why it is difficult to obtain analytic results from stochastic control 
problems is the so-called dual effect of controls in a stochastic dynamic system: 
Controls do not only serve to optimize the instantaneous objective in each period but 
can also be used to learn about the reactions of the system to policy measures, which 
in turn can contribute to improved policies in later periods. The fact that this inter-
dependence between considerations of direct optimization and experimentation for 
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learning about policy effects makes the stochastic optimal control problem intracta-
ble has been recognized by several authors in the past (Feldbaum 1965; Aoki 1989). 
Such problems can, therefore, only be studied numerically and only approximations 
to the unobtainable truly optimal policies can be obtained.

Such an approach was pursued by Kendrick (1981), who developed several algo-
rithms, including one for active learning based on Bar-Shalom and Tse (1976), in 
which the dual effect of controls is explicitly taken into consideration. Extensions 
and applications of this algorithm are due to Amman and Kendrick (1995), Tucci 
(1998), and Amman et al. (2018), among others. These algorithms only applied to 
linear dynamic models, which is a severe restriction as even the simplest econo-
metric models contain some nonlinearities. In a previous paper, we extended the 
Kendrick algorithm with active learning to a class of nonlinear models that can 
be approximated by time-varying linear models, called OPTCON3 (Blueschke-
Nikolaeva et al. 2020). This is an extension of our earlier algorithms OPTCON1 and 
OPTCON2, which assume more special information patterns.

The OPTCON algorithms calculate approximate solutions to optimal control 
problems with a quadratic objective function (a loss function to be minimized) and 
a nonlinear multivariate discrete-time dynamic system under additive and param-
eter uncertainties. The intertemporal objective function is formulated in quadratic 
tracking form, which is quite often used in applications of optimal control theory 
to econometric models. This is then applied to the (approximately) optimal fiscal 
policy under uncertainty for a country, in our case Slovenia.

Formally, the optimal stochastic control or intertemporal optimization problem 
consists in finding values for the control variables (ut) and the corresponding state 
variables (xt) in each period t which minimize the objective function (in the case of a 
cost function and maximize it for a utility function):

with

subject to constrains given by a dynamic system of nonlinear difference equations 
modelling the economy under consideration:

where xt is an n-dimensional vector of state variables that describes the state of the 
economic system at any point in time t. ut is an m-dimensional vector of control 
variables, x̃t∈ Rn and ũt∈ Rm are given “ideal” (desired, target) levels of the state 
and control variables respectively. T denotes the terminal time period of the finite 
planning horizon. Wt is an ((n + m) × (n + m)) matrix, specifying the relative weights 
of the state and control variables in the objective function. In a frequent special case, 
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)�

Wt

(

xt − x̃t
ut − ũt
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Wt is a matrix including a discount factor � with Wt = �t−1W . Wt(or W) is symmetric. 
� is a p-dimensional vector of parameters whose values are assumed to be constant 
but unknown to the decision maker (parameter uncertainty), zt denotes an l-dimen-
sional vector of non-controlled exogenous variables and �t is an n-dimensional vec-
tor of additive disturbances (system error). � and �t are assumed to be independent 
random vectors with expectations �̂ and On respectively and covariance matrices ��� 
and ��� respectively. f is a vector-valued function, fi(…..) is the i-th component of f 
(…..), i = 1, …, n.

Next, we give a brief description of the three versions of the OPTCON algorithm 
with an open-loop, passive-learning, and active-learning strategy respectively. The 
first version of OPTCON, OPTCON1, delivers an open-loop (OL) solution and 
is described in detail in Matulka and Neck (1992). The open-loop strategy either 
ignores the stochastics of the system altogether or assumes the stochastics (expec-
tation and covariance matrices of additive and multiplicative disturbances) to be 
given for all time periods at the beginning of the planning horizon. Following Chow 
(1975, 1981), the problem with the nonlinear system is tackled iteratively, starting 
with a tentative path of the control and state variables. The tentative path of the 
control variables is given for the first iteration. In order to find the corresponding 
tentative path for the state variables, the nonlinear system is solved numerically 
using the Levenberg–Marquardt method or trust region methods. Next, the itera-
tive approximation of the optimal solution starts. The solution is iterated from one 
time path to the next until the algorithm converges or the maximum number of itera-
tions is reached. During the optimization process, the system is linearized around 
the previous iteration’s result as a tentative path and the problem is solved for the 
resulting time-varying linearized system. The optimal solution of the problem for 
the linearized system is found under the above-mentioned simplifying assumptions 
about the information pattern; this solution is then used as the tentative path for the 
next iteration, starting off the procedure all over again. In every iteration, i.e., for 
every solution of the problem for the linearized system, the objective function is 
minimized using the dynamic programming principle of optimality to obtain the 
parameters of the feedback control rule. Finally, the value of the objective function 
is calculated for the obtained solution.

The second version of the algorithm, called OPTCON2 and described in Blue-
schke-Nikolaeva et al. (2012), includes the passive-learning or open-loop feedback 
(OLF) strategy, which uses the idea of re-estimating the model at the end of each 
time period. For this re-estimation, the model builder and, hence, the policy makers 
observe what has happened and use the current values of the state variables, that is, 
the new information, to improve their knowledge of the system. The stochastics in 
the problem is again represented by two kinds of errors, namely additive (random 
system errors �t ) and multiplicative (“structural” errors, errors in the parameters 
� ). It is assumed that “true” parameters �̂ generate the model. However, the policy 
maker does not know these true parameters and works with the “wrong” parameters 
resulting from the estimates using the realization of a random variable, which is the 
sum of �̂ and a purely random disturbance.

To determine the passive-learning strategy, first a forward loop is started from 
time 1 to T. In each time period S, an (approximately) optimal open-loop solution 
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for the subproblem is determined, the problem for the time periods from S to T. 
Then the predicted x* and u* are fixed for the time period S. At the end of each 
time period, the policy maker observes the realized values of the state variables xS, 
which are, however, disturbed by the additive errors. The difference between con-
secutive estimates of the state vector comes from the realization of the random num-
bers. Next, the new information is used by the policy maker to update and adjust 
the parameter estimate. After that, the same procedure is applied to the remaining 
subproblems from S + 1 to T, and so on. The update of the parameter estimates is 
conducted via the Kalman Filter.

The same update procedure is used in the third version of the OPTCON algo-
rithm, called OPTCON3. This version of the OPTCON algorithm includes an 
active-learning strategy (also called closed-loop, adaptive-dual, or dual control). The 
active-learning strategy means the policy maker faces the dual problem of choos-
ing the best strategy and simultaneously reducing the uncertainty about the system. 
The active-learning method differs from the passive-learning method in the OPT-
CON2 algorithm in the following way: When using the passive-learning method, 
new observations are obtained each period and are used to update the parameter 
estimates; however, no effort is made to choose control variables with the aim of 
improving the learning process about the dynamic system to be controlled. In con-
trast, in the active-learning methods, control variables are chosen with the dual 
purpose of moving the system in the desired direction and perturbing the system to 
improve the parameter estimates. Thus, the active-learning strategy delivers an opti-
mal solution where the control is chosen with a view to reaching the desired states 
in the present and reducing uncertainty through learning, permitting an easier attain-
ment of desired states in the future. This lets the policy maker deal with the dual 
problem of simultaneously choosing the best strategy and reducing the uncertainty 
about the system. The key idea is to make some use of information about future 
observations as well.

The procedure of finding the closed-loop solution in this paper corresponds to 
Kendrick (1981). The approximate cost-to-go is broken down into three terms: 
Jd = JD + JC + JP, where Jd is the total cost-to-go (sum of the expected remaining 
costs) with T periods remaining; the deterministic component JD includes only non-
stochastic terms; the cautionary component JC includes the stochastic component of 
the system known in the current period; and the probing term JP contains the effect 
of dual learning on the future time periods. Each of these components faces special 
difficulties in computing due to the nonlinearity of the system. Especially the prob-
ing term includes the motivation to perturb the controls in the present time period in 
order to reduce future uncertainty about the parameter values and can therefore be 
considered the most challenging task. Thus, the terms JC and JP constitute a separate 
optimization problem with a quadratic criterion which is maximized subject to the 
nonlinear system. The system equations are derived from the expansion of the origi-
nal system and can be calculated by rewriting the Taylor expansion of the nonlinear 
system in the perturbation form. Instead of the system (3), the objective function in 
perturbation form has to be minimized.

The structure of the OPTCON3 algorithm goes in line with the calculation of the 
open-loop strategy in OPTCON2. The optimization is carried out in a forward loop 



Empirica 

from 1 to T. In each time period S (S = 1,…,T), the following search procedure is 
conducted: The subproblem from S to T is solved via the open-loop (OL) strategy, 
and the OL solution of (x*, u*) for the time period S is fixed. After that, the core 
part of the dual control starts. The idea is to actively search for some solution paths 
which best deal with the dual problem of minimizing the current objective func-
tion and the future uncertainty in the model. In OPTCON3, a grid search method is 
used. The evaluation is repeated until the approximately optimal control is found. 
For details, see Blueschke-Nikolaeva et al. (2020).

The OPTCON3 algorithm essentially uses the approach introduced by Bar-
Shalom and Tse (1976) and Kendrick (1981) but augments it by approximating, in 
each step, the nonlinear system by a series of linear systems (replacing the nonlin-
ear autonomous system by a linear time-varying one). In the optimization process, 
the current state of the system has to be observed, which is crucial for the learning 
procedure. Because it is not possible to observe current and true values for a perfor-
mance test, Monte-Carlo simulations have to be used. In this way, some “quasi-real” 
values can be created and used to compare the performance of an optimization with-
out learning (both open-loop (OL) and certainty equivalence (CE) alternatives) as 
well as with passive learning (OLF) and active learning (AL). Thus, a large number 
(usually between 100 and 1000) of realizations of random noises is generated. It is 
assumed that there is an unknown “real” model with the “true” constant parameter 
vector but the policy maker does not know these “true” parameters and works with 
the “wrong” parameters resulting from the estimates using the realization of the ran-
dom variables.

4  The macroeconometric model

We consider the following small macroeconomic model of an (expectations-aug-
mented) Phillips curve relation with fiscal policy for the Slovenian economy, to be 
called SLOPOLMIN:

(4)PIt = C1 + C2PIt−1 + C3GAPt−1 + C4GROIL

(5)GAPt = C5SYt + C6SYt−1 + C7GEXt + C8GAPt−4

(6)SYt = St∕YNt ∗ 100

(7)DTt = DTt−1
(

1 + IDt−1∕100
)

− St + EXDTt

(8)Pt = Pt−4

(

1 + PIt∕100
)

(9)YNt = YPOTt
(

1 + GAPt∕100
)

Pt∕100
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The model consists of two behavioural equations: (4, 5), and 4 identities: (6–9). 
t is the time index. The 6 endogenous variables are: PIt = rate of inflation, Pt = gen-
eral price level (measured by the GDP deflator), GAPt = output (Okun) gap (meas-
ured by real GDP), YNt = nominal GDP, St = nominal government primary budget 
surplus, SYt is the ratio of St to nominal GDP, DTt = public debt (nominal). St is the 
control variable (fiscal policy instrument) for the optimization problem. There are 
5 exogenous non-controlled variables: GROILt = rate of change of the oil price in 
euro, GEXt = quarter-to-quarter rate of change of real exports, IDt = interest on debt 
(measured as the ratio of interest payments on public debt to the value of public 
debt), EXDTt = exogenous component of public debt (residual to fulfil identity (7); 
it includes revaluations of debt and some discretionary changes, among others), 
YPOTt = potential real GDP (calculated from a production function). Ci (i = 1,…,8) 
are the parameters of the model which are uncertain and have to be estimated.

Equation (4) is an expectations-augmented Phillips curve and can be seen as anal-
ogous to the New Keynesian Phillips curve for the case of static expectations. (5) 
is a reduced-form equation explaining the output gap by a domestic fiscal policy 
variable and a proxy for global effects on the Slovenian economy. It corresponds to 
the aggregate demand function of conventional macroeconomic models. (6) defines 
the primary budget surplus-GDP ratio and links the fiscal instrument variable to 
nominal aggregate demand. (7) is the government budget constraint, and (8) and (9) 
define the left-hand side variable by the inverted definition of the inflation rate and 
the potential output respectively. Interest rates are exogenous, assumed to depend 
on monetary policies and international financial markets. The specification of the 
model and the lag structures were chosen in an extensive search for high signifi-
cance of the parameter, with an attempt to keep the model as small as possible in 
order to make it usable for applying the rather complex optimal control algorithms.

For the estimation of the parameters, we used first OLS and then FIML (full 
information maximum likelihood), the latter method also delivering an estimate of 
the covariance matrix of the parameters. The sample was 1996Q2 until 2019Q4. The 
data come from the database of Weyerstrass et  al. (2023), where more details are 
available. The results are shown in Table 1.

Table 1  Model SLOPOLMIN

OLS FIML

Coeff. estimate Std. error t-statistic Prob Coeff. estimate Std. error z-statistic Prob

C(1) 0.980 0.204 4.792 6.395 0.970 0.223 4.345 1.394
C(2) 0.584 0.074 7.856 7.613 0.587 0.074 7.938 2.051
C(3) 0.108 0.038 2.872 0.005 0.112 0.038 2.918 0.004
C(4) − 0.014 0.004 − 3.508 0.000 − 0.013 0.004 − 3.151 0.002
C(5) 0.321 0.094 3.406 0.001 0.326 0.085 3.818 0.000
C(6) 0.319 0.094 3.388 0.001 0.325 0.088 3.679 0.000
C(7) 0.165 0.047 3.518 0.001 0.163 0.049 3.317 0.001
C(8) 0.550 0.067 8.272 9.740 0.536 0.057 9.367 7.444
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The estimates of the parameters and the significance results are very close under 
the two estimation methods. Note that the coefficients of Eq.  (2) imply a non-
Keynesian effect of fiscal policy: Increasing the primary budget balance increases 
output and, hence, according to Eq.  (1), also inflation. Thus, there is a trade-off 
between fighting unemployment (negative output gaps) and high rates of inflation, 
but the design of fiscal policy has to be non-Keynesian and there is no trade-off 
between output/employment and low budget deficits. This has to be borne in mind 
for the design of optimal fiscal policy and when interpreting the optimization results, 
although not necessarily the impact of uncertainty on them. It must be admitted that 
this result is unexpected as we estimated larger and more elaborate Keynesian mac-
roeconometric models (e.g., in Weyerstrass et al. 2023) which fitted quite well for 
the same data. A source of uncertainty, which may be called model uncertainty, 
may, hence, be added to the ones discussed in the second section, which could also 
include uncertainty about the policy maker’s preferences (the objective function).

5  Optimal fiscal policies

To calculate the (approximately) optimal fiscal policy, we assume that the primary 
government budget balance is under the control of the policy maker, i.e., that it is 
the policy instrument. The objective variables are the rates of inflation, the output 
gap, and the control variable, which has to be given a weight in the objective func-
tion in order to make the control problem well defined. We assume that the “ideal” 
path for the policy maker is to hold the inflation rate constant at 2% and the output 
gap and primary balance at zero. Starting in the last quarter of 2007 (before the 
Great Recession), we take the time horizon of the optimization to be 28 periods: 
from 2008Q1 to 2019Q4 (before the pandemic crisis, which is considered to be the 
“Black Swan”). Using the model estimated over the entire time horizon to calculate 
policies over part of this time horizon as well may imply knowledge even a well-
informed policy maker could not have when deciding on policy design. Rolling time 
horizons for the optimization can be a remedy when using such models for actual 
policy design; in our case, this would have complicated the task considerably, given 
our limited resources and the relatively short time span of the data available for Slo-
venia, which did not exist as an independent country before 1992.

Figures 2, 3, 4 show the results of the optimal control calculations under deter-
ministic and open-loop stochastic control, together with the simulation of the model 
using actual values of the control variable. The (approximately) optimal time paths 
of the control variable and the target variables under deterministic and open-loop 
stochastic control are nearly identical but very different from the simulated ones. 
The latter result is partly due to the non-Keynesian character of the model viz-à-viz 
the Keynesian practice of Slovenian (and other) policy makers. On the other hand, a 
general feature, which is also present in optimization analyses with larger and more 
elaborate models, is the smoother path of the variables of the model. Hence, at least 
the task of stabilizing an economy in terms of macroeconomic variables by reduc-
ing their volatility can be achieved by an optimization approach. The non-Keynesian 
character of the model implies a pro-cyclical design of the policy instrument, which 
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in this case is stabilizing. Under this model, the optimal use of the fiscal policy 
instrument is less active than actual fiscal policy, with better results for the target 
variables. As noted above, in view of the more Keynesian policy recommenda-
tions from our larger previous models, this detail of the optimal policy in this small 
SLOPOLMIN model should be interpreted with great care.

The nearly identical time paths of the deterministic and open-loop stochastic poli-
cies are due to the near linearity of the model and, hence, the certainty equivalence 
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of the optimization problem. The only nonlinearity in the model occurs in the debt 
Eq. (7), which exerts no feedback on the estimated equations and their endogenous 
variables. The situation might be different if we included government debt in the 
objective function or in an equation of the model with direct effects of public debt 
on the objective variables. However, the result above about the close similarity of 
deterministic and open-loop stochastic policies may also be interpreted to mean that 
open-loop stochastic control deals with uncertainty only in a superficial way, essen-
tially neglecting the uncertainty in the parameters of the model.

For the open-loop feedback and the active-learning stochastic control solutions, 
we need information about some alternative realizations of the stochastic distribu-
tion. Stochastic simulations are the method to obtain this information. Of course, 
this does not correspond to actual realizations under alternative scenarios as these 
are non-existent. Instead, we assume that the estimated covariance matrix in the 
FIML estimation corresponds to the actual one in the unknown distribution of the 
parameters (how “God plays”, to paraphrase Albert Einstein). In this study, we con-
ducted stochastic simulations with 100 draws of stochastic parameter combinations 
for the certainty equivalence (CE), the open-loop feedback (OLF), and the active-
learning (AL) solutions using OPTCONi, i = 1,2,3 respectively to compare the influ-
ence of the stochastics under the three solution methods, all of which are approxima-
tions, but with AL using the most elaborated information about the stochastics. The 
good news was that the algorithms always converged. The bad news was that the 
running time on an Intel(R) Core(TM) i7-10,700 CPU @ 2.90GHz Windows PC 
was 181,643 s, which is approximately 50 h. This precludes similar exercises with a 
larger model or with a distinctly larger number of draws unless one has a supercom-
puter at one’s disposal.
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The results can best be summarized in boxplots for each variable and each point 
of time, showing measures of tendency and variation and the outliers. Figures 6, 7, 
8, 9, 10, 11, 12, 13, 14, 15 (in the Appendix) give examples of such boxplots for 
some control and target variables and the value of the objective function as a meas-
ure of disutility or cost of the simulation run concerned. We chose some cases which 
can reveal preliminary results about the effect of the three algorithms. In the box-
plots for each variable, the central mark indicates the median, and the bottom and 
top edges of the box indicate the 25th and 75th percentiles of the variable over all 
100 runs for the active-learning (AL), the passive-learning (OLF), and the certainty 
equivalence (CE) strategies. The whiskers extend to the most extreme data points 
within the interquartile range; the outliers are plotted individually using the “ + ” 
symbol.

At first glance, one result is the similarity, among the three strategies, of the val-
ues of the objective function despite some variation in the control and target vari-
ables. In the two first time periods, the active-learning strategy “probes” a little by 
a relatively low budget surplus to check the effects of a more active (less expan-
sionary) fiscal policy. Soon it learns that this does not have a recognizable effect 
on its objective function, which, hence, remains closer to the median position. The 
larger variation in the values of the objective function with more outliers (cases with 
higher values of the objective function) in the last period is due to the well-known 
effect of a policy neglecting future developments in the last period of an optimiza-
tion with finite time horizon and no terminal or scrap value; this is common to the 
three strategies under consideration. What is unexpected is the result that the most 
ambitious AL strategy, which looks explicitly at the dual effect of the controls, is not 
unambiguously the best one and may be dominated by the OLF strategy. As there is 
not much to learn about the effects of fiscal policy on the objective function, prob-
ing does not seem to be worthwhile in this experiment, and passive learning may 
be sufficient for an acceptable outcome of fiscal policy, at least in the model under 
consideration.

Figure  5 shows the values of the three components of the objective function, 
deterministic (JD), cautionary (JC), and probing terms (JP), and the total objective 
function (Jd). The deterministic component comes from the deviations of the opti-
mal time paths from their target values in the underlying deterministic optimization 
part, the cautionary component comes from the attempt to use the instrument in a 
tentative way to balance the costs of the controls with the costs of the target varia-
bles, and the probing component comes from the attempt to learn, during the earlier 
periods of time, about the model and its uncertainties to improve the performance in 
later periods.

The cautionary component contributes most to the values of the total objective 
function Jd. The contribution of the deterministic component is much smaller but 
still substantial. In contrast, the probing component is responsible for by far the 
smallest part of the total cost. Thus, there is not much effort to be invested in the 
probing activity; in other words, the dual effect is nearly non-existent. A similar 
(but weaker) outcome than this was obtained by Blueschke-Nikolaeva et al. (2012) 
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for a different model with an equally long time horizon. Interestingly, the values of 
all components and, hence the total value of the objective function as well do not 
depend on the values of the control variable. Both of these results can be interpreted 
to mean that there is not much influence of the instruments on the outcome of the 
economy. The reason for this is the feature of our model where there is a trade-off 
between the equally weighted target variables inflation rate and output gap and their 
rate of substitution is close to 1. Different actions increase the attainment of one goal 
at the expense of the other. The cost of the control action prevents the attainment of 
one goal only instead of a balanced mix of both. Thus, we have a kind of policy 
indifference, similar to the policy ineffectiveness in Monetarist and New Classical 
models but for reasons that differ.

6  Concluding remarks

In this paper, we discussed different forms of uncertainty for economic policy analy-
sis and design and briefly reviewed the algorithms OPTCON1 for open-loop, OPT-
CON2 for open-loop feedback (passive learning), and OPTCON3 for dual control 
with active learning. We used our computer programs to implement approximately 
optimal policies according to the three OPTCON algorithms. The results from cal-
culating these policies for a simple macroeconometric model for Slovenia served to 

Fig. 5  Objective function values; JD – Deterministic term, JC – Cautionary term, JP – Probing terms, Jd – 
Total objective function, ut=1 – Control variable
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test the OPTCON algorithms and compare the solutions of the stochastic optimal 
control problems. We found that the open-loop optimal solution is nearly identical to 
the deterministic one, at least in a model that does not contain too many nonlineari-
ties. Another result points towards a trade-off between using the most sophisticated 
AL solution and the other variants: The AL solution is not necessarily (as we had 
expected) superior to the simpler solutions but uses vastly more input and time to 
calculate. Therefore, one should, depending on the properties of the model used, 
carefully deliberate whether the additional effort required for AL is worthwhile in a 
particular case. Open-loop feedback, open-loop, or even deterministic optimization 
may be recommendable, as the latter can be relatively easily applied to larger and 
better models in contrast to the extremely small model we had to use here.

We pointed out some weaknesses in our analysis and, hence, problems for further 
research. These include the question of model uncertainty, which can be dealt with 
in sensitivity analyses with respect to entire models and experimenting with differ-
ent objective functions. Optimizations with rolling re-specification of the model, as 
is common practice when forecasts are made with econometric models, are a pos-
sibility, but this would require a larger economic research institute to do this and is 
much more expensive. These institutes usually build much more elaborate economic 
models than presented here, raising the question of a trade-off between costly mod-
elling and high working, computing, and reaction time on the one hand and usually 
urgent demands for results and solutions for pressing problems by politicians and the 
public on the other, especially for active-learning control calculations. One question 
is whether an analysis like the one presented here should be done for a more elabo-
rate model. To assess the influence of uncertainty, this might be a task for further 
research as the small differences between the policy designs presented here might 
just be due to the simplicity of the model used. However, unless significantly more 
research infrastructure is available, it would be unrealistic to do this on a regular 
basis for actual policy design.

At this point in time, it seems very questionable whether the additional effort to 
be invested in the optimization procedures taking account of stochastic uncertainty 
justifies the restriction to a very small model whose specification is necessarily prob-
lematic. The really big challenges in practical policy making do not originate from 
stochastic uncertainty but from uncertainty about the model to be used and from 
exogenous shocks whose probability distributions are not known or may even be 
non-existent. Especially the laborious implementation of the AL algorithm, which 
turned out to deliver worse results than the more straightforward open-loop or even 
deterministic algorithms, does not recommend itself for use in actual policy advice.

Appendix

See Figures 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.
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Fig. 6  Boxplot for the control variable in t = 1 based on a Monte Carlo experiment with 100 draws. Solu-
tion strategies: AL – Active learning, OLF – Open-loop feedback (Passive Learning), CE – Certainty 
equivalence

Fig. 7  Boxplot for the objective value J in t = 1 based on a Monte Carlo experiment with 100 draws. 
Solution strategies: AL – Active learning, OLF – Open-loop feedback (Passive Learning), CE – Cer-
tainty equivalence
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Fig. 8  Boxplot for the control variable in t = 2 based on a Monte Carlo experiment with 100 draws. Solu-
tion strategies: AL – Active learning, OLF – Open-loop feedback (Passive Learning), CE – Certainty 
equivalence

Fig. 9  Boxplot for the target variable PIt in t = 2 based on a Monte Carlo experiment with 100 draws. 
Solution strategies: AL – Active learning, OLF – Open-loop feedback (Passive Learning), CE – Cer-
tainty equivalence
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Fig. 10  Boxplot for the state variable GAPt in t = 2 based on a Monte Carlo experiment with 100 draws. 
Solution strategies: AL – Active learning, OLF – Open-loop feedback (Passive Learning), CE – Cer-
tainty equivalence

Fig. 11  Boxplot for the objective value J in t = 2 based on a Monte Carlo experiment with 100 draws. 
Solution strategies: AL – Active learning, OLF – Open-loop feedback (Passive Learning), CE – Cer-
tainty equivalence



 Empirica

Fig. 12  Boxplot for the control variable in t = 48 based on a Monte Carlo experiment with 100 draws. 
Solution strategies: AL – Active learning, OLF – Open-loop feedback (Passive Learning), CE – Cer-
tainty equivalence

Fig. 13  Boxplot for the target variable PIt in t = 48 based on a Monte Carlo experiment with 100 draws. 
Solution strategies: AL – Active learning, OLF – Open-loop feedback (Passive Learning), CE – Cer-
tainty equivalence
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Fig. 14  Boxplot for the target variable GAPt in t = 48 based on a Monte Carlo experiment with 100 
draws. Solution strategies: AL – Active learning, OLF – Open-loop feedback (Passive Learning), CE – 
Certainty equivalence

Fig. 15  Boxplot for the objective value J in t = 48 based on a Monte Carlo experiment with 100 draws. 
Solution strategies: AL – Active learning, OLF – Open-loop feedback (Passive Learning), CE – Cer-
tainty equivalence
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