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Abstract  Due to rapid expansion in the global 
economy and industrialization, PM2.5 (particles 
smaller than 2.5  µm in aerodynamic diameter) pol-
lution has become a key environmental issue. The 
public health and social development directly 
affected by high PM2.5 levels. In this paper, ambi-
ent PM2.5 concentrations along with meteorological 
data are forecasted using time series models, includ-
ing random forest (RF), prophet forecasting model 
(PFM), and autoregressive integrated moving aver-
age (ARIMA) in Anhui province, China. The results 
indicate that the RF model outperformed the PFM 

and ARIMA in the prediction of PM2.5 concentra-
tions, with cross-validation coefficients of determina-
tion R2, RMSE, and MAE values of 0.83, 10.39 µg/
m3, and 6.83 µg/m3, respectively. PFM achieved the 
average results (R2 = 0.71, RMSE = 13.90  µg/m3, 
and MAE = 9.05  µg/m3), while the predicted results 
by ARIMA are comparatively poorer (R2 = 0.64, 
RMSE = 15.85 µg/m3, and MAE = 10.59 µg/m3) than 
RF and PFM. These findings reveal that the RF model 
is the most effective method for predicting PM2.5 and 
can be applied to other regions for new findings.
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Introduction

People in industrial and manufacturing civilizations 
are willing to sacrifice the environment to pursue 
economic progress and development. Future genera-
tions’ interests are directly damaged by this condition 
(Bhatti et al., 2023). These days, environmental tight-
ness and economic growth are neither simple nor easy 
games. According to Shakya et al. (2023), there will 
be negative and detrimental effects on social develop-
ment during the initial period of uniform adjustment 
and production volume reduction. However, in the 
long run, the economy will grow healthily and effec-
tively because of the relaxation of environmental pro-
tection requirements (Shakya et al., 2023).

PM2.5, also known as fine particulate matter, is a 
serious issue left over from the sightless quest of 
commercial and economic progress. Compared with 
PM10, PM2.5 has more toxic and harmful effects, 
which can enhance the noxious substances in the air 
and persist for a long time in the body (Bilal et  al., 
2021; Hasnain et  al., 2022; Zhu et  al., 2019). PM2.5 
causes several diseases such as immune diseases, car-
diovascular diseases, respiratory diseases, and tumors 
(Liu and Sun, 2019; Wu et al., 2023). In recent years, 
air pollution has attracted wide attention by people. 
PM2.5 has also received vast interest due to its adverse 
health impacts (He and Huang, 2018). Scholars and 
researchers have also begun related work. If PM2.5 
concentration is predicted, the status of air quality 
can be acknowledged in advance. This helps to con-
trol air pollution and plan accordingly (Hasnain et al., 
2023; Yang et al., 2024). The major sources of PM2.5 
are power plants, industrial production, construction 
activities, and automobile exhaust emissions. These 
sources contain toxic and poisonous substances such 
as heavy metals (Ghasempour et  al., 2021; Drewil 
and Al-Bahadili, 2022). Due to the long-range 
sources of PM2.5, it is difficult to detect the primary 
source, which poses a constant task to its prediction 
(Guo et  al., 2017). Today, artificial intelligence is 
widely used to generate a large amount of real-time 
data in modern cities. The major challenge is how to 
use these low informative and massive data to execute 

smart city operation monitoring and help the effective 
process of the city in the new era (Liu et al., 2018).

The time series prediction method is a common 
and well-known method, which is widely used by 
scholars and researchers in many fields. It is also 
used to predict PM2.5 concentrations (Lee et al., 2020; 
Wu et  al., 2023). The concentrations of PM2.5 were 
compared with meteorological variables and other 
contaminants. The Auto-Regressive Integrated Mov-
ing Average (ARIMA) was used in the prediction of 
PM2.5 concentrations. However, the model showed 
low performance due to fewer time series considera-
tion (Zhang et al., 2018).

In recent years, machine learning methods have 
been widely used in many fields and areas (Wei et al., 
2021). Several algorithms have been studied such as 
support vector and decision trees (Shen et al., 2020). 
Some researchers and scholars have used them in 
the prediction of PM2.5 concentrations. Chuang et al. 
(2011) estimated the rise in air pollution using gen-
eralized linear mixed models. Lee et al. (2012) used 
ARIMA model for investigating the future air qual-
ity. Song et al. (2014) estimated regional ground-level 
PM2.5 using a geographically weighted regression 
method. They found that the model was able to elu-
cidate 73.8% of the variability in the concentration 
of PM2.5. Wang et al. (2017) developed a new hybrid 
Generalized Autoregressive Conditional Heteroske-
dasticity (GARCH) model to merge several predic-
tion algorithms of support vector machine (SVM) and 
ARIMA. The literature (Silva et  al., 2001) proposes 
nonparametric and multivariate adaptive regression 
methods to predict the concentrations of PM10 and 
PM2.5 in Santiago. Huang et al. (2018) used a random 
forest model for PM2.5 prediction in Hebei and Shan-
dong and found a strong relationship between PM2.5 
and chronic diseases (Huang et al., 2018).

There are also several studies that use many 
approaches for prediction (Cekim, 2020; Akdi et al., 
2020; Wu et al., 2021; Dong et al., 2021; Han et al., 
2021; Hasnain et al., 2023;  Maciąg et al., 2023). Lu 
et  al. (2021) estimated PM2.5 concentrations using 
random forest, support vector regression (SVR), 
and artificial neural network (ANN) methods in the 
Yangtze River Delta. They predicted PM2.5 concen-
trations using a hybrid model based on deep learning 
approaches. The literature (Guo et al., 2018) uses the 
coupled Lagrangian particle diffusion model system 
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(FLEXPART-WRF) to predict and measure the esti-
mation of PM2.5 concentrations in Xuzhou, China. 
The authors of this study presented an inverse method 
to improve and increase the production calculation 
and mixture ratio estimation of PM2.5. Chelani (2018) 
developed a combined method to estimate the concen-
trations of PM2.5 from environmental variables and 
aerosol optical depths. Moisan et al. (2018) presented 
a method based on dynamic multilinear equation to 
forecast PM2.5 in Santiago, Chile. The literature (Fang 
et al., 2022) proposes a hybrid decomposing-ensem-
ble and spatiotemporal attention (DESA) method for 
PM2.5 prediction. Qiao et al. (2022) developed an air 
quality forecasting model based on random forest and 
ant colony algorithm combined with back-propaga-
tion neural network (IACA-BPNN) to predict PM2.5 
and O3 concentrations in Chengdu city. Feng et  al. 
(2015) predicted the daily average concentrations of 
PM2.5 using a new hybrid model coupled with wavelet 
transform and trajectory analysis. Zeng et  al. (2020) 
proposed a generalized additive model to forecast 
PM2.5 concentrations combined with meteorological 
parameters in Chengdu, China. Their results indicate 
that the model captured 73.9% of the variability in the 
daily average PM2.5 concentrations.

From an air pollution perspective, the air pollu-
tion in China is different from the world’s air pol-
lution. China is a largest developing country in the 
world and due to rapid development in industries and 
transportation, many areas and regions in the coun-
try has experienced heavy pollution in recent years. 
In this study, three time series models including ran-
dom forest, prophet forecasting model, and ARIMA 
were used to predict and examine the concentrations 
of PM2.5 for the most polluted areas in China. These 
models were also used to investigate and forecast 
the short-term PM2.5 concentrations for all the cities 
of Anhui. This study’s main contributions are that 
it shows the spatial pattern of air quality and offers 
time-dependent pollution forecasts. It differs from the 
other research in that it employed multiple forecast-
ing models to predict the concentrations of PM2.5 and 
then compared the results. The paper is organized as 
follows: In the “Methodology” section, we defined 
and explained the three methods, data sources and 
the model’s performance metrics used in this study; 
in the “Results and discussion” section, the results 
of the fitted models and spatial distribution of PM2.5 

are presented. “Conclusion” section presents and dis-
cusses the conclusion of this paper.

Methodology

Random forest method

With multiple classification and regression tree 
(CART) integrations, the random forest is a new model 
(Breiman, 2001; Brokamp et al., 2018). CART consists 
of three unique qualities. Initially, several trees are cre-
ated in the original dataset using a bootstrap sample, 
and then a single tree is developed in CART using all 
the raw data. Second, the model employs an optimal 
version to segment the tree nodes. To segment the tree 
nodes, CART chooses the best option from each pre-
dictor. Ultimately, the model’s fully developed trees aid 
in its ability to forecast (Liu et al., 2018). Three train-
ing parameters make up the model: max_features (the 
number of features for the best split; by default, max_
features = n_features); min_samples_lea (the mini-
mum sample number for a leaf node; one is the default 
value); and n_estimators (the number of trees in the 
forest based on a bootstrap observation sample). Based 
on the out-of-bag (OOB) calibration error rate, the two 
crucial parameters (n_estimators and max_features) 
were optimized and determined to estimate PM2.5.

Prophet forecasting method

The prophet forecasting model, developed by Face-
book, is a powerful tool for time series analysis, and it 
takes a short time to fit the model. The model uses the 
following formula:

 where y(t) is the predicted data; g(t) and s(t) repre-
sent seasonality; h(t) is the holiday outliers; and €t is 
the unexpected error. There are several parameters of 
the model and the model type can be expected as lin-
ear or logistic. The linear model has no maximum or 
minimum limit set, while the highest and lowest val-
ues are specified in the logistic model. The prophet 
forecasting model takes a Bayesian-based curve fit-
ting method to predict and smooth time series data, 
which is one of the most distinctive features of the 
model (Taylor & Letham, 2017). Change points are 

(1)y(t) = g(t) + s(t) + h(t) + ϵt
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important parameters in the model and the explicit 
values of change points can be stated; the model 
showed the best performance with higher change 
points. To evaluate the number of change points, the 
model plots a large value, and then it uses L1 regular-
ization to select few points to use. L1 regularization 
was used to avoid overfitting. The following equation 
denotes L1 regularization,

where x and y represent the coordinates of the change 
points.∑n

i=1
(yi − h�

�
xi
�
)2 denotes the change between 

original and predicted value squared. To avoid over-
fitting, λ

∑n

i=1
��i� is used to sustain the balance in 

weights, where λ indicates how much the weights are 
disciplined and penalized. The model determines the 
value of λ based on the estimator’s number.

ARIMA method

The ARIMA model contains the autoregressive (AR) 
and moving average (MA) models with a difference 
(integration) term. The model was introduced by 
Box and Jenkins (1976). The seasonal ARIMA can 
be defined as ARIMA(p,d,q)(P,D,Q)s where P an p 
represent the seasonal and non-seasonal degrees of 
the AR model, Q and q denote the seasonal and non-
seasonal degrees of the MA model, and D and d are 
the seasonal and non-seasonal degrees of difference 
respectively, where s denotes the seasonal frequency 
(Anggraeni et al., 2015). The ARIMA model uses the 
following formula:

where Yt and �t indicate the time and error series, 
ΛP(B

s) and ΠP(B
s) represent the seasonal autore-

gressive and moving average polynomials, �p(B) and 
�p(B) denote the non-seasonal autoregressive and 
moving average polynomials, ΥD

s
= (1 − Bs)D indi-

cate the seasonal, and Υd = (1 − B)d indicate the non-
seasonal machinists, respectively. Here, the lag opera-
tor (BiYt = Yt−i) is B. The series should be stationary 

(2)L(x, y) ≡

n∑

i=1

(yi−h�(xi))
2 + λ

n∑

i=1

||�i||

(3)ΥD
s
ΥdΛP(B

s)�p(B)Yt = ΠQ(B
s)�q(B)�t

for determining the superlative ARIMA model. The 
difference operations determine the levels of differ-
encing for d and D. Moreover, the values of P, Q, p, 
and q are selected as the optimum model (Athanaso-
poulos et al., 2011). Finally, the model is carried out 
a white noise test to determine whether the residu-
als will be generally dispersed (Molina et al., 2018). 
Hyndman and Khandakar (2008) discussed in detail 
the steps of the ARIMA model.

Data sources

Anhui Province, the provincial administrative 
region of China, is located in the middle and east 
(between 114°54′–119°37′ E, 29°41′–34°38′ N) 
(Fig.  1). Hefei, the capital of Anhui Province, is 
located in the Yangtze River Delta region. The prov-
ince is bordered by Jiangsu in the east, Hubei and 
Henan in the west, Shandong in the north, Jiangxi in 
the south, and Zhejiang in the southeast. According 
to the latest census data, Anhui has a great popu-
lation, an approximately 61.03 million, ranking 9th 
in the country. The province has diverse and com-
plex landforms, with plains, hills, and mountains. 
Anhui is subjugated by highlands and mountains, 
spanning the three most important water systems of 
the Yangtze River, the Xia’an River, and the Huai 
River, with several lakes. Anhui Province has rap-
idly industrialized, especially the districts surround-
ing its capital, Hefei, and other large cities, includ-
ing as Wuhu and Ma’anshan. Due to the expansion 
of industry, manufacturers are now emitting more 
particulate matter, sulfur dioxide, nitrogen oxides, 
heavy metals, and sulfur dioxide. As a result, varia-
tions in air quality patterns exist throughout differ-
ent regions, which will eventually aid in our abil-
ity to study more effectively. In recent years, the 
province has seen rapid growth and development in 
industry and manufacturing sectors. This has led to 
extreme and severe air pollution issues, especially 
in the capital city of Anhui Province, Hefei.

The daily average data of PM2.5 were collected 
through 68 monitoring stations ranging from 1 Janu-
ary 2018 to 31 December 2023 along with five mete-
orological parameters including temperature (TEMP), 
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relative humidity (RH), wind speed (WS), wind direc-
tion (WD), and precipitation (PCPN) through 16 moni-
toring stations for the same window of time to build the 
models (Table 1, Fig. 1). PM2.5 data were downloaded 
from the China Weather Website Platform (CNEMC, 
2019), while the meteorological data were retrieved 
from the NASA meteorological data service (https://​
power.​larc.​nasa.​gov). The basic statistics for the mete-
orological and PM2.5 data are presented in Table 1. In 
general, approximately 80% and 20% data are consid-
ered, respectively, as training and test data. In this paper, 
we divided the data into three sets, entirely, 3-year data-
set and yearly to evaluate the forecast accuracy of the 
three models. The actual and predicted values were also 
compared at the municipal level in this work.

Model performance metrics

In this work, we used the three statistical metrics to 
evaluate the performance of the models, which are 
determination coefficient R2, root mean squared error 
(RMSE), and mean absolute error (MAE). These 
metrics defined as

(4)R2 =

n∑

i=1

(Pi −M)2∕

n∑

i=1

(Mi −M)2

(5)RMSE =

√√√√1

n

n∑

i=1

||Mi − Pi
||
2

Fig. 1   Location of the PM2.5 and meteorological monitoring sites in Anhui

https://power.larc.nasa.gov
https://power.larc.nasa.gov
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where M and P are the observed and predicted val-
ues and n denotes the number of samples. The smaller 
values of RMSE, MAE, and values of R2 closest to 
one indicate that the prediction accuracy of the model 
is higher.

Results

RF performance

The cross-validation (CV), determination coefficient 
R2, RMSE, and MAE were used to estimate the mod-
el’s performance. The predicted results of the three 
models are presented in Table  2. The results indi-
cate that the RF model outperformed the PFM and 
ARIMA in the prediction of PM2.5 in Anhui Province. 
RF predicts with an overall CV R2 of 0.83, RMSE 
value of 10.39  µg/m3, and MAE value of 6.83  µg/
m3, respectively (Fig.  2). In a 3-year dataset pre-
diction, by RF, the values of R2, RMSE, and MAE 
were 0.81, 9.96 µg/m3, and 6.99 µg/m3, respectively 
(Fig.  2). Figure  5 is showing the yearly comparison 
between the actual and predicted PM2.5 of the three 
models. Compared with an overall CV, the value of 
R2 is slightly lower, while the value of RMSE is bet-
ter in the second time frame. In a yearly prediction, 
the predicted values of R2, RMSE, and MAE were 
0.80, 10.54  µg/m3, and 7.60  µg/m3, respectively. It 
should be noted that the predicted value of R2 (0.83) 
is greater in the entire dataset than that of the 3 years’ 
time frame and a yearly prediction, but the values of 
RMSE and MAE are poorer in this period. Moreover, 
RF has the poorer R2, RMSE, and MAE values com-
pared with an overall CV or the half dataset predic-
tion. Figure 6 shows the comparison results for the 16 
cities of Anhui.

PFM performance

Compared with the RF model, PFM showed relatively 
a poorer performance in the prediction of PM2.5 con-
centrations in Anhui. The results indicate that PFM 
predicted with an overall CV R2, RMSE, and MAE 
values of 0.71, 13.90 µg/m3, and 9.05 µg/m3 (Fig. 3). 

(6)MAE =
1

n

n∑

i=1

||Mi − Pi
||

Ta
bl

e 
1  

B
as

ic
 st

at
ist

ic
s f

or
 th

e 
PM

2.
5 a

nd
 m

et
eo

ro
lo

gi
ca

l p
ar

am
et

er
s d

ur
in

g 
th

e 
stu

dy
 p

er
io

d

Po
llu

ta
nt

20
18

20
19

20
20

20
21

20
22

20
23

M
ax

A
vg

M
in

M
ax

A
vg

M
in

M
ax

A
vg

M
in

M
ax

A
vg

M
in

M
ax

A
vg

M
in

M
ax

A
vg

M
in

PM
2.

5 (
µg

/m
3 )

17
7.

15
48

.5
7

11
.5

7
15

2.
23

45
.9

4
7.

68
13

0.
93

38
.4

0
8.

92
13

0.
21

35
.0

8
5.

66
14

1.
08

34
.6

9
6.

71
19

4.
88

35
.6

5
6.

54
TE

M
P 

(˚
C

)
31

.3
7

16
.3

8
 −

 6.
10

32
.2

2
16

.7
8

 −
 1.

27
30

.1
3

16
.4

2
 −

 5.
44

30
.0

2
16

.8
8

 −
 5.

36
30

.1
7

16
.6

2
 −

 4.
45

31
.1

2
16

.7
6

 −
 5.

21
R

H
 (%

)
94

.5
0

77
.2

3
42

.9
0

92
.8

1
71

.8
7

41
.8

5
94

.3
4

78
.5

4
52

.1
0

93
.5

1
77

.8
7

50
.7

5
92

.5
5

75
.8

5
49

.3
8

93
.6

1
76

.3
4

47
.6

2
W

S 
(m

/s
)

9.
01

3.
26

1.
34

7.
51

3.
05

1.
31

9.
21

3.
15

1.
33

8.
41

3.
32

1.
47

8.
55

3.
22

1.
41

8.
13

3.
16

1.
44

W
D

 (°
)

30
6.

39
15

1.
43

23
.1

9
32

0.
36

14
5.

46
24

.8
7

31
8.

21
15

6.
36

32
.8

9
34

1.
43

16
2.

42
22

.6
7

33
2.

53
15

8.
23

26
.5

3
32

4.
83

15
2.

43
28

.6
3

PC
PN

 (m
m

)
79

.2
8

3.
84

0
42

.1
6

2.
76

0
63

.5
3

5.
41

0
38

.2
1

3.
86

0
44

.5
3

4.
13

0
52

.5
4

3.
94

0



Environ Monit Assess (2024) 196:487	

1 3

Page 7 of 15  487

Vol.: (0123456789)

Ta
bl

e 
2  

T
he

 p
er

fo
rm

an
ce

 o
f d

iff
er

en
t m

od
el

s f
or

 a
ll 

th
e 

ci
tie

s o
f A

nh
ui

C
ity

R
F

PF
M

A
R

IM
A

B
ha

tti
 e

t a
l. 

(2
02

1)
H

as
na

in
 e

t a
l. 

(2
02

2)
 

R2
R

M
SE

M
A

E
R

2
R

M
SE

M
A

E
R2

R
M

SE
M

A
E

R2
R

M
SE

M
A

E
R2

R
M

SE
M

A
E

H
ef

ei
0.

82
9.

76
7.

81
0.

76
11

.9
7

9.
51

0.
63

15
.0

5
11

.7
3

0.
60

14
.8

7
12

.2
2

0.
56

19
.1

3
16

.9
3

Su
zh

ou
0.

79
12

.5
6

10
.3

1
0.

77
16

.4
0

14
.6

9
0.

69
17

.9
7

13
.2

6
0.

58
19

.2
2

16
.6

4
0.

55
21

.4
3

18
.3

6
H

ua
ib

ei
0.

81
15

.1
5

13
.1

9
0.

81
15

.1
9

13
.2

5
0.

77
16

.6
9

13
.5

1
0.

63
18

.4
5

16
.2

1
0.

61
19

.0
5

17
.6

3
B

oz
ho

u
0.

83
13

.6
0

11
.0

7
0.

82
15

.5
2

13
.8

1
0.

75
18

.5
9

14
.5

0
0.

61
18

.5
8

17
.8

2
0.

51
20

.4
3

17
.4

2
Fu

ya
ng

0.
80

14
.4

6
12

.5
7

0.
82

16
.6

7
14

.2
1

0.
72

20
.7

2
15

.9
0

0.
55

20
.7

7
16

.3
5

0.
49

23
.4

3
18

.4
2

B
en

gb
u

0.
88

9.
18

6.
90

0.
75

12
.7

7
10

.0
6

0.
51

17
.8

6
13

.8
1

0.
67

16
.2

4
13

.0
3

0.
42

21
.6

4
16

.6
1

H
ua

in
an

0.
81

12
.6

7
10

.4
3

0.
81

14
.1

5
11

.8
8

0.
45

24
.2

1
18

.6
9

0.
46

17
.3

5
14

.5
2

0.
33

28
.5

3
23

.5
2

C
hu

zh
ou

0.
81

10
.4

0
8.

73
0.

79
11

.0
8

8.
95

0.
54

16
.0

9
12

.2
9

0.
57

15
.1

9
13

.7
3

0.
44

21
.6

4
17

.2
9

Lu
an

0.
85

10
.8

4
9.

17
0.

81
12

.1
4

9.
80

0.
57

17
.6

9
13

.4
8

0.
52

16
.5

9
12

.5
3

0.
39

21
.7

5
18

.5
3

A
nq

in
g

0.
85

10
.9

3
8.

92
0.

75
13

.9
4

11
.4

0
0.

60
17

.6
6

12
.7

9
0.

61
17

.9
9

13
.1

1
0.

48
20

.6
4

17
.4

7
To

ng
lin

g
0.

82
9.

72
8.

53
0.

59
14

.4
1

12
.1

3
0.

41
17

.3
3

13
.3

4
0.

49
19

.2
1

14
.5

2
0.

34
21

.6
3

18
.7

4
W

uh
u

0.
85

10
.6

0
9.

16
0.

67
14

.7
5

12
.1

9
0.

17
24

.3
9

17
.6

5
0.

34
18

.6
5

15
.1

3
0.

27
28

.4
2

24
.7

5
M

aa
ns

ha
n

0.
85

9.
46

8.
09

0.
56

15
.5

7
12

.6
9

0.
39

18
.7

1
14

.1
4

0.
41

19
.1

1
15

.1
4

0.
31

22
.7

4
19

.5
3

X
ua

nc
he

ng
0.

74
10

.6
0

9.
12

0.
52

15
.2

9
12

.7
1

0.
33

21
.3

7
17

.6
4

0.
48

18
.3

4
15

.5
2

0.
29

24
.6

3
21

.3
6

C
hi

zh
ou

0.
80

10
.9

1
9.

24
0.

73
13

.0
5

11
.2

3
0.

53
16

.9
6

13
.2

8
0.

33
17

.1
4

14
.4

6
0.

43
20

.6
3

17
.5

3
H

ua
ng

sh
an

0.
77

6.
52

5.
38

0.
46

12
.0

1
10

.0
9

0.
40

15
.6

6
13

.6
1

0.
39

16
.5

6
13

.1
1

0.
36

20
.6

2
17

.4
2



	 Environ Monit Assess (2024) 196:487

1 3

487  Page 8 of 15

Vol:. (1234567890)

Table  2 and Fig.  7 present the performance of the 
PFM model at the municipal level. In the 3-year 
period prediction, the model predicts with R2 value of 
0.70, RMSE value of 12.83 µg/m3, and MAE value of 
8.39 µg/m3. The cross-validation R2 slightly decreases 
in this period, while the values of RMSE and MAE 
are demonstrating higher performance compared 
with an overall CV. Previously, Shen et  al. (2020) 
used the PFM model for predicting air pollution and 
compared with the said study, the performance of the 
current work is higher. Moreover, the R2, RMSE, and 
MAE values between the actual and predicted PM2.5 
are 0.74, 12.51 µg/m3, and 8.69 µg/m3, respectively, 
in a yearly prediction (Fig. 3). PFM achieved the best 

performance during this window of time. A small 
difference in the values of R2, RMSE, and MAE can 
be seen between the 3-year period prediction and a 
yearly.

ARIMA performance

Figure  4 shows the validation between the actual 
and predicted PM2.5 by the ARIMA model. The 
results indicate that by ARIMA, an overall CV R2 
is 0.64, which is lower than that of RF and PFM, 
while the values of RMSE and MAE are 15.85 µg/
m3 and 10.59  µg/m3, respectively. The predicted 
results for all the cities of Anhui are listed in 

Fig. 2   Validation between predicted and actual PM2.5 concentration by random forest model; a overall CV, b 3-year dataset, and b 
yearly prediction

Fig. 3   Validation between predicted and actual PM2.5 concentration by prophet forecasting model; a overall CV, b 3-year dataset, 
and b yearly prediction
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Table  2. Compared with an overall CV, ARIMA 
showed a higher performance in half dataset pre-
diction. The predicted R2, RMSE, and MAE values 
for ARIMA are 0.65, 13.84 µg/m3, and 9.46 µg/m3, 
respectively, in the corresponding period (Figs. 4, 
(8). A slight increase can be seen in the value of 
R2, while the difference between the values of 
RMSE and MAE is larger compared with an over-
all CV. Moreover, ARIMA achieved a better per-
formance in yearly prediction compared with the 
overall CV and 3-year period prediction (Fig.  4). 
The results indicate that the R2, RMSE, and MAE 
values between the actual and predicted PM2.5 
are 0.67, 13.81  µg/m3, and 9.59  µg/m3, respec-
tively. It can be noted that there is a slight differ-
ence in the values of RMSE and MAE between 
the 3-year period prediction and the yearly predic-
tion. ARIMA has the best R2 and RMSE values in 
a yearly prediction, while it has a relatively lower 
MAE value in this period.

Comparisons of the models

Here, we compare the results of the three models. As 
shown in Fig. 2, the performance of the RF model is 
higher than that of the PFM and ARIMA models. For 
example, by RF, an overall CV R2 is 0.83, while these 
values are 0.71 and 0.64, respectively, for PFM and 
ARIMA (Figs. 3, 4). Similarly, the values of RMSE 
and MAE are also demonstrating better results of 
RF than that of PFM and ARIMA. Figure 5 is show-
ing the comparison between the actual and predicted 
PM2.5 for the three models. Lu et  al. (2021) devel-
oped random forest (RF), support vector regression 
(SVR), and artificial neural network (ANN) for pre-
dicting PM2.5 concentrations in the Yangtze River 
Delta region. Their results showed that by RF, the 
value of cross-validation R2 was 0.77, by SVR it was 
0.703, while by AAN the predicted value of R2 was 
0.702. Ye (2019) presented an ARIMA-PFM model 
in the prediction of PM concentrations. Another study 

Fig. 4   Validation between predicted and actual PM2.5 concentration by ARIMA model; a overall CV, b 3-year dataset, and b yearly 
prediction

Fig. 5   Comparison 
between actual and pre-
dicted PM2.5 concentration 
using different models
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documented by Chang et al. (2020) presented a deep 
learning approach in the prediction of air pollution. 
However, compared with the said studies, our models 
are showing higher performance.

The prediction results for all the cities of Anhui are 
presented in Table 2. The R2 values by RF for all the 
cities of Anhui are ranged from 0.74 to 88. RF has 
the best R2 value for the Bengbu city, while it has the 
worst R2 value for Xuancheng (Table 2, Fig. 6). The 
RMSE values ranged from 6.52 to 15.15 µg/m3, while 
the MAE values ranged from 5.38 to 13.19 µg/m3 for 
the RF model. It should be noted that RF predicts the 
best RMSE value for the Huangshan city, while the 
worst for the Huaibei city. Although the performance 
of the RF model differed slightly for all the cities of 
Anhui, the overall RF’s stability was good. Small 
fluctuations can be seen in the values of R2, RMSE, 
and MAE.

PFM is also showing the best performance in the 
prediction of PM2.5. However, compared with the 
RF model, PFM has relatively poor performance. 
By PFM, the R2, RMSE, and MAE values for all 
the cities of Anhui were 0.46–82, 11.08–16.67 µg/
m3, and 8.95–14.69  µg/m3, respectively (Table  2). 
By PFM, the fluctuations in the values of R2 were 
greater than those of the RF model. PFM achieved 
the best prediction results for Hefei, Chuzhou, and 
Luan with RMSE and MAE values, while it predicts 
the best R2 values for Bozhou and Fuyang. Com-
pared with the RF and PFM models, ARIMA has 
low accuracy (Table 2). The results indicate that by 
ARIMA, the R2 between the actual and predicted 
PM2.5 values ranged from 0.17 to 0.77, RMSE 
ranged from 15.05 to 24.39  µg/m3, and MAE val-
ues ranged from 11.73 to 18.69 µg/m3 for all the cit-
ies of Anhui (Table 2). ARIMA has the best R2 and 

Fig. 6   Comparison between actual and predicted PM2.5 using random forest model
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RMSE values for Huaibei and Hefei respectively, 
while it has the worst R2 and RMSE values for 
Wuhu and Huainan, respectively. Overall, the com-
parison analysis indicates that the RF model outper-
formed the PFM and ARIMA in the prediction of 
PM2.5 concentrations (Fig. 5).

The present models’ performance was also eval-
uated against the results of previous research, as 
reported by Bhatti et al. (2021) and Hasnain et al. 
(2022) (Table 2). Our models exhibit high accuracy 
when compared to the previously mentioned inves-
tigations, as indicated by the findings. All three of 
the chosen models performed better than the com-
parable approaches, which had poor performance 
(Table 2) (Figs. 7 and 8).

Spatial distributions of PM2.5

The annual concentrations of PM2.5 are shown in 
Fig.  9. The concentrations of ambient PM2.5 were 
higher in the central and northern parts of Anhui, 
especially in Hefei, Suzhou Lu’an, Chuzhou, Bengbu, 
Huaibei, Bozhou, Fuyang, and Huainan, while the 
southern areas had lower concentrations (Fig. 9). The 
areas with higher concentrations are mainly concen-
trated in the industrial and economically developed 
areas. The annual average concentration of PM2.5 
from 2018 to 2023 was 39.72  µg/m3. According to 
the obtained results, the concentration levels of PM2.5 
continuously decreased during the study period, while 
a slight increase was observed in 2023 (Table 1). The 

Fig. 7   Comparison between actual and predicted PM2.5 using prophet forecasting model
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Fig. 8   Comparison between actual and predicted PM2.5 using ARIMA model

Fig. 9   Spatial distributions of PM2.5 concentrations in Anhui
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reduction in the levels of PM2.5 was due to the strict 
control measures implemented by the government of 
China (Hasnain et al., 2023).

Discussion

The findings from this study underscore the effective-
ness of the Random Forest (RF) model over the Prophet 
Forecasting Model (PFM) and Autoregressive Inte-
grated Moving Average (ARIMA) in forecasting PM2.5 
concentrations in Anhui Province, China. The superior 
performance of the RF model, as indicated by its higher 
R2 value and lower RMSE and MAE scores, suggests 
that it can more accurately capture the complex rela-
tionships and patterns inherent in environmental data 
influenced by various factors, including meteorological 
conditions and industrial activities.

The moderate performance of the PFM and the rel-
atively poorer outcomes of the ARIMA model high-
light the challenges and limitations associated with 
applying time series analysis to environmental data. 
The variability and complexity of such data might not 
be fully accounted for by models like ARIMA, which 
are typically more suited to linear time series data 
without complex interactions.

Given the critical importance of accurately fore-
casting PM2.5 levels due to their significant health and 
social implications, the results of this study advocate 
for the adoption of more sophisticated machine learn-
ing techniques like RF in environmental monitoring 
and policymaking. Such approaches can enhance the 
precision of pollution forecasts, thereby facilitating 
more effective public health interventions and envi-
ronmental management strategies.

Conclusions

In the current study, we used three time series mod-
els including random forest, prophet forecasting, and 
ARIMA to predict ambient PM2.5 concentrations in 
Anhui Province. The results indicate that the RF model 
outperformed the PFM and ARIMA in the prediction of 
ambient PM2.5 concentrations. The predicted results at 
the municipal level also showed the efficiency of the RF 
model. The performance of PFM was relatively poorer 
than that of RF. Compared with the RF and PFM 

methods, ARIMA showed low performance. Moreover, 
the concentration levels of ambient PM2.5 decreased 
from 2018 to 2022, while a slight increase was seen in 
2023, in Anhui. The present study concludes that the 
RF model is the most effective and powerful method for 
predicting ambient PM2.5 concentrations and it can be 
applied to other regions for new findings.
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