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Abstract The present study investigates the sea-
sonal variations in leaf ecophysiological traits and 
strategies employed by co-occurring evergreen 
and deciduous tree species within a white oak for-
est (Quercus leucotrichophora A. Camus) ecosys-
tem in the central Himalaya. Seasonal variations in 
physiological, morphological, and chemical traits 
were observed from leaf initiation until senescence 
in co-occurring deciduous and evergreen tree spe-
cies. We compared various parameters, including 
net photosynthetic capacity  (Aarea and  Amass), leaf 
stomatal conductance  (gswarea and  gswmass), transpi-
ration rate  (Earea and  Emass), specific leaf area (SLA), 
mid-day water potential (Ψmd), leaf nitrogen (N) 
and phosphorus (P) concentration, leaf total chlo-
rophyll concentration, photosynthetic nitrogen- and 
phosphorus-use efficiency (PNUE and PPUE), and 
water use efficiency (WUE) across four evergreen 
and four deciduous tree species. Our findings reveal 
that evergreen and deciduous trees exhibit divergent 
strategies in coping with seasonal changes, which 
are crucial for their survival and growth. Decidu-
ous trees consistently exhibited significantly higher 

photosynthetic rates, transpiration rates, mass-based 
N and P concentrations  (Nmass and  Pmass), mass-based 
chlorophyll concentration  (Chlmass), SLA, and leaf 
Ψmd, while maintaining lower leaf structural invest-
ments throughout the year compared to evergreen 
trees. These findings indicate that deciduous trees 
achieve greater assimilation rates per unit mass and 
higher nutrient-use efficiency. Physiological, morpho-
logical, and leaf N and P concentrations were higher 
in the summer (fully expanded leaf) than in the fall 
(senesced leaf). These insights provide valuable con-
tributions to our understanding of tree species coex-
istence and their ecological roles in temperate forest 
ecosystems, with implications for forest management 
and conservation in the Himalayan region.

Keywords Evergreen and deciduous trees · 
Acquisitive and conservative strategies · Leaf 
longevity · Leaf phenology · Photosynthesis and 
stomatal conductance · Water potential

Introduction

Forests, as essential components of terrestrial eco-
systems, play a pivotal role in global biogeochemi-
cal cycles, carbon sequestration, and the maintenance 
of biodiversity (Berner & Law, 2016; Buotte et  al., 
2020; Joshi & Garkoti, 2020). They are particularly 
diverse in montane regions, such as the central Hima-
laya, where a multitude of tree species coexist, each 
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adapted to specific ecological niches and character-
ized by unique ecophysiological traits (Maharjan 
et al., 2021; Joshi et al., 2023). Evergreen and decidu-
ous tree species represent two distinct strategies for 
coping with the challenges of seasonal variations in 
environmental conditions, including temperature, 
moisture, and light availability (Choat et  al., 2006; 
Tomlinson et al. 2014; Bai et al., 2015; Wang et al., 
2022). In this context, leaf ecophysiological traits and 
strategies of co-occurring tree species within a forest 
community have been the subject of intense research 
owing to their crucial role in shaping species coex-
istence and ecosystem functioning (He et  al., 2023; 
Visakorpi et  al., 2022). Seasonal variations in these 
traits and strategies provide valuable insights into the 
adaptations of tree species to changing environmen-
tal conditions, thereby helping us comprehend the 
response of forests to ongoing climate change (Bey-
schlag & Ryel, 2007; Harrison et  al., 2010;  Legg, 
2021; Visakorpi et al., 2022; Hu et al., 2023).

Leaf ecophysiological traits are fundamental indi-
cators of a tree’s response to its environment (Ack-
erly et al., 2000; Khan et al., 2022; Wang et al., 2022). 
These traits encompass a wide range of physiological 
processes, including photosynthesis, transpiration, 
nutrient allocation, and water-use efficiency. Seasonal 
variations in these traits may provide crucial insights 
into the mechanisms governing tree adaptations and 
acclimation (Bai et al., 2015; Choat et al., 2006; Ishida 
et  al., 2010). For evergreen species, which main-
tain leaves throughout the year, the challenge lies in 
sustaining leaf function during periods of reduced 
resource availability, such as the cold and dry winter 
months. Deciduous species, on the other hand, invest 
heavily in leaf production during the growing season 
and must coordinate leaf shedding and regrowth to 
optimize resource use efficiency (Negi & Singh, 1992; 
Negi, 2006; Devi & Garkoti, 2013; Vico et al., 2015; 
Estiarte & Peñuelas, 2015; Joshi & Garkoti, 2023). 
Numerous studies have documented that deciduous 
plants tend to adopt a more resource-acquisitive strat-
egy by increasing their leaf nutrient concentrations and 
specific leaf area (SLA) (Choat et  al., 2006; Tomlin-
son et al., 2014; Bai et al., 2015; Wang et al., 2022). 
For instance, deciduous trees often exhibit higher leaf 
nitrogen concentrations (N), a vital element for plant 
growth, in comparison to co-occurring evergreen trees. 
This increased leaf N in deciduous plants is com-
monly associated with higher SLA and light-saturated 

photosynthetic rates, which enable them to achieve 
greater carbon assimilation rates when environmental 
conditions are favorable. Conversely, the evergreen 
leaf habit is often considered a more ‘conservative’ 
approach to leaf strategy (Reich et  al., 1997; Wright 
et  al., 2004). An advantage of retaining their leaves 
year-round is that evergreen species can maintain pho-
tosynthesis in adverse seasons when deciduous spe-
cies cannot, thereby exhibiting resilience in unfavora-
ble conditions (Reich et al., 1997; Wright et al., 2004; 
Ishida et al., 2005; Tomlinson et al., 2014).

The central Himalayan region, renowned for its 
rich biodiversity and unique ecological features, har-
bors diverse forest ecosystems that play a crucial role 
in maintaining ecological balance. Among these, the 
white oak forest stands as a prominent representative, 
featuring a fascinating interplay between evergreen and 
deciduous tree species. With its steep altitudinal gra-
dients, the central Himalayan region offers a unique 
opportunity to investigate the ecological strategies 
of evergreen and deciduous tree species in response 
to the pronounced seasonality (Negi & Singh, 1992; 
Negi, 2006; Poudyal et al., 2004). The region is home 
to diverse vegetation, with white oak (Quercus leu-
cotrichophora A. Camus) forests covering approxi-
mately 12,000  km2 being one of the dominant forest 
types (Dhyani et al., 2020). The white oak forest is par-
ticularly noteworthy due to the co-occurrence of ever-
green and deciduous tree species within the same eco-
system. The coexistence of the species with different 
leaf phenologies raises intriguing questions regarding 
how these species adjust their ecophysiological strate-
gies in response to the seasonal climate variations that 
occur at high elevations. White oak forests are emblem-
atic of the region’s temperate ecosystems and provide 
critical ecosystem services, including carbon sequestra-
tion, habitat provision, and water regulation, the coex-
istence of evergreen and deciduous tree species in these 
forests provides an ideal setting for studying how differ-
ent leaf ecophysiological traits and strategies contrib-
ute to their success and the functioning of the ecosys-
tem (Joshi & Garkoti, 2023; Joshi et al., 2024; Mishra 
et al., 2024; Sigdel et al., 2023; Singh et al., 2023). The 
central Himalayan region experiences distinct seasonal 
changes in temperature, precipitation, and photoperiod, 
which pose unique challenges to the evergreen and 
deciduous species. These challenges may drive diver-
gent strategies among species to cope with these sea-
sonal fluctuations. Evergreens may exhibit higher leaf 
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longevity and increased drought tolerance, while decid-
uous species may prioritize rapid growth and energy 
conservation through leaf shedding.

Seasonal variations in environmental factors pose 
distinct challenges for plant species, influencing their 
adaptive strategies to ensure survival and growth. In 
the context of the central Himalayan white oak forest, 
the interplay between evergreen and deciduous trees 
unveils a compelling narrative of ecological resilience 
and adaptation. Understanding the nuances of leaf eco-
physiological traits becomes imperative to unravel the 
mechanisms governing these species’ responses to the 
dynamic seasonal changes prevalent in the region. This 
study aims to elucidate the seasonal dynamics of key 
leaf ecophysiological traits, such as photosynthetic rates, 
stomatal conductance, and leaf water potential, among 
others, in both evergreen and deciduous tree species. By 
examining these traits across different seasons, we seek 
to unravel the distinct adaptive strategies employed by 
these trees to cope with the contrasting environmen-
tal conditions experienced throughout the year. In this 
context, the present study aims to investigate the sea-
sonal variations in leaf ecophysiological traits and leaf 
strategies of co-occurring evergreen and deciduous tree 
species in a white oak forest in the central Himalaya. 
Specifically, we hypothesize that these two functional 
groups will exhibit distinct patterns of leaf trait varia-
tions across seasons, reflecting their differing resource 
acquisition and utilization strategies. Additionally, we 
expect that the evergreen species will maintain higher 
leaf trait values during winter, while deciduous species 
may show greater plasticity in response to changing 
environmental conditions. To test the above hypothesis, 
we have the following predictions: (1) leaf water poten-
tial, area and mass-based leaf-level gas exchange (sto-
matal conductance, photosynthetic rate, transpiration 
rate) would differ between co-occurring evergreen and 
deciduous tree species, (2) evergreen trees have lower 
nutrient efficiency consequently lower photosynthetic 
rates compared to deciduous trees.

Materials and methods

Study area

The study was conducted within the Ukhimath region, 
situated at coordinates 30°31′36.7″ N and 79°6′42.0″ 
E, and an elevation of 1612  m above sea level. The 

study sites are located close to the Kedarnath Wildlife 
Sanctuary, in the western region of the central Hima-
laya (Fig.  1), providing a unique and ecologically 
diverse environment for the investigation of various 
flora and fauna species in this pristine and high-altitude 
ecosystem. The climate in the study area is defined 
by its cold temperate and seasonal nature. Through-
out the year, the average minimum and maximum 
temperatures exhibit noticeable variations, reaching 
a low of − 1.1 °C in January and ascending to a peak 
of 13.4 °C in July. Notably, the mean maximum tem-
perature experiences a gradual ascent from 11.6  °C 
in January to a warmer 24.4  °C in June. These tem-
perature fluctuations contribute to the distinctiveness 
of the region’s climate, shaping its overall climatic 
profile. Throughout the study period, monthly rain-
fall varied from 7.3 mm in November to 637.1 mm in 
July (Fig.  1). Over the study period, the cumulative 
yearly rainfall in the study area amounted to 1983 mm, 
with over 70–80% of this occurring during the mon-
soon season (July–September), and moderate to heavy 
snowfall during December through February. The 
main canopy height is 15 m, with a few emergent trees 
reaching heights exceeding 20 m.

With a leaf area index (LAI) of 5.5 m2 m⁻2 and a 
corresponding tree density of 980 trees per hectare, as 
documented by Joshi and Garkoti in 2020, the study 

Fig. 1  Location of the study area (a) and patterns of monthly 
temperature and rainfall (b) at Ukhimath Central Himalaya
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provides a comprehensive overview of the vegeta-
tion cover in the specified area. The soil in the study 
area was classified as sandy loam, brown podzolic, 
and mixed with pebbles and gravel (Joshi & Garkoti, 
2021).

Tree species and ecophysiological traits measurement

Four evergreen species were chosen for this study: 
Quercus leucotrichophora A. Camus, Rhododen-
dron arboreum Sm, Myrica esculenta Buch.-Ham. 
ex D.Don, and Quercus floribunda Lindl. ex A. 
Camus. Additionally, four winter-deciduous species, 
namely Alnus nepalensis D. Don, Pyrus pashia Lin-
naeus, Lyonia ovalifolia (Wall.) Drude, and Symplo-
cos paniculata Miq, were selected. All of these tree 
species were commonly found at the study sites. The 
evergreen tree species had a leaf lifespan of approxi-
mately 1  year, while the deciduous species retained 
their leaves for a period ranging from six to 9 months. 
During winter, the deciduous tree species remained 
leafless for three to 4 months (Table 1).

The leaf ecophysiological traits were measured 
in 2019 during spring (February to April), summer 
(May to July), autumn (September to November), 
and winter (December to February) to represent dif-
ferent leaf phenology. For each species, we selected 
five representative trees with similar diameters at 
breast height, which were mature and fully exposed to 
sunlight for sampling. Measurements were conducted 
between 9:30 AM and 12:00 Noon local solar time to 

minimize sources of diurnal heterogeneity and avoid 
midday depression in three to five fully expanded 
healthy leaves. Since the canopy was not easily reach-
able due to the absence of canopy cranes or towers, 
we chose fully mature leaves from sun-exposed ter-
minal canopy branches to measure leaf water poten-
tial, gas exchange, and leaf functional traits (Ishida 
et  al., 2023; Zhang et  al., 2013). The leaf pheno-
phases encompassed various categories, such as leaf 
initiation (spring), full leaf expansion (summer), full 
expansion and maturity (autumn), and leaf senes-
cence (autumn and winter).

Area-based physiological traits, including the pho-
tosynthetic rate  (Aarea; µmol  CO2  m−2   s−1), stomatal 
conductance  (gswarea; mol  H2O  m−2   s−1), and tran-
spiration rate  (Earea; mol  H2O  m−2   s−1), were meas-
ured using an open-flow, portable infrared gas ana-
lyzer (IRGA) (Li-6800, Li-Cor, Lincoln, NE, USA) 
(Evans & Santiago, 2014) under ambient conditions. 
Air temperature (T air, °C), leaf temperature (T leaf, 
°C), humidity and photosynthetic photon flux density 
(PPFD, µmol  m−2 s−1) were recorded by the IRGA at 
each measurement using a 6-cm2 chamber equipped 
with red–blue light-emitting diodes on clear, cloud-
less days. Measurements were initiated after ensur-
ing that the intercellular  CO2 to ambient  CO2 ratios, 
vapor pressure difference (VPD), as well as the rates 
of photosynthesis and conductance, had stabilized 
for a minimum duration of 2  min (Joshi & Garkoti, 
2023). After conducting gas exchange measure-
ments, we harvested 30 or more mature leaves from 

Table 1  Major phenological events of selected tree spe-
cies in a Indian central Himalayan oak forest and tree family, 
leaf flushing, leaf drop, leafless month(s) and leaf lifespan 

(months). Season: four seasonal periods: spring (Feb–April), 
summer (May–July), autumn (Sep–Nov) and winter (Dec–Feb)

Species Family Leaf flushing Leaf drop Leafless month(s) Leaf 
lifespan 
(months)

Evergreen
  Quercus leucotrichophora Fagaceae March–April March–June None 13–14
  Rhododendron arboreum Ericaceae March–April March–June None 14–16
  Myrica esculenta Myricaceae April–May June–July None 13–15
  Quercus floribunda Fagaceae March–April May–June None 13–14

Deciduous
  Alnus nepalensis Betulaceae Jan–March April–May Jan–March 7–9
  Pyrus pashia Rosaceae Feb–March Nov–Dec Jan–March 6–7
  Lyonia ovalifolia Ericaceae Feb–March Nov–Dec Dec–March 6–8
  Symplocos paniculata Symplocaceae Feb–March Nov–Dec Jan–March 6–7
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each species and measured their surface areas using 
a leaf area meter (LI 3000C, LI-COR, Inc). The har-
vested leaves were then dried for a minimum of 48 h 
at 80  °C, and their dry weights were subsequently 
determined. Specific leaf area (SLA;  m2  kg−1) was 
calculated as the ratio of leaf dry mass to leaf area. 
Mass-based assimilation rate  (Amass; µmol  CO2 
 m−2  s−1), mass-based stomatal conductance  (gswmass; 
mol  H2O  m−2  s−1), and mass-based transpiration rate 
 (Emass; mol  H2O  m−2  s−1) were calculated as follows: 
 Amass =  Aarea × SLA;  gswmass =  gswarea × SLA; and 
 Emass =  Earea × SLA, respectively.

Leaf N and P concentrations were measured 
because they are essential nutrient elements for pho-
tosynthesis, specifically RUBISCO and ATP. The 
measured leaf functional traits included mass-based 
nitrogen (leaf  Nm; g  kg−1), mass-phosphorus (leaf 
 Pm; g  kg−1), and total chlorophyll (Chl; mg  g−1) con-
centrations. For chemical analysis, eight to ten leaf 
discs of a defined area (1.60  cm2) were excised from 
the leaves (excluding the petiole), dried at 64 °C until 
constant weight was achieved, and then weighed for 
each species. During the analysis, all samples were 
triplicated and averaged. Leaf N concentrations were 
determined using the Kjeldahl method. Leaf P con-
centration was determined using ammonium molyb-
date and the absorbance was read at 660  nm (Shi-
madzu UV-1800, Shimadzu Corp., Kyoto, Japan). 
Fresh leaves were cleaned to remove contaminants, 
and 0.1  g of fresh leaf sample was used to extract 
chlorophyll using 5 ml of dimethylsulfoxide (DMSO), 
with five replicates for each tree and season. After 
preheating the sample test tube to 64  °C in a water 
bath for 4 h, the sample tissues were decolorized and 
cooled to room temperature. The absorbance of the 
supernatant was measured using a spectrophotometer 
(Shimadzu UV-1201, Kyoto, Japan). Chlorophyll a 
and b concentrations were calculated using readings 
at 665 nm and 645 nm (Barnes et al., 1992; Wellburn, 
1994).

Area-based N and P concentrations  (Na, and  Pa 
mg  m−1) were calculated mass based of  Nm and  Pm 
concentrations and multiplied by the specific leaf area 
(i.e.,  Na and  Pa =  Nm and  Pm × SLA). Photosynthetic 
resource-use efficiency traits were determined by cal-
culating nitrogen-phosphorus use efficiency (PNUE 
or PPUE =  Aarea/Narea or  Aarea/Parea µmol  CO2 N and 
P  s−1   g−1). Intrinsic water-use efficiency (WUEi; 
µmol  CO2 µmol−1  H2O) was measured as the ratio of 

 Aarea/gswarea, and water-use efficiency (WUE; µmol 
 CO2 µmol−1  H2O) was derived as the ratio of  Aarea/
Earea (Farquhar and Sharkey 1982). Leaf water poten-
tial (ΨL) was measured using a pressure chamber 
(Model 1000, PMS Instrument, Corvallis, OR, USA). 
Five sun-exposed terminal twigs (< 15-cm long) were 
excised and placed in sealed polythene bags before 
measuring leaf water potential (ΨL) during each sam-
pling period.

Statistical analysis

We employed a two-way repeated-measures ANOVA 
along with Tukey tests for post hoc analysis to assess 
the differences in morphological and physiological 
leaf traits across growth forms (evergreen and decidu-
ous), seasons (spring, summer, autumn, and winter), 
and their respective interactions. To evaluate the 
normality of residuals, we utilized the Shapiro–Wilk 
statistic. When deemed essential, adjustments to the 
data were made using the Box-Cox method. These 
analyses were performed using the R programming 
language, version 4.0 (R Core Team), and the MS 
Excel (2013) analytical software. All analyses present 
the data as the mean of five replicate values ± stand-
ard error. We also calculated Pearson’s correlation 
coefficient to evaluate the relationships among the 
measured traits. Principal component analysis (PCA) 
was performed to identify the eco-physiological traits 
using ‘FactoMineR’ and ‘Facto-extra’ packages in R.

Results

Seasonal variation in leaf ecophysiology traits

Results revealed that evergreen and deciduous spe-
cies exhibited contrasting leaf gas exchange traits 
through the season. Throughout the entire growing 
season, deciduous trees consistently demonstrated 
significantly greater mass  (Amass) and area-based 
 (Aarea)  CO2 assimilation rate, transpiration rates 
 (Earea, and  Emass), and stomatal conductance  (gswarea 
and  gswmass) compared to evergreen trees (Fig.  2). 
The values of  Aarea measured during the summer 
season ranged from 5.2  µmol  CO2  m−2   s−1 in M. 
esculenta to 13.5  µmol  CO2  m−2   s−1 in L. ovalifo-
lia. The  gswarea varied from 0.18 mol   m−2   s−1 in R. 
arboreum to 0.29 mol  m−2  s−1 in L. ovalifolia, while 



 Environ Monit Assess (2024) 196:634

1 3

634 Page 6 of 16

Vol:. (1234567890)

 Earea ranged from 2.8 mol  m−2  s−1 in R. arboreum to 
7.2  mol   m−2   s−1 in L. ovalifolia. The average  Aarea 
in deciduous species was 38.89% higher than the 
evergreen species (7.71 ± 0.74 vs. 4.98 ± 0.56  µmol 
 CO2  m−2   s−1), the difference being statistically sig-
nificant (P < 0.05). The mass-based  (Amass)  CO2 
assimilation rate in deciduous species was signifi-
cantly higher than evergreen species (45.69 ± 5.67 vs. 
29.69 ± 4.23 µmol  CO2  kg−1   s−1, respectively). A 21 
to 49% increment in deciduous species and 27 to 54% 
increment in evergreen species in  Aarea were observed 
between the spring to summer season. A 41 to 60% 
decline in deciduous species and 34 to 70% decline in 
 Aarea were observed between summer to autumn and 
summer to winter season value, respectively. Because 
deciduous species were leafless for 3 or 4 months of 
the year, a declined  Aarea was 100% between summer 
to winter season.

PNUE, PPUE, WUE, and WUEi demonstrated 
substantial differences between deciduous and ever-
green species during the spring, summer, autumn, 
and winter. Specifically, PNUE and PPUE were 
significantly higher in deciduous tree species than 

in evergreen species, while WUE and WUEi dis-
played the opposite trend (Fig.  3). Across season, 
WUEi, WUE, PNUE, and PPUE increased from 
spring to summer and decreased thereafter with leaf 
age. Across species, A. nepalensis and S. paniculata 
demonstrated highest average values for PNUE and 
PPUE. M. esculenta displayed the highest average 
value of WUEi, and WUE (Fig. 3).

Seasonal variation in leaf chemical and 
morphological traits

The area-based concentrations of nitrogen  (Narea), 
phosphorus  (Parea), total chlorophyll (Chl), and SLA 
varied significantly between deciduous and ever-
green species and among seasons (P < 0.001), with 
significant season × species interactions. The decid-
uous trees exhibited significantly higher  Narea,  Parea, 
total Chl, and SLA compared to the evergreen trees. 
Among species highest  Narea,  Parea was recorded for 
A. nepalensis and the lowest for Q. floribunda. In 
deciduous species, specific leaf area (SLA) var-
ied from 4.2 ± 0.14 (S. paniculata in autumn) to 

Fig. 2  Seasonal variations in area-based and mass-based pho-
tosynthesis assimilation  (Aarea and  Amass), stomatal conduct-
ance  (gswarea and  gswmass) and transpiration rate  (Earea and 
 Emass) for four evergreen species (Quercus leucotrichophora, 
Rhododendron arboreum, Myrica esculenta, Quercus flo-

ribunda) and four deciduous species (Lyonia ovalifolia, Alnus 
nepalensis, Pyrus pashia, Symplocos paniculata). Values are 
means (n = 5, ± SE). All statistical significances were recog-
nized by P < 0.05 (***P < 0.001, **P < 0.01, *P < 0.05, n.s.: 
P ≥ 0.05)
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8.78 ± 0.32  m2   kg−1 (A. nepalensis in summer). 
Evergreen species exhibited SLA ranging from 
3.63 ± 0.16 (Q. floribunda in winter) to 6.8 ± 0.23 
 m2   kg−1 (M. esculenta in summer) (Fig.  4). For 
deciduous species, ranged from 2.92 ± 0.12 (S. pan-
iculata in autumn) to 6.1 ± 0.11  g   m−2 (A. nepa-
lensis in summer). Among evergreen species,  Narea 
varied from 2.47 ± 0.13 (Q. floribunda in winter) to 
5.71 ± 0.21 g  m−2 (R. arboretum in summer). Q. flo-
ribunda exhibited the lowest and A. nepalensis the 
highest  Parea. In the winter season, M. esculenta had 
the lowest, while L. ovalifolia in summer had the 
highest total Chl content.

Seasonal variation in water potential

The midday water potential (Ψmd) was significantly 
influenced by species and season, as indicated in 
Fig. 5. During the summer season, when leaves were 
fully expanded, the midday water potential (Ψmd) 

remained consistently above − 2.0  MPa across all 
trees. Specifically, in the summer, the midday water 
potential for deciduous species was notably higher 
than for evergreen species. It ranged from − 1.62 MPa 
(R. arborium) to − 1.93  MPa (Q. leucotrichophora) 
among the evergreen trees and from − 1.11  MPa (S. 
paniculata) to − 1.74 MPa (A. nepalensis) among the 
deciduous trees, as depicted in Fig. 5.

Correlation between leaf traits

A significant positive correlation was observed 
between mass and area-based A, E, and gsw. Mass-
based A, E, and gsw also exhibited positive corre-
lations with  Narea,  Parea, and SLA. SLA was posi-
tively correlated with  Narea,  Parea, whereas SLA did 
not show any correlation with WUE and WUEi. In 
addition, SLA and  Narea, and  Parea were positively 
correlated with PNUE and PPUE. In addition,  Narea, 
and  Parea were positively correlated with total Chl 

Fig. 3  Seasonal variations in intrinsic water use efficiency 
 (WUEi), water use efficiency (WUE), photosynthetic N-, and 
P-use efficiency (PNUE and PPUE) for four evergreen species 
(Quercus leucotrichophora, Rhododendron arboreum, Myrica 
esculenta, Quercus floribunda) and four deciduous species 

(Lyonia ovalifolia, Alnus nepalensis, Pyrus pashia, Symplo-
cos paniculata). Values are means (n = 5, ± SE). All statisti-
cal significances were recognized by P < 0.05 (***P < 0.001, 
**P < 0.01, *P < 0.05, n.s.: P ≥ 0.05)
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Fig. 4  Seasonal variations in specific leaf area (SLA), mass-
based leaf N, mass-based leaf P, chlorophyll (Chl) for four 
evergreen species (Quercus leucotrichophora, Rhododendron 
arboreum, Myrica esculenta, Quercus floribunda) and four 

deciduous species (Lyonia ovalifolia, Alnus nepalensis, Pyrus 
pashia, Symplocos paniculata). Values are means (n = 5, ± SE). 
All statistical significances were recognized by P < 0.05 
(***P < 0.001, **P < 0.01, *P < 0.05, n.s.: P ≥ 0.05)

Fig. 5  Seasonal variations in mid-day water potential for four 
evergreen species and four deciduous tree species. Values are 
means (n = 5, ± SE). All statistical significances were recog-
nized by P < 0.05 (***P < 0.001, **P < 0.01, *P < 0.05, n.s.: 
P ≥ 0.05). Note Q.l: Quercus leucotrichophora; R.a: Rhodo-

dendron arboreum; M.e: Myrica esculenta: Q.f: Quercus flo-
ribunda) and four deciduous species (L.o: Lyonia ovalifolia; 
A.n: Alnus nepalensis; P.p: Pyrus pashia; S.p: Symplocos pan-
iculata)
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contents. Correlation analysis also demonstrates a 
negative relationship between WUE,  WUEi, and E, 
A, as well as gsw (Fig.  6). The PCA revealed dis-
tinct patterns of variation in leaf ecophysiological 
traits between evergreen and deciduous species. 
The first and second axes of principal component 
analysis (PCA) explained, respectively, 53.6% and 
22% of the variation in the ecophysiological traits 
measured (Fig.  7). The first PCA axis was defined 
by gas exchange  (Amass,  Aarea, gsw), leaf nutrients 
N and P and photosynthetic nutrient use efficiency 
traits (PNUE, and PPUE). The gas exchange traits 
were positively correlated with leaf nutrient con-
centration. The second PCA axis reflected variation 
in WUE and  WUEi. The PCA also revealed a clear 
separation between the ecophysiological traits in 
species and generated two groups. Deciduous spe-
cies tended to exhibit higher scores along PC1, indi-
cating a greater photosynthetic capacity and nutrient 
use efficiency. PC2 explained 22% of the total vari-
ance and primarily captured variations in leaf water-
use efficiency (WUE). Evergreen species exhibited 
higher scores along PC2, suggesting a stronger reli-
ance on water-conserving strategies.

Discussion

Seasonal variation in leaf ecophysiology traits

The results of this study provide valuable insights into 
the seasonal dynamics of leaf gas exchange traits in 
evergreen and deciduous tree species. The contrasting 
patterns observed between these two groups shed light 
on the adaptive strategies employed by these plants to 
cope with changing environmental conditions through-
out the year. One of the key findings of this study is 
the consistently higher leaf gas exchange rates in 
deciduous trees compared to evergreen trees through-
out the growing season. Deciduous trees exhibited 
significantly greater mass and area-based photosyn-
thetic rates, transpiration rates, and stomatal conduct-
ance. This pattern suggests a more efficient utilization 
of resources for carbon assimilation and water tran-
spiration in deciduous species, potentially contribut-
ing to their overall growth and survival (Choat et al., 
2006; Ishida et  al., 2010). The significant increase in 
 Aarea in deciduous species, with rates being 38.89% 
higher than evergreen species, highlights the greater 
photosynthetic activity. The corresponding increase in 
 gswarea and  Earea further supports the idea of enhanced 
water and  CO2 exchange in deciduous trees during the 
summer months (Kutsch et al., 2009; Pivovaroff et al., 
2016; Albert et al., 2018; Joshi & Garkoti, 2023). Both 
deciduous and evergreen species exhibited a substan-
tial increment in  Aarea between the spring to summer 
seasons, indicative of a vigorous growth phase. How-
ever, a subsequent decline in  Aarea was observed as 
the seasons transitioned from summer to autumn and 
summer to winter. This decline was more pronounced 
in deciduous species, reaching 41 to 60%, while ever-
green species showed a range of 34 to 70%. The drastic 
reduction in  Aarea during the transition from summer to 
winter in deciduous species can be attributed to their 
leafless state during this period. The deciduous strat-
egy involves maximizing photosynthetic rates during 
favorable conditions while minimizing resource loss 
during periods of leaflessness. In contrast, evergreen 
species maintain a more consistent but comparatively 
lower level of physiological activity throughout the 
year. The correlation between mass photosynthetic rate 
 (Amass) and other traits like  Emass and  gswmass suggests 
that tree species with higher leaf mass invest more in 
photosynthetic rates and maintain greater transpiration 
rates. These fluctuations may be linked to factors such 

Fig. 6  Correlation for leaf ecophysiological traits across all 
species and season

Fig. 7  Principal component analysis (PCA) of studied leaf 
ecophysiological traits of evergreen and deciduous trees
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as temperature, light availability, and water availabil-
ity (Albert et al., 2018; Pivovaroff et al., 2016). These 
fluctuations may be linked to factors such as tempera-
ture, light availability, and water availability.

Deciduous trees are known for their distinct sea-
sonal leaf shedding and regrowth patterns (Devi & 
Garkoti, 2013). The consistently higher mass and 
area-based photosynthetic rates observed in deciduous 
trees compared to evergreen trees highlight their abil-
ity to capture and utilize sunlight more efficiently dur-
ing the growing season (Tomlinson et  al., 2013; Bai 
et al., 2015; Sancho-Knapik et al., 2021). In this study, 
deciduous species exhibit leaves with high mass-
based photosynthetic rates  (Amass) and SLA. Decidu-
ous species optimize light capture by investing heav-
ily in leaf area relative to dry matter, which results in 
carbon gain at the expense of a shorter leaf lifespan. 
These plants shed their leaves during the winter sea-
son (Ávila-Lovera et  al., 2019; Eamus, 1999; Eamus 
& Prichard, 1998; Eamus & Prior, 2001; Ishida et al., 
2023; Powers & Tiffin, 2010; Sobrado, 1991). Con-
versely, evergreen species have leaves with low SLA 
and relatively lower  Amass values compared to decidu-
ous species. Several other evergreen species exhibit 
a similar pattern (Ávila-Lovera et  al., 2019; Eamus, 
1999; Eamus & Prichard, 1998; Eamus & Prior, 2001; 
Ishida et  al., 2023; Powers & Tiffin, 2010; Sobrado, 
1991). These plants retain their leaves for more than 
a year, enabling them to continue photosynthesizing 
during the winter season, albeit at reduced rates.

Additionally, the higher transpiration rates in decid-
uous trees signify their greater water loss through sto-
matal openings (Burghardt & Riederer, 2003; Marchin 
et al., 2023). The increased transpiration rate in decidu-
ous tree species is often associated with the larger leaf 
area during the growing season. Conversely, with the 
persistent foliage, evergreen trees exhibit lower photo-
synthetic and transpiration rates than their deciduous 
counterparts. This adaptation allows them to conserve 
water and maintain a more consistent level of photo-
synthesis year-round. Evergreen trees often thrive 
in environments with lower water availability and 
may play a vital role in stabilizing ecosystems during 
drought (Garkoti et al., 2001; Tomlinson et al., 2013).

The differences observed in stomatal conduct-
ance  (gswarea) among tree species further emphasize 
the trade-offs between water conservation and carbon 
gain. Deciduous trees generally exhibited higher  gswarea 
values, indicating a more open stomatal structure that 

facilitates increased photosynthesis but also leads to 
greater water loss. On the other hand, evergreen trees 
tend to have lower  gswarea, conserving water but poten-
tially limiting their photosynthetic potential (Bai et al., 
2015; Ishida et al., 2014; Pivovaroff et al., 2016; Tor-
ngern et al., 2021; Wright et al., 2004). The variations 
in photosynthetic N- and P-use efficiency (PNUE and 
PPUE) among species, seasons, and their interaction 
indicate the adaptability of different tree species. The 
deciduous species exhibited significantly higher PNUE 
and PPUE than the evergreen species, suggesting a 
more efficient use of nitrogen and phosphorus resources 
during photosynthesis (Bai et  al., 2015; DeLucia & 
Schlesinger, 1995). This difference may be attributed 
to the deciduous species’ ability to shed leaves during 
unfavorable seasons (winter), conserve nutrients, and 
optimize resource allocation when conditions are more 
favorable for growth (Devi & Garkoti, 2013; Manzoni 
et al., 2015; Marchin et al., 2010).

Conversely, water use efficiency (WUE) and intrin-
sic water use efficiency (WUEi) displayed an oppo-
site trend, with evergreen species are demonstrating 
higher values. This outcome suggests that evergreen 
species have evolved mechanisms to maximize car-
bon gain per unit of water consumed, likely through 
reduced transpiration rates and more conservative 
water use (Fu et al., 2012; Soh et al., 2019). Among 
the species studied, A. nepalensis and S. paniculata 
trees are having the highest average values of PNUE 
and PPUE. In contrast, M. esculenta displayed the 
highest average values of WUEi and WUE. These 
species-specific differences emphasize the impor-
tance of considering individual plant traits when 
assessing physiological responses. This adaptation is 
particularly advantageous in environments with lim-
ited water availability, where evergreen species can 
maintain photosynthetic activity year-round.

Seasonal variations in leaf chemical and 
morphological traits

One notable pattern observed is the temporal dynamics 
of traits during leaf development. As leaves expand, an 
initial increase in N, P, total Chl, and SLA indicates a 
period of active growth and photosynthetic investment 
(Poorter et al., 2019; Wang et al., 2020). However, this 
is followed by a subsequent decline during leaf senes-
cence, reflecting the plant’s reabsorption and with-
drawal of resources from aging leaves. This difference 
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suggests that deciduous trees may be more resource-
demanding during the active growth period, whereas 
evergreen trees adopt a more conservative resource-
use strategy, possibly to cope with extended periods 
of environmental stress or resource limitation (Reich 
et al., 1997; Eamus, 1999; Poorter and Bongers 2006; 
Bai et al., 2015). The peak in these traits, observed dur-
ing the summer, reflects the optimal conditions for plant 
growth and photosynthesis. This highlights interspe-
cific differences in nutrient acquisition and utilization. 
These variations could influence the competitive inter-
actions between deciduous and evergreen species and 
their responses to changing environmental conditions 
(Bai et  al., 2015; Joshi & Garkoti, 2023; Joshi et  al., 
2024). This suggests that deciduous trees allocate more 
nutrients to their leaves and have a higher chlorophyll 
content on a mass basis. The higher SLA in deciduous 
trees could be an adaptation to capture more sunlight 
during the growing season when leaves are present. 
Among deciduous species, A. nepalensis had the high-
est area-based leaf concentrations of N, P, total Chl, 
and SLA. This species-specific variation indicates that 
different tree species have distinct ecological strategies 
for nutrient allocation and light capture. Within ever-
green species, Q. floribunda exhibited the lowest  Parea, 
and R. arboretum had the highest  Narea. This suggests 
that even within the same functional group, species may 
have unique nutrient strategies. This highlights interspe-
cific differences in nutrient acquisition and utilization. 
M. esculenta had the lowest total chlorophyll content 
in winter among evergreen species. This finding aligns 
with expectations, as evergreen trees often reduce chlo-
rophyll content during the winter months to minimize 
resource loss. However, this is followed by a subsequent 
decline during leaf senescence, reflecting the plant’s 
reabsorption and withdrawal of resources from aging 
leaves. This pattern underscores the plants’ efficient 
resource allocation strategies to maximize their fitness 
and resource use efficiency.

During the summer season, characterized by fully 
expanded leaves and presumably higher evaporative 
demand, it is observed that Ψmd consistently remained 
above − 2.0 MPa across all tree species (Garkoti et al., 
2003; Poudyal et  al., 2004; Singh et  al., 2006; Zobel 
et  al., 2001). This indicates that the trees maintained 
relatively high water potential during the day, sug-
gesting effective water uptake and management. Spe-
cifically, the results indicate that the differences in Ψmd 
between evergreen and deciduous trees were more 

pronounced during the summer season when leaves 
were fully expanded. This suggests a potential adapta-
tion or response to environmental conditions during the 
peak of the growing season. The midday water poten-
tial for deciduous species was significantly higher than 
that for evergreen species during the summer season. 
This difference may be attributed to the distinct physi-
ological and ecological characteristics of deciduous 
and evergreen trees. Deciduous trees, which shed their 
leaves seasonally, demonstrated midday water poten-
tial values ranging from − 1.11 to − 1.74  MPa. This 
suggests that deciduous trees, in this particular study, 
were able to maintain a higher water potential during 
the day, possibly due to increased water uptake. Ever-
green trees, characterized by retaining leaves through-
out the year, exhibited midday water potential values 
ranging from − 1.62 to − 1.93 MPa. These values were 
notably lower compared to deciduous trees, indicating 
a different water-use strategy or physiological adapta-
tion in response to the environmental conditions (Has-
selquist et al., 2010; Ishida et al., 2014; Palomo-Kumul 
et al., 2021). Conversely, evergreen species may excel 
in more consistently humid or temperate conditions due 
to their ability to sustain water uptake and transpiration 
throughout the year.

The positive correlations between mass-based rates 
of photosynthesis, transpiration, and stomatal con-
ductance with area-based nutrient concentrations (N 
and P) and specific leaf area (SLA) indicate that these 
physiological processes are closely linked to the plant’s 
nutrient status and leaf structural characteristics (Niine-
ments, 2007; Wright et  al., 2003; Reich, 2014). Plants 
with higher nutrient concentrations and a greater SLA 
are likely to have more resources for photosynthesis 
and transpiration, leading to increased rates of these 
processes (He et al., 2009; Liu et al., 2023). The revela-
tion that mass-based A, E, and gsw are more strongly 
influenced by area-based N, P, and SLA compared to 
their area-based counterparts, which underscores the 
importance of considering plant size and nutrient con-
tent when studying ecological processes (Bahar et  al., 
2017; Onoda et al., 2017; Han et al., 2020). The nega-
tive relationship between water use efficiency (WUE 
and WUEi) and transpiration (E) and stomatal conduct-
ance (gsw) suggests that plants with higher WUE val-
ues tend to exhibit reduced water loss through transpira-
tion (Cooley et al., 2022; Guerrieri et al., 2019; Hatfield 
et  al., 2019; Zhu et  al., 2021). Moreover, various tree 
species may demonstrate distinct adaptive strategies in 
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response to stomatal density, soil resource availability, 
including soil water and nutrient levels (Islam et  al., 
2024; Joswig et al., 2022). These differences may vari-
ably influence the growth, survival, and competitive 
ability of the coexisting species. Consequently, further 
investigations are required to investigate these hypoth-
eses, unravel the underlying mechanisms and ecological 
consequences involved in empirically assessing these 
hypotheses, and gain deeper insights into associated 
mechanisms and ecological consequences. The results 
of the PCA highlight the contrasting ecophysiological 
strategies employed by evergreen and deciduous trees to 
cope with seasonal environmental variations. Evergreen 
species maintain relatively stable leaf traits throughout 
the year, indicating a conservative strategy optimized for 
resource retention and long-term survival. In contrast, 
deciduous species exhibit more flexible traits, adjusting 
their physiological processes in response to seasonal 
changes in environmental conditions.

Conclusion

For both deciduous and evergreen species, gas exchange 
parameters and leaf water potential were higher during 
the summer compared to the autumn or winter seasons. 
The co-occurring evergreen and deciduous trees in the 
white oak forest exhibited differences in physiological, 
morphological, and chemical traits. The deciduous trees 
displayed higher photosynthesis per unit mass and area, 
transpiration rate, stomatal conductance, PNUE, PPUE, 
and SLA compared to the evergreen trees. Our findings 
support that deciduous trees adopt an acquisitive leaf 
strategy, whereas evergreen trees exhibit a conservative 
leaf strategy. Furthermore, the present study provided 
evidence for the trade-off relationship among leaf physi-
ological, morphological, chemical traits and water use 
efficiency. We observed relatively higher leaf N, P, and 
pigment concentrations, along with higher SLA and 
leaf area, in deciduous trees compared to the evergreen 
trees. These characteristics may effectively control leaf 
gas exchange parameters and demonstrate more suitable 
eco-physiological adaptation strategies. Additionally, 
leaf age has shown a significant negative influence on 
leaf physiological, morphological, and chemical traits, 
with higher values observed in summer compared to 
autumn and winter. Mature and fully expanded leaves 
in deciduous and evergreen species showed higher 
ecophysiological functions by assimilating more  CO2, 

leading to optimum productivity during the summer 
compared to the old and senescent leaves in autumn 
and winter. Further studies are required to gain a deeper 
understanding of the influence of soil moisture, and sto-
matal density on the ecophysiology of deciduous and 
evergreen species in the central Himalaya.
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