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Abstract   Downscaling methods are crucial for access-
ing high-resolution thermal data simultaneously. The Dis-
TRAD model is commonly used for downscaling thermal 
images, but changes in soil moisture, such as those caused 
by irrigation operations, can lead to errors in the process. 
This study investigated the potential use of TOTRAM and 
OPTRAM models to reduce errors in LST downscaling in 
irrigated fields. Sentinel satellite imagery was utilised to 
enhance the resolution of MODIS Land Surface Temper-
ature (LST) from 1000 to 20 m in the fields of Megsal and 
Hezarjolfa agro-industrial company in Qazvin province. 
Soil moisture was estimated using the OPTRAM model, 
and the results were compared with observational data. 
The findings indicated that on days with NDVI greater 
than 0.6, the  R2 value exceeded 0.88 and the RMSE 
value was less than 0.06  cm3/cm3. Then, MODIS LST 

images were downscaled to 20 m using codes in Google 
Earth Engine (GEE). Evaluation was conducted using 
observational data from collected land surface tempera-
ture data for 36 points. Comparison of the downscaled 
LST data with observational data on days with irrigation 
revealed a decrease in MAE and RMSE error indices by 
approximately 0.4 and 1.2 degrees Celsius, respectively, 
in the OPTRAM-TPTRAM model compared to the Dis-
TRAD model. Consequently, the OPTRAM-TOTRAM 
model generally outperforms the DisTRAD model in 
LST downscaling. Lastly, it is recommended to assess 
the TOTARM and OPTRAM models for downscaling 
MODIS sensor LST in other irrigated fields.

Keywords OPTRAM model · TOTRAM model · 
DisTRAD model · Soil moisture

Introduction

Land surface temperature (LST) plays a crucial role in 
the exchange of heat flux and long-wave infrared radia-
tion (LWIR) between the Earth’s surface and atmosphere. 
It is a key parameter for understanding surface energy 
and water balance processes at local and global scales 
(Li et al., 2013). Various studies have demonstrated the 
potential of LST, particularly in applications related to 
thermal infrared data. Satellites like AVHRR, MODIS, 
and Landsat provide data with different resolutions and 
temporal coverage to estimate surface temperature. Ther-
mal infrared data complements other remote sensing 
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information and is unique in identifying ground materi-
als and features, including thermal anomalies, rock types, 
and soil moisture (Prakash et al., 1997). While MODIS 
enhances continuous Earth monitoring with daily tem-
poral resolution, its spatial resolution (1 km) may not be 
adequate for analysing areas with high spatial heteroge-
neity in terms of topography and land cover. In contrast, 
thermal images from high spatial resolution scanners on 
satellites like Landsat 5 and Landsat 8 offer better detec-
tion of spatial patterns (Allan et  al., 2016; Semmens 
et al., 2016; Xing et al., 2015). Despite this, the current 
satellite tools still have limitations. This is due to the fact 
that while many satellites offer data with high spatial res-
olution, they have low temporal resolution (Allan et al., 
2016; Anderson et al., 2007; Carpintero et al., 2016; Park 
et al., 2004; Xing et al., 2015).

Based on the information presented, there is a high 
demand for thermal images with both high spatial and 
temporal resolution in agricultural and land manage-
ment fields (Weng et al., 2014). The Downscaling tech-
nique is commonly used to enhance the spatial resolu-
tion of Land Surface Temperature (LST) data, drawing 
on biophysical properties obtained from remote sensing 
data at a higher spatial resolution (Bala et  al., 2020; 
Essa et al., 2012; Wang et al., 2020). This method lever-
ages the correlation between images with high spatial 
resolution but low temporal resolution and those with 
low spatial resolution but high temporal resolution to 
produce images with both high spatial and temporal 
resolutions. To accurately depict thermal changes on the 
earth’s surface, data with high spatial resolution such 
as visible and infrared bands, spectral indices, digital 
elevation models, and land use information are essen-
tial (Maeda, 2014; Bindhu et al., 2013; Bisquert et al., 
2016; Essa et al., 2017; Lillo-Saavedra et al., 2018).

The "trapezoid" or "triangle" model is a common 
approach in remote sensing for estimating soil moisture 
through optical and thermal data. The Thermal-Optical 
TRApezoid model (TOTRAM) interprets pixel distri-
bution in the LST-VI space, where LST represents land 
surface temperature and VI is a vegetation cover index 
based on remote sensing. Despite its apparent success, 
TOTRAM has limitations. To address these, Sadeghi 
et al., (2015) introduced a TRApezoidal model called 
OPTRAM, based on a physical relationship between 
soil moisture and shortwave infrared transformed 
reflectance (STR). OPTRAM does not require ther-
mal bands and can be directly used for estimating soil 
moisture from satellite observations without thermal 

bands, such as Sentinel-2. Furthermore, OPTRAM 
only requires one parameterization for the study area, 
overcoming the limitations of the TOTRAM model 
(Sadeghi et  al., 2017). Various methods have been 
developed to downscale LST from the MODIS sensor, 
but they often lack accuracy in irrigated areas due to 
large moisture variations (Gao et al., 2012). Therefore, 
this study investigates the potential of using a combina-
tion of TOTRAM and OPTRAM models to downscale 
MODIS LST from 1000 to 20 m using Sentinel satel-
lite, aiming to improve the accuracy of downscaling. 
Since 2003, numerous studies have been conducted in 
the field of downscaling MODIS LST images.

Kustas et  al. (2003) found that DisTrad can esti-
mate subpixel thermal values at the MODIS NDVI 
pixel resolution with around 1.5 °C uncertainty. The 
DisTARD method involves a simple linear regression 
between NDVI and LST, which is its main advan-
tage. However, a limitation of the DisTRAD method 
is the neglect of other variables such as soil moisture 
changes. To address this, the TsHARP model was 
introduced, based on the DisTRAD method but using 
a regression relationship between Ts and Fc instead 
of NDVI (Agam et  al., 2007). While the TsHARP 
method outperforms DisTRAD to some extent, it 
has not fully overcome its disadvantages. In 2012, a 
new data mining system (DMS) was introduced to 
extend the application of downscaling thermal image 
methods in more complex conditions. This method 
uses a tree regression between TIR brightness tem-
perature and shortwave spectral reflectance. Evalua-
tion of the DMS and TsHARP methods using Land-
sat satellite images in dryland and irrigated fields 
showed that changes in soil moisture due to irrigation 
increase errors in downscaling thermal images. Sta-
tistical analysis indicated the superiority of the DMS 
method over the TsHARP method (Gao et al., 2012). 
However, the issue of errors caused by soil mois-
ture changes in the process of downscaling LST still 
persists. Recent research studies in this field high-
light the need to incorporate soil moisture or a soil 
moisture-sensitive index as an input to downscaling 
models for the MODIS sensor (Sánchez et al., 2020). 
Therefore, the use of soil moisture estimation models 
in irrigated regions may help reduce errors caused by 
these changes by considering them in calculations.

The Temperature-Vegetation Dryness Index 
(TVDI) is a widely used method for estimating soil 
moisture without relying on observational data. It 
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is based on the relationship between Land Surface 
Temperature (LST) and Normalized Difference Veg-
etation Index (NDVI). The introduction of this index 
marked a significant advancement in understanding 
soil moisture conditions at the ground surface. Spatial 
variations in the TVDI index show a 70% correlation 
coefficient between model data and TVDI, allowing 
for soil moisture changes to be observed at a finer 
scale than with hydrological models (Sandholt et al., 
2002).

To address the limitations of the TOTRAM model, 
Sadeghi et al. (2017) proposed the OPTRAM model. 
This model is based on the linear physical relation-
ship between soil moisture and shortwave infrared 
transformed reflectance (STR), and is parameterized 
according to pixel distribution within the STR-VI 
space. Ambrosone et al. (2020) further evaluated soil 
moisture using the OPTRAM model with Sentinel-2 
satellite images. The Pearson test results indicate a 
significant statistical correlation between observed 
and estimated soil moisture values (Ambrosone et al., 
2020). Additionally, the OPTRAM model provides 
soil moisture estimates close to observational data, 
while also highlighting low estimates of soil mois-
ture from surface soil moisture (SSM 1km) during the 
growing season.

The LST parameter plays a crucial role in the 
water and energy balance equations (Kalma et  al., 
2008), impacting the spatial resolution of evapo-
transpiration images and the effective management 
of water resources in farms (Ibrahim et  al., 2022). 
Studies on sensitivity analysis highlight the signifi-
cant influence of the LST parameter on ET estima-
tion models such as SEBAL and SEBS (Gibson 
et al., 2011; Weng, 2009; Rocha et al., 2020; Abid 
et al., 2019). Even a small change in the LST value 
can lead to notable variations in ET estimation, 
emphasising the importance of accurate input vari-
ables, particularly LST, for precise ET estimation. 
Furthermore, an increase in global temperature can 
have adverse effects on crop yields, making it essen-
tial to explore soil moisture estimation models like 
TOTRAM and OPTRAM based on remote sensing 
to mitigate errors arising from significant moisture 
changes during LST downscaling in irrigated fields. 
This research aims to evaluate the accuracy of soil 
moisture estimation data from the OPTRAM model 
by comparing it with observational data. It also 

seeks to explore the potential of using soil mois-
ture estimation models TOTRAM and OPTRAM 
to minimize errors resulting from moisture fluctua-
tions during the fine-scale LST scaling process in 
irrigated regions. Additionally, it aims to assess the 
effectiveness of the proposed method on days when 
irrigation activities have taken place.

Materials and methods

Study area

This research encompasses the Maghsal and Haz-
arjelfa Agro-industrial companies in Qazvin city, 
Qazvin province, Iran. The Maghsal agro-industrial 
site is situated at 35° 9’ N and 60° 10′ 12’’ E, with an 
average elevation of 1220 m above sea level. The area 
experiences a cold and dry Mediterranean climate, 
with an average annual rainfall of 298 mm. Covering 
around one thousand hectares, the soil in this area is 
categorised as loamy clay. The primary products cul-
tivated include wheat, canola, barley, forage corn, and 
dry alfalfa, with irrigation carried out using sprinkler 
systems like linear and centre-pivot irrigation. The 
Hazarjelfa agro-industrial company spans approxi-
mately 850 hectares, positioned at 35° 1’ N and 60° 
11’ E. Similar to Maghsal, this company shares com-
parable soil texture and agricultural product diversity. 
Figure 1 illustrates an aerial perspective of the study 
area and its location in Qazvin city.

Data was collected randomly over a 15-day period 
from July 3rd to September 28th, 2022, in the study 
area during the summer cultivation period for corn. 
The observational data gathered includes land surface 
temperature, air temperature, soil moisture at a depth 
of 5 cm, irrigation, and weather conditions. The Testo 
868 thermal sensor was used to collect land surface 
temperature data, while the HH2 soil moisture meter 
from DELTA-T Company was used to measure soil 
moisture. Additionally, 5 Sentinel satellite images 
corresponding to the data collection dates were 
obtained. The distribution maps of ground-based 
LST measurements is illustrated in the Fig. 2 and The 
details of data collection dates, the number of data 
collection points on each date (N), and the average air 
temperature in the study area are presented in Table 1.
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MODIS sensor and sentinel satellite

The Terra satellite was launched from the Vanden-
berg Air Force Base in the United States on Decem-
ber 18, 1999, and commenced gathering data from 
the Earth on February 24, 2000. It is equipped with 
several sensors capable of capturing various types 
of images depicting different characteristics of the 
Earth’s surface. One of these sensors is the MODIS 

Fig. 1  Aerial image of the study area and its location in Qazvin province

Fig. 2  The distribution 
maps of ground-based LST 
measurements

Table 1  List of data collection dates, the number of data col-
lection points on each date (N)

Date N Ta (C°)

19-Jul-2022 13 37.2
13-Aug-2022 7 39.6
23-Aug-2022 6 29.3
14-Sep-2022 5 25.7
19-Sep-2022 5 29.5
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sensor, which can produce images with spatial res-
olutions of 250 m, 500 m, and 1 km (Kelly et  al., 
2014). The daily LST data from the MODIS sen-
sor has been available as a free archive from 2000 
to the present. However, a significant challenge lies 
in the low spatial resolution (1000 m) of its ther-
mal images. Consequently, the process of downs-
caling these images from 1000 to 20 m represents 
a crucial advancement in enhancing their usability. 
The Sentinel series satellites are developed and 
engineered by the European Union, with 6 series 
of these satellites launched into space thus far. The 
Sentinel-2 satellite is specifically designed for for-
est monitoring, assessing changes in land cover, 
managing natural disasters, and calculating physi-
cal indices and variables, and it is equipped with 
13 spectral bands (Phiri et al., 2020).

This research utilised images from level 2 of the 
Sentinel-2A satellite, which lacks a thermal band 
but offers suitable spatial resolution (10 and 20 m) 
and a temporal resolution of 5 days with its visible 
and near-infrared images. The study investigates the 
potential of using these images in the TOTRAM 
and OPTRAM soil moisture estimation models 
to downscale MODIS thermal sensor images to a 
20 m level. The study employed MOD11A1 and 
MOD09GA data from the MODIS sensor, as well 
as bands 4, 8, and 12 from the Sentinel satellite. 
The image specifications are detailed in Table 2. It 
is important to note that data collection occurred on 
various days at different times between 8 am and 5 
pm, while the MODIS sensor passed over the study 
area around 1 pm.

DisTrade

In 2003, Kustas et  al. developed the DisTrad tech-
nique to scale down land surface radiometric 

temperature images. This technique relies on an 
empirical correlation between the normalized differ-
ence vegetation index (NDVI) as the predictor and 
land surface radiometric temperature (TR) as the 
outcome. The correlation is represented by Eq. 1.

The calculated radiometric temperature (℃) 
is denoted as ŤR1000, and  NDVI1000 represents 
the aggregated normalized difference vegetation 
index. In this study, a linear regression relationship 
(c = 0) is utilised to minimise errors. By substitut-
ing NDVI250 with NDVI1000 in Eq.  1, TR250 
(downscaled radiometric temperature) is derived. 
However, it is important to note that this approach 
does not factor in temperature variations resulting 
from changes in soil moisture, as the least squares 
regression method only accounts for average condi-
tions. To tackle this issue, the standard deviation of 
observed regressions at a 1000 m scale is adjusted 
(Eq. 2).

The  TR1000 refers to the calculated radiometric tem-
perature. Subsequently, the radiometric temperature of 
each pixel (i) is determined using Eq. 1 and Eq. 3.

TOTRAM model

The TOTRAM model utilises the pixel distribution in 
the LST-VI space. By eliminating pixels with clouds 
and water bodies, the scatter plot of pixels forms a tri-
angular or trapezoidal shape (Carlson, 2013).

(1)
Ť
R1000

(
NDVI

1000

)
= a + bNDVI

1000
+ cNDVI

1000

2

(2)ΔŤ
R1000

= T
R1000

− Ť
R1000

(3)Ť
R250(i) = Ť

R1000

(
NDVI

250(i)
)
+ ΔŤ

R1000

Table 2  Specifications of MODIS and sentinel satellite images

Wavelength range (nm) Temporal resolution (day) Spatial resolution(m) Product/Bands Satellite

650–680 5 10 Band 4 (Red) Sentinel
785–899 5 10 Band 8 (NIR)
2100–2280 5 20 Band 12 (SWIR)
––––- daily 500 MOD09GA Terra/MODIS
––––- daily 1000 MOD11A1
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The normalized difference vegetation index 
(NDVI) is the most frequently used vegetation cover 
index in TOTRAM, calculated using Eq. 4.

Which  Rnir is the reflectance of the near-infrared 
band and  Rred is the reflectance of the red band. The 
inverse linear relationship between soil moisture 
(θ) and land surface temperature (LST) is shown in 
Eq. 5.

Which W is the normalized soil moisture value, 
�
d
 is the minimum value of soil moisture in dry local 

conditions, �
W

 is the maximum value of soil mois-
ture in moist local conditions, and  LSTd and  LSTw 
are the land surface temperature (℃) at the dry and 
moist edges, respectively  LSTd and  LSTw are shown 
in Fig.  3. The upper (dry) and lower (moist) edges 
of the trapezoid are used to estimate  LSTd and  LSTw 
for each NDVI.  LSTd and  LSTw are calculated by 
Eqs. 6 and 7.

Equations 5, 6 and 7 are combined to estimate the 
soil moisture value for each pixel as a function of 
NDVI and LST.

(4)NDVI =
R
nir

− R
red

R
nir

+ R
red

(5)W =
� − �

d

�
w
− �

d

=
LST

d
− LST

LST
d
− LST

w

(6)LSTd = id + sdNDVI

(7)LSTw = iw + swNDVI

OPTRAM model

The Kubelka and Munk model, initially introduced in 
1931, was later expanded by Sadeghi et  al. in 2015. 
This physical model demonstrates the linear correla-
tion between soil moisture and shortwave infrared 
transformed reflectance (STR). It relies on the distri-
bution of pixels in the NDVI-STR. In contrast to the 
TOTRAM model, it utilises optical data rather than 
thermal data, as detailed in Eqs. 9, 10, 11, 12 and 13.

The term "STR" denotes shortwave infrared trans-
formed reflectance, while "STRw" and "STRd" repre-
sent the shortwave infrared transformed reflectance at 
the wet and dry edges, respectively. The calculation for 
STR is based on Eq. 10, where RSWIR represents the 
reflectance of the SWIR band.

The parameters of Eq. 9 can be extracted from sat-
ellite images for the desired range of wet and dry 
edges, and the edges can be defined based on the visual 
inspection of pixel distribution (Carlson, 2013).

(8)TOTRAM =
id + sdNDVI − LST

id − iw + (sd − sw)NDVI

(9)W =
� − �

d

�
w
− �

d

=
STR − STR

d

STR
w
− STR

d

(10)STR =
(1 − R

SWIR
)
2

2R
SWIR

(11)STRd = id + sdNDVI

Fig. 3  Parameters of 
TOTRAM and OPTRAM 
models (Sadeghi et al., 
2017)
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Which id represents the minimum STR; sd repre-
sents the minimum vegetation cover density; iw repre-
sents the maximum STR; sw represents the maximum 
vegetation cover density. The OPTRAM model is 
obtained by Eq. 13, which can estimate soil moisture in 
the visible wavelength range.

Downscaling method

To downscale the Land Surface Temperature (LST) 
data from the MODIS sensor, the TOTRAM and 
OPTRAM models are initially implemented in 
Google Earth Engine. Subsequently, the coefficients 
of the TOTRAM and OPTRAM equations are indi-
vidually obtained for each date. Following this, NDVI 

(12)STRw = iw + swNDVI

(13)OPTRAM =
id + sdNDVI − STR

id − iw + (sd − sw)NDVI

and STR indices are derived using Sentinel satellite 
images, and soil moisture images are generated using 
the OPTRAM model with a spatial resolution of 20 
m. The Sentinel satellite images of soil moisture and 
NDVI are then integrated into the TOTRAM equa-
tion, resulting in the production of LST with a spatial 
resolution of 20 m.

For downscaling the LST from the MODIS sen-
sor using the DisTRAD model, the 1000 m LST 
image from the MODIS sensor and the 20 m NDVI 
image from the Sentinel satellite for the study area 
are clipped. Subsequently, the NDVI image is aggre-
gated from 20 to 1000 m. The coefficients of the lin-
ear regression equation are derived using the 1000 m 
LST and NDVI images. Next, the values of ∆ŤR1000 
and ŤR20 (NDVI_20) are calculated, and finally, the 
downscaled LST value from the DisTRAD model is 
determined by summing these values. The research 
method’s flowchart, outlining each step, is presented 
in Fig. 4.

Fig. 4  Flowchart of the steps for performing the LST scaling process
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Data calibration

To calibrate the downscaled data with the observa-
tional data, 70% of the total 36 data points were uti-
lised to derive the equation, while the remaining 30% 
were allocated for validation.

Error measurement indices

One of the statistical indices used to evaluate model 
performance is correlation coefficient, which is 
defined by Eq. 14:

The correlation coefficient (r) represents the rela-
tionship between predicted (Pi) and observed (Oi) 
values over a period of n years. It ranges between 1 
and -1, indicating the degree of match between the 
trends of observed and predicted values. Additional 
quantitative indices for evaluation are root mean 
square error (RMSE), mean bias error (MBE), and 
mean absolute error (MAE).

When Ci represents the calculated value, Mi 
represents the observed value, and n represents the 
number of data points. An RMSE, MAE, and MBE 
of zero or close to zero indicate high accuracy 

(14)r =

∑n

i=1
(Pi − P)(Oi − O)

�∑n

i=1
(Pi − P)

2
(Oi − O)

2

(15)RMSE =

�∑
(Ci −Mi)

2

n

(16)MBE =

∑
(Ci −Mi)

n

(17)MAE =

∑
�Ci −Mi�

n

in the method used. As the distance from zero 
increases, the method’s accuracy decreases.

Results and discussion

Soil moisture

The omission of soil moisture changes in the scaling 
equations has been identified as a significant source 
of error in LST scaling results by Kustas et al., 2003, 
Agam et  al., 2007, Gao et  al., 2012, and Sánchez 
et  al., 2020. In this study, the OPTRAM model is 
utilised to estimate soil moisture and facilitate the 
scaling of LST measurements from the MODIS sen-
sor. The evaluation of the OPTRAM model’s ability 
to estimate soil moisture utilised observational data, 
with the results presented in Table  3. The findings 
indicate that on specific dates with an average NDVI 
value at the sampling points exceeding 0.6, the  R2 
value is greater than 0.88, and the RMSE value is 
less than 0.06  cm3/cm3 (e.g. August 13, September 
14, and September 19). Conversely, on July 19 and 
August 23, with lower average NDVI values at the 
sampling points (0.29 and 0.27, respectively), the 
 R2 value is lower, and the RMSE value is higher. 
Previous studies have established a direct relation-
ship between NDVI and soil moisture, with higher 
soil moisture corresponding to increased NDVI val-
ues. It is anticipated that lower reported NDVI values 
will align with lower soil moisture values. However, 
on July 19 and August 23, when the volumetric soil 
moisture for the sampling points exceeds 36% and 
32% respectively, the NDVI values for the points 
are approximately 0.29 and 0.27. This discrepancy 
may be attributed to variations in sampling timing 
and non-uniform NDVI conditions at the sampled 
points. Nevertheless, the overall results support the 

Table 3  Statistical 
evaluation of the results 
obtained from the 
OPTRAM model and 
observational data of soil 
moisture

Date R2 RMSE(cm3/cm3) MAE(cm3/cm3) MBE(cm3/cm3) NDVI

19-Jul 0.4 0.16 0.12 -0.06 0.29
13-Aug 0.92 0.07 0.05 0.05 0.71
23-Aug 0.38 0.22 0.22 -0.15 0.27
14-Sep 0.88 0.09 0.06 0.05 0.68
19-Sep 0.99 0.05 0.05 0.03 0.67
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conclusion that the OPTRAM model effectively esti-
mates soil moisture.

The TOTRAM model utilises the correlation 
between NDVI and LST to predict soil moisture. By 
having the soil moisture and NDVI values for each 
pixel, the model estimates the LST value. In this 
research, the OPTRAM model was employed to pre-
dict soil moisture and facilitate the adjustment of LST 
measurements from the MODIS sensor. By substi-
tuting the soil moisture derived from the OPTRAM 
model into the TOTRAM model equation, LST was 
estimated for each pixel with a spatial resolution of 
20 m. The reason for using soil moisture from the 
OPTRAM model lies in its independence from the 
LST parameter. While the TOTRAM model directly 
utilises LST to predict soil moisture, it overlooks var-
iations in soil moisture due to irrigation in irrigated 
areas. Conversely, the OPTRAM model uses the STR 
parameter instead of LST. Furthermore, according to 
Ambrosone et  al. (2020), TOTRAM performs better 

in arid regions, whereas OPTRAM performs better in 
irrigated regions. Therefore, incorporating the esti-
mated soil moisture from the OPTRAM model can 
account for changes in soil moisture resulting from 
irrigation in the LST adjustment process.

Figure  5 depicts the LST image obtainted by the 
MODIS sensor (1000 m) and the downscaled LST 
image generated by the DisTRAD and OPTRAM-
TOTRAM models on September 19, 2022. It is 
evident that the LST image from the MODIS sen-
sor (1000 m) only covers 18 pixels of the entire 
region, whereas the downscaled LST images (b and 
c) exhibit a marked visual enhancement compared 
to the MODIS sensor’s LST image (a). Notably, the 
downscaled image from the DisTRAD model clearly 
displays the 1000-m pixel border. While the ther-
mal images from the MODIS sensor offer valuable 
long-term information essential for climate change 
studies, they do not provide suitable data at the farm 
scale or for investigating spatial changes. Therefore, 

Fig. 5  Shows a) the LST image obtained from the MODIS sensor (1000 m) and b) the downscaled LST image obtained from the 
DisTRAD and c) OPTRAM-TOTRAM models on September 19, 2022
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downscaling these images at the farm scale holds sig-
nificant importance in agricultural management.

To assess the downscaled LST images in com-
parison to the MODIS LST images, statistical indices 
such as  R2, RMSE, MAE, and MBE were utilised (see 
Table  4). The findings reveal that the RMSE values 
for the OPTRAM-TOTRAM model range from 0.67 
to 1.97 degrees Celsius, with MBE values ranging 
from 0.19 to 1.06 degrees Celsius. For the DisTRAD 
model, the RMSE values range from 2.36 to 4.4 
degrees Celsius, and the MBE values range from -2.65 
to 0.75 degrees Celsius. These results demonstrate a 
strong correlation between the downscaled images 
from the OPTRAM-TOTRAM model and the original 

MODIS sensor images, with an RMSE value of less 
than 2 degrees Celsius. Conversely, higher RMSE 
values are observed in the DisTRAD model, indicat-
ing superior performance of the OPTRAM-TOTRAM 
model. Notably, on August 23, the DisTRAD model 
exhibited lower performance compared to other days. 
The data collected before and after irrigation, as 
shown in Table 3, resulted in non-uniform conditions, 
leading to higher errors in both soil moisture estima-
tion and LST downscaling on this date. However, the 
use of the OPTRAM-TOTRAM model in downscal-
ing LST has significantly mitigated this issue, demon-
strating much better performance than the DisTRAD 
model on August 23.

Table 4  Statistical analysis results of the downscaled LST compared to the MODIS sensor data (1000 m)

OPTRAM-TOTRAM DisTRAD

Date RMSE-(C°) MBE (C°) MAE (C°) R2 RMSE (C°) MBE (C°) MAE (C°) R2

7/19/2022 0.67 0.19 0.52 0.49 3.7 0.75 2.74 0.49
8/13/2022 1.26 0.98 1.11 0.69 2.73 -0.5 2.38 0.55
8/23/2022 1.69 0.83 1.43 0.51 4.41 -2.65 3.79 0.13
9/14/2022 1.54 1.06 1.53 0.64 2.36 0.48 1.37 0.72
9/19/2022 1.95 0.43 1.64 0.91 3.4 0.6 2.75 0.85

�

Fig. 6  Changes in MAE value compared to soil moisture changes for the DisTRAD and OPTRAM-TOTRAM models
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Statistical analysis by observational data

Due to the low number of sampling points on some 
days, all collected data points were utilized for sta-
tistical analysis. However, in certain areas, condi-
tions had changed since the satellite passing time, 
leading to the removal of some points, resulting in 
26 remaining points, as shown in Fig.  6 by "Pixel 
Number". Pixels number 1 to 26 in Fig. 2 are shown. 
Points labeled with 0 are those points that have been 
deleted due to the mismatch between the observed 
data time and the satellite passing time. To exam-
ine the impact of soil moisture changes on the mean 
absolute error (MAE) measurement in the DisTRAD 
and OPTRAM-TOTRAM models, the MAE value 
was compared to the observed soil moisture. Fig-
ure 6 illustrates that, generally, the MAE value in the 
OPTRAM-TOTRAM model is lower than in the Dis-
TRAD model. It is also evident that in some areas, 
as soil moisture increases, the MAE value in the 
DisTRAD model increases significantly. The MAE 
value in the OPTRAM-TOTRAM model appears to 
have less correlation with soil moisture changes. The 
LST parameter is influenced by various factors such 
as wind speed, duration of solar radiation, solar radia-
tion angle, humidity, air temperature, and vegetation 
cover, in addition to soil moisture changes, which also 
impact the changes in the MAE value. Nevertheless, 
the notable point is the lesser impact of soil mois-
ture changes on the MAE value in the OPTRAM-
TOTRAM model compared to the DisTRAD model.

Figure  6 and 7 display the scatter plot of down-
scaled LST data and observational data for the 
OPTRAM-TOTRAM and DisTRAD models, respec-
tively. LST D represents downscaled land surface 
temperature, while LST O represents observational 
data for land surface temperature. A clear linear rela-
tionship between these data is evident. The statisti-
cal analysis results for both models are presented in 
Table 5. For the OPTRAM-TOTRAM model, the  R2, 
RMSE, and MBE values are calculated as 0.9, 3.4 
degrees Celsius, and 0.17 degrees Celsius, respec-
tively, indicating significantly better performance 
than the DisTRAD model. Additionally, irrigated 
points (LST I) are identified in Figs. 7 and 8, as soil 
moisture significantly affects errors in the LST image 
scaling process. The results demonstrate a decrease in 
the MAE and RMSE error measurement indices by 
approximately 0.4 and 1.2 degrees Celsius, respec-
tively, for the OPTRAM-TOTRAM model compared 
to the DisTRAD model on days when irrigation was 
carried out. Therefore, the results indicate superior 
performance of the OPTRAM-TOTRAM model, even 
on days with irrigation.

Fig. 7  Shows the scatter 
plot of the downscaled 
LST data and the observed 
data (OPTRAM-TOTRAM 
model) y = 1.0084x - 0.3135

R² = 0.9093

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

LS
T 

O

LST D

LST D - LST O

LST I

Linear (LST D - LST O)

Table 5  Statistical analysis results of the downscaled LST 
data for the OPTRAM-TOTRAM and DisTRAD models

Model RMSE (C°) MBE (C°) R2

OPTRAM-TOTRAM 3.4 0.17 0.9
DisTRAD 9.09 -0.8 0.55
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Conclusions

This research aimed to explore the potential use of 
the TOTRAM and OPTRAM soil moisture esti-
mation models for refining the LST data from the 
MODIS sensor in irrigated areas. The findings sug-
gest that combining these models can effectively 
enhance the resolution of MODIS sensor data to 20 
m using Sentinel satellite images. The OPTRAM-
TOTRAM model emerges as a superior method for 
refining LST sensor data compared to the DisTRAD 
model in the study area. Variations in soil moisture 
and non-uniform data acquisition times pre and post 
irrigation were identified as key factors contributing 
to errors in LST refinement. However, the results 
demonstrate that the OPTRAM-TOTRAM model 
significantly mitigates these issues and outperforms 
the DisTRAD model under similar conditions. Fur-
thermore, the study reveals that on irrigation days, 
the MAE and RMSE error indices decreased by 
approximately 0.4 and 1.2 degrees Celsius, respec-
tively, for the OPTRAM-TOTRAM model com-
pared to the DisTRAD model. Thus, indicating the 
superior performance of the OPTRAM-TOTRAM 
model even on irrigation days.
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