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Abstract Human-generated aerosol pollution grad-
ually modifies the atmospheric chemical and physical 
attributes, resulting in significant changes in weather 
patterns and detrimental effects on agricultural yields. 
The current study assesses the loss in agricultural pro-
ductivity due to weather and anthropogenic aerosol 
variations for rice and maize crops through the analy-
sis of time series data of India spanning from 1998 
to 2019. The average values of meteorological vari-
ables like maximum temperature (TMAX), minimum 
temperature (TMIN), rainfall, and relative humid-
ity, as well as aerosol optical depth (AOD), have 
also shown an increasing tendency, while the aver-
age values of soil moisture and fraction of absorbed 
photosynthetically active radiation (FAPAR) have 
followed a decreasing trend over that period. This 
study’s primary finding is that unusual variations 
in weather variables like maximum and minimum 
temperature, rainfall, relative humidity, soil mois-
ture, and FAPAR resulted in a reduction in rice and 
maize yield of approximately (2.55%, 2.92%, 2.778%, 
4.84%, 2.90%, and 2.82%) and (5.12%, 6.57%, 6.93%, 
6.54%, 4.97%, and 5.84%), respectively. However, 
the increase in aerosol pollution is also responsible 
for the reduction of rice and maize yield by 7.9% and 
8.8%, respectively. In summary, the study presents 

definitive proof of the detrimental effect of weather, 
FAPAR, and AOD variability on the yield of rice and 
maize in India during the study period. Meanwhile, a 
time series analysis of rice and maize yields revealed 
an increasing trend, with rates of 0.888 million tons/
year and 0.561 million tons/year, respectively, due to 
the adoption of increasingly advanced agricultural 
techniques, the best fertilizer and irrigation, climate-
resilient varieties, and other factors. Looking ahead, 
the ongoing challenge is to devise effective long-term 
strategies to combat air pollution caused by aerosols 
and to address its adverse effects on agricultural pro-
duction and food security.
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Introduction

India, one of the world’s developing nations, has a 
significant population, representing around 18% of 
the world’s population, and is projected to reach 1.7 
billion by 2050, as reported by the United Nations in 
2023 (Kasymova, 2024). Food security encompasses 
the consideration of individuals’ dietary requirements 
and preferences, as well as their physical and eco-
nomic access to food (Tecau et  al., 2020), to ensure 
a healthy and active lifestyle. It entails ensuring that 
food is readily available, easily accessible, and nutri-
tionally adequate for all individuals. Food security is 
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based on three key elements (Abdullah et al., 2019): 
consistent food availability, availability of nutritious 
food, and the utilization of food for basic health and 
nutrition needs, together with convenient access to 
sanitary facilities and safe drinking water. The pri-
mary barriers to achieving self-sufficiency in emerg-
ing nations are food stability and availability. A high 
level of food production is required without sacrific-
ing its nutritional quality to ensure food security for 
such a large population of India around 1.44 billion 
(Devaraj et  al., 2024), which is relying on domestic 
food production. The Asian and African countries are 
also depending on India’s agricultural production for 
importing wheat and rice grains to ensure their food 
security (Valera et al., 2024).

Maize crop cultivation covers an area of 150 mil-
lion hectares in 160 countries, which is responsible 
for around 36% grain production of the world’s total 
grain production. However, India holds the third 
position in maize production among the produc-
tion of their most important crops following rice and 
wheat (Parihar et al., 2011). It has an average yield of 
approximately 2.43 tons per hectare and contributes 
nearly 9% to the overall national food production. 
Furthermore, maize is a crucial primary resource for 
a wide range of industrial goods, such as oil, starch, 
alcoholic drinks, protein, food sweeteners, medi-
cines, cosmetics, films, textiles, gums, and packaging 
(Iliger Scholar et  al., 2022). India has expanded its 
rice production from 53.6 million tons in the finan-
cial year 1980 to 120 million tons in the financial year 
2020–2021 and it has become the second largest rice 
producer and exporter in the whole world (Malabadi 
et  al., 2022). The changes in weather patterns could 
affect the global food supply due to the shortage of 
rain in various parts of the globe thereby causing the 
rice cultivation area to shrink by about 13% during 
the monsoon season of 2022 in India (Foreign Agri-
cultural Service Global Market Analysis International 
Production Assessment Division India Rice: Produc-
tion Down Due to a Decline in Planted Area, 2022). 
The above discussion shows that rice and maize are 
very important crops worldwide, which produce large 
amounts of food grains to ensure global food security 
(Dixit-Bajpai & K, 2016).

Understanding the intricacies of crop growth and 
development is essential for maximizing agricultural 
production and ensuring sufficient food supply in the 

face of population rise. Plant development is influ-
enced by a range of elements, such as climate vari-
ables, agricultural techniques, nutrient availability, 
and soil water content. Atmospheric aerosols exert a 
substantial influence on key climatic variables such 
as temperature, solar radiation, and precipitation 
(Mahowald et  al., 2011). The evaluation of aerosol 
interactions with climate variables such as tempera-
ture, solar radiation, and precipitation aims to com-
prehend the impact of aerosols on plant development 
(Greenwald et al., 2006). This is because particles in 
the atmosphere have a substantial influence on cli-
mate, the water cycle, and human health (Mhawish 
et  al., 2021). Aerosols play a significant role in the 
Earth’s climate by scattering and absorbing solar 
radiation (Pandolfi et al., 2018). Recognizing the pre-
cise impact of aerosols on crop productivity is crucial 
for evaluating the combined effects of climate change 
and air quality on agricultural food security. This is 
especially important in regions with elevated pollu-
tion levels, like India (Charles et al., 2014).

Prior research has demonstrated that fluctuations 
in climate patterns adversely affect Indian agriculture, 
resulting in a decrease in relative crop yields by a sig-
nificant percentage (Padakandla, 2016, 2021, 2022; 
Guntukula, 2020; Guntukula & Goyari, 2020;b; Gupta 
et  al., 2014; Babita Patni and A. S. G. , 2020). The 
short-lived climate pollutants, such as black carbon 
and aerosols, as well as the non-long-lived greenhouse 
gases, including methane, tropospheric ozone, and 
hydrofluorocarbons, play a crucial role in regional 
radiative forcing, precipitation, and monsoon patterns, 
contributing significantly to global warming (Bond 
et  al., 2013; Ramanathan & Carmichael, 2008). The 
non-long-lived greenhouse gases can remain in the 
atmosphere for several centuries. However, short-lived 
climate pollutants are persisted in the atmosphere for 
shorter lifetimes (from weeks to months). Agricultural 
productivity is influenced indirectly by short-lived 
climate pollutants due to their effects on tempera-
ture, precipitation, and solar radiation (Menon et  al., 
n.d.). Understanding the specific role of short-lived 
climate pollutants and aerosols in crop productivity 
is necessary in high-pollution regions to ensure the 
food security of any nation, particularly in India. The 
use of Earth observation datasets is one of the most 
efficient ways to research the effects of aerosols and 
climate on agricultural productivity through remote 
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sensing (Duane Nellis et  al., 2009). This technique 
can be applied to multiple spatial and temporal scales, 
regardless of geopolitical boundaries (Karthikeyan 
et al., 2020).

The current manuscript is summarized in the fol-
lowing sections: The “Literature review and moti-
vation” section represents the literature review and 
motivation of the study. The section ’Data and meth-
odology’ provides the description and sources of 
earth observation datasets and agricultural yield 
data along with the pre processing of these datasets. 
The section ’Statistical analysis’  contains the devel-
opment of the model and its estimations, along with 
the accuracy checks. Finally, “Results and discus-
sions” and “Conclusions” sections depict the results/
discussions and conclusions of the study, respectively.

Literature review and motivation

The variability in the climate has been attributed 
to the increment of anthropogenic greenhouse gas 
(GHG) emissions (like methane (CH4), nitrous oxides 
(N2O), and other GHGs) and aerosols from fossil 
fuel, biofuel, and biomass burning emissions in global 
atmosphere (Myhre et  al., 2013). There are several 
researchers who have reported the negative impact on 
plant biophysical activities due to the complicated and 
uncertain implications of atmospheric aerosols like the 
extinction of solar radiation, suppression the atmos-
pheric turbulence, modifications in cloud microphysi-
cal properties, and influence the boundary layer height 
(Greenwald et al., 2006; D. K. Gupta et al., 2022; R. 
Gupta et al., 2017; Sonkar et al., 2019; Zhang et al., 
2017; Mittal et al., 2009; Zhang et al., 2021, Nirmal-
kar & Deb, 2016, Hill et al., 2019; Zhao et al., 2020). 
The spatial and temporal variation of aerosol loading 
has been analyzed by various researchers and they 
found the persistence of thick aerosol layer across 
India. However, the study of aerosol loading across 
Indo-Gangetic Plain (IGP) has always been the center 
of attraction for many researchers (Babu et al., 2013; 
Mhawish et al., 2021; Mor & Dhankhar, 2022). Mod-
erate AOD loading is responsible for increasing the 
diffuse radiation, but dense aerosol loadings suppress 
the plant photosynthesis due to the strong attenuation 
of total radiation (Yue & Unger, 2018).

Several studies have been conducted for the exami-
nation of rice yield production under air pollution and 
aerosols (Bond et  al., 2013; Ramanathan & Carmi-
chael, 2008; Menon et  al., n.d.; Babita Patni, 2020, 
Zhang et  al., 2017; Yue & Unger, 2018). However, 
limited studies have been carried out for maize crops 
(Zhao et al., 2020; Hill et al., 2019; Kong et al., 2019; 
Meng et al., 2020), worldwide. Many studies have also 
been conducted by several researchers to analyze the 
air pollution/aerosols impact in association with cli-
mate factors on various crops (Kalra et al., 2006; Bur-
ney & Ramanathan, 2014; Shuai et al., 2013; Auffham-
mer et  al., 2011; D. K. Gupta et  al., 2022; R. Gupta 
et al., 2017; Sonkar et al., 2019, Zhang et al., 2021). 
Burney and Ramanathan, 2014 assessed the impact of 
climate change more specifically temperature and pre-
cipitation on wheat and rice production in India. They 
found that the direct impact of tropospheric ozone 
and black carbon on crop yields beyond their indi-
rect effects through climate has risen dramatically in 
India from 1980 to 2010. Gupta et al., 2017 analyzed 
the impact of temperature, solar radiation, and aero-
sols on wheat yields in India during 1981–2009. They 
discovered that there is a 2–4% decrease in wheat pro-
duction for every 1 °C increase in average daily maxi-
mum and lowest temperatures. Nevertheless, a 1% 
increase in solar radiation has been shown to result in 
a roughly 1% rise in yields, while a decrease in aerosol 
optical depth equivalent to one standard deviation is 
expected to lead to a 4.8% increase in wheat yields. A 
study conducted by (Auffhammer et al., 2011) found 
that rice yield in rainfed areas was adversely affected 
by drought and extreme rainfall between 1966 and 
2002. The impact of drought was significantly bigger 
than that of excessive rainfall. If two further weather 
adjustments, namely warmer nights and lesser rainfall 
at the end of the growing season, had not taken place, 
a 4% increase in rice yield was observed.

Wang et  al. (2020) studied the changes in sur-
face solar radiation due to the air pollution effect on 
rice yield in East China using multi-sensor EO data-
sets and radiation models for the period 2000–2016. 
They found aerosol-induced reduction in rice produc-
tion in about 6.74% and also suggested the impact of 
aerosols on rice production is non-negligible and the 
mitigation of aerosols is beneficial for crop produc-
tion under climate change. Zhou et al., 2018 reported 
the empirical analysis for estimating the direct and 
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nonlinear impact of PM2.5 along with the climate 
factors on agricultural output for three of the most 
common crops namely wheat, rice, and corn from 
2001 to 2010. This study suggested that the PM2.5 
concentrations have a significant reduction in aver-
age yields of wheat and corn similar to the tempera-
ture, and precipitation. Additionally, this study also 
found that aerosols more impacted wheat and corn 
yield in comparison to rice yield. Mina et  al., 2018 
conducted an experiment to analyses and monitor 
the effects of atmospheric particulate matter (PM) 
deposition under three different treatments, which are 
low, ambient, and elevated levels of PM deposition 
ranges of 162–660 µgm−3 during rice growing sea-
son (August–November) on two basmati rice varieties 
namely Pusa Basmati-1509 (PB-1509) and Pusa Sug-
andh-5 (PS-5) at its various growth stages. A 4–7% 
increment in rice yield has been observed under the 
low PM deposition treatment, while a 7.5–14% reduc-
tion is found in grain yield of rice under elevated PM 
deposition compared to ambient PM deposition. It 
also produced a significant effect on the reduction in 
chlorophyll, leaf water, air pollution tolerance index, 
enhanced the leaf temperature (1–6%), reduction in 
photosynthesis, stomatal conductance, and transpi-
ration and carotenoid content were observed in both 
varieties under elevated PM deposition compared to 
ambient PM deposition.

The long-term impact of aerosols has been ana-
lyzed in our previous study by Gupta et al., 2022 on 
maize crop yield over the Indian region. The exten-
sion of our previous study has been carried out in the 
present article for the long-term assessment of aero-
sol impact in association with the weather variables 
on rice and maize crop yield using earth observation 
datasets. The particular interest of this article is the 
study of the aerosol impact in association with the 
climate variables on rice and maize crop yield over 
the Indian region because it is the aerosols dominant 
region worldwide, particularly the Indo-Gangetic 
Plains (IGP), which is a highly populated region in 
India and most of the agricultural practices are also 
performed. According to the above literature studies, 
most of the researchers have carried out the aerosols/
particulate matters impact on crop yield in association 
with the climate variables particularly for temperature 
and precipitation. However, very less or no studies 
have been carried out to analyze the aerosol’s impact 
on crop yield in association with the climate variables 

like temperature, precipitation, relative humidity, soil 
moisture, and fraction of absorbed photosynthetically 
active radiation (FAPAR). The aerosol’s impact on 
maize crop yield in association with climate variables 
is also performed in very rare studies in comparison 
to the rice crop.

The specific objectives of this study are (1) to 
investigate the long-term impacts of aerosols, climate 
factors (particularly temperature and precipitation, 
humidity), and the fraction of FAPAR and soil mois-
ture on historical rice and maize yields in India using 
earth observation datasets; (2) to utilizes spatial and 
temporal variations of earth observation datasets like 
maximum and minimum temperature, precipitation 
(RF), relative humidity (RH), FAPAR, soil moisture 
(SM), and AOD from 1998 to 2019 to construct a sta-
tistical model; (3) to analyze their effects on historical 
rice and maize yields using statistical model output 
and also assess the impact of temperature, FAPAR, 
and aerosols on historical  rice and maize yields; (4) 
to evaluate the robustness of the statistical model; and 
(5) finally discuss the outcomes and limitations of the 
studies.

Data and methodology

Study area

India is a federal union comprised of 28 states and 
eight union territories. These states and union terri-
tories are subdivided into districts, totaling 748 dis-
tricts according to the 2021 Census records. India, the 
world’s seventh-largest country, spans a vast area of 
3,287,263  km2. Geographically, it is situated north 
of the equator, with a latitude range extending from 
8°4′N (the mainland) to 37°6′N, and a longitude 
range from 68°7′E to 97°25′E.

The classification of land use and land cover 
(LULC) map is one of the most extensively used in 
remote sensing applications (Sharma et  al., 2018). 
Figure 1 shows the MODIS LULC map based on the 
International Geosphere-Biosphere Program (IGBP). 
The procedure of assigning land cover classes to pixels 
and grouping them into broad categories is commonly 
referred to as land use and land cover (LULC) classifi-
cation (Alshari & Gawali, 2021). It is an extremely use-
ful tool for identifying the extent of various land uses 
and cover types, such as urban, wooded, shrubland, 
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agriculture, and so on. In 1987, a worldwide scien-
tific research program namely IGBP (Seitzinger et al., 
2015) was established that looked at how Earth’s bio-
logical, chemical, and physical processes interact on a 
regional and global scale, as well as how society affects 
and is influenced by these processes. The fundamental 
goal of LULC, which began in 1994 as a main project 
of IGBP, was to determine how human and biophysi-
cal processes affect land/land cover, as well as the envi-
ronmental and social consequences of these changes. 
According to this IGBP, the Land cover system can be 
classified into 17 classes, which consist of the follow-
ing: (i) Evergreen Needleleaf Forests, (ii) Evergreen 
Broadleaf Forests, (iii) Deciduous Needleleaf Forests, 
(iv) Deciduous Broadleaf Forests, (v) Mixed Forests, 
(vi) Closed Shrublands, (vii) Open Shrublands, (viii) 
Woody Savannas, (ix) Savannas, (x) Grasslands, (xi) 
Permanent Wetlands, (xii) Croplands, (xiii) Urban and 
Built-up Lands, (xiv) Cropland/Natural Vegetation 
Mosaics, (xv) Permanent Snow and Ice, (xvi) Barren, 
(xvii) Water Bodies. Out of these seventeen classes, 
only croplands classified area in India are consid-
ered as our study area. Cropland includes those areas, 

which are used to produce adapted crops (Hinz et al., 
2020). For this purpose, we have further reclassified 
the LULC map into two categories with the cropland 
and other classes (the remaining 16 classes) to separate 
the cropland area over India based on all IGBP classes. 
The reclassified figure is shown in Fig. 2.

Data processing

Agricultural data

The Ministry of Agriculture’s Directorate of Econom-
ics and Statistics has recorded the ninefold land clas-
sification, irrigated area (source-wise and crop-wise), 
and total area under crops at the district level in India. 
The Special Data Dissemination Standard Division, 
Directorate of Economics & Statistics, Ministry of 
Agriculture and Farmers Welfare, Govt. of India, 
New Delhi has published this data on web-based land 
use and statistics information systems from the years 
1998–2019 for various crops (https:// aps. dac. gov. in).

The yield per hectare, cultivation area, and produc-
tion of the kharif season crops (rice and maize crops) 

Fig. 1  MODIS Land use and land cover (LULC) classification map of India (MODIS data code: MCD12Q1)

https://aps.dac.gov.in
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have been downloaded for each district during the 
years 1998 to 2019. The average crop yield per hectare, 
cultivation area, and production have been taken at a 
yearly scale over India. Figure 3 shows the bar plot of 
cultivation area and production of rice and maize crops 
with the scatter plot between them. The linear regres-
sion analysis was also carried out between the cultiva-
tion area vs years and production vs years to evaluate 
the temporal changes in cultivation area and respective 

production of rice and maize crops. The linear regres-
sion analysis is also carried out between the cultivation 
area and production to analyze the linkage of the culti-
vation area with the production of crops.

Climate and aerosol optical depth data

The daily gridded data (1° × 1°) for maximum and 
minimum temperatures over India from 1998 to 2019 

Fig. 2  MODIS LULC 
reclassification map of 
India on the basis of 
croplands vs all other IGBP 
classes (MODIS data code: 
MCD12Q1)

Fig. 3  Bar and scatter 
plots for annual cultivation 
area and production of rice 
and maize crops in India 
(Ministry of Agriculture 
and Farmers Welfare, Govt. 
of India)
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were obtained from the official website of the Indian 
Meteorological Department (https:// mausam. imd. gov. 
in/). Rainfall is the primary need for any kharif crop 
like rice and maize (Singh et  al., 2017). The daily 
gridded (0.25° × 0.25°) rainfall data of India for the 
duration of 1998 to 2019 is also downloaded from 
the official website of IMD. The fraction of absorbed 
photosynthetically active radiation (FAPAR) is the 
energy source for crop growth, which is used in the 
photosynthesis process. The daily gridded FAPAR 
data is downloaded from the official website of NCEI-
NOAA (National Centers for Environmental Informa-
tion, National Oceanic and Atmospheric Adminis-
tration) at a spatial resolution of 0.05° × 0.05° from 
1998 to 2019. This FAPAR data is developed using 
the Advanced Very High-Resolution Radiometer 
(AVHRR) sensor observations onboard the NOAA 19 
platform. Relative Humidity (RH) is another impor-
tant weather parameter, which is the indication of 
the water vapor content of air. Daily relative humid-
ity data for the period 1998 to 2019 is taken from the 
official website of the Physical Sciences Laboratory 
with a spatial resolution of 2.5°. On the other hand, 
the moisture content in the soil is also an important 
parameter for plant growth, which helps to regulate 
the plant temperature and help in the nutrients taken 
from the soil. It is also one of the essential parameters 
for rice and maize crop growth (Gines et  al., 2018). 
The daily gridded (0.25° × 0.25°) soil moisture data 
is obtained from Climate Change Initiative’s (CCI) 
official website (https:// esa- soilm oistu re- cci. org/) for 
the years 1998 to 2019.

Aerosols in the atmosphere consist of a mixture 
of solid and liquid particles that vary in size (rang-
ing from 0.1 to 20 µm), shape, and content (Colbeck 
& Lazaridis, 2010). Smoke, dust, sulfate, organic car-
bon, and sea salt spray make up these particles, which 
can come from either natural or man-made sources. 
Through their ability to reflect, absorb, and scatter 
radiation, these aerosol particles have a significant 
impact on the climate system as well as agriculture 
(Mahowald et  al., 2011). The aerosol optical depth 
(AOD) is the parameter, which is used to measure 
the haziness of the atmosphere. The monthly gridded 
(spatial resolution of 1° × 1°) aerosol optical depth 
(AOD) data at 550 nm is taken from GIOVANNI 
(Goddard Earth Sciences Data and Information Ser-
vices Centre) with two different sensors namely 
Moderate Resolution Imaging Spectroradiometer 

(MODIS) onboard Terra Satellite from 2000-02-01 
to 2019-12-31 and Sea-Viewing Wide Field-of-View 
Sensor (SeaWiFS) onboard OrbView-2 platform from 
1998-01-01 to 2000-01-31. The two-sensor AOD data 
is used due to the unavailability of data from one sen-
sor for the duration of 1998 to 2019. The AOD data 
parameters are the same for both datasets in terms of 
wavelength, temporal, and spatial resolution.

The study area for this study is the whole Indian 
region. The Indian region has various land cover like 
agriculture/cropland, forest, and water bodies. This 
study is conducted for agricultural land only in the 
Indian region. So, all the datasets are converted at the 
India level (over only cropland) spatial scale by tak-
ing the spatial average of daily and monthly datasets 
to remove the spatial resolution effect. The daily and 
monthly datasets were converted into annual datasets 
by taking time-series averages of the maximum and 
minimum temperature, relative humidity, FAPAR, 
soil moisture, and AOD. The annual conversion 
of rainfall datasets is carried out by taking the time 
series summation. Figure 4a, b shows the spatial vari-
ation of the time-series averages of the maximum and 
minimum temperature over the cropland of India dur-
ing the years 1998 to 2019. Figure  5a, b shows the 
variation of average maximum and minimum tem-
peratures at a monthly scale over cropland of India 
throughout the years 1998 to 2019. Figures  4c and 
5c show the spatial variation of time-series averages 
of rainfall over the cropland of India during the years 
1998 to 2019 and the total monthly rainfall over the 
cropland of India throughout the years 1998 to 2019. 
Figure  4d–g shows the spatial variation of the time 
series average of FAPAR, relative humidity, soil 
moisture, and AOD over the cropland of India during 
the years 1998 to 2019. Figure 5d–g shows the varia-
tion of average FAPAR, relative humidity, soil mois-
ture, and AOD at a monthly scale over the cropland of 
India throughout the years 1998 to 2019.

Statistical analysis

Association among climate and aerosol variables

The multicollinearity and autocorrelation tests are 
applied among the climate and aerosol variables 
to evaluate the association between these variables 
for the development of the significant linear model. 
Pearson’s correlation test (Bewick et  al., 2003) was 

https://mausam.imd.gov.in/
https://mausam.imd.gov.in/
https://esa-soilmoisture-cci.org/
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Fig. 4  a–g Spatial plot for 
the time-series average of 
climate variables/AOD/
FAPAR from 1998 to 2019 
during the growing season 
a maximum temperature, 
b minimum temperature, c 
precipitation or rainfall, d 
FAPAR, e relative humidity, 
f soil moisture, and g AOD
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used to assess the collinearity between different cli-
mate and aerosol variables. The climate and aerosol 
datasets on an annual scale in the cropland of India, 
including Tmax, Tmin, RF, FAPAR, RH, SM, and 
AOD, were utilized to assess the presence of multi-
collinearity among these variables. The values of 
Pearson correlation coefficients among the climate 
and aerosol datasets have been tabulated in Table 1. 
The Pearson correlation coefficients have a range of 

possible values from −1 to +1 (Schober & Schwarte, 
2018). A positive value of the coefficient signifies a 
positive correlation, while a negative value signifies 
a negative correlation. A value less than 0.2 signi-
fies a weak correlation and greater than 0.8 signifies 
a strong correlation (Ratner, 2009). Any one variable 
has been selected as a predictor variable for the fur-
ther regression analysis in case of strong correlation 

Fig. 5  a–g The matrix plot 
for the monthly average of 
climate variables/AOD/
FAPAR (the accumulated 
rainfall is computed in 
case of rainfall data) from 
1998 to 2019 during the 
growing season a maximum 
temperature, b minimum 
temperature, c precipita-
tion or rainfall, d FAPAR, 
e relative humidity, f soil 
moisture, and g AOD
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(Pearson correlation coefficients > 0.8) is observed 
between any two variables.

Another multicollinearity test namely variance 
inflation factor (VIF) is also applied among climate 
and aerosol variables at an annual scale for determin-
ing VIF factors (Hong et  al., 2020). The variance 
inflation factor is employed to quantify the extent to 
which the variance of the predicted regression coef-
ficient is inflated when there is a correlation among 
the independent variables. In general, VIF values 
equal to 1 refer to no multicollinearity, less than 10 
refer to moderate multicollinearity, and greater than 
10 refer to harmful multicollinearity between any two 
predictors (O’Brien, 2007; Kim, 2019). All the com-
puted VIF values are found less than 10 and are pre-
sented in Table 2. The autocorrelation among climate 
and aerosol variables is analyzed using the Durbin-
Watson (D-W) statistics (Sonkar et  al., 2019). The 
D-W statistics of the linear model for rice and maize 
crops are found near about 1.53. However, the value 
of D-W statistics ranging from 1.5 to 2.5 refers to no 
autocorrelation.

Statistical model
The results of the multicollinearity and autocorrela-
tion test indicate that the independent variables (max-
imum temperature, minimum temperature, FAPAR, 
relative humidity, rainfall, soil moisture, and AOD) 
may be suitable for developing the linear model using 
multiple regression analysis. In order to ascertain the 
relationship between one dependent variable and two 

or more independent variables, multiple regression 
analysis is employed (Piekutowska et al., 2021). Mul-
tiple linear regression analysis is conducted to assess 
the influence of various factors, including maximum 
and minimum temperature, FAPAR, relative humid-
ity, rainfall, soil moisture, and AOD, on the yield of 
rice and maize crops (D. K. Gupta et al., 2022). The 
dependent variable in our model is the crop yield, 
while the independent variables or predictors are 
the maximum temperature, minimum temperature, 
FAPAR, relative humidity, rainfall or precipitation, 
soil moisture, and AOD as follows:

where, Tmax, Tmin, RF, RH, SM, FAPAR, and AOD 
stand for maximum temperature, minimum tempera-
ture, rainfall, relative humidity, soil moisture, a frac-
tion of absorbed photosynthetically active radiation, 
and aerosol optical depth respectively. The terms 
�1, �2, �3, �4, �5, �6, �7 , and �8 represent the regres-
sion coefficients. �0 represents the y-intercept, while 
ε represents the residual error term. In Eq. (1), the 
subscript “at” represents the yearly total, “ga” repre-
sents the average during the growing season, and “gs” 
represents the sum during the growing season. The 
growing season for rice and maize output is from July 
to October.

(1)

Yieldat = �
0
+

(

�
1
× Year

)

+

(

�
2
× Tmaxga

)

+

(

�
3
× Tminga

)

+

(

�
4
× RFgs

)

+

(

�
5
× RHga

)

+

(

�
6
× SMga

)

+

(

�
7
× FAPARga

)

+

(

�
8
× AODga

)

+ �

Table 1  Pearson 
correlation coefficients 
among various weather 
variables and AOD

↓→ T
MAX

T
MIN

FAPAR RF RH SM AOD

T
MAX

1.000 0.585 −0.028 −0.544 −0.215 −0.608 0.458
T
MIN

0.585 1.000 −0.135 0.002 0.320 −0.026 0.157
FAPAR −0.028 −0.135 1.000 −0.007 −0.205 −0.264 −0.242
RF −0.544 0.002 −0.007 1.000 0.786 0.577 −0.204
RH −0.215 0.320 −0.205 0.786 1.000 0.564 −0.058
SM −0.608 −0.026 −0.264 0.577 0.564 1.000 −0.513
AOD 0.458 0.157 −0.242 −0.204 −0.058 −0.513 1.000

Table 2  VIF factors of all 
predictors

Weather variables T
MAX

T
MIN

FAPAR RF RH SM AOD

VIF 8.084 5.572 1.256 5.081 6.999 3.166 1.486
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Results and discussions

Assessment of crop yield, weather variables, and 
aerosol optical depth

The district-wise rice and maize yield (tons per hec-
tare), production (in million tons), and cultivation 
area (in million hectares) data were converted into the 
India-level data by taking the spatial average of the 
districts lies in the cropland (MODIS LULC map) for 
the years 1998 to 2019. The yearly bar plots of area 
cultivation and production of rice and maize crops are 
shown in Fig. 3. Figure 3 also shows the scatter plot 
between the cultivation area and production of crops. 
The regression lines are also drawn between the cul-
tivated area vs year of observation (black color) and 
production vs year of observation (red color) to evalu-
ate the rate of change of cultivation area and produc-
tion of rice and maize crops. It is observed that the 
cultivated area and production of maize crops have 
increased yearly by 0.083 (in million hectares) and 
0.561(in million tons). However, the total cultivated 
area of rice crops has yearly decreased by 0.064 (in 
million hectares) and yearly rice production has 
increased by 0.888 (in million tons). The value of 
the positive correlation coefficient is found 0.814 and 
0.595 between the annual production and cultivation 
area of rice and maize crops, respectively. It indicates 
the dependency of production on the total cultivated 
area is more for maize yield than for rice yield.

Figures  4 and 5 display the spatial distribution 
(average for the period 1998–2019) and temporal 
changes (monthly average) of climatic and aerosol 
variables. In Figs.  4a and 5a, the spatial and tem-
poral plots of maximum temperature show the vari-
ation from 33 to 36 °C in the northern region of 
India and from 29 to 32 °C in the southern region of 
India (Mondal et al., 2015). The maximum values of 
maximum temperature reached in Delhi, Punjab, and 
Rajasthan states with higher values above 36 °C in 
April, May, and June. On the other hand, the aver-
age minimum temperature (Figs. 4b and 5b) in gen-
eral varies from 18 to 20 °C in the northern region 
of India and from 20 to 22 °C in the southern region 
of India. Maximum values of minimum temperature 
belong to Delhi, Punjab and some parts of Tamil 
Nadu states and cross its higher value above 23 °C in 
May, June, July, and August. The spatial and temporal 
average value of rainfall (Figs.  4c and 5c) indicates 

that in general, coastal regions like West Bengal, Odi-
sha, Gujrat, etc. are suffering comparatively higher 
rainfall than non-coastal regions in the months from 
July to September, which is monsoon season of 
India. The average values of FAPAR during the years 
1998–2019 lay between 0.3 and 0.4 in most parts 
of India (Fig.  4d). The maximum values of FAPAR 
are found in the months of August, September, and 
October (Fig. 5d). Generally, the months of August, 
September, and October come under the monsoon 
season and frequent rainfall events occur during 
this tenure, which is responsible for the settle down 
of aerosols present in the atmosphere. Central India 
suffers an average relative humidity of 60% and the 
maximum relative humidity is found in the months 
of July, August, and September (Figs.  4e and 5e). 
The spatial and temporal variation of soil moisture 
concluded that the west and central regions of India 
including Madhya Pradesh and Maharashtra have 
comparatively higher values of soil moisture and the 
maximum value of soil moisture arises in the months 
of July, August, and September (Figs. 4f and 5f). Fig-
ures 4g and 5g show the spatial (mean for the dura-
tion 1998–2019) and temporal (monthly mean) vari-
ation of aerosols indicating that the Punjab, Haryana, 
Delhi, and some parts of Uttar Pradesh suffer from a 
higher amount (near AOD 0.75) of aerosol (Mor & 
Dhankhar, 2022).

Figure  6a–g shows the time series plots of the 
annual mean (sum for rainfall only) and standard 
deviation of weather parameters like maximum tem-
perature, minimum temperature, FAPAR, relative 
humidity, soil moisture, and AOD. From Fig.  6a, 
b, it is observed that the maximum and minimum 
temperatures have risen by 0.017 °C and 0.014 °C 
per year, respectively, from 1998 to 2019. It simply 
means that the annual average of daily mean temper-
ature has also risen by a significant amount in India 
for this period. It is the indication of heat stress that 
may occur in Indian agricultural crops, due to which 
it is suggested that a new variety of crops should be 
developed that can tolerate such warming conditions. 
A detailed study already proved that temperatures in 
India have risen by 0.7 °C between 1901 and 2010 
(Bhatla et al., 2020; Sanjay et al., 2020). This incre-
ment of temperature during this long period signifies 
climate change in India (Sanjay et  al., 2020). Dur-
ing this period (1998–2019), total annual rainfall 
has also increased at the rate of 1.197 mm per year 
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(Fig. 6c) and the annual average value of FAPAR has 
decreased at a rate of 0.001 per year (Fig.  6d). The 
decrement of FAPAR suggests an idea that aerosol 
has increased during this period which reconciles the 
time series plot of aerosol. The annual average of rel-
ative humidity has also increased at a rate of 0.038% 
per year (Fig. 6e) whereas, the annual average of soil 
moisture has decreased at a rate of 0.00041 m3m−3 

per year (Fig. 6f). Figure 6g shows the annual average 
value of AOD (i.e., aerosol) has also increased at a 
rate of 0.006 per year during this period. It indicates 
that the sources of anthropogenic aerosol have also 
increased day by day due to an increase in the number 
of industries, factories, etc. (Babu et al., 2013).

One thing is noticeable here is that the annual 
average of rice and maize yield (tons per hectare) 

Fig. 6  Time series plot of 
a maximum temperature, 
b minimum temperature, c 
precipitation or rainfall, d 
FAPAR, e relative humidity, 
f soil moisture, and g AOD 
with standard deviation dur-
ing the years 1998 to 2019
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has increased during the period of 1998 to 2019 
although the climate variables (like aerosol, tempera-
ture, rainfall, relative humidity, and FAPAR) have 
had their negative impact (Padakandla, 2016, 2021). 
The reason behind this discrepancy is that rice and 
maize yield depends on not only climatic factors and 
edaphic factors (like soil moisture) (Nkurunziza et al., 
2020), but also biotic factors (like pests and fertiliz-
ers), which may have a more positive impact on rice 
and maize yields than the negative impact of climate 
and aerosol variables.

Assessment of crop yield statistical model

The annual data of weather variables (maximum 
temperature, minimum temperature, precipitation or 
rainfall, relative humidity, FAPAR, soil moisture) and 
aerosols have been prepared for the development of 
a yield model by taking the growing seasonal aver-
age except rainfall (taking sum) for the years 1998 to 
2019. The multiple linear regression analysis is con-
ducted using independent variables (climate variables 
and aerosols) and dependent variables (rice or maize 
yield) with the least square fitting algorithm of Eq. 1. 
The values of the regression coefficients are tabulated 
in Table 3.

Figure  7a, b shows the scatter plot between the 
estimated and observed rice and maize yield, respec-
tively. The assessment of the developed model is per-
formed based on the values of performance indices 

namely coefficients of determination or R-squared 
(R2), root mean squared error (RMSE), and bias. The 
R2 or regression score or coefficient of determina-
tion, is a statistical metric that quantifies the degree to 
which the data points align with the regression line. 
(Bewick et al., 2003). The R2 value indicates that the 
model’s prediction accuracy is approximately 95.8% 
for rice crop yields and 94.5% for maize crop yields. 
The RMSE value between estimated and observed 
yield values are found 0.486 (tons/hectare) and 0.515 
(tons/hectare) for rice and maize crops, respectively 
(Chai & Draxler, 2014). The bias value between esti-
mated and observed yield values is found nearly 0.0 
(tons/hectare) for rice and maize crops. The perfor-
mance of the yield model is found very good with the 
comparison of these performance indices values.

Impact assessment of climate variables on rice and 
maize yield

The statistical model (Eq.  1) was utilized to assess 
the impact of weather variables (including maxi-
mum and minimum temperature, precipitation, rela-
tive humidity, surface soil moisture, and FAPAR) 
on rice and maize crops throughout their respective 
growing seasons. To estimate the effect of weather 
variables on the yields of rice and maize, the per-
centage difference between the predictions from the 
historical level and a hypothetical scenario with the 
mean value of the respective weather variable is 

Table 3  Regression 
coefficients (RC) values 
of our model for rice and 
maize crop

RC → �
0

�
1

�
2

�
3

�
4

�
5

�
6

�
7

�
8

Rice −90.227 0.053 −0.079 −0.255 0.002 −0.066 −0.627 −1.734 −2.024
Maize −161.807 0.086 −0.354 0.179 −0.002 −0.024 15.259 −5.846 −2.790

Fig. 7  Scatter plots 
between estimated yield and 
observed yield value. a For 
rice, b for maize
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utilized. From 1998 to 2019, the percentage change 
in rice and maize yield attributable to meteorological 
variables is depicted in Fig.  8. The rice and maize 
harvests are adversely impacted by every meteoro-
logical variable. The yield changes due to the maxi-
mum and minimum temperature are found for rice 
crops (−2.548% and −2.920%) and for maize crops 
(−5.123% and −6.570%), respectively. The nega-
tive impacts of rainfall, relative humidity, and soil 
moisture are found on rice (−2.773%, −4.840%, 
and −2.906%) and maize (−6.926%, −6.546, and 
−4.972%) yields, respectively. The rice and maize 
yield changes due to the FAPAR are found −2.822% 
and −5.840%, respectively. The changes in yield due 
to the impact of weather variables are computed with 
the mean value from the 95% confidence intervals 
(CI) of annual percentage changes of those specified 
periods. The change in yield given the estimated sen-
sitivity of rice and maize crop is observed from −2% 
to −5% and −4% to −7%, respectively. It indicated 
that the maize yield is more sensitive to weather con-
ditions than rice crop yield, which is consistent with 
another study by Vogel et al. (2019). The increase in 
relative humidity showed a higher negative impact 
on the rice yield, while the increase in rainfall also 

showed a higher negative impact on the maize yield. 
The FAPAR is found slightly higher impact on the 
reduction of rice and maize yield than the maximum 
temperature. The Indian farming industry adopts an 
irrigated cropping system that is tailored to meet 
the specific water needs of each crop. According to 
(Schlenker & Roberts, 2009), irrigation has been 
discovered to safeguard maize crops against reduced 
yields caused by high temperatures.

Impact assessment of aerosols on rice and maize 
yield

Aerosol particles can impact agriculture indirectly 
by shading the leaf surface (Shu et al., 2022) because 
dust loading on the leaf surface (leaf shadowing) has 
the potential to lower the net photosynthetic rate in 
plants. Aerosols on the leaf surface can absorb solar 
radiation, leading to an increase in leaf tempera-
ture (Zhou et  al., 2018). This can have a significant 
impact on agriculture. Aerosol pollution reduces the 
solar radiation that reaches the ground, indicating a 
potential impact on the fraction of solar radiation, 
known as FAPAR utilized by plants in their photo-
synthetic activities. So, the estimation of aerosols’ 

Fig. 8  Percent change 
(mean in 95% CI) in 
rice and maize yield against 
weather variables during 
the years 1998–2019
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impacts on crop growth and its yield is very tedious, 
and no direct method is available. The solar radiation 
absorbed or scattered by the atmospheric aerosols 
has an indirect impact on agriculture (Ren-Jian et al., 
2012) and which is indirectly acting as cloud conden-
sation nuclei (Sarangi et al., 2018). The weather vari-
ables are directly affected by the absorption and scat-
tering of solar radiation by atmospheric aerosols.

A regression analysis is conducted to evaluate the 
influence of aerosol pollution on agricultural yields 
by examining the relationship between AOD, weather 
factors, and crop yields. The individual effects of 
meteorological factors on crop yields and the influ-
ence of AOD on these weather variables are assessed 
individually. These estimates are then combined to 
calculate the overall impact of aerosol pollutants on 
the reduction of rice and maize yields. A linear 
regression analysis is conducted between historical 
AOD and weather variables to compute the aerosol’s 
impact on the weather variables. Figure 9a–c captures 
the scatter plots between maximum temperature vs 
AOD, minimum temperature vs AOD, and FAPAR vs 
AOD with results of linear regression analysis main-
taining the 95% confidence interval, respectively. Fig-
ure 10a–c shows the scatter plots between rice yield 
and maximum temperature, rice yield and minimum 
temperature, rice yield, and FAPAR with results of 

linear regression analysis maintaining the 95% confi-
dence interval, respectively. On the other hand, the 
scatter plots between maize yield and maximum tem-
perature, minimum temperature, and FAPAR, respec-
tively, in Fig.  10d–f display the results of the linear 
regression within a 95% confidence interval. The 
plots (Figs.  9 and 10) with the shaded area indicate 
the estimate’s confidence interval (which maintains a 
95% confidence level) (Bewick et  al., 2003). How-
ever, linear regression analysis is also used to deter-
mine how meteorological variables affect crop yield 
for the crops of rice and maize. The rate of change of 
weather variables with respect to AOD has been eval-
uated to examine the impact of AOD  on weather var-
iables, i.e., 

(

�TMAX

�AOD

)

 , 
(

�TMIN

�AOD

)

 , and 
(

�FAPAR

�AOD

)

 . However, 
the meteorological variables’ impact on crop yield is 
considered the rate of change of crop yield with 
respect to meteorological variables, i.e., 

(

�Yield

�TMAX

)

 , 
(

�Yield

�TMIN

)

 , and 
(

�Yield

�FAPAR

)

.
The net effect of aerosol pollution on rice and 

maize yields is calculated by combining the estimated 
effects of weather variables on yield and the estimated 
effects of aerosol pollution on weather variables. The 
datasets of AOD, meteorological factors, and yield 
exhibit significant annual variation, enabling accu-
rate identification of the influence of weather and 

Fig. 9  Scatter plots 
between AOD_550 vs a 
maximum temperature 
(Tmax), b minimum temper-
ature (Tmin), and c FAPAR 
(indicating 95% confidence 
interval)
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pollution on crop output. The effect of aerosols on 
crop yields is calculated using the following Eq. (2).

The impact of aerosol loading on rice and maize 
yield 

(

�Yield

�AOD

)

 is estimated at −0.079 (−7.9%) and 
−0.088 (−8.8%), respectively over India during the 
time period from 1998 to 2019. Due to the increase 
in atmospheric aerosol contaminants, the total yield 
of rice and maize in India decreased by 7.9% and 
8.8%, respectively, over the past 22 years, from 
1998 to 2019. A reduction in aerosol pollution 
would result in an increase in solar radiation, which 
appears to have a substantial and positive direct 
impact on crop yields. An increase in the quantity 
of solar radiation that reaches the Earth’s surface 

(2)

�Yield

�AOD
=

�TMAX

�AOD

�Yield

�TMAX

+

�TMIN

�AOD

�Yield

�TMIN

+
�FAPAR

�AOD

�Yield

�FAPAR

during the day would correspondingly lead to a rise 
in maximum temperature, resulting in a decreased 
yield in the response of reduction in aerosol pollu-
tion. Huang et  al., (2014) reported that the night-
time temperature increases by 0.7 °C, while the 
daytime temperature decreases by −0.7 °C on the 
basis of a model simulation in East Asia due to aer-
osols. It has been noted that the elevated levels of 
cloudiness caused by aerosols may indirectly con-
tribute to an increase in minimum temperature. The 
precision and confidence in predicting the extent of 
crop production decline rely on the model’s capabil-
ity to accurately replicate the properties of aerosols 
and incorporate the feedback mechanisms (R. Gupta 
et  al., 2017). Currently, there is no climate model 
available that accurately represents the dispersion of 
aerosols over India in a realistic manner (Sanap 
et  al., 2015). Hence, there is a potential for uncer-
tainty in estimating the impact of AOD on 

Fig. 10  Scatter plots 
between yield and maxi-
mum temperature  (Tmax), 
minimum temperature 
 (Tmin), and FAPAR. a–c 
For rice crop, d–f for maize 
crop (indicating 95% confi-
dence interval)
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maximum temperature, minimum temperature, and 
solar radiation as predicted by climate models. This 
uncertainty may be substantial.

Conclusions

The rice and maize yields have shown a consistent 
upward trend, with an annual increase of 0.888 mil-
lion tons/year and 0.561 million tons/year, respec-
tively, from 1998 to 2019. However, the cultivation 
area is found decreasing trend with a rate of 0.064 
million hectares/year for rice crops and the increasing 
trend of cultivation area is found for maize crops with 
a rate of 0.083 million hectares/year. The maize yield 
depends on the cultivated area more than the rice 
yield by comparing the value of correlation coeffi-
cients between the production and cultivation area for 
both crops. The increase in rice output surpasses that 
of maize yield due to the implementation of advanced 
agricultural techniques, optimal utilization of ferti-
lizers and irrigation, and the cultivation of climate-
resistant cultivars.

The key discoveries of this research reveal a 
decrease in rice and maize yields by approximately 
(2.55%, 2.92%, 2.778%, 4.84%, 2.90%, 2.82%) and 
(5.12%, 6.57%, 6.93%, 6.54%, 4.97%, and 5.84%), 
respectively, attributed to unwanted fluctuations in 
weather variables, specifically maximum and mini-
mum temperatures, rainfall, relative humidity, soil 
moisture, and FAPAR, spanning from 1998 to 2019. 
Additionally, the study highlights a notable reduc-
tion in rice and maize yields by 7.9% and 8.8%, 
respectively, as a result of increased aerosol pollu-
tion. Notably, the annual averages of weather vari-
ables (TMAX, TMIN, rainfall, and relative humid-
ity) and AOD demonstrate an upward trend, while 
surface soil moisture and FAPAR exhibit a declin-
ing trend during the same time frame from 1998 to 
2019. The decrement in the average value of sur-
face soil moisture is an indication that agricultural 
drought happened due to the unequal distribution 
of rainfall causing a reduction in food-grain pro-
duction in India. The increase in the average tem-
perature, rainfall, and relative humidity also has a 
negative impact on rice and maize yield. Extreme 
rainfall is responsible for the flood and damages 
the crop growth in the affected area. Anthropogenic 
aerosol sources have grown rapidly during this 

time as the expansion of industries and urbaniza-
tion is responsible for the increment in atmospheric 
aerosols or aerosol optical depth (AOD). Actually, 
India emits the third-highest amount of greenhouse 
gases globally, and coal is the biggest contribu-
tor. Extreme weather variations occur due to the 
increment in aerosol pollution over India such as a 
decrease in solar radiation, and a warmer climate, 
which impacts agriculture, human health, and other 
factors. As a result, India faces a significant prob-
lem in the years to come in producing high-quality 
crop production for a feeding population with nutri-
tious food. The separate impact of weather variables 
and AOD is also estimated for rice and maize yield 
during the time period of 1998 to 2019 over India.

This is restricted to the specification and hypothe-
sis of the model, and it requires enhancement in terms 
of utilizing larger datasets, technology advancements, 
genetic enhancements, improved irrigation methods, 
and incorporating the effects of regional heteroge-
neity in the model across India. Developing a more 
advanced decision support system will enhance its 
ability to respond to climate change. The assessment 
of the developed model needs to be evaluated under 
different environmental conditions, adaption, and 
mitigation measures to cope with climate change and 
aerosol pollution variability. The crop yield model 
will need nonlinear terms of aerosols associated with 
the climate variables for the accurate estimation of 
aerosols/climate impact on the crop yield. The results 
are statistically significant and show that the aerosol 
impact on yields is much higher than the climate fac-
tors. The results of the study indicate that increasing 
atmospheric pollution may produce an adversely neg-
ative impact on crop productivity in the future.
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