
Vol.: (0123456789)
1 3

Environ Monit Assess (2024) 196:575 
https://doi.org/10.1007/s10661-024-12722-y

RESEARCH

Trend analysis of extreme rainfall indices from CHIRPS 
precipitation estimates over the Lake Tana sub‑basin, 
Abbay Basin of Ethiopia

Jemal Ali Mohammed

Received: 6 December 2023 / Accepted: 13 May 2024 / Published online: 24 May 2024 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract  Ethiopia is among the African nations 
most susceptible to climate change because of its fre-
quent droughts and heavy rainfall. Therefore, hydro-
logical and water management problems require an 
investigation of regional variability and extreme rain-
fall patterns. This study analyzed the spatiotemporal 
trends of extreme rainfall in the Lake Tana sub-basin 
(LTSB) of Ethiopia’s upper Blue Nile basin (UBNB) 
between 1981 and 2019. The trend and geographic 
patterns of ten extreme rainfall indices are evaluated 
using high-resolution data from Climate Hazards 
Group InfraRed Precipitation Stations (CHIRPS). 
The researcher used RClimDex, an R software tool, 
to analyze the ten severe rainfall indices. The vari-
ability of the extreme rain indices was also assessed 
by applying the standard anomaly index (SAI). The 
trend analysis shows that the majority of rainfall indi-
ces decreased in the majority of station locations. 
Among the rainfall locations, the decreasing trend 
was only significant in 40% consecutive wet days 
(CWD), 13.33% (R95p and R99p), and 6.66% highest 
rainfall amount in a 1-day period (RX1day). In con-
trast, significant positive patterns were revealed in the 
incidence of rainfall events of number of heavy pre-
cipitation days (R10mm), annual total wet day rainfall 

(PRCPTOT), and consecutive dry days (CDD), with 
significant positive trends of 26.66% (R10mm) and 
40% (PRCPTOT). Furthermore, a spatial distribution 
result of extreme rainfall trends reveals considerable 
variations between stations location. Thus, these find-
ings point to the necessity of creating adaptation and 
mitigation plans for climate change variability within 
the sub-basin.

Keywords  Climate sciences · CHIRPS estimates · 
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Introduction

Weather or climate extreme occurs when a variable’s 
value exceeds or falls beyond an ideal value far from 
the observed range of the variable’s value (IPCC, 
2012). Climate change is related to rising concentra-
tions of greenhouse gases in the environment, which 
have amplified the world’s mean annual tempera-
ture of the surface by 0.07 ◦C per decade since 1880 
(IPCC, 2013, 2018). Almost all seasons worldwide 
have experienced an upward in temperature trends 
in recent years (Cohen et  al., 2012; Rossati, 2017). 
Global climate change has made extreme precipita-
tion events a hot issue in recent years, and their fre-
quency and intensity are on the rise (IPCC, 2012; 
Pendergrass et  al., 2017; IPCC, 2013, 2021). Based 
on a study by Donat et al. (2016), most portions of the 
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earth experience positive trends in extreme rainfall 
events. Extreme rainfall trends are far less regionally 
homogenous than changing temperature trends (Alex-
ander et  al., 2006). Research from India, Europe, 
Ethiopia, the United States, Canada, Ghana, and East-
ern Africa, as well as the western drift of Northern 
America, confirms that severe rainfall events are dis-
tinct across regions (Agilan & Umamahesh, 2018; 
Bezerra et al., 2019; Cardell et al., 2020; Casanueva 
et al., 2014; Hagos et al., 2016; Mladjic et al., 2011; 
Mutiibwa et al., 2015; Wubaye et al., 2023).

Anthropogenic climate change is expected to con-
tinue changing global extreme rainfall characteristics 
(Westra et al., 2013; IPCC, 2021). Forecasts of exces-
sive rainfall show seasonal changes and spatial vari-
ability over different areas of the world. The analy-
sis of extreme rainfall is similar to historical studies. 
According to Almazroui et al. (2021), rainfall is pre-
dicted to decrease over Southern America, Chile, and 
Amazonia’s southern Andes, while it is expected to 
rise over South America and the Pacific Ocean. Like-
wise, Almazroui et al. (2020) report a fallen rainfall 
in Africa’s northern and southern regions, but rising 
in the central areas. Severe rainfall occurrences are 
more sensitive to the effects of climate change and 
represent greater hazards to the natural system than 
mean climatic values (IPCC, 2018).

Ethiopia is a climate extreme area due to its great 
regional and temporal variation in temperature as well 
as rainfall (Berhane et  al., 2020; Gebrechorkos et  al., 
2019; Jothimani et  al., 2020; Mengistu et  al., 2013; 
Wubaye et al., 2023). In consequence, climate extremes 
have profound effects on local economies, environ-
ments, and populations. As a result, understanding 
and analyzing climate extremes is essential for reduc-
ing damage caused by climate extremes. This provides 
people with timely warnings so they can cope or adapt 
better (Asfaw et al., 2018; IPCC, 2013; Wubaye et al., 
2023). In order to address this need, many studies (e.g., 
Ademe et  al., 2020; Geremew et  al., 2020; Gummadi 
et al., 2018; Weldegerima et al., 2018) have examined 
rainfall and temperature trends; however, fewer studies 
have investigated past trends and forecast extreme rain-
fall events. In the Jemma sub-basin, for example, Worku 
et al. (2019) evaluated changes in rainfall extremes and 
found that there were less spatially coherent positive 
trends. Nevertheless, there is a rise in precipitation and 
a decline in the number of dry days in various areas of 
Ethiopia (Gummadi et  al., 2018; Teshome & Zhang, 

2019; Worku et al., 2019; Wubaye et al., 2023). Ethio-
pia’s results are generally in line with studies globally 
that show more complex, but generally wet rainfall 
extremes (Donat et al., 2016). However, extreme rain-
fall exhibits inconsistent trends because of high spa-
tial and temporal variability (Dendir & Birhanu, 2022; 
Worku et al., 2019; Wubaye et al., 2023).

Most studies in Ethiopia are conducted on the whole 
country and large watersheds with different climates. 
In addition, the lack of adequate data limits the appli-
cability of this method in the analysis of data at dif-
ferent locations in Ethiopia (Mohammed et  al., 2022; 
Teshome & Zhang, 2019; Wubaye et al., 2023). There-
fore, analyzing the regional and temporal patterns of 
precipitation extremes at the sub-area scale is impera-
tive in order to put into practice suitable native adap-
tation and mitigation measures for climate extremes. 
The Lake Tana sub-basin of UBNB, which is prone to 
periodic droughts and intense rainfall (Bayissa et  al., 
2015; Mohammed et  al., 2022), is the focus of this 
study. More than any other sub-basin of the upper Blue 
Nile basin (UBNB), the Lake Tana sub-basin (LTSB) 
is described by high levels of soil erosion and sedi-
mentation. Thus, two recent phenomena that can serve 
as exemplary illustrations of uncommon events in the 
basin are the low water level of Lake Tana in 2003 and 
its dramatic rise in 2006 as a result of a flood disaster 
in the Fogera floodplain (Moges & Moges, 2019). This 
research assesses the temporal pattern and spatial vari-
ation of extreme rainfall by utilizing data from the Cli-
mate Hazard Group InfraRed Rainfalls with Stations 
(CHIRPS) satellite estimate over the LTSB. The results 
of this study would help future investigations into cli-
mate change. Additionally, a significant contribution 
from this research will fill in several gaps in the body 
of current knowledge. It will close the knowledge gap 
and expand on the scant research on the variability of 
extreme rainfall in a region often impacted by climate-
related hazards. It is also expected to assist in the devel-
opment of strategies for mitigation and adaptation to 
heavy rainfall events.

Material and methods

Study area description

The LTSB, belonging to the UBN (Abbay) basin’s 
sub-basins, covers an estimated 15,096 km2, of which 
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Lake Tana occupies 3063 km2. Lake Tana is the larg-
est lake in Ethiopia, spanning 3000–3600 km2 and 
reaching a maximum depth of 15 m at 1800 m above 
sea level (m.a.s.l) (Chakilu et  al., 2022). The LTSB 
is found in the north-western Ethiopian plateaus with 
latitudes of 10.95°N and 12.78°N, and longitude 
of 36.89°E and 38.25°E (Fig.  1). The basin’s aver-
age altitude is 2025 m.a.s.l, having the highest peak 
of 4100  m.a.s.l located in the northeastern Semien 
Mountains (Wubneh et al., 2022).

In the basin, there is a tropical highland monsoon 
climate, attributed to a mono-modal rainfall pattern, 
with rainfall peaks occurring in June and September 
throughout the rainy season (Uhlenbrook et al., 2010). 
For the period 1976–2005, rainfall fell between 
764.38 and 2340.94 mm (Wubneh et al., 2022). The 
distribution of rainfall in the area is regulated by 
inter-tropical convergence zones (ITCZ) (Uhlenbrook 
et al., 2010). The air temperature fluctuates a lot dur-
ing the day, although it only slightly changes over the 
season, with an average annual temperature of 20 °C. 
Agro-pastoral land makes up 29% of the LTSB’s land 
area, 20% of which is covered by lakes, while agricul-
ture accounts for 51.3% of the basin’s total land area 
(Setegn et al., 2008).

Source of climate data and quality control

There is a need for long-term and temporally homo-
geneous climate data for many different applications, 
such as climate risk management and climate change 
adaptation. One of the major limitations to using cli-
mate information in Ethiopia is the lack of reliable 
climate data (Dinku et  al., 2014). Most climate data 
come from weather stations, which are irregularly 
located and mainly found along major routes in cities 
and towns (Alemu & Bawoke, 2020; Bayissa et  al., 
2017; Dinku et  al., 2014). Moreover, rainfall data 
originating from meteorological stations were often 
incomplete and recorded over short periods. Many 
users in Ethiopia are compelled to rely on satellite 
rainfall predictions due to the unavailability of rain 
gauge observations (Alemu & Bawoke, 2020; Bay-
able et al., 2021; Dinku et al., 2018). I used the Cli-
mate Hazards Group Infrared Rainfall with Stations 
(CHIRP) high-resolution satellite data on rainfall for 
this work. The Climate Hazards Group at the Univer-
sity of California, Santa Barbara (UCSB) and the US 
Geological Survey (USGS) collaborated to produce 

this daily-updated product (Funk et  al., 2015). The 
researcher was drawn to this recently created satel-
lite product because of its long-term rainfall data and 
comparatively excellent spatial resolution. Further-
more, it offers low-cost data on precipitation for vari-
ous time periods.

Data on historical rainfall within the basin were 
provided by Ethiopia’s National Metrological Agency 
(NMA). I obtained eight high-quality stations from 
the NMA, of which five were used to validate the 
CHIRPS satellite estimate (Table  1). A few stations 
were removed in the final analysis due to missing 
rainfall data (more than 10%). I used the Multivariate 
Imputation by Chained Equations (MICE) technique 
(Buuren, 2015) to fill in the missing data. Moreover, 
station data were subjected to quality control and 
homogeneity tests using Microsoft Excel and RClim-
dex (Zhang & Yang, 2004). To assess the CHIRPS 
satellite estimate product’s performance, I converted 
the quality-controlled gauge measurements of daily 
data into annual and monthly data.

Validation of CHIRPS rainfall data

In drought and flooding-prone areas, accurate precipi-
tation estimation is essential. Satellite weather data 
collection has become an alternative method for esti-
mating precipitation due to advancements in remote 
sensing (RS) (Avtar et al., 2020; Bhaga et al., 2020). 
Currently, a variety of precipitation datasets is being 
used, including but not limited to CHIRPS, which is 
a ground-based and RS-based precipitation dataset. 
However, there are uncertainties that can result in 
significant errors in satellite-based rainfall patterns 
and variability assessments due to various sampling 
errors, algorithm errors, and satellite instruments 
(Bayable et al., 2021; Belay et al., 2019; Dinku et al., 
2018; Fenta et  al., 2018). Therefore, these gridded 
precipitation datasets should be evaluated and vali-
dated against in  situ observations to guarantee data 
quality. (Dinku et al., 2014; Belay et al., 2019; Dem-
bele and Zwart, 2016).

It was shown that the CHIRPS dataset is effec-
tive in African countries, including Ethiopia. Based 
on the findings of Dembele and Zwart, 2016, Bay-
issa et  al., 2017 and Kimani et  al., 2017, CHIRPS 
estimates outperform the majority of other long-term 
satellite rainfall datasets. Despite this, more stud-
ies and research on different parts of Ethiopia are 
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needed on various geographical and temporal scales 
(Kimani et  al., 2017). The researcher downloaded 
CHIRPS Rainfall predictions in raster form and then 
utilized Python 3.8.5 to get all required values for 

points at a spatial resolution of 0.05° latitude-lon-
gitude (Rossum & Drake, 2001). By comparing the 
extracted point-oriented CHIRPS precipitation data 
from the LTSB regions (Table 2) with the data from 

Fig. 1   Location of LTSB from Ethiopia and the climatic stations that were utilized
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the ground-oriented stations, the CHIRPS rainfall 
data were validated on monthly and yearly time peri-
ods. A number of statistical indicators, such as cor-
relation coefficients (r), mean absolute error (MAE), 
root mean square error (RMSE), and Nash–Sutcliff 
coefficients (NSE) were employed to confirm that the 
CHIRPS data were suitable for additional analysis 
(Table 3). Validation statistics have been chosen based 
on other study selections in order to compare CHIRPS 
satellite rainfall predictions with data from rainfall 
gauge (e.g., Ayehu et  al., 2018; Dinku et  al., 2018; 
Kimani et al., 2017), with descriptions as below:

(i) The correlation coefficient (r) compares the 
similarities of average CHIRPS data to  the observed 
data. The r values can range between 0.0 and 1.0, 
with higher values indicating better agreement and 
lower values indicating less agreement (Mohammed 
& Yimam, 2022). The correlation coefficient (r) was 
calculated using the formula:

where Mi is the observation value, Zi is the CHIRPS 
value, Mbar is the average of reference values, and 
Zbar is the average of CHIRPS values.

(ii) The MAE gives information about the aver-
age estimation error from the ground-based observed 
data. The value of MAE ranges from 0 to 1, with a 
perfect score of 0. It was estimated using the follow-
ing formula.

where Mi is the rain gauge value, and Zi is the 
CHIRPS rainfall value.

(iii) The NSE is defined as one minus the sum of 
the absolute squared differences between the CHIRPS 

(1)r=

∑n

i=1
(Mi −M)(Zi − Z)

�

∑n

i=1
(Mi −M)

2 ∑n

i=1
(Zi − Z)

2

(2)MAE =
1

n

∑n

i=1
(Mi − Zi)

Table 1   List of the rainfall 
gauges that were used 
to validate the CHIRPS 
rainfall estimate

No Stations Geographical coordinates Elevation Period of record Missing 
data (%)

Latitude (°) Longitude (°)

1 Adet 11.27 37.49 2179 1988–2019 4.5
2 Bahir Dar 11.61 37.32 1827 1988–2019 8.5
3 Gondar 12.52 37.43 1973 1980–2019 3.5
4 Dangila 11.43 36.84 2116 1987–2019 5.5
5 Debre Tabor 11.86 37.99 2612 1980–2019 7.5

Table 2   List of chosen 
CHIRPS points

No Place of point Location Geographical coordinates Elevation

Latitude (°) Longitude (°)

1 Achefer South-western 11.594 37.024 2445
2 Addis Zemn North-eastern 12.148 37.804 2300
3 Bahir Dar South-eastern 11.603 37.322 1827
4 Dangila South-western 11.434 36.846 2116
5 Debre Tabor Eastern 11.867 37.995 2612
6 Delgi North-western 12.193 37.055 1661
7 Dembia Northern central 12.416 37.299 2026
8 Dengel ber North-western 11.957 36.971 1840
9 Dera South-eastern 11.753 37.591 2455
10 Gondar Northern 12.521 37.432 1973
11 Merawi Southern central 11.256 37.073 2045
12 Meshenti South-eastern 11.472 37.285 1944
13 Sekela Southern 11.039 37.082 2915
14 Tana Central 11.981 37.310 1780
15 Woreta Northern central 11.922 37.696 1780
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and the reference values normalized by the variance of 
the reference value during the evaluation period, with 
1 being the perfect value. The NSE can have values 
ranging from − ∞ to 1. The closer the result is to 1, the 
better the CHIRPS precipitation estimations are (Nash 
& Sutcliffe, 1970). It was computed using the formula:

where Mi is the observation value, ZPi is the CHIRPS 
value, Mbar is the average of reference values, and 
Zbar is the average of CHIRPS values.

(iv) RMSE calculates the difference between 
CHIRPS precipitation data and actual rainfall values. 
RMSE values vary from 0 to ∞, with a value near zero 
indicating greater performance (Mohammed & Yimam, 
2022). It was calculated using the following equation:

where j is the length of the time series, Mi is the 
meteorological gauge rainfall value, and Zi is the 
CHIRPS rainfall value

Spatial and temporal trend examination of rainfall 
indices

Using daily rainfall data to calculate climate indi-
ces is one way to characterize extreme climate 
intensity, duration, and frequency (Donat et  al., 

(3)NSE = 1 −

∑n

i=1
(Mi − Zi)

2

∑n

i=1
(Mi − Z)

2

(4)RMSE =

�

∑n

i=1
(Mi − Zi)

2

j

2016). The Expert Team on Climate Change Detec-
tion and Monitoring Indices (ETCCDMI) and the 
World Meteorological Organization (WMO) have 
developed several indicators for understanding cli-
mate extremes and trends (Zhang & Yang, 2004). 
The ETCCDMI-developed program RClimdex 
was used to calculate the indices. Additionally, 
the climatic indices were chosen in light of their 
prior application in several Ethiopian locations 
by Mekasha et  al. (2014), Geremew et  al. (2020), 
and Wubaye et  al. (2023). The existence of a sig-
nificant trend was assessed at the significance lev-
els of α 0.01 and α 0.05. A trend that is upward or 
downward is shown by positive or negative slope 
values, respectively. A thorough explanation of the 
extreme rainfall indices utilized in this investiga-
tion is found in Table 4.

As a spatial analysis technique, the selected 
extreme rainfall indices were constructed through 
inverse distance weighted (IDW) interpolation, 
which has shown high performance in mapping 
the spatial distribution of rainfall in space (Bay-
able et  al., 2021). The weighted mean of a known 
site is assumed to be the value of an unknown place 
when using the IDW spatial interpolation technique. 
It assigns values based on distance weighting to 
unknown locations. Furthermore, the frequency of 
wet and arid years from 1981 to 2019 was examined 
using the standardized anomaly index (SAI). I used 
SAI to measure rainfall variation, which represents 
the deviation from the average rainfall over the 
studied years (Alemu & Bawoke, 2020). The fol-
lowing formula is used to compute the SAI:

Table 3   Description of the selected indices

Indices Index name Definition of the index Unit

PRCPTOT Annual total wet-day rainfall Annual total PRCP in wet days (RR ≥ 1 mm) mm
R99p Rainfall on extremely wet days Annual total PRCP when RR > 99th percentile mm
R95p Rainfall on very wet days Annual total PRCP when RR > 95th percentile mm
R20 Number of very heavy precipitation days Annual count of days when PRCP ≥ 20 mm Days
R10 Number of heavy precipitation days Annual count of days when PRCP ≥ 10 mm Days
CWD Consecutive wet days Maximum number of consecutive days with RR ≥ 1 mm Days
CDD Consecutive dry days Maximum number of consecutive days with RR < 1 mm Days
SDII Simple daily intensity index Annual total precipitation divided by the number of wet 

days (defined as PRCP ≥ 1.0 mm) in the year
mm/day

RX5day Highest rainfall amount in a 5-day period Monthly maximum consecutive 5-day precipitation mm
RX1day Highest rainfall amount in a 1-day period Monthly maximum 1-day precipitation mm
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In this equation, SAIi represents the standardized 
anomaly in year i, Yi represents the rainfall during 
that year, y represents the long-term mean rainfall 
across the observation period, and Y represents the 
standard abnormality of rainfall throughout the obser-
vation period. In analysis, negative values indicate 
drought, and positive values indicate above-average 

(5)SAIi =
Yi − Y

�

precipitation or a wet situation (Alemu & Bawoke, 
2020). A classification system proposed by Funk 
et al. (2015) was employed to define dry or wet inten-
sity. According to Funk et  al. (2015), the SAI value 
is categorized as extremely wet (SAI > 2), extremely 
dry (SAI ≤  − 2), very wet (1.5 ≤ SAI ≤ 1.99), very 
dry (− 1.99 ≤ SAI ≤  − 1.5), moderately moist 
(1 ≤ SAI ≤ 1.49), moderately dry (− 1.49 ≤ SAI ≤  − 1), 
and normal (− 0.99 ≤ SAI ≤ 0.99).

Results and discussion

Comparison of CHIRPS and the station’s rainfall data

The efficiency of CHIRPS rainfall records was evalu-
ated on the monthly and yearly periods by compar-
ing them with station observations. Table 5 illustrates 
statistical comparison results on both a monthly 
and annual scale. The disparity between monthly 
and annual mean rainfall values at the station and 
CHIRPS is presented in Figs.  2 and 3, respectively. 
The NSE for every station site was between 0.37 and 
0.87 based on monthly rain gauge and CHIRPS rain-
fall data. Additionally, all station locations had cor-
relation coefficient values (r) between 0.52 and 0.75. 
(Table 2). Bahir Dar station locations showed a corre-
lation coefficient of 0.75 and NSE of 0.87, indicating 

Table 4   Analysis of rainfall data from CHIRPS and meteoro-
logical stations at monthly and annual timescales

Gondar Dangila Adet Bahir Dar Debre Tabor

Monthly timescale
R 0.57 0.74 0.54 0.75 0.52
NSE 0.37 0.48 0.46 0.87 0.45
MAE 13.25 10.67 15.9 18.75 11.92
MBE 4.25  − 6.83 13.08 13.76 1.07
RMSE 17.25 13.13 18.82 14.24 15.65
Annual time scale
R 0.57 0.74 0.52 0.46 0.52
NSE 0.27 0.38 0.45 0.17 0.15
MAE 58.86 28.09 80.3 87.1 42.92
MBE 51.15  − 61.9 56.95  − 31.35 12.92
RMSE 86.98 57.56 25.5 32.99 87.7

Table 5   Trends of the analyzed extreme rainfall indices in LTSB

a and * are significant trends at α 0.01 and α 0.05

No Stations Rx1day Rx5day SDII R10mm R20mm CDD CWD R95p R99p PRCPTOT

1 Achefer –0.009 –0.368 –0.017 0.149 –0.141 0.092 –0.252* –1.622 0.129 2.281
2 Addis Zemen 0.06 0.102 0 0.158 0.047 0.474 –0.294* 0.454 0.227 3.078
3 Bahir Dar –0.182 –0.097 –0.033 0.196 –0.116* 0.418 0.033 –2.854* –1.946a 2.972
4 Dangila –0.052 –0.17 –0.007 0.155 –0.055 –0.195 –0.274* –1.849 –0.588 1.546
5 Debre Tabor –0.107 0.058 0 0.401a 0.179 0.36 –0.234 –0.852 –0.566 6.49a
6 Delgi –0.092 –0.163 –0.016 –0.012 –0.003 0.964 –0.265* –0.002 –0.785 1.936
7 Dembia –0.252 –0.294 –0.018 0.152 0.027 0.358 –0.091 –0.044 –0.182 3.809a
8 Dengel Ber –0.058 0.098 –0.009 –0.012 0.061 0.166 –0.141 –0.134 –0.205 4.029*
9 Dera –0.065 –0.325 –0.027 0.238* –0.025 0.053 0.043 –1.189 –0.418 4.385*
10 Gondar 0.006 –0.043 0.007 0.127 0.02 0.085 –0.246 1.371 –0.46 4.03*
11 Merawi –0.104 –0.228 –0.002 0.071 –0.032 –0.698 –0.267a 0.46 –0.491 1.636
12 Meshenti –0.383* –0.045 –0.043 0.219* –0.073 –0.986 –0.023 –2.698* –2.457a 2.549
13 Sekela –0.14 0.037 –0.006 0.16 0.041 –0.259 –0.256* 0.601 –0.015 3.382
14 Tana –0.052 –0.154 –0.023 0.071 –0.004 –0.267 –0.139 –0.795 –0.429 3.045
15 Woreta –0.111 –0.144 –0.02 0.236* 0.111 0.151 –0.082 –1.793 –0.457 4.798*
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a very high degree of compatibility with the station 
records. In contrast, there were relatively low cor-
relation coefficients (0.52) and Nash–Sutcliffe effi-
ciency (0.34) at the Debre Tabor and Gondar weather 
stations.

Furthermore, CHIRPS rainfall estimates per-
formed well when compared with station rainfall 
data using MAE, MBE, and RMSE values (Table 5). 
As presented in the table, the maximum (minimum) 
MAE, MBE, and RMSE were 18.75 (10.67), 13.76 
(1.07), and 17.25 (13.13) mm/month, respectively, 
on monthly timescales. There was a maximum MAE 
(18.75 mm/month) and a minimum MAE (10.67 mm/
month) recorded at the Bahir Dar and Dangila station 
locations. Table  5 shows that the monthly CHIRPS 
rainfall products for the Dangila station were under-
estimated by approximately 6.83  mm/month. While 
the CHIRPS monthly rainfall data at Bahir Dar and 
Adet stations were overestimated by about 13.76 mm 

and 13.08  mm, respectively. The highest RMSE 
(18.82  mm/month) was recorded at the Adet station 
location, while the lowest (13.13) was recorded at 
the Dangila station location. Overall, the assessments 
of the MBE, RMSE, and MAE were lower on mean 
monthly timescales than on annual timescales. Based 
on the overall performance assessment of monthly 
rainfall estimates, CHIRPS’s rainfall data appear to be 
valuable for applications such as spatial and temporal 
examination of rainfall extremes trends. It was found 
that the results for the comparison by using monthly 
rainfall output from CHIRPS with climate stations 
were identical to those obtained from previous studies 
conducted via Bayable et al. (2021) in West Harerge, 
Alemu and Bawoke (2020) in the Ethiopian Amhara 
region, Ayehu et al. (2018) in Ethiopia’s UBNB, and 
Dinku et  al. (2018) in East Africa. Moreover, this 
study confirmed previous findings (e.g. Bayable et al., 
2021; Dinku et  al., 2018) conducted in most parts 

Fig. 2   A comparison of 
CHIRPS rainfall data with 
meteorological station rain-
fall data based on the LTSB 
mean monthly rainfall
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of Ethiopia using monthly rainfall data. A study by 
Ageet et  al. (2022) for Equatorial East Africa also 
found that CHIRPS performed better than other mod-
els in estimating monthly rainfall. Superior CHIRPS 
performance has also been found in Columbia, North-
western South America (Valencia et  al., 2023). The 
monthly temporal scale rainfall amount estimated by 
CHIRPS forms increasingly precise and close to the 
reference data. Similarly, another study in Ethiopia 
(Gashaw et al., 2023) found that CHIRPS performed 
better at the monthly scale than at the annual time-
scale. Therefore, CHRIPS precipitation data can 
reproduce the LTSB rainfall pattern and be used for 
further climate analysis.

CHIRPS rainfall estimate was also assessed and 
displayed in Table  5 for the LTSB in annual time-
scales for each ground-based rainfall data and 
CHIRPS satellite estimate. Figure  3 illustrates the 
variation between the station’s recorded annual 
rainfall and that estimated by the CHIRPS satellite 

estimate. Similar to the monthly timescale, CHIRPS 
estimates and weather station measurements showed 
excellent agreement, with correlation coefficients (r) 
ranging between 0.46 and 0.74. CHIRPS also showed 
NSE values between 0.15 and 0.45 and RMSE values 
between 25.5 and 87.7. The maximum overestimation 
(minimum underestimation) was 56.95 (− 61.9) mm/
year in Adet (Dangila) station locations of the sub-
basin. A maximum (minimum) MAE of 87.1 (28.09) 
mm/year was observed at Bahir Dar (Dangila) sta-
tion locations. Mohammed and Yimam (2022) also 
report that CHIRPS performs better for estimating 
annual rainfall in the Beshilo subbasin of UBNB, and 
Gashaw et al. (2023) in South Ethiopia, Bayable et al. 
(20213) in West Harerge, and Alemu and Bawoke 
(2017) in Ethiopian Amhara. The superior perfor-
mance of CHIRPS for generating annual rainfall 
across LTSB by entire/majority performance metrics 
in this study is consistent with the findings obtained 
in East Africa (Ageet et  al., 2022). Furthermore, 

Fig. 3   Comparison of 
CHIRPS rainfall estimate 
with rain gauge data based 
on the annual rainfall in 
LTSB
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Valencia et  al. (2023) found that the CHIRPS esti-
mate is superior to other satellite estimates in simu-
lating annual rainfall over different altitude zones in 
Colombia (North Western South America).

Temporal trends of extreme rainfall in LTSB

The Extreme Rainfall Detection Monitoring and 
Indices (ETCCDMI) provides information regarding 
extreme rainfall indicators, associated with rainfall 
types, frequency, intensity, and extremes (Zhang & 
Yang, 2004). Table 6 shows time series trend analy-
ses of ten extreme rainfall indices estimated over 
1981–2019. In addition, the temporal trends of the 
selected rainfall intensity indices for the entire basin 
over the period 1981–2019 are shown in Figs. 4 and 
5. The majority (86.66%) of the studied station loca-
tions had declining trends in Rx-1DAY rainfall while 
only Addis Zemen and Gondar stations had positive 
trends (Table 6). Even so, the trend that was signifi-
cant (at α = 0.01) was only at the Meshenti location 
of the station (Table 6). The minimum value for the 
Rx-1DAY trend magnitude was − 0.009 mm/month at 
the Achefer (southwestern part of the basin) station 
location (Fig. 7). Similar trend analysis to Rx-1DAY 
was made for the indexes of maximum Rx5day rain-
fall (which could indicate flood-producing events). 
A negative insignificant (at α 0.01 and 0.05) trend 
was observed at 73.33% of the sites studied, while 
an insignificant increase was seen at the remaining 
sites. The slope of the decreasing trends in Rx5day 
in the LTSB varied from − 0.043 to − 0.294  mm/
month, with the highest record being found at the 
Dmbia stations of the basin (Table 6 and Fig. 7). On 
the contrary, there were increasing trends in Addis 
Zemen, Debre Tabor, Dengel Ber, and Sekela station 

locations with magnitudes of 0.102, 0.058, 0.098, and 
0.037, respectively.

Except for an insignificant trend at 6.66% and no 
trend at 13.33%, SDII trends declined at most stud-
ied station locations (Table  7). The results of trend 
magnitudes for stations with significant changes in 
R10mm and R20mm at significant levels of 0.05 or 
0.01 are analyzed in (Table  6). Rainfall intensity is 
measured by the annual count of days with daily rain-
fall of 10 and 20  mm or above. This is also known 
as the R10mm and R20mm indices. The majority of 
stations’ locations (86.66%) showed an increase in 
R10mm, while R20mm had divergent trends. R10mm 
rose significantly (at α 0.01) at Dera, Meshenti, and 
Woreta, and significantly (at α 0.05) at Debretabor, 
with magnitudes ranging from 0.219 to 0.401  days/
year. There is a likely risk of flooding and soil erosion 
around the station area if these indices increase. In 
contrast, the R20mm indices trend analysis revealed 
that there was a substantial decline in the Bahir Dar 
station location with a magnitude of − 0.116.

Using CDD and CWD, the researcher measured 
the presence and absence of rainfall greater than 
1 mm. For CDD, 66.66% of climate station locations 
showed an insignificant positive trend, while 33.33% 
exhibited a declining trend (Table  7). The intensity 
of the insignificant positive trend of CDD varies 
between 0.053 and 0.964 days/year, with the highest 
magnitude found at the Delgi station location. While 
negative trends were observed at five locations of the 
station, fluctuating between − 0.195 and − 0.986 days/
year with the highest magnitude observed at the 
Meshenti station location (Table 6 and Fig. 7). CWD 
trends are typically negative throughout the basin, 
with 40% of stations indicating significantly declin-
ing trends (at α 0.01) for Achefer, Addis Zemen, Dan-
gila, Delgi, and Merawi (at α 0.05) with magnitudes 

Table 6   Summary of trend results for extreme indices

%↑, percent of stations with an increasing trend; %↓, percent of stations with a decreasing trend; ↑%*, percent of stations with a sig-
nificant increasing trend at α 0.01 and α 0.05; and %↓*, percent of stations with the significant decreasing trend at α 0.01 and α 0.05

Trend type RX1day Rx5day SDII R10mm R20mm CDD CWD R95p R99p PRCPTOT

%↑ 13.33 26.66 6.66 86.66 46.66 66.66 13.33 26.66 13.33 100
%↓ 86.66 73.33 80 13.33 53.33 33.33 86.66 73.33 86.66 0
%↑* 0 0 0 26.66 0 0 0 0 0 40
%↓* 6.66 0 0 0 6.66 0 40 13.33 13.33 0
%nt 0 0 13.33 0 0 0 0 0 0 0
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ranging from 0.252 to 0.294  days/year. The results 
suggest that aridity is increasing at these stations.

The daily rainfall series at a station’s location was 
also employed to compute percentile-based indi-
ces such as R99p and R95p, where the total rain-
fall exceeds a certain percentile value. The results 
of trend analyses indicate that both R99p and R95p 
are decreasing over the LTSB (Fig. 4). Based on the 
RClimdex test results, R99p and R95p indicated a ris-
ing trend at 86.66% and 73.33 stations, respectively. 
Significant (α = 0.01) downward trends in R99p were 
detected in Bahir Dar (1.946 days/year) and Meshenti 
(2.457  days/year). Bahir Dar and Meshenti stations 
also showed negative significant (at α 0.01) trends for 
R95p with magnitudes of 2854 and 2698  mm/year, 
respectively. A trend analysis of PRCPTOT) (Fig. 6) 
shown an upward result through all stations. Conse-
quently, the total rainfall at Debre Tabor, Dembia, 
Dengel Ber, Dera, Gondar, and Woreta significantly 

(at α 0.01and 0.05) increased by 6.49, 3.8, 4.029, 
4.385, 4.03, and 4.71  mm/year, respectively. In the 
entire sub-basin, extreme rainfall indices decreased 
except for R10mm, CDD, and PRCPTOT (Table 7). 
Due to these divergent extreme rainfall trends, the 
LTSB’s trend cannot be considered stable. Extreme 
rainfall events may damage socio-economic activities 
and ecosystems.

The results of the analysis of excessive rain-
fall events through the LTSB indicate that most are 
decreasing, with the exception of PRCPTOT, R10mm, 
and CDD (Tables 6 and 7). Previous studies on rain-
fall indices in Ethiopia have drawn similar conclusions. 
Berhane et  al. (2020) concluded that extreme rainfall 
events decreased in the semi-arid parts of Western Tig-
ray for most of the analyzed extreme rainfall indices. 
Their findings revealed a significant (at α 0.01 and 
0.05) decline in R95p, R20, R95p, Rx5day, and R99p 
throughout their study region. The result from this 

Fig. 4   Average sub-basin-
wide trends in excessive 
rainfall indices. a PRCP-
TOT, b R95p, c R99p, d 
SDII, and e CDD from
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study is in contradistinction from those of other stud-
ies investigating a growing trend of excessive rainfall 
events (Wubaye et al., 2023; Worku et al., 2019). For 
instance, Wubaye et al. (2023) detected a rise in exces-
sive rainfall events over Ethiopia from 1986 to 2020. 
This may be due to the fact that the existence of a vari-
ety of factors, including the study period, length of 
observation, and statistical methods.

The declining trends in CWD are also consistent 
with the findings of Berhane et al. (2020) and Gebre-
chorkos et al. (2019). Moreover, other researchers such 
as Teshome and Zhang (2019), Worku et  al. (2019), 
Berhane et al. (2020), and Wubaye et al. (2023) have 
investigated a growing trend in PRCPTOT similar to 
our result. Generally, LTSB excessive rainfall events 
exist consistent with global trends in expressions of 
frequency, intensity, and spatial extent (IPCC, 2012, 
2013). The trend in the occurrence, amount, and areal 
extent of rainfall extremes was found in the LTSB, 

which is in concurrence with the global trend. It can 
be due to global anthropogenic climate change and 
other large- and local-scale factors. This is simi-
lar to previous studies by Wubaye et al. (2023), who 
reported continuous variability and increases in heavy 
rainy days across Ethiopia. It is also reported that 
the R10mm has increased 70% of the world’s land 
area and added to the annual total rainfall amount 
(Alexander et  al., 2006). A change in extreme rain-
fall incidences, like droughts, landslides, and floods 
can impact agriculture in multiple ways. Severe rain-
fall can have a destructive influence on smallholder 
farmers’ crop production system, especially heavy 
storms, landslides, and flood events. An occurrence 
in the high flood disaster in the Fogera floodplain in 
2006 resulted in a high rise in Lake Tana’s water level 
(Moges & Moges, 2019). Conversely, extreme rainfall 
events reduce rainfall and water availability for crop 
production (Funk et al., 2012).

Fig. 5   Average sub-basin-
wide trends in the selected 
rainfall indices. a R10 mm, 
b R20 mm, c CWD, d 
RX1day, and e RX5day
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Spatial trend results of excessive rainfall in LTSB

The researcher also examined the spatial distribu-
tion of excessive rainfall indices in addition to tem-
poral analysis. Figure  6 shows the spatial disper-
sal of rainfall indices for (PRCPTOT, R95p, R99p, 
R10mm, R20mm, and CWD) for individual rainfall 
locations (gridded) during the period 1981–2019. 
The results of PRCPTOT revealed that the maxi-
mum rise was found at the Debre Tabor station situ-
ated in the Western portion of the LTSB; however, 
related to areas nearby Gondar (Northern), Dembia 
(Northern Central), and Delgi (Northwestern), where 
relatively moderate increases were observed (Fig. 6), 
there was a comparatively small increase around Dan-
gila (South-western), Merawi (Southern Central), and 

Delgi (North-western). The highest spatial uneven-
ness of R95p was observed at Sekela (Southern), 
Merawi (Southern central), Gondar (Northern), Addis 
Zemen (North-eastern), and Meshenti (South-east-
ern). Likewise, the highest R99p reductions were per-
ceived in the Bahir Dar and Meshenti (South-eastern) 
parts of the sub-basin.

The southeastern sections of the LTSB showed a 
relatively significant (at α 0.01 and 0.05) increase in 
CWD, according to spatial analysis. In contrast, there 
was a reduction in other parts of LTSB. The largest 
R10mm increase was found in the eastern part of 
the LTSB. In contrast, the north-western portions of 
the sub-basin showed smaller R10mm reductions. A 
relatively high increasing trend in R20mm was also 
observed around Debre Tabor in the eastern portion 

Fig. 6   Spatial distribution of long-term trends in extreme indi-
ces (PRCPTOT, R95p, R99p, R10mm, R20mm, and CWD) of 
LTSB. The upright yellow and inverted pink triangles indicate 
increasing and decreasing trends, respectively. Triangles that 

are red inverted or upright indicate significant trends that are 
increasing or decreasing at α 0.01. Large upright yellow tri-
angles indicate significant increasing trends at α 0.05, while 
inverted purple triangles indicate significant decreasing trends
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of the LTSB. In contrast, there was a comparatively 
maximum decreasing trend around Achefer in the 
southwestern part of the sub-basin. Additionally, the 
results revealed the central areas of the LTSB experi-
enced moderate changes on R20 mm, while the east-
ern and southern areas experienced the maximum and 
minimum changes.

Spatially, RX1day, RX5day, CDD, and SDII 
for individual rainfall locations over the period 
1981–2019 are presented in Fig. 7. As elucidated in 
Fig.  7, the slope of rainfall indices, RX1day, cov-
ers a range of − 0.38 to 0.06 mm and is lowest in the 
southeastern section of the LTSB and highest in the 
northeast. The trend of RX5day was positive in the 
western, eastern, and northeastern areas of LTSB 
but decreased in the southwestern, north-center, 
and southeastern portions of the sub-basin. Fig-
ure  7 shows that CDD’s spatial distribution ranges 

from − 0.97 to 0.96  days. A minimum number of 
days occurred in the south-central and south-eastern 
parts, while a maximum number was observed in the 
northwestern region. South-east and south-central 
parts of the SDII within the sub-basin showed a simi-
lar decreasing trend as CDD, but the northern, east, 
and north-eastern parts exhibited no trend in the time 
series. This phenomenon indicates a decline in rain-
fall each day.

Figures  8 and 9 display the standardized mean 
anomaly values for each index throughout the whole 
sub-basin. The data presented indicates that the aver-
age deviation of rainfall indices across the sub-basin 
had a downward trend for all but PRCPTOT, CDD, 
and R10mm. All extreme rainfall indices, however, 
showed noticeable variations in their 5-year moving 
average and trend. The fact that the extreme rainfall 
trend is deviating suggests that there was instability 

Fig. 7   Spatial variations of long-term trends in excessive rainfall (RX1day, RX5day, CDD, and SDII) of LTSB. Triangles are the 
same as in Fig. 6. Indices with no trends are marked by black dots
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in the LTSB rainfall trend. This shows that in the sub-
basin, excessive rainfall may harm ecosystems and 
socioeconomic activities.

Spatially, extreme rainfall indices indicate an 
irregular distribution of severe rainfall over the stud-
ied sub-basin. This study’s results agree with those 
of Teshome and Zhang (2019), Wubaye et al. (2023), 
and Worku et  al. (2019) who conveyed continu-
ous spatial unevenness in excessive rainfall indices 
throughout different areas in Ethiopia. Furthermore, 
Mekasha et al. (2014) reported that excessive rainfall 
indices at three Ethiopian eco-environments exhibited 
inconsistencies and were not significant. Similarly, 
the low spatial coherence of the found trends in rain-
fall extremes is similar to that observed in various 
areas across other continents (Agilan & Umamahesh, 
2018; Bezerra et al., 2019; Cardell et al., 2020; Casa-
nueva et  al., 2014; Mladjic et  al., 2011). Therefore, 
the observed spatial unevenness of excessive rainfall 

indices could be portrayed by means of the country’s 
varied topography and relief features (Gebrechorkos 
et  al., 2019; Mekasha et  al., 2014; Mengistu et  al., 
2013). In addition, pressure systems in the Indian 
Ocean, equatorial Pacific, Gulf of Guinea, Mediter-
ranean region, and Arabian Peninsula are responsible, 
as is the Intertropical Convergence Zone (ITCZ) and 
global climate change (Berhane et  al., 2020; Worku 
et al., 2019).

Summary and conclusions

It has been shown in several studies that Ethiopia 
is vulnerable to climate change, which will likely 
increase disaster frequency and severity. There is 
potential for climate change to worsen economic and 
social conditions across the country. This is espe-
cially true for areas that depend heavily on rain-fed 
agriculture and have resources sensitive to climate 

Fig. 8   A time series 
depiction of the averaged 
extreme rainfall indices for 
the sub-basin. a PRCPTOT; 
b R95p; c R99p; d R10mm; 
and e is for R20mm. The 
black, curved line repre-
sents the 5-year moving 
average, while the red, 
straight line represents the 
variables’ linear trend
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change. The extent, nature, and location of climate 
change and weather extremes can be reduced if infor-
mation is available. This study examined the change 
in severe rainfall indices in the LTSB of the UBNB 
by CHIRPS rainfall estimate. To examine the histori-
cal variations in the extreme rainfall happenings in 
the last 39 years (1981–2019), the study uses WMO 
and ETCCDI extreme rainfall indices. For extracting 
the vector data of CHIRPS satellite rainfall outputs, 
I also employed Python 3.8.5 (Rossum & Drake, 
2001). Before being used, CHIRPS gridded rainfall 
datasets were evaluated and validated against in situ 
observations to ensure data quality, uncertainty, and 
precision.

Almost all rainfall extreme indices indicate a 
decline in risky rainfall incidences, which can neg-
atively impact the economy of stakeholders in the 
sub-basin. RX1day, CWD, and R99p, for exam-
ple, revealed declining trends in 86.66% of climate 

station locations. About 73.33% of the overall sta-
tions in RX5day and R95p also disclosed a declin-
ing trend. Meanwhile, only PRCPTOT, R10mm, 
and CDD unveiled a rising trend at 100%, 86.66%, 
and 66.66% of climate stations. A higher prob-
ability of seasonal droughts and increased dryness 
is indicated by the increasing trend of CDD. It 
increases transpiration from the plant and evapora-
tion from water bodies. This dries up the soils and 
vegetation and decreases surface water. Increased 
flooding, crop damage, landslides, and soil erosion 
are possible outcomes of the observed rising trends 
of PRCPTOT and R10mm in the LTSB. This result 
disagrees with other studies that investigated an 
ascendant trend in extreme rainfall indices. The dif-
ference in the trend of extreme indices among stud-
ies could be attributed to the change in the study 
period and study area, length of observation, and 
statistical methods used to measure trends.

Fig. 9   Time series plot of 
averaged sub-basin wide 
rainfall extreme indices. 
a RX1day, b RX5day, c 
CDD, d CWD, and e is for 
SDII. As in Fig. 8, the lines 
are identical
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Furthermore, extreme rainfall trends show sub-
stantial spatiotemporal variability between stations. 
The results found in this study are reliable with for-
mer studies that have concluded a spatially inhomo-
geneous pattern of rainfall indices in different regions 
of Ethiopia. Along with the reduction tendency in 
extreme indices of rainfall, the average standardized 
anomaly index over the sub-basin showed that nega-
tive anomalies exceeded positive anomalies through-
out the study age. In conclusion, this study provided 
profound evidence of the high spatial and historical 
variation of rainfall intensity and frequency in the 
LTSB. Rain-dependent smallholders must therefore 
prepare for climate change and modify their agricul-
tural practices to account for extreme rainfall variabil-
ity. However, because of a lack of time and funding, 
it was difficult to determine the particular adaptation 
and mitigation strategies for extreme rainfall in this 
study. As a result, additional research is required to 
investigate practical insights and policy implications 
based on the findings of this study.
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